
A Polymorphic Record Calculus and Its Compilation

ATSUSHI OHORI

Kyoto University

The motivation of this work is to provide a type-theoretical basis for developing a practical poly-
morphic programming language with labeled records and labeled variants. Our goal is to establish
both a polymorphic type discipline and an efficient compilation method for a calculus with those
labeled data structures. We define a second-order, polymorphic record calculus as an extension
of Girard-Reynolds polymorphic lambda calculus. We then develop an ML-style type inference
algorithm for a predicative subset of the second-order record calculus. The soundness of the type
system and the completeness of the type inference algorithm are shown. These results extend
Milner’s type inference algorithm, Damas and Milner’s account of ML’s let polymorphism, and
Harper and Mitchell’s analysis on XML. To establish an efficient compilation method for the
polymorphic record calculus, we first define an implementation calculus, where records are repre-
sented as vectors whose elements are accessed by direct indexing, and variants are represented as
values tagged with a natural number indicating the position in the vector of functions in a switch
statement. We then develop an algorithm to translate the polymorphic record calculus into the
implementation calculus using type information obtained by the type inference algorithm. The
correctness of the compilation algorithm is proved; that is, the compilation algorithm is shown to
preserve both typing and the operational behavior of a program. Based on these results, Standard
ML has been extended with labeled records, and its compiler has been implemented.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.2 [Programming Languages]: Language Classifications—applicative languages;
D.3.3 [Programming Languages]: Language Constructs and Features—data types and struc-
tures

General Terms: Languages

Additional Key Words and Phrases: Compilation, polymorphism, record calculus, type inference,
type theory

1. INTRODUCTION

Labeled records and labeled variants are widely used data structures and are es-
sential building blocks in various data-intensive applications such as database pro-
gramming. Despite their practical importance, however, existing polymorphic pro-
gramming languages do not properly support these data structures. Standard ML

A preliminary summary of some of the results of this article appeared in Proceedings of ACM Sym-
posium on Principles of Programming Languages, 1992, under the title “A compilation method
for ML-style polymorphic record calculi.”
This work was partly supported by the Japanese Ministry of Education under scientific research
grant no. 06680319.
Author’s address: Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku,
Kyoto 606-01, JAPAN; email: ohori@kurims.kyoto-u.ac.jp
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of ACM.
To copy otherwise, or to republish, requires a fee and/or specific permission.
c© 1999 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Programming Languages and Systems, Pages 844–895.

A Polymorphic Record Calculus and Its Compilation · 845

[Milner et al. 1990] contains labeled records and a form of labeled variants, but their
allowable operations are restricted to monomorphic ones. For example, consider the
following simple function name on records:

name ≡ λx.x¦Name

where x¦Name is our syntax for selecting the Name field from record x. This function
is polymorphic in the sense that it can be applied to terms of any record type con-
taining a Name field, such as {Name : string,Age : int} or {Name : string,Office :
int}. One way of writing this function in ML is

fun name(x) = #Name x

where #Name is an ML’s syntax for λx.x¦Name. This program is rejected by the
current ML compiler, unless the programmer explicitly specifies the type of x that
restricts the possible argument values to be those records that have a fixed set of
labels, as in:

fun name(x:{Name:string, Age:int}) = #Name x

Unfortunately, writing such a type specification is not only cumbersome but also
eliminates most of the flexibility of functions operating on records like name above.

An analogous situation exists for labeled variants. We use variant types (disjoint
union types) when we want to treat values of different types uniformly. A significant
advantage of labeled variants over simple disjoint union types is that they support
flexible programming by designating the kind of a value by a symbolic label. For
example, consider a variant value payment defined as:

payment ≡ 〈Pound=100.0〉
where value 100.0 is tagged with variant label Pound. payment can be treated as
a value of various different variant types such as 〈Pound : real,Dollar : real〉 or
〈Pound : real,Yen : int〉 or any other variant types containing a Pound : real
field. Unfortunately, this form of flexible programming is unavailable in existing
polymorphic languages since they restrict variant values to be monomorphic. In
Standard ML, for example, a variant type may be defined as:

datatype PoundOrYen = Pound of real | Yen of int

But this definition ties the variant labels Pound and Yen to this particular type
PoundOrYen. As a consequence, if a value such as payment is defined for this type,
it cannot be used as a value of other variant types. In Standard ML programming,
a commonly adopted ad hoc strategy used to get around this problem is to define a
variant type containing all the possible components and to omit some of the cases
when manipulating variant values. This approach, however, introduces runtime
exceptions of “match failure,” many of which are essentially type errors that should
have been caught at compile time.

It is highly desirable to extend a polymorphic programming language to allow
polymorphic manipulation of labeled records and labeled variants. In this article,
we use the term record polymorphism to refer to the form of polymorphism required
for polymorphic manipulation of both labeled records and labeled variants. Our
goal is to provide a basis to develop a polymorphic programming language that
supports record polymorphism. There are two technical challenges in achieving
this goal. The first is the development of a static type system that can represent

ACM Transactions on Programming Languages and Systems, 1995.

846 · Atsushi Ohori

record polymorphism. The second is the development of an efficient compilation
method for polymorphic operations on records and variants. In this article, we
provide solutions to the two problems. In the rest of this section, we shall explain
the problems and outline the solutions presented in this article. Part of this article is
based on a preliminary presentation of kinded abstraction and type-inference-based
compilation [Ohori 1992].

1.1 Static Type System for Record Polymorphism

Record polymorphism is based on the property that labeled-field access is poly-
morphic and can therefore be applied to any labeled data structure containing the
specified field. For example, the function name, which accesses the Name field
in a record, and the value payment, which accesses the Pound branch in a case
statement, have all the types of the forms:

name : {Name : τ, · · ·} → τ,

payment : 〈Pound : real, · · · 〉
However, conventional polymorphic type systems cannot represent the set of all pos-
sible types of those shapes and therefore cannot represent the polymorphic nature
of programs containing those terms.

Cardelli [1988] observed that this form of polymorphism can be captured by
defining a subtyping relation and allowing a value to have all its supertypes. This
approach also supports certain aspects of method inheritance and provides a type-
theoretical basis for object-oriented programming. Cardelli and Wegner [1985] ex-
tended this approach to a second-order type system. Type inference systems with
subtyping have also been developed [Fuh and Mishra 1988; Mitchell 1984; Stansifer
1988]. It is, however, not clear whether or not the mechanism for record polymor-
phism should be coupled with a strong mechanism of subtyping. In the presence of
subtyping, a static type no longer represents the exact record structure of a runtime
value. For example, a term

if true then {A = 1, B = true} else {B=false, C=”Cat”}
has a type {B : bool}, but its runtime value would presumably be {A=1,B=true}.
This property may be problematic when we want to deal with those operations,
such as equality test, that depend on the exact structure of values. As we shall
discuss in Section 6, subtyping also complicates implementation.

An alternative approach, initiated by Wand [1987; 1988], is to extend ML-style
polymorphic typing directly to record polymorphism. This idea was further devel-
oped in a number of type inference systems [Jategaonkar and Mitchell 1993; Ohori
and Buneman 1988; 1989; Rémy1989; 1992; 1994b; Wand 1989].

In these type systems, a most general polymorphic type scheme can be inferred
for any typable untyped term containing operations on records. By appropriate
instantiation of the inferred type scheme, an untyped term can safely be used as a
value of various different types. This approach not only captures the polymorphic
nature of functions on records but also integrates record polymorphism and ML-
style type inference, which relieves the programmer from writing complicated type
declarations required in explicit second-order calculi.

Most of the proposed type inference systems have been based on the mechanism of
row variables [Wand 1987], which are variables ranging over finite sets of field types.
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 847

fun move p = modify(p, X, p¦X + 1) : ∀t::{{X : int}}.t → t
move({X=10, Y=0, Color=”Red”}) : {X : int, Y : int,Color : string}
fun transpose p = modify(modify(p, X, p¦Y), Y, p¦X)

: ∀t1::U.∀t2::{{X : t1, Y : t1}}.t2 → t2
transpose({X=1.0, Y=10.0, Direction={Speed=30.0, Theta=1.0}})

: {X : real, Y : real,Direction : {Speed : real,Theta : real}}
fun dist p = case p of 〈Cartesian=λc.sqroot(square(c¦X) + square(c¦Y)), Polar=λp¦R〉

: ∀t1::{{X : real, Y : real}}.∀t2::{{R : real}}.〈Cartesian : t1,Polar : t2〉 → real
dist(〈Cartesian={X=0.0, Y=10.0, Color=”Green”}〉) : real

Fig. 1. Example of programs with their inferred types.

Here, instead of using row variables, we base our development on the idea presented
in Ohori and Buneman [1988] of placing restrictions on possible instantiations of
type variables. We formalize this idea as a kind system of types and refine the
ordinary type quantification to kinded quantification of the form ∀t::k.σ where type
variable t is constrained to range only over the set of types denoted by a kind k.
This mechanism is analogous to bounded quantification [Cardelli and Wegner 1985].
A kind k is either the universal kind U denoting the set of all types, a record kind
of the form {{l1 : τ1, · · · , tn : τn}} denoting the set of all record types that contain
the specified fields, or a variant kind of the form 〈〈l1 : τ1, · · · , tn : τn〉〉 denoting the
set of all variant types that contain the specified fields.

This mechanism allows us to represent polymorphic types of various record op-
erations. For example, the function name and the value payment are given the
following types:

name : ∀t1::U.∀t2::{{Name : t1}}.t2 → t1

payment : ∀t::〈〈Pound : real〉〉.t
indicating that name is a function that takes a value of any record type containing
a Name : t1 field and returns a value of type t1 where t1 may be any type, and
payment is a polymorphic value having any variant type containing a Pound : real
component. By this mechanism, these terms can be used polymorphically. In
addition to labeled-field access, kinded abstraction can also be used to represent
polymorphic record modification (update) operations modify(e1,l,e2), which creates
a new record from e1 by modifying the value of the l field to e2, leaving all the
other fields unchanged. The following typing shows the polymorphic nature of this
construct.

λx.λy.modify(y,l,x) : ∀t1::U.∀t2::{{l : t1}}.t1 → t2 → t2

Combination of these features allows flexible programming without sacrificing the
advantage of static typing and the existence of an ML-style, complete, type infer-
ence algorithm. Figure 1 shows examples of typings involving labeled records and
variants using ML-style polymorphic function declaration.

This form of programming is also possible in the other proposals for ML-style
polymorphic record calculi based on row variables mentioned earlier. One advan-
tage of our formulation is that it yields a uniform treatment for both explicitly
typed calculi and ML-style type inference systems. Most of the type inference algo-

ACM Transactions on Programming Languages and Systems, 1995.

848 · Atsushi Ohori

rithms are defined without second-order types and do not explicitly treat ML’s let
binding. Rémy [1994b] formally treats ML’s let binding. However, its relationships
to an explicitly typed second-order system have not been well investigated. Using
kinded abstraction, we extend the second-order lambda calculus of Girard [1971]
and Reynolds [1974] to record polymorphism and show that the extension preserves
basic properties of the second-order lambda calculus. We then develop an ML-style
type inference system for a predicative subset of the second-order lambda calculus.
These results extend the type inference algorithm of Milner [1978], the type system
for ML let polymorphism by Damas and Milner [1982], and the analysis on the
relationship between ML polymorphism and a predicative second-order system by
Harper and Mitchell [1993]. These connections will allow us to transfer various
known results of polymorphic type discipline to record polymorphism.

