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A POLYHEDRAL METHOD FOR SOLVING
SPARSE POLYNOMIAL SYSTEMS

BIRKETT HUBER AND BERND STURMFELS

Abstract. A continuation method is presented for computing all isolated roots
of a semimixed sparse system of polynomial equations. We introduce mixed
subdivisions of Newton polytopes, and we apply them to give a new proof and
algorithm for Bernstein's theorem on the expected number of roots. This results
in a numerical homotopy with the optimal number of paths to be followed. In
this homotopy there is one starting system for each cell of the mixed subdivision,
and the roots of these starting systems are obtained by an easy combinatorial
construction.

1. Introduction

This article deals with a seminumerical algorithm for solving sparse systems
of multivariate polynomial equations. Here "sparse" means that we are fixing
the sets of monomials which appear in each equation. We allow monomials
xa = xf'x"2 ■■■Xn" to have negative exponents, and we identify them with lat-
tice points a = (ax, a2, ... , an) £ Z" . More precisely, a sparse system is a
collection of Laurent polynomials

(1.1) fi(x)    =    l>,axa,       i = l,2,... ,n,

where s/x,s/2, ... ,stfn are fixed finite subsets of Z" . We call s/¡ the support
of the polynomial f. Its convex hull Q¡ = conv(j^) in R" is called the
Newton polytope of f . We distinguish three cases: The input system (1.1) is
unmixed when all the sets s/¡ are equal; fully mixed when they are all distinct;
and semimixed when they are equal in r distinct blocks. We will concentrate
on semimixed systems, of which mixed and unmixed systems are special cases.
Our point of departure is Bernstein's Theorem, which gives a precise estimate
for the expected number of complex roots.

Theorem 1.1 (Bernstein's Theorem [2]). For almost all choices of coefficients
Q,a € C*, the number of common zeros 0/(1.1) in the torus (C*)" equals the
mixed volume Jf(Q\, ... , Qn) of the Newton polytopes.

Received by the editor June 1, 1993 and, in revised form, March 22, 1994 and September 19,
1994.

1991 Mathematics Subject Classification. Primary 52B20, 65H10; Secondary 68Q40.
This research was supported in part by the National Science Foundation and the David and

Lucile Packard Foundation.

©1995 American Mathematical Society

1541

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1542 BIRKETT HUBER AND BERND STURMFELS

The notation and terminology used in this theorem need explanation. We
write C* for the nonzero complex numbers. The multiplicative group (C*)" is
the (n-dimensional algebraic) torus. Consider the function

(1.2) R(Xx,... ,Xn):=vol(XxQx+X2Q2 + --- + XnQn),
where Xx, ... , Xn are nonnegative variables. Here "vol" denotes the usual
Euclidean volume in R" , and

n

(1.3) Qx+Qi+-+Qn    :=    { 5>,- e R" : *,-e ft for all / }
1=1

denotes the Minkowski sum of polytopes. It is well known in convexity that
R(Xx, ... , X„) is a homogeneous polynomial of degree n . The mixed volume
JK is defined to be the coefficient of Xx ■ ■ ■ X„ in this polynomial. See [3] and
[12] for basic properties of mixed volumes, and [7] for their computational
complexity.

The hypothesis "for almost all choices" in Bernstein's Theorem can be made
more precise. Given any nonzero linear functional co £ (R")v , we write
imtw(f) for the initial form of / with respect to co. This is the sum over
all terms c,, axa for which the inner product (co, a) is minimized. Note
that the Newton polytope of initw( ff2 • ■ • fn) is a face of the Minkowski sum
ôi H-1- Qn ■ In [2] Bernstein also proves the following result.

Proposition 1.2. Suppose that, for all linear functionals co £ (R")v , the system

(1.4) iniW/iXx) = ••• = imtw(fn)(x) = 0
has no zero in (C*)". Then (1.1) has Jt(Qx, ... , Qn) zeros in (C*)n, counting
multiplicities.

Both the classical Bézout theorem for dense systems and the more refined
Bézout theorem for multi-homogeneous systems (see e.g. [15, §IV.2.1]) can be
regarded as special instances of Theorem 1.1. For systems which are not dense,
however, the mixed volume is usually much smaller than the Bézout bound.
Here are two easy families of examples for which the ratio is asymptotically
zero.

Example 1.3. Let f(x, y) = ao + axx + a2xny" , g(x, y) = b0 + bxy + b2Xny" .
Then J£(f', g) = 2n, whereas the Bézout bound equals (2n)2, and the ratio
tends to zero.

