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Emerging computation- and data-driven approaches are particularly useful for rationally designing

materials with targeted properties. Generally, these approaches rely on identifying structure-property

relationships by learning from a dataset of sufficiently large number of relevant materials. The learned

information can then be used to predict the properties of materials not already in the dataset, thus

accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials

and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles

calculations with structures obtained either from other sources or by using structure search methods.

Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is

initially designed to include the optimized structures, atomization energies, band gaps, and dielectric

constants. It will be progressively expanded by accumulating new materials and including additional

properties calculated for the optimized structures provided.
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Background & Summary
A central tenet of data-driven materials discovery is that if the volume of accumulated or available data is
sufficiently large, and if it can be mined properly with suitable data-driven techniques, the process of
designing a new material could be more efficient and rational1–11. This notion has lead to the
development of many useful materials databases12–18. The present contribution deals with polymeric
materials. Given the complexity of the chemical and configurational/morphological space of polymeric
materials, the creation of a database focusing on this materials class is challenging. Nevertheless,
if systematic steps can be taken in this direction, consistent with the charter of the Materials Genome
Initiative, we will progressively get closer to the rational design and discovery of application-specific
polymers.

Within this context, it is worth noting that the recent rational development of nearly a hundred novel
polymeric dielectrics for capacitive or electrostatic energy storage19–26 has benefitted from the synergy
between experimental and computational efforts, of which computations at various levels, including force
fields27–30 and density functional theory (DFT)31,32, have provided critical guidance. Given a polymer
chemical composition, the computational step mainly involves predicting the lowest-energy structures
and computing the associated dielectric constant ε and band gap Eg. Those with high ε and high Eg were
then identified, leading to the experimental realizations of polymers with desired performances such as
high energy density, low loss, etc., refs 19–26.

This contribution describes a dataset of 1,073 polymers and related materials as the first step aiming at
the rational design of polymers by data-driven approaches. The dataset reported herein, referred to as
‘‘polymer dataset’’ for convenience, was prepared at a uniform and consistent level of first-principles DFT
computations. Since our initial goal is to assist the design of high dielectric constant polymers for energy
storage, the polymer dataset supplies the equilibrium (relaxed) structures of the materials associated with
relevant calculated properties, including the atomization energy Eat, the dielectric constant ε and the
energy band gap Eg. The initial structures used for the preparation were collected either from other
available sources or, quite often, from computational structure searches. This dataset, which is available at
http://khazana.uconn.edu/, can readily be expanded in multiple ways, i.e., new properties can be
calculated from the provided equilibrium structures, and new materials with relevant calculated
properties can also be progressively added. Furthermore, it may also serve as a playground for data-
mining.

Methods
Workflow
The workflow in Fig. 1 summarizes the preparation of the polymer dataset. In the first step, crystal
structures of polymers and related compounds were collected from various available sources, including
the reported literature, the Crystallography Open Database (COD)15, and our structure prediction
works20–26. Those obtained from structure prediction runs were subjected to a preliminary filter
(described below), removing any obvious redundancy of identical structures. Then, the selected structures
were optimized by DFT calculations, yielding the equilibrium structures and their atomization energies
Eat. The energy band gap Eg was then calculated on a dense grid of k points while their dielectric constant

Figure 1. Scheme for preparing the dataset of polymers and related materials. USPEX and minima-hopping

are two structure prediction methods that were used for generating a majority of the dataset.
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ε, which is composed of an electronic part εelec and an ionic part εion, was computed within the
framework of density functional perturbation theory (DFPT)33. In the next step, the computational
scheme and the calculated results were validated with available measured data, including the measured
band gap Eg, the dielectric constant ε and/or the infrared spectroscopy (IR) measurements. Those which
do not agree with the available experimental data are subjected to further calculations at tighter
convergence criteria of residual atomic force (see Technical Validation for more details), and if better
agreement is not reached, these points are removed from the dataset. A post-filtering step was finally
performed on the whole dataset, keeping only distinct data points. Relaxed structures of all the materials
are finally converted into the crystallographic information format (cif) using the pymatgen library34.
A note was also provided together with the dataset, indicating the convergence criteria of the datapoints
reported herein.