It should be mentioned, however, that row variables appear to be better suited to
represent various powerful operations on records. Among the type systems based on
row variables, perhaps the most flexible is that of Rémy [1994b], which uses sorted
equational theory on row variables. For polymorphic record field access, record
modification and polymorphic variants, his type system provides polymorphic typ-
ings equivalent to ours. For example, the function name is given the following
typing in his system:

λx.x¦Name : (ρ{Name};Name : pre(t)) → t

where ρ{Name} is a sorted row variable representing possible rows (finite sets of
record fields) that do not contain a Name field, and pre(t) indicates the existence
of Name field of type t. This typing is equivalent to the typing in our calculus in the
sense that the two denote the same set of ground instances. However, his system
is more powerful in that it can also represent an operation that extends a record
with a new field and one that removes an existing field from a record, which are not
representable in our type system. A restricted form of record extension operation is
supported in Jategaonkar and Mitchell [1993]. Explicitly typed second-order calculi
for extensible records have also been proposed [Cardelli and Mitchell 1989; Harper
and Pierce 1991]. Unavailability of these extension operations is a limitation of
our type system. However, those record calculi based on row variables appear to
be difficult to compile. To the author’s knowledge, there is no known systematic
compilation method for any of these record calculi. A significant advantage of our
type system is that it allows us to develop an efficient compilation method that
always compile out labeled-field access into a direct index operation, as we shall
explain in the next subsection.

In addition to record extension operations, various forms of record concatenation
operations have also been proposed [Harper and Pierce 1991; Rémy 1992; Wand
1989]. Inclusion of any of these operations significantly complicates both the type
theoretical analysis and compilation. Also, it is not obvious which of these powerful
operations is really needed. For example, in database programming — a typical
application area where labeled records play an important role — the form of record-
merging operations commonly considered is not record concatenations but natural
join for which row variables may not be a suitable mechanism. It is possible to
generalize the relational natural join operation to general record structures [Bune-
man et al. 1991; Ohori 1990] and to extend a polymorphic type system with the
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 849

generalized natural join [Buneman and Ohori 1995; Ohori and Buneman 1988].
However, we are not sure that such an operation should be in the polymorphic core
of programming languages.

The operations considered in this article support a wide range of programming
with records while maintaining the existence of an efficient compilation method. We
therefore claim that the calculus proposed in the present article serves as a basis
for developing a practical polymorphic language with record polymorphism. We
further believe that when our type system is extended with recursive types, it will
support various features of object-oriented programming as discussed in Cardelli
[1988] and Cardelli and Wegner [1985]. This issue is outside of the scope of the
present article, and the author would like to investigate it elsewhere.

1.2 Compilation Method for Record Polymorphism

The second technical challenge in developing a practical programming language
with record polymorphism is compilation. An important property of labeled records
is the ability to access an element in a record not by position but by label, i.e., sym-
bolic name. In a statically typed monomorphic language, this does not cause any
difficulty in compilation. Since the actual position of each labeled field is statically
determined from the type of a record, labeled-field access is easily compiled into an
index operation, which is usually implemented by a single machine instruction. In
a language with record polymorphism, however, compilation is a difficult problem.
Consider the function λx.x¦Name again. Since actual arguments differ in the posi-
tion of the Name field, it appears to be impossible to compile this function into a
function that performs an index operation.

One straightforward approach might be to predetermine the offsets of all possible
labels and to represent a record as a potentially very large structure with many
empty slots. Cardelli [1994] took this strategy to represent records in a pure calculus
of subtyping. Although this approach would be useful for studying formal properties
of record polymorphism, it is unrealistic in practice. Another naive approach is to
directly implement the intended semantics of the labeled-field access by dynamically
searching for the specified label in a record represented as an association list of labels
and values. An obvious drawback to such an approach is inefficiency in runtime
execution. Since field access is the basic operation that is frequently invoked, such
a method is unacceptable for serious application development.

A more-realistic approach for dynamic field lookup is to use a form of hashing.
Rémy [1994a] presented an efficient, dynamic, field lookup method using a form
of hashing similar to extendible hashing [Fagin et al. 1979] and showed that field
selection can be implemented with relatively small runtime overhead both in exe-
cution time and in extra memory usage. This can be a reasonable implementation
technique for various record calculi where static determination of the position of
labeled fields is impossible. A drawback of this method is that labeled-field ac-
cess always incurs extra runtime overhead, even when the program is completely
monomorphic, and therefore the positions of labels can be statically determined.
It would be unfortunate if we were forced to pay extra penalty for monomorphic
labeled-field access when we move to a supposedly more advanced language with a
polymorphic type system. Another drawback of hashing is that there is no guaran-
tees to work for arbitrary records. Remy’s technique, for example, does not work

ACM Transactions on Programming Languages and Systems, 1995.

850 · Atsushi Ohori

well for large records such as those with 50 or 100 fields.
For a polymorphic record calculus to become a basis of practical programming

languages, we must develop a compilation method that always achieves both com-
pactness in the representation of records and efficiency in the execution of labeled-
field access. Connor et al. [1989] considered this problem in the context of an
explicitly typed language with subtyping and suggested an implementation strat-
egy. However, they did not provide a systematic method to deal with arbitrary
expressions, nor did they consider a type inference system. The second goal of this
article is to develop such a compilation method and to establish that compilation
achieves the intended operational behavior of a polymorphic record calculus.

Our strategy is to translate a polymorphic record calculus into an implementation
calculus. In the implementation calculus, a labeled record is represented as a vector
of values ordered by a canonical ordering of the set of labels, and fields are accessed
by direct indexing. A variant value is represented as a value tagged with a natural
number indicating the position in the vector of functions in a switch statement. To
deal with polymorphic field selection and polymorphic variants, the implementation
calculus contains index variables and index abstraction. For example, from an
untyped term

let name = λx. x¦Name in (name {Name = ”Joe”, Office=403},
name {Name=”Hanako”, Age=21, Phone=7222})

the translation algorithm produces the following implementation code:

let name = λIλx. x[I] in ((name 1) {”Joe”,403}, (name 2) {21,”Hanako”,7222})
where I is an index variable; λI. M is index abstraction; x[I] is an index expres-
sion; {”Joe”,403} and {21,”Hanako”,7222} are vector representations of the records
whose fields are ordered by the lexicographical ordering on labels; and (name 1)
and (name 2) are index application supplying appropriate index values to the index
variable I. Similarly, an untyped term

let payment = 〈Pound=100.0〉
in (case payment of 〈Pound=λx.x, Dollar=λx.x * 0.68〉,

case payment of 〈Pound=λx.real to int(x * 150.0), Yen = λx.x〉)
is translated into the following code in the implementation calculus:

let payment = λI.〈I=100.0〉
in (switch (payment 2) of 〈λx.x * 0.68, λx.x)〉,

switch (payment 1) of 〈λx.real to int(x * 150.0), λx.x〉)
where a polymorphic variant payment is represented as a term containing index ab-
straction whose index value is supplied through index applications — (payment 1),
(payment 2) — and is used to select the corresponding function in the function vec-
tor in a switch statement whose elements are sorted by the lexicographical ordering
on the variant labels.

Our compilation method works for arbitrary records and variants and does not in-
troduce any runtime overhead for monomorphic programs. For polymorphic record
functions and variants, it requires extra function applications to pass index values
before applying them. However, as we shall show in the following development,
extra index applications are done only when polymorphic terms are instantiated.
So we believe that their cost is negligible.
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 851

The general idea of passing index values was suggested in Connor et al. [1989].
One of our original contributions is (1) to establish a systematic compilation algo-
rithm that always constructs a correct implementation term for any type correct
raw term of a polymorphic record calculus and (2) to establish its correctness for-
mally.

1.3 Outline of the Development

To establish a rigorous typing discipline for record polymorphism, in Section 2 we
define a second-order lambda calculus with record polymorphism, which we call
Λ∀,¦, and show the subject reduction property. We then define in Section 3 an ML-
style polymorphic record calculus, λlet,¦, and define its call-by-value operational
semantics. Typing derivations of λlet,¦ correspond to terms of a predicative subcal-
culus Λlet,¦ of Λ∀,¦, which can be regarded as an extension of Core XML [Harper
and Mitchell 1993] with record polymorphism. The operational semantics of λlet,¦
serves as a canonical model for evaluating a record calculus. A Damas-Milner-style
polymorphic type discipline is shown to be sound with respect to this semantics.
We next refine Robinson’s unification algorithm by incorporating kind constraints
on type variables, and using this unification we (1) give an algorithm to infer, for
any typable raw term of λlet,¦, both its principal typing and the corresponding
explicitly typed term of Λlet,¦and (2) prove its soundness and completeness. The
constructed Λlet,¦ term contains the necessary type information for compilation.

Next, in Section 4, we develop a compilation algorithm for λlet,¦ and prove its
correctness. We first define an implementation calculus λlet,[] and its call-by-value
operational semantics. This calculus serves as an efficient abstract machine for
record calculi. In particular, record field access and case branch selection are per-
formed by direct indexing. In order to establish the correctness of the compilation
algorithm, we present the calculus as a polymorphically typed functional calculus.
We then develop an algorithm to compile λlet,¦ into λlet,[] using the explicitly typed
calculus Λlet,¦ as an intermediate language.

There is one subtlety in using Λlet,¦ as an intermediate language for compiling
λlet,¦. As shown in Ohori [1989], a translation of ML typings to Core XML terms
cannot be coherent, and the same phenomenon occurs in construction of a Λlet,¦
term from a λlet,¦ term. One of the sources of failure of coherence is the free
type variables that do not appear in the typing. Eliminating these “vacuous” type
variables by selecting an appropriate canonical term of Λlet,¦ is crucial for obtaining
a correct compilation algorithm.

The compilation algorithm is shown to preserve typing. Furthermore, we also
establish that the compilation preserves the operational behavior of a program by
applying the idea of logical relations to set up an appropriate relationship between
the operational semantics of λlet,¦ and the operational semantics of λlet,[]. (See
Mitchell [1990] for a survey on logical relations and their applications.) Figure 2
shows the relationship among the four calculi defined in this article.

Based on the type system and the compilation method presented in this article,
Standard ML has been extended with polymorphic record operations, and its com-
piler, SML], has been implemented by modifying the Standard ML of New Jersey
system [Appel and MacQueen 1991]. The following shows two ways of writing the
function name in SML]:

ACM Transactions on Programming Languages and Systems, 1995.

852 · Atsushi Ohori

λlet,[]

The implementation

calculus

λlet,¦
The ML-style calculus

Λlet,¦
The explicit calculus

Λ∀,¦
The second-order
calculus

6
(type inference)

¾(compile) ¾(restrict)

Fig. 2. Relationship among the calculi.

- val name = #Name;

val name = fn : ’b#{Name:’a,...} -> ’a

- fun name {Name=x,...} = x;

val name = fn : ’b#{Name:’a,...} -> ’a

where the second definition uses Standard ML’s pattern machining mechanism.
This is part of an interactive session in the implemented system. {Name=x,...} is
a pattern that matches any record containing Name field, and ’b#{Name:’a,...}
-> ’a represents kinded quantification ∀a::U.∀b::{{Name : a}}.b → a. The notation
“...” used in SML] signifies that there may be more fields and should not be con-
fused with the metanotation “· · ·” we shall use in describing various formal systems
below. Section 5 describes the outline of the implementation and demonstrates its
usefulness by examples.

2. POLYMORPHIC TYPE DISCIPLINE FOR RECORDS AND VARIANTS

This section defines a second-order polymorphic record calculus, Λ∀,¦, and proves
its basic syntactic properties.