Example 1.4. Consider the eigenvalue problem Ax — Xx, where A £ C"x" is a
generic matrix. View this as a set of n+l quadratic equations in n+l variables:
Y,j"ijXj - Xxí = 0 ; Yiix2 = 1, with Newton polytopes Q, ... ,Q,Q.
There are 2n distinct solutions to this system, so by Theorem 1.1, the mixed vol-
ume ^(Q, ... , Q,Q!) equals 2n (each eigenspace intersects the unit sphere
in two points), whereas the Bézout bound equals 2"+1 .

Our aim is to give a numerical continuation method for computing all iso-
lated roots in (C*)" of the system (1.1). Continuation methods or "homotopy
methods" for solving systems of equations are a standard technique in numerical
analysis, see e.g. [1, 6]. Our contribution lies in developing combinatorial tools
for optimally exploiting any given sparsity pattern in the input. Here "optimal"
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SOLVING SPARSE POLYNOMIAL SYSTEMS 1543

means that, for almost all choices of coefficients, no divergent paths need to be
traced. In the case of multi-homogeneous systems, homotopies of the desired
form were given by Morgan and Sommese [13]. Homotopies for general sparse
systems were studied independently by Verscheide, Verlinden and Cools [17].

An apparent limitation of the method to be discussed here is that it finds
only the roots in (C*)" , but not necessarily all roots in affine space C" or in
projective space Pn . This issue is best understood and resolved in the general
context of toric varieties [8]. An extension of our homotopy algorithm to toric
varieties will be presented in the forthcoming Ph.D. dissertation of the first
author.

This paper is organized as follows. In §2 we introduce mixed subdivisions for
a collection of r polytopes in an «-dimensional space, and we give a formula
for computing mixed volumes in terms of these subdivisions. This construction
extends ideas in [3] and may be of independent interest for polytope theory.
The resulting algorithm takes advantage of the semimixed structure and any
information already available about the polytopes ft .

In §3 we construct algebraic deformations from mixed subdivisions. This
leads to an effective new proof of Bernstein's Theorem 1.1, and to a method for
generating start systems for the desired homotopy. The resulting seminumer-
ical algorithm for solving (1.1) is presented in §4, where we also report some
practical experience. A simple example in §5 shows our algorithm in action.

In an appendix to this paper we present an algebraic criterion which sharpens
Proposition 1.2. This criterion is expressed in terms of sparse resultants as
defined in [9, 14, 16].

2. Mixed subdivisions

Let sé — (sé^, ... ,sé^) be a sequence of r finite subsets of R" whose
union affinely spans R" . By a cell of sé we mean a tuple C = (C(1), ... , C(r))
of nonempty subsets C('' c sé^'K We define

type(C)    :=    (dim(conv(C<'> )),..., dim(conv(C<r>))) e  Nr,

conv(C)    :=     conv(C(1) + •• • + C(r)) c   R" ,
#(C)    :=    #C(1) + #C(2) + • • • + #C(r) £   N,

and vol(C) := vol(conv(C)). A face of C is a subcell F = (fO , ... , F <r>)
such that some linear functional a £ (R")v attains its minimum over C(,) at
F M, for z = 1, ... , r. We call such an a an inner normal of F . If F is a face
of C, then conv(F^) is a face of the polytope conv(C(!)) for / = 1, ... , r.
We now define our main combinatorial tool:

Definition 2.1. A subdivision of sé is a collection S = {S\,... , Sm} of cells
such that

(a) dim(conv(S/)) = n   for all Sj,
(b) conv(S/,) n conv(SJ2) is a face of both conv(5;i) and conv(5j2), for

all Sh,Sh£S,
(c) \Jj=lconv(Sj) = com(sé).

We say that S is a mixed subdivision if we have the additional condition
(d) E/=i dim(conv(Sy')) = n   for all cells Sj <E S,
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Figure 1. An example in two dimensions

and that S is afine mixed subdivision if we have the stronger condition

(e)   ELiWS/0) - 1) = "   for all cells Sj £ S.

Note that the singleton {sé} is a subdivision of sé , but generally not a
mixed subdivision. If r = 1, then our definitions coincide with the definitions
in [11]: cells C are simply subsets of the support set. In this case, faces of C
are simply intersections of C with a support hyperplane. If r = 1, then all
subdivisions are mixed, and fine mixed subdivisions are called triangulations.
In general, our terminology is consistent with [4, 9, 11, 16].