Structure accumulation
Our dataset includes three primary subsets, each of them originating from a distinct source. Subset 1
consists of common polymers which have already been synthesized, resolved, and reported elsewhere. This
set contains 34 polymers, listed in Table 1. Collecting polymer structures of this class is challenging
because the reported data is widely scattered, and in case the information obtained is sufficient to
reconstruct structures, this work has to be done manually and hence, substantially laborious. We further
note that only for a few of them, measurement for band gap, dielectric constant, and/or infrared (IR)
spectrum have been performed. This data was used for the validation step.

Subset 2 includes 314 new organic polymers (284 of them have been used in ref. 11) and 472 new
organometallic polymers. Their structures were generated from a computation-driven strategy19,20 which
has been used to rationally design various classes of polymeric dielectrics11,20–26. The starting point of this
strategy is a pool of common polymer building blocks, which are either organic, e.g., –CH2–, –NH–,
–CO–, –O–, –CS–, –C6H4–, and –C4H2S–, or inorganic (metal-containing) like –COO–Sn(CH3)2–OCC–,
–SnF2–, and –SnCl2–. The repeat unit of an organic polymer is then created by concatenating a given
number of organic building blocks while that of an organometallic polymer contains at least one
inorganic block linked with a chain of several CH2 groups. Next, chains of the repeat units (illustrated in
Fig. 2) are packed in low-energy crystal structures which are determined by Universal Structure Predictor:
Evolutionary Xtallography (USPEX)23,35 or minima-hopping (MH)36,37, two of the currently most
powerful structure prediction methods. In brief, these methods allow for predicting the low-energy
structures of a material as the local minima of the potential energy surface, constructed from DFT energy.
The efficiency of these methods have been successfully demonstrated for many different materials
classes38–41, including a large number of organic20,23 and organometallic polymers24–26.

For each structure prediction run, the lowest-energy structure and those within 200 meV per atom
above it were collected. The number of structures within this energy window is material-dependent,
ranging from several to several dozens. Because many of them are just slightly different by small
perturbations in the atomic arrangement, a preliminary filtering step was used to remove this

Polymer Ref. Polymer Ref.

Polyethylene 61 Isotactic polypropylene 62

Polyethylene oxide 23 Polyglutamic acid 23

Cellulose 23 Poly(1,1,2-trifluoroethene) 63

Clathrate syndiotactic polystyrene 64 Poly(2,5-dihydrothiophene-2,5-diyl) 65

Poly ε-caprolactone 66 Poly(2,6-benzothiazole) 67

Poly(3,3,3-trifluoro-2-methyloxirane) 68 Poly(ethene-alt-hexafluoroacetone) 69

Polyethylene adipate 70 Polyethylene suberate 70

Polyoxymethylene 23 Poly(p-phenylene oxide) 23

Poly(p-phenylene sulfide) 71 Poly(propylene sulfide) 72

Poly(p-xylylene) 23 Poly-tetrafluoroethylene-alt-ethylene 73

Poly(tetramethylene terephthalate) 74 Poly(trimethylene sebacate) 75

Poly(vinyl fluoride) 76 Polyethylene terephthalate 77

Polyvinylidene fluoride (delta) 78 Polyvinylidene fluoride (beta) 78

Syndiotactic polypropylene 79 Poly(2,5-benzoxazole) 67

Poly(2-vinylpyridine) 80 Polyacrylonitrile 81

Polyglycine 82 Poly (m-phenylene isophthalamide) 83

Poly(m-pyridine) 84 Poly(p-phenylene benzobisoxazole) 85

Table 1. List of the common polymers summarized in this dataset and the corresponding references.
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redundancy. In particular, we used a clustering algorithm (hierarchical) to group those which are
different by less than 5 meV per atom in Eat and less than 0.1 eV in Eg, keeping the representative
structures. Only those with polymeric motifs, when visually confirmed, are selected for the next steps. In
the predicted polymer structures, especially for those of organometallic polymers, these polymeric chains
are not necessarily isolated, i.e., inter-chain bonds may occur in various fashions24–26.