2.1 Types, Kinds, and Kinded Substitutions

The sets of types (ranged over by σ) and kinds (ranged over by k) are given by the
following syntax:

σ ::= b | t |σ → σ | {l : σ, · · · , l : σ} | 〈l : σ, · · · , l : σ〉 | ∀t::k.σ

k ::= U | {{l : σ, · · · , l : σ}} | 〈〈l : σ, · · · , l : σ〉〉
where b stands for a given set of base types, t for a given countably infinite set
of type variables, l for a given set of labels, {l1 : σ1, · · · , ln : σn} for record types,
〈l1 : σ1, · · · , ln : σn〉 for variant types, and ∀t::k.σ for second-order types where type
variable t is quantified over the set of types denoted by kind k. U is the universal
kind denoting the set of all types. {{l1 : σ1, · · · , ln : σn}} and 〈〈l1 : σ1, · · · , ln : σn〉〉
are a record kind and a variant kind, respectively. The labels l1, · · · , ln appearing
in a type or a kind must be pairwise distinct, and the order of their occurrence is
insignificant.

The construct ∀t::k.σ binds type variable t in σ but not in k. The set of free type
variables of a type σ or a kind k are denoted by FTV (σ) and FTV (k), respectively.
For second-order types, it is defined as FTV (∀t::k.σ) = FTV (k)∪ (FTV (σ))\{t}).
FTV for other types and kinds are defined as usual. We say that a type σ is
closed if FTV (σ) = ∅. We identify types that differ only in the names of bound
type variables and further adopt the usual “bound variable convention” on type
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 853

K ` σ :: U for any σ that is well formed under K
K ` t :: {{l1 : σ1, . . . , ln : σn}} if K(t) = {{l1 : σ1, . . . , ln : σn, · · · }}
K ` {l1 : σ1, . . . , ln : σn, · · ·} :: {{l1 : σ1, . . . , ln : σn}}

if {l1 : σ1, . . . , ln : σn, · · ·} is well formed under K
K ` t :: 〈〈l1 : σ1, . . . , ln : σn〉〉 if K(t) = 〈l1 : σ1, . . . , ln : σn, · · · 〉
K ` 〈l1 : σ1, . . . , ln : σn, · · · 〉 :: 〈〈l1 : σ1, . . . , ln : σn〉〉

if 〈l1 : σ1, . . . , ln : σn, · · · 〉 is well formed under K

Fig. 3. Kinding rules for the second-order calculus Λ∀,¦.

variables, i.e., we assume that the set of all bound type variables are distinct and
are different from any free type variables and that this property is preserved by
substitution.

In our calculus, any free type variables must be kinded by a kind assignment
K, which is a mapping from a finite set of type variables to kinds. We sometimes
regard a kind assignment as a set of pairs of a type variable and a kind and write
∅ for the empty kind assignment. Any type variables appearing in K must also
be properly kinded by K itself. This is expressed by the following condition. A
kind assignment K is well formed if for all t ∈ dom(K), FTV (K(t)) ⊆ dom(K),
where dom(f) denotes the domain of a function f . Unless we explicitly say oth-
erwise, we implicitly assume that any kind assignment appearing in the rest of
the development is well formed. We write K{t::k} for K ∪ {(t, k)} if K is well
formed, t 6∈ dom(K), and FTV (k) ⊆ dom(K). We also write K{t1::k1, · · · , tn::kn}
for ((K{t1::k1}){t2::k2} · · ·){tn::kn}. Note that K{t1::k1, · · · , tn::kn} implies that
ti 6∈ FTV (kj) for any 1 ≤ j ≤ i ≤ n.

A type σ is well formed under a kind assignment K if FTV (σ) ⊆ dom(K). This
notion is naturally extended to other syntactic objects containing types, except for
substitutions whose well-formedness condition is defined separately.

A type σ has a kind k under K, denoted by K ` σ :: k, if it is derivable by the
set of kinding rules given in Figure 3. Note that if K ` σ :: k then both k and σ are
well formed under K.

A type substitution, or simply substitution, is a function from a finite set of type
variables to types. We write [σ1/t1, · · · , σn/tn] for the substitution that maps each ti
to σi. A substitution S is extended to the set of all type variables by letting S(t) = t
for all t 6∈ dom(S), and it in turn is extended uniquely to record types, variant types,
and function types. The result of applying a substitution S to a second-order type
∀t::k.σ is the type obtained by applying S to its all free type variables. Under the
bound type variable convention, we can simply take S(∀t::k.σ) = ∀t::S(k).S(σ).
In what follows, we identify a substitution with its extension to types and write
S = S′ if they are equal as functions on types. However, we maintain that the
domain dom(S) of a substitution S always means the domain of the original finite
function S. If S1 and S2 are substitutions, we write S1 ◦ S2 for the substitution
S such that dom(S) = dom(S1) ∪ dom(S2); S(t) = S1(S2(t)) if t ∈ dom(S2); or
S(t) = S1(t) if t ∈ dom(S1) \ dom(S2). We further assume that this operation
associates to the right so that S1 ◦ S2 ◦ S3 means S1 ◦ (S2 ◦ S3).

Since in our type discipline type variables are kinded by a kind assignment,
ACM Transactions on Programming Languages and Systems, 1995.

854 · Atsushi Ohori

the conventional notion of substitutions must be refined by incorporating kind
constraints. A substitution S is well formed under a kind assignment K if for any
t ∈ dom(S), S(t) is well formed under K. A kinded substitution is a pair (K, S) of
a kind assignment K and a substitution S that is well formed under K. The kind
assignment K in (K, S) specifies kind constraints of the result of the substitution.
A kinded substitution (K, S) is ground if K = ∅. We usually write S for a ground
kinded substitution (∅, S).

A kinded substitution (K1, S) respects a kind assignment K2 if for any t ∈
dom(K2), K1 ` S(t) :: S(K2(t)). This notion specifies the condition under which
a substitution can be applied, i.e., if (K1, S) respects K then it can be applied to
a type σ kinded by K, yielding a type S(σ) kinded by K1. The following lemma is
easily proved.

Lemma 2.1.1. If K ` σ :: k, and a kinded substitution (K1, S) respects K, then
K1 ` S(σ) :: S(k).

As a simple corollary of this, if (K1, S1) respects K and (K2, S2) respects K1 then
(K2, S2 ◦ S1) respects K.

As seen from the above definitions, a kind assignment is regarded as a constraint
on possible substitutions of type variables, i.e., those that respect it. In this view,
our well-formedness condition of kind assignments is weak in the sense that it allows
cyclic kind assignments like {t1::{{l1 : t2}}, t2::{{l2 : t1}}}, which is in some sense
useless since there is no ground substitution that respects it. In fact, we could have
adopted a stronger well-formedness condition on kind assignments requiring that a
kind assignment must be of the form {t1::k1, · · · , tn::kn} such that for any 1 ≤ i ≤ n,
ki is well formed under {t1::k1, · · · , ti−1::ki−1}. The reason why we have not taken
this approach is because under this stronger condition the complexity of the type
inference algorithm would increase due to the well-formedness checking of a kind
assignment every time types are unified. The current definition of well-formedness
of kind assignments allows us to delay the check of circularity until a type variable
is abstracted. The notation K{t::k} is introduced for this purpose where t should
not appear in k. This will be used for specifying the rule for type abstraction. Since
this approach does not change the set of derivable closed typings, it still yields a
sound type system that detects all the type errors of a program. We will comment
on this issue again when we define a unification algorithm in Section 3.4.

2.2 Terms, Reduction, and Typing Rules

The set of terms of Λ∀,¦ is given by the grammar:

M ::= x | cb | λx : σ.M | M M | λt::k.M | M σ

| {l=M ,· · ·,l=M} | M ¦l | modify(M ,l,M)

| (〈l=M〉:σ) | case M of 〈l=M ,· · ·,l=M〉
cb is a constant of base type b. λt::k.M is kinded type abstraction. In a variant
term (〈l=M〉:σ), type specification is necessary to preserve the explicit typing of
the calculus. In a record expression or a case expression, the order of the fields is
insignificant. We identify the terms that differ only in the names of bound variables
and assume the bound variable convention for term variables. We write [M/x]N
for the term obtained from N by substituting M for all the free occurrences of
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 855

(β) (λx : σ.M) N =⇒ [N/x]M

(type-β) (λt::k.M) σ =⇒ [σ/t]M

(dot) {l1=M1,· · ·,ln=Mn}¦li =⇒ Mi (1 ≤ i ≤ n)

(modify) modify({l1=M1,· · ·,ln=Mn},li,N) =⇒ {l1=M1,· · ·,li=N ,· · ·,ln=Mn}
(case) case (〈li=M〉:σ) of 〈l1=M1,· · ·,ln=Mn〉 =⇒ Mi M

Fig. 4. The reduction rules for the second-order system Λ∀,¦.

x in N . We write FTV (M) for the set of free type variables of a term M . For
type abstraction, it is defined as FTV (λt::k.M) = FTV (k) ∪ (FTV (M) \ {t}).
The definitions for other terms are as usual. We use the equality symbol “=” for
syntactic equality on terms and types. Since this article does not deal with an
equational proof system, this does not cause any confusion.

In the above definition of the terms, we have only included constants of base
types. Inclusion of constants of general types will not complicate the type system.
A constant having a polymorphic type, however, requires a special treatment in
both operational semantics and compilation we shall develop later. It is not hard
to extend them for general constants by assuming that, for each constant, its op-
erational behavior and its compilation scheme are given. But the extension would
significantly complicate the presentation of our framework without giving much
additional insight. For this reason, we only consider constants of base types.

The reduction axioms for this calculus are given in Figure 4. We say that M
reduces to N in one step, written M → N , if N is obtained from M by applying
one of the reduction axioms to some subterm of M . We omit its routine formal
definition. The reduction relation M →→ N is defined as the reflexive transitive
closure of →. This reduction system is Church-Rosser. This is seen from the
following observation. It is easily verified that the reduction relation induced by
(dot), (modify), and (case) is Church-Rosser. It is also easily verified that this
relation commutes with the reduction relation generated by β and type-β. Since the
latter reduction is well known to be Church-Rosser, by the Hindley-Roger theorem
[Barendregt 1984, ch.3], the entire relation is Church-Rosser.

For the reduction system, we can also include η rule for lambda abstraction.
However, there seems to be no easy way to include other extensionality rules for
type abstraction, records, and variants. In the presence of record polymorphism,
a straightforward inclusion of any of these rules causes both the confluence and
subject reduction property to fail. For example, if we would have included type-
η rule, then terms like λt::{{a : int, b : int}}.(λs::{{a : int}}.λx:s.x) t would have two
different normal forms having different types.

Since in our system types may depend on type variables other than their own
free type variables, we need to extend the notion of free type variables of a type.
For a type σ well formed under K, the set of essentially free type variables of σ
under K, denoted by EFTV (K, σ), is the smallest set satisfying:

—FTV (σ) ⊆ EFTV (K, σ).
—if t ∈ EFTV (K, σ) then FTV (K(t)) ⊆ EFTV (K, σ).

Intuitively, t ∈ EFTV (K, σ) if σ contains t either directly or through kind con-
ACM Transactions on Programming Languages and Systems, 1995.