Example 2.2.     Let sé = (A, B) = ({a, b, c, d}, {e, f, g}) be the point sets
in Figure 1. The following tuples are faces of sé :

^_i)_i) = ({c},{f,g}))    ^i,0) = ({a,d},{e})>    ^0,i) = ({a, b}, {e}).

The following set is a fine mixed subdivision:

A = {C,=({a},{e,f,g}), C2 = ({a,b},{e,f}),
C3 = ({a,c},{f,g}), C4 = ({a,d},{e,g}),
C5 = ({a,b,c},{f}),    C6 = ({a,c,d},{g})}.

As an application of mixed subdivisions we get a formula for calculating
Bernstein's bound for a semimixed system. For / = 1, ... , r let k¡ be the
number of polynomials of F having support sé^ , and let ß(,) = conv(j/(,)).
In this situation we abbreviate the mixed volume as follows:

(1Ui;Ö(2U2;... ;Q(r\kr)
:= J?(Q^,... ,ß(1),<2(2),... ,Ö(2),...,Ö(r),...,ß(r)).

k,

Lemma   2.3. The   mixed   volume   Jf(Qx ,k\\Q2,k2;... ; ft, kr)    equals
kx\k2\ --krl times the coefficient of Xk{ X22 ■■■ Xkr in the polynomial R(X{, ... , Xr)
:=vo\(XxQx+X2Q2+-+XrQr).
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Proof. The mixed volume equals the coefficient of rjjLj h,j"m IiJLi &rj in the
expansion of the polynomial

vol(¿A1J0,+¿A2>y<22 + ••+ £>,,&)
7=1 7=1 ;=i

= vol((¿A1,;)ft+(¿A2J)02 + --- + (¿ArJ)ft).
;=1 ;=1 7=1

If we make the substitution X¡ := S/Li^'j m F(X) >tnen ¿/   contributes fc;!
factors ri;L 1^1,7- Altogether, the term üyli^ij:" "Il>i ¿rj occurs ki\---kr\
times.   D

Theorem 2.4. Let S be a mixed subdivision of sé . Then

*(Qw,kr, ...;Q(r),kr)    =       £     kli--kr\-yci(Si).
S¡£S

type(S,)=(<r, .... ,kr)

Proof. This is a corollary of Lemma 2.3. Consider the scaled configuration
(XxS/W, ... , Xrsé^) and its mixed subdivision S^ which is obtained from
S by scaling each cell. The volume of each cell of type (kx, ... , kr) in S will
scale by a factor of X\x ■■• Xkr. As long as the subdivision 5 is mixed, all other
cells of S contribute to a different coefficient of the homogeneous polynomial
VOl(Aißi+...+Arör).     D

If S is a fine mixed subdivision, then each cell Sj of type (k\,... , kr) is
a sequence of subsets (SJ1', ... , SJr)), where each SJ ' = {q,,o, ... , <li,k¡} is
a (kt + l)-element subset of sé^ . Let V(Sj) be the n x «-matrix whose rows
are q¡j - q¡>0, where 1 < i < r and 1 < j < k¡, and define V(S^) to be the
(possibly empty) k¡ x «-submatrix whose rows q, j -q,,o come from points in
Sj'. The matrix V(Sj) is nonsingular since its rows span is an «-dimensional
space, by part (a) of Definition 2.1. Its determinant has a natural interpretation
as volume.

Lemma 2.5. We have \det(V(Sj))\ = kx\-kT\ -vol(S/).
Proof. The rows of the submatrix V(Sj) span a parallelepiped whose vol-
ume equals k¡\ times the volume of the &,-simplex conv(5j- ). These paral-
lelepipeds and simplices lie in complementary subspaces for different i, so that
volume is multiplicative (up to a global constant) under taking Minkowski sums.
The «-dimensional parallelepiped spanned by the rows of V(Sj) has volume
| det(K(5/)) |, and thus | det(V(Sj)) | is equal to k\\ • • • kr\ times the volume of
conv(5y).   D

In view of Lemma 2.5, we may rephrase Theorem 2.4 as follows:

(2.1) Jr(Qx,kx;Q2,k2;...;Qr,kr)    =       £     |det(K(S,-))|.
s,ss

type(S,)=(*!..- ,*r)
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1546 BIRKETT HUBER AND BERND STURMFELS

This formula gives an easy way to calculate the mixed volume, provided an
explicit fine mixed subdivision of sé is known. For our algorithm we will
restrict to the class of subdivisions which are coherent in the sense of [4, 9, 16].