The material structures used to prepare subset 3 were collected from COD. Generally, materials
provided by COD are not polymers, but a number of them are collected in this dataset as they are closely
related to the examined polymers. Although collecting materials structures from this database is
straightforward, we limited ourselves to only those whose cell volumes are not too large, i.e., roughly
1,500 Å3 and below. This subset contains 253 molecular organic and organometallic crystals, 178 of them
have recently been used in ref. 10 by some of us.

Table 2 summarizes the contents of the polymer dataset, which contains both polymers (subset 1
and 2) and non-polymers (subset 3). In terms of chemistry, the included materials can be classified as
either organic or organometallic, incorporating different metals in their backbone. The complete list of
chemical elements that appear in this dataset is given in Table 3.

Numerical calculations
The computed data reported in our dataset was prepared with density functional theory (DFT)31,32

calculations, using the projector augmented-wave (PAW) formalism42 as implemented in Vienna
Ab initio Simulation Package (vasp)43–46. The default accuracy level of our calculations is ``Accurate'',
specified by setting PREC=Accurate in all the runs with vasp. The basis set includes all the plane waves
with kinetic energies up to 400 eV, as recommended by vasp manual for this level of accuracy. PAW
datasets of version 5.2, which were used to describe the ion-electron interactions, are also summarized in
Table 3. The van der Waals dispersion interactions, known47 to be important in stabilizing soft materials
dominated by non-bonding interactions like polymers48, were estimated with the non-local density
functional vdW-DF2 (ref. 49). The generalized gradient approximation (GGA) functional associated with
vdW-DF2, i.e., refitted Perdew-Wang 86 (rPW86)50, was used for the exchange-correlation (XC) energies.

Because the examined material structures are significantly different in terms of the cell shape, the
sampling procedure of their Brillouin zones must be handled appropriately. For each structure,
a Monkhorst-Pack k-point mesh51 of a given spacing parameter hk in the reciprocal space was used. For
the geometry optimization and dielectric constant calculations, hk= 0.25 Å− 1 while the band gap
calculations have been performed on a finer Γ-centered mesh with hk= 0.20 Å− 1. We further set the
lower limit for the Monkhorst-Pack mesh dimensionality, that is, the number of grid points along any
reciprocal axis is no less than 3, regardless of how short the reciprocal lattice dimension along this axis is.

During the relaxation step, we optimized both the cell and the atomic degrees of freedom of the
materials structures until atomic forces are smaller than 0.01 eV Å− 1. Calculations for band gap Eg was
then carried out on top of the equilibrium structures. Because Eg is typically underestimated with a GGA
XC functional like rPW86 (ref. 52), this important physical property has also been calculated with the
hybrid Heyd-Scuseria-Ernzerhof (HSE06) XC functional53,54 with an expectation that the calculated
result would become much closer to the true material band gap. Both EGGA

g and EHSE06
g , the band gap

calculated at the GGA-rPW86 and HSE06 levels of theory, are provided in all the entries of the dataset
(see File format for more details). Finally, the dielectric constant ε of these structures was calculated
within the DFPT formalism as implemented in vasp package. Calculations of this type involve the
determination of the lattice vibrational spectra at Γ, the center of the Brillouin zone. This information is
also used to compute the IR spectra of some structures for the purpose of validation.