856 · Atsushi Ohori

var K, T ¤ x : σ if T is well formed under K and T (x) = σ

const K, T ¤ cb : b if T is well formed under K

abs
K, T {x : σ1}¤ M1 : σ2

K, T ¤ λx : σ1.M1 : σ1 → σ2

app
K, T ¤ M1 : σ1 → σ2 K, T ¤ M2 : σ1

K, T ¤ M1 M2 : σ2

tabs
K{t::k}, T ¤ M : σ

K, T ¤ λt::k.M : ∀t::k.σ
if t 6∈ FTV (T)

tapp
K, T ¤ M : ∀t::k.σ1 K ` σ2 :: k

K, T ¤ M σ2 : [σ2/t](σ1)

record
K, T ¤ Mi : σi (1 ≤ i ≤ n)

K, T ¤ {l1=M1,· · ·,ln=Mn} : {l1 : σ1, · · · , ln : σn}

dot
K, T ¤ M : σ1 K ` σ1 :: {{l : σ2}}

K, T ¤ M ¦l : σ2

modify
K, T ¤ M1 : σ1 K, T ¤ M2 : σ2 K ` σ1 :: {{l : σ2}}

K, T ¤ modify(M1,l,M2) : σ1

variant
K, T ¤ M : σ1 K ` σ2 :: 〈〈l : σ1〉〉

K, T ¤ (〈l=M〉:σ2) : σ2

case
K, T ¤ M : 〈l1 : σ1, · · · , ln : σn〉 K, T ¤ Mi : σi → σ (1 ≤ i ≤ n)

K, T ¤ case M of 〈l1=M1,· · ·,ln=Mn〉 : σ

Fig. 5. Type system of the second-order calculus Λ∀,¦.

strains specified by K. For example, t1 is essentially free in t2 under {t1::U, t2::{{l :
t1}}}. This notion naturally extends to other syntactic structures containing types.

A type assignment T is a mapping from a finite set of variables to types. We
write {x1 : σ1, · · · , xn : σn} for the type assignment that binds xi to σi (1 ≤ i ≤ n).
We also write T {x : σ} for T ∪{x : σ} provided that x 6∈ dom(T). The type system
is defined as a proof system to derive a typing of the form K, T ¤ M : σ. The set
of typing rules is given in Figure 5. In the rule tabs, the condition t 6∈ FTV (T) is
equivalent to t 6∈ EFTV (K{t::k}, T) under our assumption on K{t::k}. We write
Λ∀,¦ ` K, T ¤ M : σ if K, T ¤ M : σ is derivable in this proof system.

Unlike the polymorphic type discipline for records based on subtyping, this type
system has the following property.

Proposition 2.2.1. For any K, T ,M there is at most one σ such that Λ∀,¦ `
K, T ¤ M : σ. Moreover, a derivation of Λ∀,¦ ` K, T ¤ M : σ is unique.

Proof. We proceed by induction on the structure of M . The case of M ¦l follows
from the induction hypothesis and the fact that for given K, σ1, and l there is at
most one σ2 such that K ` σ1 :: {{l : σ2}}. Other cases are straightforward.

The following basic properties hold, which are proved by routine induction.

Lemma 2.2.2.

(1) If Λ∀,¦ ` K, T ¤ M : σ then T , M , and σ are well formed under K.
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 857

(2) If Λ∀,¦ ` K{t::k}, T ¤ M : σ and t 6∈ (FTV (T) ∪ FTV (M) ∪ FTV (σ)) then
Λ∀,¦ ` K, T ¤ M : σ.

(3) If Λ∀,¦ ` K, T ¤ M : σ then Λ∀,¦ ` K{t::k}, T ¤ M : σ.
(4) If Λ∀,¦ ` K, T ¤ M : σ then FV (M) ⊆ dom(T).
(5) If Λ∀,¦ ` K, T {x : σ0}¤ M : σ and x 6∈ FV (M) then Λ∀,¦ ` K, T ¤ M : σ.
(6) If Λ∀,¦ ` K, T ¤ M : σ and σ0 is well formed under K then Λ∀,¦ ` K, T {x :

σ0}¤ M : σ.

The corresponding lemma holds for all the calculi we shall define in this article.
The following lemma shows that typings are closed under kind respecting kinded

substitutions.

Lemma 2.2.3. If Λ∀,¦ ` K1, T ¤ M : σ and (K2, S) respects K1 then Λ∀,¦ `
K2, S(T) ¤ S(M) : S(σ).

Proof. Suppose Λ∀,¦ ` K1, T ¤ M : σ and (K2, S) respects K1. Proof is by
induction on the structure of M .

Case x. Since T is well formed under K1 and (K2, S) respects K1, S(T) is well
formed under K2. Also S(T)(x) = S(σ). Therefore Λ∀,¦ ` K2, S(T) ¤ x : S(σ).

Case λt::k.M1. We must have Λ∀,¦ ` K1{t::k}, T ¤ M1 : σ1 for some σ1 such
that σ = ∀t::k.σ1 and t 6∈ FTV (T). By the bound type variable convention, we
can assume that t does not appear in S or K2. Since k is well formed under
K1 and (K2, S) respects K1, S(k) is well formed under K2. Then K2{t::S(k)} is
well formed, and (K2{t::S(k)}, S) respects K1{t::k}. By the induction hypothesis
Λ∀,¦ ` K2{t::S(k)}, S(T)¤S(M1) : S(σ1). Since t 6∈ FTV (S(T)), by the rule tabs
Λ∀,¦ ` K2, S(T) ¤ λt::S(k).S(M1) : ∀t::S(k).S(σ1).

Case M1 σ1. We must have Λ∀,¦ ` K1, T ¤ M1 : ∀t::k.σ2, K1 ` σ1 :: k and
σ = [σ1/t](σ2) for some σ2, t, k. By the induction hypothesis and the bound type
variable convention, Λ∀,¦ ` K2, S(T) ¤ S(M1) : ∀t::S(k).S(σ2). By Lemma 2.1.1,
K2 ` S(σ1) :: S(k). By the typing rule tapp, Λ∀,¦ ` K2, S(T) ¤ S(M1) S(σ1) :
[S(σ1)/t](S(σ2)). But since t 6∈ dom(S), [S(σ1)/t](S(σ2)) = S([σ1/t](σ2)) = S(σ),
as desired.

Case M ¦l. We must have Λ∀,¦ ` K1, T ¤ M : σ1, for some σ1 such that K1 `
σ1 :: {{l : σ}}. By the induction hypothesis, Λ∀,¦ ` K2, S(T) ¤ S(M) : S(σ1). By
Lemma 2.1.1, K2 ` S(σ1) :: {{l : S(σ)}}. By the rule dot, Λ∀,¦ ` K2, S(T)¤S(M)¦l :
S(σ).

The cases for modify(M1,l,M2) and (〈l=M〉:σ) are similar to that of M1¦l. Other
cases easily follow from the induction hypotheses.

This lemma holds for all the calculi we shall define in this article.
We also have the following substitution lemma.

Lemma 2.2.4. If Λ∀,¦ ` K, T {x : σ1} ¤ M : σ2 and Λ∀,¦ ` K, T ¤ N : σ1 then
Λ∀,¦ ` K, T ¤ [N/x]M : σ2.

Proof. Suppose Λ∀,¦ ` K, T {x : σ1}¤ M : σ2 and Λ∀,¦ ` K, T ¤ N : σ1. Proof
is by induction on the structure of M .

ACM Transactions on Programming Languages and Systems, 1995.

858 · Atsushi Ohori

Case λt::k.M1. We must have Λ∀,¦ ` K{t::k}, T {x : σ1} ¤ M1 : σ3 for some
σ3 such that σ2 = ∀t::k.σ3 and t 6∈ FTV (T {x : σ1}). By Lemma 2.2.2, Λ∀,¦ `
K, T ¤ N : σ1 implies Λ∀,¦ ` K{t::k}, T ¤ N : σ1. By the induction hypothesis,
Λ∀,¦ ` K{t::k}, T ¤ [N/x]M : σ3. Since t 6∈ FTV (T) ⊆ FTV (T {x : σ1}), by the
typing rule tabs we have Λ∀,¦ ` K, T ¤ λt::k.[N/x]M : ∀t::k.σ3.

Case M1¦l. We must have Λ∀,¦ ` K, T {x : σ1} ¤ M1 : σ3 and K ` σ3 :: {{l : σ2}}
for some σ3. By the induction hypothesis, Λ∀,¦ ` K, T ¤ [N/x]M1 : σ3. By the
typing rule dot, Λ∀,¦ ` K, T ¤ [N/x]M1¦l : σ2.

Cases for modify(M1,l,M2) and (〈l=M〉:σ) are shown similarly to M ¦l. Other
cases are proved using Lemma 2.2.2, similarly to the second-order lambda calcu-
lus.

Using these properties, we can prove the following subject reduction theorem.

Theorem 2.2.5. If Λ∀,¦ ` K, T ¤M : σ and M →→ N then Λ∀,¦ ` K, T ¤N : σ.

Proof. This is proved by showing that each reduction axiom preserves typing.

(β): Suppose Λ∀,¦ ` K, T ¤(λx : σ1.M1) M2 : σ. Then Λ∀,¦ ` K, T {x : σ1}¤M1 :
σ and Λ∀,¦ ` K, T ¤ M2 : σ1. By Lemma 2.2.4, Λ∀,¦ ` K, T ¤ [M2/x]M1 : σ.

(type-β): Suppose Λ∀,¦ ` K, T ¤ (λt::k.M1) σ1 : σ. Then σ = [σ1/t](σ2) for
some σ2 such that Λ∀,¦ ` K{t::k}, T ¤ M1 : σ2 and K ` σ1 :: k. By the bound
type variable convention, t does not appear free elsewhere other than σ2 and M1.
Then the kinded substitution (K, [σ1/t]) respects K{t::k}, and by Lemma 2.2.3,
Λ∀,¦ ` K, [σ1/t](T) ¤ [σ1/t](M1) : [σ1/t](σ2), i.e., Λ∀,¦ ` K, T ¤ [σ1/t](M1) : σ.

(dot): Suppose Λ∀,¦ ` K, T ¤ {l1=M1,· · ·,ln=Mn}¦li : σ. Then there are
σ1, · · · , σn such that K, T ¤ Mj : σj (1 ≤ j ≤ n), and K ` {l1 : σ1, · · · , ln :
σn} :: {{li : σ}}. By the definition of kinding, σ = σi and K, T ¤ Mi : σ.

(modify): Suppose Λ∀,¦ ` K, T ¤ modify({l1=M1,· · ·,ln=Mn},li,N) : σ. Then
there are some σ1, · · · , σn, σ′ such that σ = {l1 : σ1, · · · , ln : σn}, Λ∀,¦ ` K, T ¤Mj :
σj (1 ≤ j ≤ n), Λ∀,¦ ` K, T ¤ N : σ′, and K ` {l1 : σ1, · · · , ln : σn} :: {{li : σ′}}.
By the definition of kinding, σi = σ′. Then by the typing rule record, Λ∀,¦ `
K, T ¤ {l1 = M1, · · · , li = N, · · · , ln = Mn} : σ.

(case): Suppose Λ∀,¦ ` K, T ¤case (〈li=M〉:σ0) of 〈l1=M1,· · ·,ln=Mn〉 : σ. Then
there are σ1, · · · , σn such that Λ∀,¦ ` K, T ¤ Mj : σj → σ (1 ≤ j ≤ n), and
Λ∀,¦ ` K, T ¤ (〈li = M〉 : σ0) : 〈l1 : σ1, · · · , ln : σn〉. The last typing implies
that Λ∀,¦ ` K, T ¤ M : σ′ and K ` 〈l1 : σ1, · · · , ln : σn〉 :: 〈〈li : σ′〉〉 for some σ′.
By the definition of kindings, σ′ = σi. Then by the typing rule app, we have
Λ∀,¦ ` K, T ¤ Mi M : σ.

Let us show simple examples of terms in this calculus. The field selection function
name and variant term payment given in Section 1 are represented as the terms

NAME = λt1::U .λt2::{{Name : t1}}.λx:t2.x¦Name

PAY MENT = λt::〈〈Pound : real〉〉.(〈Pound=100.0〉: t)

and are given the following typings:

∅, ∅¤ NAME : ∀t1::U.∀t2::{{Name : t1}}.t2 → t1
∅, ∅¤ PAY MENT : ∀t::〈〈Pound : real〉〉.t

ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 859

With appropriate type applications, these terms can be used polymorphically. The
expressions containing name and payment given in Section 1.2 are represented as
the following terms.