This class can be defined by the following process: Choose real-valued func-
tions wW : séW -> R. We call the Muple co = (w(1), ... , iuM) a lifting
function on sé . We say that w lifts sé^ to its graph sé^ = {(q, ii>(/)(q)) :
q £ sé^} c R"+1. This notation is extended in the obvious way: sé =
(sftx),... , set')), ß(') = conv(i^)), ß = Y!i=x Q(i). etc.

Let Sw be the set of cells C of sé which satisfy
(a) dim(conv(C)) = « , and
(b) C is a face of sé whose inner normals a £ (R"+1)v have positive last

coordinate.
In other words, conv(C) is an «-dimensional face of the lower hull of Q.

The following easy lemma is a special case of the construction of coherent
subdivisions in [4, 9, 11].

Lemma and Definition 2.6. For every lifting function co, the set Sw is a subdi-
vision of sé , called the subdivision induced by co. Subdivisions of the form
Sw are called coherent.

Example 2.7. The subdivision in Example 2.2 is coherent. It can be induced by
the lifting co = ((0, 1, 1, 1), (0, 0, 0)), that is,

sT   =     ({(a,0),(b,l),(c,l),(d,l)},{(e,0),(f,0),(g,0)})

and Sœ = A consists of the lower facets of conv(sé).

We next analyze the conditions on co under which the coherent subdivision
Soj fails to be mixed. If C is a cell of sé , then we define the matrices V(C)
and V(C^) in analogy to the definition in the paragraph before Lemma 2.5. (In
particular, V(C^) isa #C^ by («+1) matrix and rank(F(C)) = dim(C)+l .)
Suppose that So, is a subdivision of sé which is not mixed. Then there exists
an «-dimensional cell C of sé such that each V(C^) has rank dim(C(')) +1
but V(C) has rank strictly less than E/=i(dim(C(i)) + 1). This follows from
Definition 2.1 (d) and the definition of Sw. This degeneracy can be avoided
even within the subspace of linear lifting functions. A lifting function co is
said to be linear if there exists an r-tuple of linear forms y = (y(1), ... , y(r)),
y(') e (R«)v ) such mat (yO^q) = (y(i) > q) for au q e j¡/(¡). Tn this situation we
set Sy := Sw ■ For any cell C of Sy, the maximal minors of V(C) are linear
forms in the coordinates of the y('). If C is not a mixed cell, then at least one
of these linear forms vanishes. Therefore, Sy can fail to be mixed only if y
lies on one of finitely many hyperplanes in the vector space ((R")v)r. Thus, Sy
will be mixed almost surely if the linear lifting function y is chosen at random
in that vector space. (This parallels Betke's result in [3, p. 390].)

We similarly analyze the conditions on co under which the coherent subdi-
vision Sw is fine mixed. This is the case if V(C) has maximal possible rank,
for each cell C of sé . To see this geometrically, we note that the subdivision
So, is fine mixed if and only if each lower facet of sé is a product of simplices
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(whose factors are lower faces of sé^ ). The maximal minors of the matri-
ces V(C) form a finite number of linear conditions in the variables eo(q) for
q£sé^ . We conclude that Sm will be a fine mixed subdivision for co lying in
the complement of finitely many hyperplanes in R*^). Our discussion shows
that the following condition is sufficient for Sw to be fine mixed.

Definition 2.8. A lifting function co is called sufficiently generic if V(C) has
maximal rank, namely, min {« + 1, #(C) - r}, for each «-dimensional cell C
of sé.

In the special case where #sé(-'ï = dim(séí~'s>) + 1 for all /, there is no
distinction between fine mixed and mixed subdivisions. In this case it suffices
to chose co to be a random linear lifting function. The general problem of
computing a coherent fine mixed subdivision by a deterministic combinatorial
algorithm will be addressed elsewhere. For the time being, we select a sufficiently
generic co by random choice, a method which has proved to be effective in
practice.

Algorithm 2.9 (Finding all cells of certain types in afine mixed subdivision).
I. Choose a sufficiently generic lifting function co.

II. Determine the list of candidate cells. (To find all cells of type (k\,... ,
kr), one may take all cells C, = (C¡1), ... , C\r)) where C\j) ranges
over all (kj + l)-element subsets of sé^ .)

III. For each of the cells C from step II:
(i) Let N be the orthogonal complement to the affine span of C.

If N is not one-dimensional, or if N is orthogonal to the axis
of lifting, then discard C from the list. Otherwise let a be the
unique vector in N with last coordinate equal to one.

(ii) If C equals the face of sé supported by a, then add C to the
list of cells in Su .