Figure 2. Organic polymer chains with repeat units of –NH–CH2–CH2–O– (a) and –C6H4–O–C6H4–CO–

(b) and organometallic polymer chains with repeat units of –SnCl2–(CH2)2– (c) and –OOC–Sn–(CH3)2–COO–

(CH2)4– (d). Carbon, hydrogen, oxygen, nitrogen, chlorine, and tin atoms are shown in dark brown,

light pink, red, light cyan, green, and dark cyan, respectively.

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160012 | DOI: 10.1038/sdata.2016.12 4



Post-filtering
Given that the sources of the polymer dataset reported herein are diversified, any clear duplicate and/or
redundancy should be identified and removed. Because the preliminary filtering step was performed only
on subset 2 based on their DFT energy and band gap estimated during the structure prediction runs with
a limited accuracy, an additional filtering step was performed on the whole dataset. Within this step, all
cases with the same chemical composition but different by less than 0.1 eV in Eg, less than 5 meV per
atom in Eat, and less than 0.1 in both εelec and εion, are clustered. At this point, the number of clustered
points is not large, and all of them were inspected visually, keeping only distinct materials.

Data Records
The complete dataset of 1,073 polymers and related materials can be downloaded as a tarball from Dryad
Repository (Data Citation 1) or can be accessed via http://khazana.uconn.edu/ (all the records with ID
from 0001 to 1073). All 4,292 DFT runs of the entire dataset (for each structure, there are 4 runs,
including relax, dielectric, GGA band gap, and HSE06 band gap) are hosted by NoMaD Repository (Data
Citation 2).

File format
All the information reported in the dataset for a given material is stored in a file, named as 0001.cif, where
a cardinal number (0001 in this example) is used for the identification of the entry in the dataset. The first
part of a file of this type is devoted to the optimized structure in the standard cif format which is
compatible with majority of visualization software. Other information, including the calculated
properties, is provided as the comments lines in the second part of the file as follow

ID No. of points Descriptions Reference

0001–0034 34 Common polymers 23,61–85

0035–0348 314 New organic polymers 11,20,21,23

0349–0410 62 Poly(tin ester) 24–26

0411–0447 37 Titanium containing polymers

0448–0460 13 Calcium containing polymers

0461–0470 10 Aluminum containing polymers

0471–0572 102 Zinc containing polymers

0573–0588 16 Magnesium containing polymers

0589–0610 22 Zirconium containing polymers

0611–0630 20 Hafnium containing polymers

0631–0741 111 Cadmium containing polymers

0742–0763 22 SnCl2 containing polymers

0764–0796 33 SnF2 containing polymers

0797–0820 24 Lead containing polymers

0821–0854 34 Molecular crystals of C and H 10,15

0855–0998 144 Molecular crystals of C, H, & O 10,15

0999–1050 52 Molecular crystals of C, H, N, & O 15

1051–1073 23 Molecular crystals of C, H, O, & Sn 15

Table 2. Summary of the data subclasses in the polymer dataset.

Element POTCAR Element POTCAR Element POTCAR

Aluminum Al Bromine Br Carbon C

Calcium Ca_sv Cadmium Cd Chlorine Cl

Fluorine F Hydrogen H Hafnium Hf_sv

Magnesium Mg_sv Nitrogen N Oxygen O

Phosphorus P Lead Pb_d Sulfur S

Tin Sn_d Titanium Ti_sv Zinc Zn

Zirconium Zr_sv

Table 3. VASP PAW potentials of the elements used for calculations in this work.
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# Source: VSharma_etal:NatCommun.5.4845(2014)
# Class: organic_polymer_crystal
# Label: Polyimide
# Structure prediction method used: USPEX
# Number of atoms: 32
# Number of atom types: 4
# Atom types: C H O N
# Dielectric constant, electronic: 3.71475E+00
# Dielectric constant, ionic: 1.54812E+00
# Dielectric constant, total: 5.26287E+00
# Band gap at the GGA level (eV): 2.05350E+00
# Band gap at the HSE06 level (eV): 3.30140E+00
# Atomization energy (eV/atom): -6.46371E+00
# Volume of the unit cell (A^3): 2.79303E+02