(λname:∀t1::U.∀t2::{{Name : t1}}.t2 → t1.
(name string {Name : string,Office : int} {Name=”Joe”, Office=403},
name string {Name : string,Age : int ,Phone : int}

{Name=”Hanako”, Age=21, Phone=7222})) NAME

(λpayment:∀t::〈〈Pound : real〉〉.t
(payment 〈Pound : real,Dollar : real〉 〈Pound=λx:real.x, Dollar=λx:real.x * 0.68〉,
payment 〈Pound : real,Yen : int〉

〈Pound=λx:real.real to int(x * 150.0), Yen=λx:int.x 〉))
PAY MENT

For this calculus, the equational proof system can be defined. We also believe
that a semantic framework of the second-order lambda calculus such as Bruce et al.
[1990] and Breazu-Tannen and Coquand [1988] can be extended to this calculus
and that the soundness and completeness of the equational proof system can be
proved. A detailed studies of semantic properties of the calculus is beyond the
scope of the present article. Our main focus is an ML-style type inference system
and compilation. We now turn to the first of the two.

3. ML-STYLE TYPE INFERENCE SYSTEM

In this section, we define an ML-style, implicitly typed, polymorphic record calculus
λlet,¦, show that typing derivations of λlet,¦ correspond to terms of a predicative
subcalculus Λlet,¦ of Λ∀,¦, give a type inference algorithm for λlet,¦, and prove its
soundness and completeness. We also give a call-by-value operational semantics
and prove the soundness of the type system of λlet,¦.

3.1 An ML-Style Polymorphic Record Calculus : λlet,¦

The set of raw terms (ranged over by e) of λlet,¦ is given by the following syntax:

e ::= x | cb | λx.e | e e | let x=e in e

| {l=e,· · ·,l=e} | e¦l | modify(e,l,e)

| 〈l=e〉 | case e of 〈l=e,· · ·,l=e〉
Following Damas and Milner’s presentation of ML, we divide the set of types into

monotypes (ranged over by τ) and polytypes (ranged over by σ) as follows:

τ ::= t | b | τ → τ | {l : τ, · · · , l : τ} | 〈l : τ, · · · , l : τ〉
σ ::= τ | ∀t::k. σ

In what follows, we indicate the fact that a type is restricted to be a monotype by
our usage of a metavariable τ . The set of kinds is given by the following grammar.

k ::= U | {{l : τ, · · · , l : τ}} | 〈〈l : τ, · · · , l : τ〉〉
As in Λ∀,¦, a kind assignment is a mapping from a finite set of type variables to
kinds. The set of kinding rules is given in Figure 6. Note that unlike the second-
order calculus Λ∀,¦, a kind denotes a subset of monotypes, and a type variable
ranges only over monotypes.

ACM Transactions on Programming Languages and Systems, 1995.

860 · Atsushi Ohori

K ` τ :: U for any τ well formed under K
K ` t :: {{l1 : τ1, · · · , ln : τn}} if K(t) = {{l1 : τ1, · · · , ln : τn, · · · }}
K ` {l1 : τ1, · · · , ln : τn, · · ·} :: {{l1 : τ1, · · · , ln : τn}}
if {l1 : τ1, · · · , ln : τn, · · ·} is well formed under K
K ` t :: 〈〈l1 : τ1, · · · , ln : τn〉〉 if K(t) = 〈l1 : τ1, · · · , ln : τn, · · · 〉
K ` 〈l1 : τ1, · · · , ln : τn, · · · 〉 :: 〈〈l1 : τ1, · · · , ln : τn〉〉
if 〈l1 : τ1, · · · , ln : τn, · · · 〉 is well formed under K

Fig. 6. Kinding rules for the ML-style type inference system λlet,¦.

Let σ1 be a polytype well formed under K. We say that σ2 is a generic in-
stance of σ1 under K, written K ` σ1 ≥ σ2, if σ1 = ∀t11::k1

1 · · · ∀t1n::k1
n.τ1, σ2 =

∀t21::k2
1 · · · ∀t2m::k2

m.τ2, and there is a substitution S such that dom(S) = {t11, · · · , t1n},
(K{t21::k2

1, · · · , t2m::k2
m}, S) respects K{t11::k1

1, · · · , t1n::k1
n} and τ2 = S(τ1). It is easily

checked that if K ` σ1 ≥ σ2 then σ2 is well formed under K. This is a refinement of
the usual definition of generic instance. We have the following expected property,
which can be proved using Lemma 2.1.1.

Lemma 3.1.1. If K ` σ1 ≥ σ2 and K ` σ2 ≥ σ3 then K ` σ1 ≥ σ3.

Let T and τ be well formed under K. The closure of τ under T ,K, denoted by
Cls(K, T , τ), is a pair (K′, ∀t1::k1 · · · ∀tn::kn.τ) such that K′{t1::k1, · · · , tn::kn} = K
and {t1, · · · , tn} = EFTV (K, τ) \ EFTV (K, T). Note that if λlet,¦ ` K, T ¤ e :
τ and Cls(K, T , τ) = (K′, σ) then T and σ are well formed under K′. A type
assignment is a mapping from a finite set of variables to polytypes. The set of
typing rules for λlet,¦ is given in Figure 7.

In this type system, polymorphic generalization and let abstraction are separated
into two rules: gen and let. It is possible to combine these two into a single rule.
The presentation adopted here has the advantage of making it easier to prove
various properties by induction on typing derivations.

The following lemma allows us to strengthen the type assignment, which is proved
by routine induction on typing derivation of e.

Lemma 3.1.2. If K, T {x : σ1}¤e : τ and K ` σ2 ≥ σ1 then K, T {x : σ2}¤e : τ .

The example terms name and payment given in Section 1 have the following
typings in λlet,¦.

λlet,¦ ` ∅, ∅¤ λx.x¦Name : ∀t1::U.∀t2::{{Name : t1}}.t2 → t1

λlet,¦ ` ∅, ∅¤ 〈Pound=100.0〉 : ∀t::〈〈Pound : real〉〉.t
Moreover, they are principal typings and are automatically inferred by a type in-
ference algorithm, as we shall show later.

3.2 Operational Semantics of λlet,¦

As a model of an ML-style programming language, we require λlet,¦ to have a
stronger property of type soundness than the subject reduction property, i.e., the
property being that evaluation of a closed term of some type always yields a value of
that type. To establish this property, we define a call-by-value operational semantics
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 861

var K, T ¤ x : τ if T is well formed under K and K ` T (x) ≥ τ

const K, T ¤ cb : b if T is well formed under K

app
K, T ¤ e1 : τ1 → τ2 K, T ¤ e2 : τ1

K, T ¤ e1 e2 : τ2

abs
K, T {x : τ1}¤ e1 : τ2
K, T ¤ λx.e1 : τ1 → τ2

record
K, T ¤ ei : τi (1 ≤ i ≤ n)

K, T ¤ {l1=e1,· · ·,ln=en} : {l1 : τ1, · · · , ln : τn}

dot
K, T ¤ e : τ1 K ` τ1 :: {{l : τ2}}

K, T ¤ e¦l : τ2

modify
K, T ¤ e1 : τ1 K, T ¤ e2 : τ2 K ` τ1 :: {{l : τ2}}

K, T ¤ modify(e1,l,e2) : τ1

variant
K, T ¤ e : τ1 K ` τ2 :: 〈〈l : τ1〉〉

K, T ¤ 〈l=e〉 : τ2

case
K, T ¤ e : 〈l1 : τ1, · · · , ln : τn〉 K, T ¤ ei : τi → τ (1 ≤ i ≤ n)

K, T ¤ case e of 〈l1=e1,· · ·,ln=en〉 : τ

gen
K, T ¤ e : τ

K′, T ¤ e : σ
if Cls(K, T , τ) = (K′, σ)

let
K, T ¤ e1 : σ K, T {x : σ}¤ e2 : τ

K, T ¤ let x=e1 in e2 : τ

Fig. 7. Typing rules for ML-style record calculus λlet,¦.

using evaluation contexts of Felleisen et al. [1987] and prove the type soundness
theorem with respect to this semantics. This semantics serves as an evaluation
model of a polymorphic programming language with records and variants.

Figure 8 gives the definitions of the set of values (ranged over by v), the set of
call-by-value evaluation contexts (ranged over by ev[]), and call-by-value context-
rewriting axioms, where [·] denotes the empty context and where ev[e] is the term
obtained by placing e in the hole of the context ev[]. A one-step evaluation relation
e

ev→ e′ is then defined as: there exist ev[]1, e1, e2 such that e = ev[e1]1, ev[e1]1 −→
ev[e2]1, and e′ = ev[e2]1. We write ev−→→ for the reflexive transitive closure of ev−→,
and we write e ↓ e′ if e

ev−→→ e′ and if there is no e′′ such that e′ ev−→ e′′.
To show the type soundness with respect to this operational semantics, we first

define a type-indexed family of predicates on closed values. For a closed type σ, let
valueσ be the set {v|λlet,¦ ` ∅, ∅ ¤ v : σ} and define pσ ⊆ valueσ by induction on
σ as follows:

—v ∈ pb iff v = cb for some constant cb.
—v ∈ pτ1→τ2 iff for any v0 ∈ pτ1 , if (v v0) ↓ e then e ∈ pτ2 .
—v ∈ p{l1:τ1,···,ln:τn} iff v = {l1 = v1, · · · , ln = vn} such that vi ∈ pτi (1 ≤ i ≤ n).

—v ∈ p〈l1:τ1,···,ln:τn〉 iff v = 〈li = v′〉 for some i (1 ≤ i ≤ n) such that v′ ∈ pτi .
—v ∈ p∀t1::k1.···tn::kn.τ iff for any ground substitution S such that dom(S) =

ACM Transactions on Programming Languages and Systems, 1995.

862 · Atsushi Ohori

v ::= cb | λx.e | {l=v,· · ·,l=v} | 〈l=v〉

ev[] ::= [·] | ev[] e | v ev[] | let x=ev[] in e | {l1=v1,· · ·,li−1=vi−1, li=ev[],· · ·}
| ev[]¦l |modify(ev[],l,e) |modify(v,l,ev[]) | 〈l=ev[]〉 | case ev[] of 〈l=e,· · ·,l=e〉

ev[(λx.e) v] −→ ev[[v/x]e]

ev[{l1=v1,· · ·,ln=vn}¦li] −→ ev[vi]

ev[modify({l1=v1,· · ·,ln=vn},li,v)] −→ {l1=v1,· · ·,li=v,· · ·,ln=vn}
ev[case 〈li=v〉 of 〈l1=e1,· · ·,ln=en〉] −→ ev[ei v]

ev[let x = v in e] −→ ev[[v/x]e]

Fig. 8. Call-by-value operational semantics of λlet,¦.

{t1, · · · , tn} and it satisfies {t1::k1. · · · tn::kn}, v ∈ pS(τ).

Let T be a closed type assignment. A T -environment is a function η such that
dom(η) = dom(T) and for any x ∈ dom(T), η(x) ∈ valueT (x). If η is an environ-
ment, we write η(e) for the term obtained from e by substituting η(x) for each free
occurrence of x in e. For a function f , if x 6∈ dom(f) then we write f{x 7→ v} for
the extension f ′ of f to x such that f ′(x) = v.

Theorem 3.2.1. If λlet,¦ ` K, T ¤ e : σ then for any ground substitution S that
respects K, and for any S(T)-environment η, if η(e) ↓ e′ then e′ ∈ pS(σ).