This procedure has several desirable qualities: The decision step III is con-
cerned exclusively with sé rather than with the much larger set YYi=x sé^ . In
calculating the mixed volume using Theorem 2.4, we need to find only those cells
of Sw which have the desired type, without calculating the entire subdivision.
In particular, we do not need to calculate the convex hull of the Minkowski sum
com(sé ), which we found to be computationally prohibitive when r is large
relative to «. For instance, in the fully mixed case ( r = « ), the number of
facets of conv(sé) can grow as large as approximately (Y[#(A^)Yn/2^  while
the search space in step II has cardinality n {*% ' ') •

The process of selecting candidate cells is extremely flexible, allowing us to
use any available information about the individual j/(i) to limit the search.
For example, if we first compute the coherent triangulations A, of the sé^ 's
defined by the co¡ 's individually, then we need only consider cells C of sé
whose i th component C(,) is a cell of A,. In practice we usually prune the
search space by specifying the cells one component at a time, using a linear
program at each step to determine whether there are faces of sé which agree
with the partially specified cell.
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3. Algebraic deformations from mixed subdivisions
We return to the problem of finding all isolated roots in (C*)" of the equa-

tions (1.1), given that the coefficients c,;a are sufficiently generic. (In the dis-
cussion following Algorithm 4.1 we will explain how to run our algorithm with-
out any genericity assumption whatsoever.) We assume that the system (1.1)
is semimixed of type (kx, ... ,kr): the sé¡ are not all distinct, but they are
equal within r blocks of sizes kx, ... , kr, i.e., there are r sets sé^ c Z"
such that sé^ = sen = ■■■ = sé^ . The total number of polynomials is still
« = £j_| k¡. We let FM be the subset of polynomials in (1.1) which have sup-
port sé^ . Thus each element of /7(,) can be written as fi¡ = X)qe^(¡> ci,j,*x*
for 1 < / < r and 1 < j < k,■. We abbreviate sé = (sé^, ... , j/(r)) and
F = {F^,... ,FW}.

In contrast to §2, from now on all points q £ sé^ are assumed to be integral.
Fix a sufficiently generic (cf. Definition 2.8) integral lifting function, and let Sa
be the induced fine mixed subdivision of sé . We retain the convention that
putting a hat on an object means considering it after having been lifted by co.
For instance, j/W = {(q, co(q)) £ Z"+1 |q 6 sé^}, and n(sé^) = s/W ,
where n is the projection mapping (z\, ... , z„, zn+l) i-+ (z\, ... , zn) .

We deform the input system (1.1) as follows. Let / denote a new complex
variable, and for each i = I, ... , r and j — I,... , k¡ consider the (« + 1)-
variate polynomial

(3.1) fj(x,t)    :=     £ Ci,/,,^^.
qejafW

Note that the support of /; equals j/^ c Zn+l. By the homotopy defined
by co we mean the resulting system of « equations in « variables x which
depend on the additional parameter t :

(3.2) F(x,t)    :=     (flJ(x,t)\l<i<r,l<j<ki).

The roots of (3.2) are algebraic functions x = x(t) of the parameter t. We wish
to give a self-contained proof of Bernstein's Theorem 1.1; so we pretend not
to know the number of branches of x(t). The Puiseux series for the branches
have the form

(3.3) x(t)    :=    (xxotn , ... , xn0ty") + higher-order terms,

where the y, are rational numbers and the x,n are complex numbers to be
determined (cf. [18]). We abbreviate the vector-valued function (3.3) by x(t) :—
xoty + h.-o.t. Substituting the ansatz (3.3) into (3.1), we obtain terms like

(3.4) c0q-x«-í(5,'q)+íd'(q)   +  higher-order terms.

The exponent of the parameter t in (3.4) equals the linear functional (y, I) £
(Z"+l)v evaluated at the lifted point q in J^1'. The terms (3.4) of lowest order
correspond to the face of sé = (sé^l),... , sé^"1) on which the linear functional
(y, 1) is minimized. Call this face ^y, i). When (3.3) is substituted into (3.1),
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the coefficient of the lowest-order term in / equals

(3.5) fy    :=    imXy+w,(f)    =        ^    cUnx<l-

We call fy the degeneration of / to the face of set') supported by (y, 1).
We also abbreviate Fy{i) := {fy\f £ F^} and Fy := U-=, FY{i). The following
lemma characterizes the possible choices of rational exponents in the Puiseux
series (3.3).