While most of the keywords are clear, we used Source to provide the origin of the material structure
and Class to refer to the class of materials which can either be ‘‘organic polymer crystal’’, ‘‘organometallic
polymer crystal’’, ‘‘organic molecular crystal’’, or ‘‘organometallic molecular crystal’’. Keyword Label was
used to provide more detailed information on the material, which can be the common name of the
material if it is available, the ID of the record obtained from COD, or the repeat unit of the polymer
structure predicted.

Graphical summary of the dataset
To graphically summarize the polymer dataset, we visualize it in the property space. Because the band gap
and the dielectric constant are the primary properties reported by this dataset, three plots, namely
EHSE06
g - εelec, EHSE06

g - εion, and EHSE06
g - ε, were compiled and shown in Fig. 3. Materials from different

classes are shown in different colors to clarify the role of the polymer chemical composition in controlling
Eg and ε. Within the recent effort of developing polymers for high-energy-density applications19–26, such
plots are useful for identifying promising candidates, i.e., those which have high dielectric constant while
maintaining sufficient band gap (Eg≥ 3 eV).

Figure 3a clearly indicates a limit of the form εelec � 1=Eg between εelec and Eg, which is applicable for
both organic and organometallic classes of materials. We note that this behavior has also been reported
elsewhere10,19. Figure 3c, on the other hand, demonstrates that the classes of organic and organometalic
polymers and molecular crystals occupy different regions in the property space. At a given value of band
gap, the organometallic polymers are generally much higher than the organic polymers in terms of the
dielectric constant. While a fairly large number of organometallic polymers were already developed24–26,
this observation suggests that there remains significant room for manipulating the dielectric constant of
the organometallic polymers.

Technical Validation
Among the materials properties reported in the present dataset, the atomization energy Eat is physically
relevant and has always been used as a standard method for examining the thermodynamic stability of
various classes of materials, including inorganic crystals38–41 and polymers19–26. While the band gap EGGA

g
calculated at the GGA level of DFT is not ready to be compared with the measured data due to the
aforementioned well-known underestimation52, EHSE06

g (the band gap calculated with the HSE06 XC

Figure 3. A summary of the polymer dataset based on the calculated band gap EHSE06
g and the dielectric

constants εelec (a), εion (b), and ε ¼ εelec þ εion (c). In the figure keys, ‘‘CM’’, ‘‘P’’, ‘‘NP’’, and ‘‘O’’ refer to

‘‘Common’’, ‘‘Polymer’’, ‘‘Non-Polymer’’, and ‘‘Organic’’, respectively. For organometallic polymers, the

identity of the metal element included is used. The polymers developed by the structure prediction based

pathway in refs 19–26 are labeled as ‘‘Dev-P’’.
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functional) is expected to be rather close to the true band. We show in Fig. 4a EHSE06
g of 11 polymers for

which the band gap has been measured experimentally. The calculated band gap seems to agree pretty
well with the measured data with a numerical discrepancy of about 20% and below.

We now consider the calculations of the dielectric constants, namely εelec and εion. Overall, the
theoretical foundations and the implementations for calculating εelec and εion are well developed and
tested, leading to rather accurate results. Within the DFT-based perturbative approach, εelec is computed
via the response to the external field perturbations while εion is evaluated through the phonon frequencies
at the Γ point of the Brillouin zone. To be precise, the dielectric response of a crystalline insulator to an
external electric field E is given in terms of a frequency-dependent tensor εαβðωÞ. To linear order, the
electronic contribution of the dielectric tensor is given by

ε
αβ
elecðωÞ ¼ 1þ 4π

∂Pα

∂Eβ

; ð1Þ

where Pα is the component along the α direction of the induced polarization P. On the other hand, the
ionic part of the dielectric tensor is determined as