Proof. This is proved by induction on typing derivation. The proof proceeds
by cases in terms of the last rule used in the derivation. Case for the rules const
is by definition. Let S be any ground substitution respecting K, and let η be any
S(T)-environment.

Case var. Suppose K, T ¤x : τ . Then K ` T (x) ≥ τ . Let ∀t1::k1 · · · tn::kn.τ0 =
T (x). Then there is some S0 such that dom(S0) = {t1, · · · , tn}, τ = S0(τ0), and
K ` S0(ti) :: S0(ki). By Lemma 2.1.1, ∅ ` S(S0(ti)) :: S(S0(ki)). By the bound type
variable convention, S(S0(τ0)) = (S ◦ S0)(S(τ0)) and S(S0(ki)) = (S ◦ S0)(S(ki)).
So, S ◦ S0 is a ground substitution respecting {t1::S(k1), · · · , tn::S(kn)}. Now sup-
pose η(x) ↓ e′. Then by the assumption, e′ ∈ P ∀t1::S(k1)···tn::S(kn).S(τ0). By the
definition of the predicate P , e′ ∈ P (S◦S0)(S(τ0)), i.e., e′ ∈ PS(τ).

Case abs. Suppose K, T ¤ λx.e1 : τ1 → τ2 is derived from K, T {x : τ1} ¤ e1 :
τ2. η(λx.e1) = λx.η(e1) ↓ λx.η(e1). Let v be any element in pS(τ1) and suppose
((λx.η(e1)) v) ↓ e′. By the definition of evaluation contexts, [v/x](η(e1)) ↓ e′, i.e.,
η{x 7→ v}(e1) ↓ e′. Since η{x 7→ v} is a S(T {x : τ1})-environment, by the induction
hypothesis, e′ ∈ pS(τ2). This proves λx.η(e1) ∈ pS(τ1)→S(τ2).

Case app. Suppose K, T ¤ e1 e2 : τ1 is derived from K, T ¤ e1 : τ2 → τ1

and K, T ¤ e2 : τ2. Also suppose η(e1 e2) ↓ e′. By the definition of evaluation
contexts, η(e1) ↓ e′1 and (e′1 η(e2)) ↓ e′. By the induction hypothesis for e1, e′1 =
v1 ∈ pS(τ2)→S(τ1) for some value v1. Then by the definition of evaluation contexts,
η(e2) ↓ e′2 and (v1 e′2) ↓ e′. By the induction hypothesis for e2, e′2 = v2 ∈ pS(τ2) for
some value v2. Then by the definition of the predicate p, we have e′ ∈ pS(τ1).
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 863

Case dot. Suppose K, T ¤e1¦l : τ is derived from K, T ¤e1 : τ1 and K ` τ1 :: {{l :
τ}}. Suppose η(e1¦l) ↓ e′. By the definition of evaluation contexts, η(e1) ↓ e′1 and
e′1¦l ↓ e′. By the induction hypothesis, e′1 = v ∈ pS(τ1) for value v. Since S is a
ground substitution respecting K, by Lemma 2.1.1, ∅ ` S(τ1) :: {{l : S(τ)}}. This
implies that S(τ1) is a ground record type of the form {· · · , l : S(τ), · · ·}. By the
definition of p, v = {· · · , l = v′, · · ·}, v′ ∈ pS(τ). But {· · · , l = v′, · · ·}¦l ↓ v′.

Case gen. Suppose K, T ¤ e : σ is derived from K′, T ¤ e : τ such that
Cls(K′, T , τ) = (K, σ). Then there are some t1, · · · , tn and k1, · · · , kn such that
K′ = K{t1::k1, · · · , tn::kn} and σ = ∀t1::k1 · · · ∀tn::kn.τ . By the bound type variable
convention, we can assume that any of {t1, · · · , tn} do not appear in S. Then
S(σ) = ∀t1::S(k1) · · · tn::S(kn).S(τ). Let S′ be any ground substitution such that
dom(S′) = {t1, · · · , tn} and S′ respects {t1::S(k1), · · · tn::S(kn)}. Then S′ ◦ S is
a ground substitution that respects K{t1::k1, · · · , tn::kn}, and η is a (S′ ◦ S)(T)-
environment. By the induction hypothesis, if η(e) ↓ e′ then e′ ∈ pS′(S(τ)). This
proves that e′ ∈ pS(σ) by the definition of p.

Cases for modify and variant are similar to that of dot. The case for case is
similar to that of app. Cases for record and let follow from the corresponding
induction hypotheses.

From this theorem, we have the following corollary.

Corollary 3.2.2. If λlet,¦ ` ∅, ∅¤ e : σ and e ↓ e′ then e′ is a value of type σ.

This says that a well-typed program (closed term) of type σ evaluates to a value
of type σ, and in particular, a well-typed program will not produce a runtime type
error.

3.3 Explicitly Typed Calculus Λlet,¦ Corresponding to λlet,¦

We define an explicitly typed calculus, Λlet,¦, corresponding to λlet,¦. This calculus
will be used as an intermediate language for compilation of λlet,¦.

The set of types, kinds, and kinding rules are the same as those of λlet,¦. The set
of terms of Λlet,¦ (ranged over by M) is given by the syntax:

M ::= (x τ · · · τ) | cb | λx:τ .M | M M | Poly(M :σ) | let x:σ = M in M
| {l=M ,· · ·,l=M} | M :τ ¦l | modify(M :τ ,l,M)
| (〈l=M〉:τ) | case M of 〈l=M ,· · ·,l=M〉

(x τ · · · τ) is polymorphic instantiation, and Poly(M :σ) is polymorphic generaliza-
tion. To make the development of the compilation algorithm easier, we require type
specification in a field selection term and in a field modification term. The set of free
type variables of a term is written as FTV (M). For a polymorphic generalization
term, it is defined as FTV (Poly(M :∀t1::k1 · · · tn::kn.τ)) = FTV (M) \ {t1, · · · , tn}.
The definitions for other terms are as usual. The set of typing rules is given in
Figure 9.

By regarding let x:σ=M1 in M2 as (λx:σ.M2) M1, (x τ · · · τ) as the nested type
application (· · ·(x τ)· · · τ), and Poly(M :σ) as the nested type abstraction deter-
mined by σ, Λlet,¦ can be regarded as a subcalculus of Λ∀,¦. Each of the typing
rules of Λlet,¦ is derivable in Λ∀,¦ under the above correspondence of the terms.

ACM Transactions on Programming Languages and Systems, 1995.

864 · Atsushi Ohori

var K, T {x : ∀t1::k1 · · · ∀tn::kn.τ0}¤ (x τ1 · · · τn) : [τ1/t1, · · · , τn/tn](τ0)
if T {x : ∀t1::k1 · · · ∀tn::kn.τ0} is well formed under K
and (K, [τ1/t1, · · · , τn/tn]) respects K{t1::k1, · · · , tn::kn}

const K, T ¤ cb : b if T is well formed under K

app
K, T ¤ M1 : τ1 → τ2 K, T ¤ M2 : τ1

K, T ¤ M1 M2 : τ2

abs
K, T {x : τ1}¤ M1 : τ2

K, T ¤ λx:τ1.M1 : τ1 → τ2

record
K, T ¤ Mi : τi (1 ≤ i ≤ n)

K, T ¤ {l1=M1,· · ·,ln=Mn} : {l1 : τ1, · · · , ln : τn}

dot
K, T ¤ M : τ1 K ` τ1 :: {{l : τ2}}

K, T ¤ M :τ1¦l : τ2

modify
K, T ¤ M1 : τ1 K, T ¤ M2 : τ2 K ` τ1 :: {{l : τ2}}

K, T ¤ modify(M1:τ1,l,M2) : τ1

variant
K, T ¤ M : τ1 K ` τ2 :: 〈〈l : τ1〉〉

K, T ¤ (〈l=M〉:τ2) : τ2

case
K, T ¤ M : 〈l1 : τ1, · · · , ln : τn〉 K, T ¤ Mi : τi → τ (1 ≤ i ≤ n)

K, T ¤ case M of 〈l1=M1,· · ·,ln=Mn〉 : τ

gen
K, T ¤ M : τ

K′, T ¤ Poly(M : σ) : σ
if Cls(K, T , τ) = (K′, σ)

let
K, T ¤ M1 : σ K, T {x : σ}¤ M2 : τ

K, T ¤ let x:σ = M1 in M2 : τ

Fig. 9. Typing rules for the explicitly typed record calculus Λlet,¦.

As ML corresponds to Core XML [Harper and Mitchell 1993], λlet,¦ corresponds
to Λlet,¦ in the following sense, which can be proved similarly to the corresponding
proof in Harper and Mitchell [1993].

Proposition 3.3.1. There is a one-to-one correspondence between the terms of
Λlet,¦ and the typing derivations of λlet,¦.

3.4 Kinded Unification

In order to develop a type inference algorithm, we need to refine Robinson’s [1965]
unification algorithm to incorporate kind constraints on type variables.

A kinded set of equations is a pair (K, E) consisting of a kind assignment K
and a set E of pairs of types such that E is well formed under K. We say that a
substitution S satisfies E if S(τ1) = S(τ2) for all (τ1, τ2) ∈ E. A kinded substitution
(K1, S) is a unifier of a kinded set of equations (K, E) if it respects K and if S
satisfies E. (K1, S) is a most general unifier of (K2, E) if it is a unifier of (K2, E)
and if for any unifier (K3, S2) of (K2, E) there is some substitution S3 such that
(K3, S3) respects K1 and S2 = S3 ◦ S.

We define a kinded unification algorithm U in the style of Gallier and Snyder
[1989] by transformation. In our system each rule transforms a 4-tuple of the
form (E,K, S,SK) consisting of a set E of type equations, a kind assignment K, a
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 865

(i) (E ∪ {(τ, τ)}, K, S, SK) =⇒ (E, K, S, SK)

(ii) (E ∪ {(t, τ)}, K ∪ {(t, U)}, S, SK) =⇒
([τ/t](E), [τ/t](K), [τ/t](S) ∪ {(t, τ)}, [τ/t](SK) ∪ {(t, U)}) if t 6∈ FTV (τ)

(iii) (E ∪ {(t1, t2)}, K ∪ {(t1, {{F1}}), (t2, {{F2}})}, S, SK) =⇒
([t2/t1](E ∪ {(F1(l), F2(l))|l ∈ dom(F1) ∩ dom(F2)}),
[t2/t1](K) ∪ {(t2, [t2/t1]({{F1 ± F2}}))},
[t2/t1](S) ∪ {(t1, t2)}, [t2/t1](SK) ∪ {(t1, {{F1}})})

(iv) (E ∪ {(t1, {F2})}, K ∪ {(t1, {{F1}})}, S, SK) =⇒
([{F2}/t1](E ∪ {(F1(l), F2(l))|l ∈ dom(F1)}), [{F2}/t1](K),
[{F2}/t1](S) ∪ {(t1, {F2})}, [{F2}/t1](SK) ∪ {(t1, {{F1}})})

if dom(F1) ⊆ dom(F2) and t 6∈ FTV ({F2})

(v) (E ∪ {({F1}, {F2})},K, S,SK) =⇒ (E ∪ {(F1(l), F2(l))|l ∈ dom(F1)},K, S,SK)
if dom(F1) = dom(F2)

(vi) (E ∪ {(t1, t2)}, K ∪ {(t1, 〈〈F1〉〉), (t2, 〈〈F2〉〉)}, S, SK) =⇒
([t2/t1](E ∪ {(F1(l), F2(l))|l ∈ dom(F1) ∩ dom(F2)}),
[t2/t1](K) ∪ {(t2, [t2/t1](〈〈F1 ± F2〉〉))},
[t2/t1](S) ∪ {(t1, t2)}, [t2/t1](SK) ∪ {(t1, 〈〈F1〉〉)})

(vii) (E ∪ {(t1, 〈F2〉)}, K ∪ {(t1, 〈〈F1〉〉)}, S, SK) =⇒
([〈F2〉/t1](E ∪ {(F1(l), F2(l))|l ∈ dom(F1)}), [〈F2〉/t1](K),
[〈F2〉/t1](S) ∪ {(t1, 〈F2〉)}, [〈F2〉/t1](SK) ∪ {(t1, 〈〈F1〉〉)})

if dom(F1) ⊆ dom(F2) and t1 6∈ FTV (〈F2〉)

(viii) (E ∪ {(〈F1〉, 〈F2〉)}, K, S, SK) =⇒ (E ∪ {(F1(l), F2(l))|l ∈ dom(F1)}, K, S, SK)
if dom(F1) = dom(F2)

(ix) (E ∪ {(τ1
1 → τ2

1 , τ1
2 → τ2

2)}, K, S, SK) =⇒ (E ∪ {(τ1
1 , τ1

2), (τ2
1 , τ2

2)}, K, S, SK)

For a notation of the form X ∪ Y appeared in the left hand side of each rule, we assume that X
and Y are disjoint.