Lemma 3.1. The system F = 0 has branches of the form (3.3) only if the linear
functional (y, 1) supports a lower facet C of sé with type (kx, ... ,kr).
Proof. Since Sw is a fine mixed subdivision of sé , the support face of (y, 1)
on each set') consists of the vertices of a simplex of some dimension d¡ be-
tween 0 and « . The branches of F~l(0) may be found by iteratively solving
for the coefficients in the Puiseux expansion (3.3), provided we can start this
iteration by solving the initial system Fy = 0. Its solutions Xo £ (C*)n are the
lowest-order coefficients in (3.3). Each iy1' is supported on A^ X) and hence
is an unmixed system of k¡ equations in d¡ + 1 monomials. It is solvable for
generic choices of coefficients c,j,q only if k¡ < d¡. Since Sw is mixed, we
know that

r r r

(3.6) « > dim(sé{yt x)) = Y,dim(^°i)) = ¿2d> ̂  ¿2 k' = "•
i=i ¡=i i=i

This implies that d¡ = k¡ for all 1 < i < r.   G

We conclude that the only directions (y, 1) which can contribute branches
of the form (3.3) are the support directions to the type (kx, ... , kr) cells of the
fine mixed subdivision S«,. Let Cy = {C¡1\ ... , C^} be a type (kx, ... , kr)
cell of So,, whose lifting is supported by (y, 1) as above. Each C^ consists
of the vertices of a /c,-simplex. In what follows we will use this fact to compute
the solutions of Fy(xo) = 0 symbolically and explicitly.

Since the number of roots of Fy does not change if we multiply each f¡¡
by a Laurent monomial, we may assume that one point q(''°) of each C(,) =
{q(,0), ... , q('•*■')} equals the zero vector. Thus the coefficient associated with
q(,>0) is the constant term of fij for all 1 < j < k¡. By applying Gaussian
elimination to the k¡ x (k¡ + 1 )-coefficient matrix (Cf.y,,), we can replace F^)
by an equivalent system

(3.7) c^V'"  = C;>2.x«("2)  =   •••   =   c^.x^  =   1.

By our genericity assumption on the original coefficients, the constants c\
are also nonzero. If we repeat this process for each C^ and collect all the
binomial equations, then we end up with the following simple system of «
binomial equations in « variables:

(3.8) c'i,jxq(iJ) = !     for 1 < / < r , 1 < ; < A:,.
We define the « x «-matrix

A     :=     (q«1-1),... .q^.q*2' '\... , q(r'^)r.
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For notational convenience we rename the rows of A as a*1', ... , a'"'.

Lemma 3.2. The system (3.8) has precisely \ det(A) \  distinct roots in the torus
(CT-
Proof and algorithm. We compute the Smith normal form

U'A'V    =    diag(«zi, m2, ... , m„).
Here, U = (u¡¡) and V = (v¡j) are invertible integer matrices in SLn(Z),
and «ii, ... , m„ are positive integers such that w,_i divides m, for / =
2,3,... , « . We next change coordinates on the torus (C*)" by the invertible
transformation

(3.9) x¡ »-» z\"zu? ■ ■ ■ zun»> ,        i = 1, 2,... , n.

The equations (3.8) are equivalent to

(3.10) c'x-zv*m = c'2-zu*m =  ...  =  c'n-zu*in) =   1.

We now apply the invertible transformation V to (3.10). This gives the equiv-
alent system

(3.11)n«-.ii/*(> = (n^'í = i>  ;=i.2,...,«.i=i \-=i   '
The system (3.11) has mxm2---mn — \d&\(Ä)\ distinct roots in (C*)" , and
hence so do (3.10) and (3.8). These roots are easily computed by inverting these
transformations.   D

Our construction gives rise to the following effective proof of Bernstein's
Theorem.
Proof of Theorem 1.1. The mixed volume J£(sé) equals kx\ • k2\ ■ ■ • kT\ times
the sum of the volumes of the type (k\,k2,... , kr) -cells of So . By Lemma
3.1, the directions y supporting (k\,k2,... , kr) cells of Sw are the only ones
for which (3.3) can provide branches of F~l(0). But Lemma 3.2 shows that
each of these cells Cy accounts for kxl-k2\---kr\-vol(Cy) branches of F ~'(0)
near t = 0. Thus (by Theorem 2.4) F has Jí(sé) roots for generic choice of
/. Theorem 1.1 then follows easily.   □

4. AN ALGORITHM FOR SOLVING SPARSE SYSTEMS

Let X c (C*)"+1 be the complex algebraic curve implicitly defined by F(x, t)
= 0, and let n : X —» C* be the projection mapping (z\,... ,z„, zn+x) i->
zn+x. The conclusion of Bernstein's theorem is that n~l(t) is generically a
finite set of cardinality equal to the mixed volume J?(sé). We now present
our algorithm for calculating 7t_,(l).