ε
αβ
ionðωÞ ¼

4π
Ω

X

m

Smαβ

ω2
m;q¼0 -ω

2
: ð2Þ

In this expression, Ω is the volume of the simulation cell, appearing as a normalization factor. The sum is
taken over the index m of the phonon normal modes, which assumes the frequency ωm,q= 0 at the
Brillouin zone center (q= 0) while the mode oscillator strength Smαβ is determined through the Born
effective charge Zs,αβ* of the atom s. For an isotropic material, the dielectric constant of the practical
interest is taken to be the average value of its diagonal elements at the static limit, i.e.,
ε ¼ 1

3

P

α½ε
ααðω-0Þ�.

Figure 4. Calculated and measured dielectric constants of (a) several inorganic compounds, and (b) the

polymers reported in refs 20–22 (new organic polymers) and refs 24–26 (poly(tin ester)). The error bars

originated from different (energetically competing) structures predicted for a given polymer. For

organometallic polymers, the error bars are significant due to the diversity of structural motifs involving the

aforementioned inter-chain bonds, which are not present in organic polymers. In (c), (d), (e), and (f), the

simulated and measured infrared spectra of orthorhombic polyethylene, orthorhombic polyoxymethylene, poly

(dimethyltin glutarare), and polythiourea are shown. The experimental data of these three polymers was taken

from refs 60,55,24,20, respectively. Shadow areas are given to indicate the agreement between simulated and

measured transmitance peaks.
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Equation 2 implies that at the limit of ω→ 0, εαβionðωÞ is rather sensitive to the numerical accuracy of
ωm,q= 0, which, in turn, suggests highly equilibrated materials structures for the DFPT calculations. As
mentioned in the Workflow Section, if the calculated dielectric constant ε of a polymer is different from
its measured data (this information is available for just a limited number polymers in subset 1 and 2) by
more than 20%, the structures are further optimized until the residual atomic forces are smaller than
0.001 eV Å− 1. Only those with calculated dielectric constant within 20% of the experimental data [shown
in Fig. 4b] are kept.

Within our dataset, the IR spectrum was measured for some materials. From the computational side,
this material characteristic can also be calculated rather accurately from the byproducts of the dielectric
constant calculations with DFPT. In particular, the intensities of the infrared-active modes are given by56

Imp
X

α

X

sβ

Z�
s;αβem;sβ

�

�

�

�

�

�

�

�

�

�

2

; ð3Þ

where em,sβ is the β component of the normalized vibrational eigenvector of the mode m at the atom s.
Obviously, all of the necessary quantities needed to calculate Im according to Equation 3 can be obtained
within the DFPT-based computational scheme of ε, thus requiring essentially no computational
overhead. This approach has widely been used in characterizing various classes of materials57,58. We show
in Figure 4c–f the IR spectra calculated for four polymers, including orthohombic polyethylene,
orthohombic polyoxymethylene, poly(dimethyltin glutarate)24, and polythiourea20, each of them is
compared with the corresponding measured IR spectrum. The excellent agreement between the
calculated and the measured IR spectra can be regarded as a supportive validation of the computational
scheme based on DFT calculations used for this polymer dataset.

Usage Notes
This dataset, which includes a variety of known and new organic and organometallic polymers and
related materials, has been consistently prepared using first-principles calculations. While the HSE06
band gap EHSE06

g is believed to be fairly close to the true band gap of the materials, the GGA-rPW86 band
gap is also reported for completeness and for further possible analysis. The reported atomization energy
and the dielectric constants are also expected to be accurate.

The polymer dataset is one among many recently developed datasets which can be used for designing
materials by various data-driven approaches. To be specific, this dataset is expected to be useful in the
development of polymers for energy storage and electronics applications. Moving forward, the
development of this dataset will be continuously validated and updated, and the most recent version can
be accessed at repository http://khazana.uconn.edu/.
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