Fig. 10. Transformation rules for kinded unification.

substitution S, and a (not necessarily well-formed) kind assignment SK. Intended
roles of these components are: E keeps the set of equations to be unified; K specifies
kind constrains to be verified; S records “solved” equations as a form of substitution;
and SK records “solved” kind constraints that has already been verified for S.

In specifying rules, we treat functions K,SK, and S as sets of pairs. We also
use the following notations. Let F range over functions from a finite set of labels
to types. We write {F} and {{F}} to denote the record type identified by F and
the record kind identified by F , respectively. Similar notations are used for variant
types and variant kinds. For two functions F1 and F2 we write F1 ± F2 for the
function F such that dom(F) = dom(F1)∪ dom(F2) and such that for l ∈ dom(F),
F (l) = F1(l) if l ∈ dom(F1); otherwise F (l) = F2(l). Figure 10 gives the set of
transformation rules.

Let (K, E) be a given kinded set of equations. The algorithm U first transforms
the system (E,K, ∅, ∅) to (E′,K′, S,SK) until no more rules can apply. It then

ACM Transactions on Programming Languages and Systems, 1995.

866 · Atsushi Ohori

returns the pair (K′, S) if E′ = ∅; otherwise it reports failure. We then have the
following theorem, whose proof is deferred to the Appendix.

Theorem 3.4.1. The algorithm U takes any kinded set of equations, computes
a most general unifier if one exists, and reports failure otherwise.

The careful reader may have noticed that we could have required a stronger “oc-
cur check” condition when eliminating a type variable. For example, in the rule
ii, we could have required t 6∈ EFTV (K ∪ {(t, U)}, τ) instead of t 6∈ FTV (τ). Re-
quiring this stronger condition corresponds to disallowing kind assignments having
“cyclic dependencies” such as {t1::{{l : t2}}, t2::{{l′ : t1}}} we have mentioned in Sec-
tion 2. The rationale behind not taking this approach is that the stronger condition
would increase the complexity of the unification algorithm due to the extra check of
acyclicity every time a substitution is generated. Since unification is repeatedly per-
formed, this would slow down the type inference algorithm. Although our approach
allows some useless open terms, such as {t1::{{l : t1 → int}}}{x : t1}¤ (x¦l) x : int,
the typability on closed terms does not change and therefore does not create any
problems. Also, if we extend the type system to recursive types using regular trees
[Courcelle 1983], allowing those “cyclic” kind assignments would become essential.
Buneman and Ohori [1995] discusse possible usefulness of recursive programming
with record polymorphism, and Vasconcelos’ recent work [Vasconcelos 1994] ex-
tends our kinded unification to infinite regular trees.

3.5 The Type Inference Algorithm

Using the kinded unification, Milner’s [1978] type inference algorithm is extended
with record polymorphism. Figure 11 gives the algorithm, WK, which simultane-
ously infers, for a given typable raw term in λlet,¦, its principal typing (in the sense
of the theorem below) and the corresponding explicitly typed term of Λlet,¦. In this
definition, it is implicitly assumed that the algorithm fails if unification or any of
the recursive calls on subterms fail.

For a term M of Λlet,¦, the type erasure of M , denoted by erase(M), is the
term of λlet,¦ obtained from M by erasing all type information. The definition of
erase(M) is obtained by extending the following clauses inductively according to
the other term constructors.

erase((x τ1 · · · τn)) = x

erase(λx : τ.M1) = λx.erase(M1)
erase(M1 : τ ¦l) = erase(M1)¦l

erase(modify(M1:τ ,l,M2)) = modify(erase(M1),l,erase(M2))
erase((〈l=M1〉:τ)) = 〈l=erase(M1)〉
erase(Poly(M1:σ)) = erase(M1)

erase(let x:σ = M1 in M2) = let x=erase(M1) in erase(M2)

This algorithm is sound and complete in the following sense.

Theorem 3.5.1. If WK(K, T , e) = (K′, S, M, τ) then the following properties
hold:

(1) (K′, S) respects K and λlet,¦ ` K′, S(T) ¤ e : τ ,
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 867

WK(K, T , x) =if x 6∈ dom(T) then failure
else let ∀t1::k1 . . .∀tn::kn.τ = T (x),

S = [s1/t1, · · · , sn/tn] (s1, · · · , sn are fresh)
in (K{s1::S(k1), · · · , sn::S(kn)}, ∅, (x s1 · · · sn), S(τ))

WK(K, T , λx.e1) = let (K1, S1, M1, τ1) = WK(K{t::U}, T {x : t}, e1) (t fresh)
in (K1, S1, λx : S1(t).M1, S1(t) → τ1).

WK(K, T , e1 e2) = let (K1, S1, M1, τ1) = WK(K, T , e1)
(K2, S2, M2, τ2) = WK(K1, S1(T), e2)
(K3, S3) = U(K2, {(S2(τ1), τ2 → t)}) (t fresh)

in (K3, S3 ◦ S2 ◦ S1, (S3 ◦ S2(M1) S3(M2)), S3(t)).

WK(K, T , {l1=e1,· · ·,ln=en}) =
let (K1, S1, M1, τ1) = WK(K, T , e1)

(Ki, Si, Mi, τi) = WK(Ki−1, Si−1 ◦ · · · ◦ S1(T), ei) (2 ≤ i ≤ n)
in (Kn, Sn ◦ · · · ◦ S2 ◦ S1,

{l1=Sn ◦ · · · ◦ S2(M1),· · ·, li=Sn ◦ · · · ◦ Si+1(Mi),· · ·, ln=Mn},
{l1 : Sn ◦ · · ·S2(τ1), · · · , li : Sn ◦ · · · ◦ Si+1(τi), · · · , ln : τn})

WK(K, T , e1¦l) = let (K1, S1, M1, τ1) = WK(K, T , e1)
(K2, S2) = U(K1{t1::U, t2::{{l : t1}}}, {(t2, τ1)}) (t1, t2 fresh)

in (K2, S2 ◦ S1, S2(M1) : S2(t2)¦l, S2(t1)).

WK(K, T , modify(e1,l,e2)) =
let (K1, S1, M1, τ1) = WK(K, T , e1)

(K2, S2, M2, τ2) = WK(K1, S1(T), e2)
(K3, S3) = U(K2{t1::U, t2::{{l : t1}}}, {(t1, τ2), (t2, S2(τ1))}) (t1, t2 fresh)

in (K3, S3 ◦ S2 ◦ S1, modify(S3 ◦ S2(M1) : S3(t2),l,S3(M2)), S3(t2)).

WK(K, T , case e0 of 〈l1=e1,· · ·,ln=en〉) =
let (K0, S0, M0, τ0) = WK(K, T , e0)

(Ki, Si, Mi, τi) = WK(Ki−1, Si−1 ◦ · · · ◦ S0(T), ei) (1 ≤ i ≤ n)
(Kn+1, Sn+1) =U(Kn{t0::U, · · · , tn::U}, {(Sn ◦ · · ·S1(τ0), 〈l1 : t1, · · · , ln : tn〉)}

∪{(Sn ◦ · · ·Si+1(τi), ti → t0)|1 ≤ i ≤ n}) (t0, · · · , tn fresh)
in (Kn+1, Sn+1 ◦ · · · ◦ S0,

(case Sn+1 ◦ · · · ◦ S1(M0) of 〈· · ·,li=Sn+1 ◦ · · · ◦ Si+1(Mi),· · ·〉), Sn+1(t0))

WK(K, T , 〈l=e1〉) = let (K1, S1, M1, τ1) = WK(K, T , e1)
in (K1{t::〈〈l : τ1〉〉}, S1, (〈l = M1〉 : t), t) (t fresh)

WK(K, T , let x=e1 in e2) = let (K1, S1, M1, τ1) = WK(K, T , e1)
(K′1, σ1) = Cls(K1, S1(T), τ1)
(K2, S2, M2, τ2) = WK(K′1, (S1(T)){x : σ1}, e2)

in (K2, S2 ◦ S1, let x:S2(σ1) = Poly(S2(M1 : σ1)) in M2, τ2)

Fig. 11. Type inference algorithm.

ACM Transactions on Programming Languages and Systems, 1995.

868 · Atsushi Ohori

(2) erase(M) = e and Λlet,¦ ` K′, S(T) ¤ M : τ ,
(3) if λlet,¦ ` K0, S0(T) ¤ e : τ0 for some (K0, S0) and τ0 such that (K0, S0)

respects K then there is some S′ such that (K0, S
′) respects K′, τ0 = S′(τ), and

S0(T) = S′(S(T)).

If WK(K, T , e) fails then there is no (K0, S0) and τ0 such that (K0, S0) respects
K and λlet,¦ ` K0, S0(T) ¤ e : τ0.

The proof is deferred to the Appendix.
We end this section by showing some examples. For the example field selection

function name and variant term payment given before, the algorithm computes the
following data:

WK(∅, ∅, λx.x¦Name) = ({t2::U, t3::{{Name : t2}}}, [t3/t1], λx:t3.x¦Name, t3 → t2)

WK(∅, ∅, 〈Pound=100.0〉) = ({t::〈〈Pound : real〉〉}, ∅, (〈Pound=100.0〉:t), t)
where t1 in the first example is a type variable introduced during the type inference
process and is irrelevant to the final result. We indeed have the following typings.

λlet,¦ ` {t2::U, t3::{{Name : t2}}}, ∅ ¤ λx.x¦Name : t3 → t2

Λlet,¦{t2::U, t3::{{Name : t2}}}, ∅ ¤ λx:t3.x¦Name : t3 → t2

λlet,¦{t::〈〈Pound : real〉〉}, ∅ ¤ 〈Pound=100.0〉 : t

Λlet,¦{t::〈〈Pound : real〉〉}, ∅ ¤ (〈Pound=100.0〉:t) : t

When these terms are let bound, the type variables are abstracted. The following
are results of type inference for the expression containing name and payment given
in Section 1.2.