Since F(x, t) is supported on sé for each nonzero specialization of /,
Proposition 1.2 (see also Theorem 6.1 below) gives a set of polynomials in
/ and the coefficients of F whose nonvanishing guarantees F(x, t) the full
number of solutions. With the added requirement that the Jacobian of F(x, t)
with respect to x does not vanish, we see that F(x, t) has J!(sé) distinct
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roots in the torus for all choices of / except those lying in a finite set Z. Thus
the curve X^ := {(x, t) £ X \ t £ C* \ 1} is smooth and breaks up into Jí(sé)
distinct holomorphic (in / ) branches.

In the last section we calculated the first terms of the Puiseux expansions for
each of the branches of Xi near 0. By passing to an appropriate closure of the
algebraic torus for each branch, we can use these data to obtain a point from
each component at / =0. If 1 £ X, then every point of 7r-1(l) lies on exactly
one holomorphic component. Otherwise, every isolated point of n~x(\) must
lie in the closure of at least one component of Xz . Thus, all isolated roots of
(1.1) can be found by numerically tracing the branches of X% from / = 0 to
t= 1.

Since these branches need not have an analytic continuation at t = 0, care
must be taken when starting the path tracking. A natural way to start is to use
the Puiseux expansion as a predictor and Newton's method as a corrector for
the first step. Once the first step has been taken, a generic choice of a smooth
path from / = 0 to r = 1 in the complex plane C ensures that the resulting
curves are smooth, and standard continuation codes can be used. See [1] for
a detailed introduction to numerical path tracking. Our construction is then
summarized as follows:

Algorithm 4.1 (Homotopy method for semimixed systems of type (kx, ... , kr)).

A. Precomputation
1. Choose a sufficiently generic lifting function co (in the sense of

Definition 2.8) and use Algorithm 2.9 to enumerate the cells of
type (kx, ... , kr) in the mixed subdivision So,.

2. For each cell Cy = (Crl), ... , C{7r)) of Sw (where (y, 1) is an
inner normal to Cy ), make the substitution x, = z¡tri in F(x ; t)
for / from 1 to «. Divide out by the lowest power of / that
appears. With respect to these new variables the roots of F at
/ = 0 are precisely those of Fy. These can be calculated using the
Smith Normal Form procedure given in the proof of Lemma 3.2.

B. Homotopy
1. For each of the roots from step 2, trace the homotopy (3.2) (with

respect to the new variables zx, ... , z„) along some smooth path
from t = 0 to / = 1 in the complex plane C which avoids X.

This algorithm and its correctness arise naturally out of our proof of Bern-
stein's theorem. We will make the following modifications to ensure generic-
ity of the coefficients and to improve stability in practical computations. Let
F be the input system (1.1) and let G be a system with the same support
set but sufficiently randomly chosen complex coefficients. Now let H(x, t) :=
(1 - /) • G(x) + t • F{x), and apply the algorithm above to H (using the same
variable / ). This process will work since the constant term of H with respect
to t is still supported precisely on sé . This approach has the advantage that
the coefficients of H are really "generic", so that the Smith Normal Form pro-
cedure is guaranteed to work, and the homotopy path can be taken to be the
real axis. In summary, we have given a numerical homotopy which computes
the isolated roots of (1.1) in (C*)" for all choices of coefficients c¡ ».
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We close with a few remarks about our computational experience. The meth-
ods in this paper have been implemented in C, using a continuation algorithm
described in [1] and an improved version of Algorithm 2.9. These programs
have been used to solve systems of up to six variables and 150 roots, and to
compute mixed subdivisions of the support sets of systems in up to 10 variables.
We are currently working on a system incorporating these programs to be made
publicly available under the name Pelican.

5. AN EXAMPLE IN THREE DIMENSIONS

We wish to compute the roots in (C*)3 of the trivariate equations

{1 + 1 Ix - 3v + 30xy + 55xyz,
3 - 5x + ly + 2xy + 9xyz,
6+ 13x2y-5j;2z.

This is a semimixed system of type (2,1) with support (j/(1) , sé^), where:

sé^ = {(0,0,0), (1,0,0), (0,1,0), (1,1,0), (1,1,1)},
sé^ = {(0,0,0), (2, 1,0), (0,2,1)}.

The lifting co = {[0, 1, 1, 1, 1], [0, 0, 0]} induces a fine mixed subdivision
Sw, and it determines the homotopy

{1 + 1 lxi - 3yt + 30xyt + 55xyzt,
3 - 5xZ + lyt + 2xyt + 9xyzt, =    0.
6+13x2y-5y2z

The support of these equations is sé . To find the branches of X^, Lemma
3.1 tells us we need to compute only the cells of type (2, 1) in S^ . There are
three such cells, listed in Table 1.

Table 1. Type (2,1) cells of Sw and their volume

Cv dCt(V(Cy))
({1,2,5},{1,2})
({1,3, 4}, {2, 3})
({1,4, 5}, {2, 3})

(-1,2,-2)
(0,-1,1)

By Theorem 2.4, the Bernstein number of expected roots of F equals 1 +1 +
3 = 5 (note that the Bézout number is 27 ). The leading terms of the Puiseux
expansion for each of the branches of F(x(t), y(t), z(t), /) = 0 associated with
a given cell Cy can be obtained by taking the solutions of Fy as the coefficients
and the coordinates of y as the exponents. For example, the branches associated
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with Cy for y = (-5 , -\ , 0) are

x(t) = at~i + higher-order terms,

y(t) = bt~$ + higher-order terms,
z(t) = ct° + higher-order terms,

where (a, b, c) are the solutions of the initial equations

1 + 30xy + 55xyz = 0,
3 + 2xy + 9xyz = 0,

13x2y-5y2z = 0.

To actually follow these roots numerically, one can make the change of variables

x —» x/-',        y—> yt~î,        z^z

with respect to which F becomes

1 + 1 IxP - 7>yÓ + 30xy + 55xpz,
3 - 5xH + lyù + 2xy + 9xyz,

6/ï + 13x2y-5y2z.

For t = 0 we get exactly the desired initial equations. Tracing the three
branches of (x(t), y(t), z(t)) from / = 0 to / = 1 along a sufficiently generic
path yields a solution to F = 0. Repeating this process of changing variables
and path-tracking for each cell of Sw , we arrive at all five roots in (C*)3 of the
given system.

Appendix: "When do all mixed volume many roots lie in (C*)" ?"

When applying the methods presented in this paper to a concrete system (1.1),
it is very useful to have some a priori information whether the upper bound
for the number of roots in (C*)" in Theorem 1.1 is attained or not. While
a criterion for this is given by Proposition 1.2, we found that criterion often
difficult to verify since it involves inspection of all faces of ßi H-hß„. In what
follows we present an alternative algebraic criterion that involves only certain
facets of Qx + ■■■ + Qn ■ Here we assume familiarity with sparse elimination
theory as developed in [9, 10, 14, 16]. In particular, we shall make use of the
resultant operator ¿%( • ) in precisely the same sense as in [14, 16].

Theorem 6.1. The system (1.1) has JH(Qx, ... , Qn) zeros in (C*)", counting
multiplicities, if and only if, for all facet inner normals co of Q\ h-h Q„, the
sparse resultant ¿%(mitœ(fx), ... , initw(/„))  ¿s a nonzero complex number.
Sketch of proof. Let X denote the projective toric variety associated with the
polytope ßi -1-'r Qn- For each facet normal co let Xm denote the corre-
sponding torus invariant divisor on X . Then Xw is the projective toric variety
associated with the facet Q? -\-+ Q„ ■ (Here Qf denotes the face of ß,
which is supported by co.) Clearly, X is the union of (C*)" and \JuXœ,
where co runs over all facet normals.
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The equations (1.1) extend naturally from (C*)" to its compactification X .
They have J!(Qx, ... , Qn) common zeros in (C*)" if and only if they have
no zeros in \JW Xw. This follows from the toric interpretation of Bernstein's
Theorem; see e.g. [8, § 5.5]. Therefore, it suffices to show the following

Claim. The system (1.1) has no root in Xw if and only if the

^(iniU/j),... ,iniU/„)) ¿ 0.
If the system (1.1) is unmixed, then the claim follows immediately from

the identification in [10, §5.4] of the given resultant with the Chow form of
Xw. The case of unmixed systems is then reduced to the mixed case using the
factorization technique in [14, §7].   D

We recall from [ 14] that the sparse resultant above is identically equal to one
if the linear functional co supports a vertex at ß, for at least one index /.
Hence, in the criterion of Theorem 6.1 we need to consider only those facet
normals co of ßi H-\-Q„ for which dim(ßf) > 1 for / = 1, ... , « . This
leads to a significant computational simplification when the polytopes ß, are
distinct and "in sufficiently general position" with respect to each other.
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