WK(∅,∅,let name=λx.x¦Name in
(name {Name=”Joe”,Office=403},
name {Name=”Hanako”,Age=21,Phone=7222})) =

(∅, S, let name:∀t1::U.∀t2::{{Name : t1}}.t2 → t1 =
Poly(λx:t2.x¦Name : ∀t1::U.∀t2::{{Name : t1}}.t2 → t1)

in ((name string {Name : string,Office : string}) {Name=”Joe”,Office=403},
(name string {Name : string,Age : int,Phone : int})

{Name=”Hanako”,Age=21,Phone=7222}),
string × string))

WK(∅, ∅,let payment=〈Pound=100.0〉 in
(case payment of 〈Pound=λx.x, Dollar=λx.x * 0.68〉,
case payment of 〈Pound=λx.real to int(x * 150.0), Yen = λx.x〉)) =

(∅, S, let payment:∀t::〈〈Pound : real〉〉.t =
Poly((〈Pound=100.0〉 : t) : ∀t::〈〈Pound : real〉〉.t)

in (case (payment 〈Pound : real,Dollar : real〉) of
〈Pound=λx:real.x, Dollar=λx:real.x * 0.68〉,

case (payment 〈Pound : real,Yen : int〉) of
〈Pound=λx:real.real to int(x * 150.0), Yen=λx:int.x〉))), real × int))

4. COMPILATION

This section develops an algorithm to compile the ML-style polymorphic record
calculus λlet,¦ into an implementation calculus λlet,[], defined below.
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 869

V ::= cb | λx.C | {V ,· · ·,V } | 〈I=V 〉 | λI.C′ (for some C′ such that C′ ↓ C′).

EV [] ::= [·] |EV [] C |V EV [] | let x=EV [] in C | {V ,· · ·,V ,EV [],· · ·} |EV [][I]
|modify(EV [],I,C) |modify(V ,I,EV []) | 〈I=EV []〉 | switch EV [] of C,· · ·,C
|EV [] I |λI.EV []

EV [(λx.C) V] −→ EV [[V/x]C]

EV [{V1, · · · , Vn}[i]] −→ EV [Vi]

EV [modify({V1,· · ·,Vi−1,Vi,Vi+1,· · ·,Vn},i,V)] −→ EV [{V1,· · ·,Vi−1,V ,Vi+1,· · ·,Vn}]
EV [switch 〈i=V 〉 of C1,· · ·,Cn] −→ EV [Ci V]

EV [(λI.C′) I] −→ EV [[I/I]C] if C′ ↓ C′

EV [let x = V in C] −→ EV [[V/x]C]

Fig. 12. Call-by-value evaluation operational semantics of λlet,[].

4.1 Implementation Calculus : λlet,[]

We define an implementation calculus with directly indexable vectors and switch
statements on integer tags as an efficient abstract machine for polymorphic record
calculi.

As we shall see later, index values are always computed statically by our com-
pilation algorithm defined later, and there is no need to treat them as first-class
values. So we introduce the following new syntactic category of indexes (ranged
over by I) and treat them specially:

I ::= I | i

where I stands for a given set of index variables and i for natural numbers. The
set of raw terms of λlet,[] (ranged over by C) is given by the syntax:

C ::= x | cb |λx.C | C C | let x=C in C | {C,· · ·,C} | C[I]
| modify(C,I,C) | 〈I=C〉 | switch C of C,· · ·,C | λI.C | C I

where {C1,· · ·,Cn} is a vector representation of a record; C[I] is index expression
retrieving the element of index value I from vector C; switch C of C1,· · ·,Cn ana-
lyzes the integer tag of a variant C and applies the corresponding function Ci to
the value of C; λI.C is index abstraction; and C I is index application.

As in λlet,¦, call-by-value operational semantics is defined using evaluation con-
texts (ranged over by EV []), the set of values (ranged over by V), and call-by-value
context-rewriting axioms of the form EV [C1] −→ EV [C2]. We say that C evalu-
ates to C ′ in one step, written C

EV−→ C ′, if there are EV []1, C1, C2 such that
C = EV [C1]1, EV [C1]1 −→ EV [C2]1, and C ′ = EV [C2]1. We write EV−→→ for the
reflexive transitive closure of EV−→; we write C ↓ C ′ if C

EV−→→ C ′ and if there is no
C ′′ such that C ′ EV−→ C ′′; and we write C ↓ if C ↓ C ′ for some C ′. Figure 12 gives a
mutual recursive definitions of the set of values, call-by-value evaluation contexts,
and the set of context-rewriting axioms of λlet,[].

ACM Transactions on Programming Languages and Systems, 1995.

870 · Atsushi Ohori

4.2 The Type System of λlet,[]

To establish the correctness of the compilation algorithm defined in the following
subsection, we define a type system for the implementation calculus.

To represent labeled records and labeled variants in the implementation calculus,
we assume a total order ¿ on the set of labels and restrict that a record type
{l1 : τ1, · · · , ln : τn} or a variant type 〈l1 : τ1, · · · , ln : τn〉 must satisfy the condition
l1 ¿ · · · ¿ ln. The usual choice for ¿ is the lexicographical ordering on the string
representations of labels. If τ is one of the above forms, we define the index of
a label li in τ to be i. A record term of the above record type is a vector whose
ith element is li field. An li variant of the above variant type is a value tagged
with integer i manipulated by a switch statement containing a vector of functions
whose jth element corresponds to the function for lj variant. For example, if a
record type consists of an Age field of type int and a Name field of type string,
then it must be of the form {Age : int,Name : string}, and thus the index of
Name in this record type is 2. A possible term of this type includes {21,”Joe”},
which corresponds to {Name=”Joe”, Age=21} in λlet,¦. Similarly, a variant type
with Pound variant of type real and Dollar variant of type real must be of the
form 〈Dollar : real,Pound : real〉, and thus the index of Pound in the type is 2.
A switch statement for this type consists of a vector of functions for Dollar and
Pound in this order, and a Pound variant of 100.0 of this type is represented as
〈2=100.0〉, which corresponds to a (monomorphic) term of 〈Pound=100.0〉 of the
above type in λlet,¦.

To account for polymorphic operations, we introduce a new form of types idx (l, τ)
for index values. When τ is a record type or a variant type, this type denotes the
index of l in τ . We write |idx (l, τ)| for the index value denoted by idx (l, τ). For
example, |idx (Name, {Age : int,Name : string})| = 2. When τ is a type variable
t, then idx (l, t) denotes possible index values depending on instantiations of t, and
|idx (l, t)| is undefined.

The set of types of the implementation calculus is given by the following syntax:

τ ::= t | cb | τ → τ | {l : τ, · · · , l : τ} | 〈l : τ, · · · , l : τ〉 | idx (l, τ) ⇒ τ

σ ::= τ | ∀t :: k.σ

where idx (l, τ1) ⇒ τ2 denotes functions that take an index value denoted by
idx (l, τ1) and yield a value of type τ2. Since index values are not first-class ob-
jects, it is not necessary to included index types idx (l, τ) as separate types. The
set of kinds and the kinding rules are the same as those of λlet,¦.

The type system of this calculus is defined as a proof system for the following
forms of judgments:

K,L, T ¤ C : τ typing judgment
L ` I : idx (l, τ) index judgment

where K is a kind assignment and T a type assignment as in the previous calculi.
L is an index assignment , which is a mapping from a set of index variables to index
types of the form idx (l, τ). A type τ is well formed under K if FTV (τ) ⊆ dom(K)
and if for any type of the form idx (l, τ ′) appearing in τ , τ ′ has a record kind or
variant kind containing l field under K. A type ∀t1::k1 · · · tn::kn.τ is well formed
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 871

ivar L{I : idx(l, τ)} ` I : idx(l, τ)

iconst1 L ` i : idx(li, {l1 : τ1, · · · , ln : τn}) 1 ≤ i ≤ n

iconst2 L ` i : idx(li, 〈l1 : τ1, · · · , ln : τn〉) 1 ≤ i ≤ n

var K,L, T {x : σ}¤ x : τ if T {x : σ} and L are well formed under K and K ` σ ≥ τ

const K,L, T ¤ cb : b if T and L are well formed under K

app
K,L, T ¤ C1 : τ1 → τ2 K,L, T ¤ C2 : τ1

K,L, T ¤ C1 C2 : τ2

abs
K,L, T {x : τ1}¤ C1 : τ2
K,L, T ¤ λx.C1 : τ1 → τ2

iabs
K,L{I : idx(l, τ1)}, T ¤ C1 : τ2
K,L, T ¤ λI.C1 : idx(l, τ1) ⇒ τ2

iapp
K,L, T ¤ C : idx(l, τ1) ⇒ τ2 L ` I : idx(l, τ1)

K,L, T ¤ C I : τ2

record
K,L, T ¤ Ci : τi (1 ≤ i ≤ n)

K,L, T ¤ {C1,· · ·,Cn} : {l1 : τ1, · · · , ln : τn}

index
K,L, T ¤ C1 : τ1 K ` τ1 :: {{l : τ2}} L ` I : idx(l, τ1)

K,L, T ¤ C1[I] : τ2

modify
K,L, T ¤ C1 : τ1 K ` τ1 :: {{l : τ2}} L ` I : idx(l, τ1) K,L, T ¤ C2 : τ2

K,L, T ¤ modify(C1,I,C2) : τ1

variant
K,L, T ¤ C : τ1 K ` τ2 :: 〈〈l : τ1〉〉 L ` I : idx(l, τ2)

K,L, T ¤ 〈I=C〉 : τ2

switch
K,L, T ¤ C : 〈l1 : τ1, · · · , ln : τn〉 K,L, T ¤ Ci : τi → τ (1 ≤ i ≤ n)

K,L, T ¤ switch C of C1,· · ·,Cn : τ

gen
K{t1::k1 · · · tn::kn},L, T ¤ C : τ

K,L, T ¤ C : ∀t1::kn · · · tn::kn.τ
if ti 6∈ FTV (L ∪ T) (1 ≤ i ≤ n)

let
K,L, T ¤ C1 : σ K,L, T {x : σ}¤ C2 : τ

K,L, T ¤ let x=C1 in C2 : τ

Fig. 13. Typing rules for the implementation calculus λlet,[].

under K if τ is well formed under K{t1::k1 · · · tn::kn}. L is well formed under K if
each type in L is well formed under K. A type assignment T is well formed under
K if each type in T is well formed under K.

The set of typing rules is given in Figure 13. Since we are not concerned with
type inference of λlet,[], we adopt a more-general and more-natural rule for gen
than the one we used for λlet,¦. This makes the proof of the subject reduction
property below slightly easier. We write λlet,[] ` K,L, T ¤C : σ if K,L, T ¤C : σ
is derived in this poof system. It is easily verified that if λlet,[] ` K,L, T ¤ C : σ
then σ is well formed under K.

For this type system, we show the subject reduction property, which will be
ACM Transactions on Programming Languages and Systems, 1995.

872 · Atsushi Ohori

(β) (λx.C1) C2 =⇒ [C2/x]C1

(index) {C1,· · ·,Cn}[i] =⇒ Ci (1 ≤ i ≤ n)

(modify) modify({C1,· · ·,Cn},i,C) =⇒ {C1,· · ·,Ci−1,C,Ci+1,· · ·,Cn}(1 ≤ i ≤ n)

(switch) switch 〈i=C〉 of C1,· · ·,Cn =⇒ Ci C(1 ≤ i ≤ n)

(iapp) (λI.C) I =⇒ [I/I]C

(let) let x=C1 in C2 =⇒ [C1/x]C2

Fig. 14. The reduction rules for the implementation calculus λlet,[].

useful later in establishing that our compilation algorithm preserves the operational
behavior of λlet,¦. Since our usage of λlet,[] is as an abstract machine to implement
λlet,¦, we do not need a stronger property of type soundness of λlet,[] itself. The
type soundness of λlet,¦ with respect to the operational semantics of the compiled
term of λlet,[] will follow from the correctness of compilation we shall establish later.

The reduction axioms for λlet,[] are given in Figure 14. We say that C1 reduces
to C2 in one step, written C1 → C2, if C2 is obtained from C1 by applying one of
the reduction axioms to some subterm of C1. The reduction relation C1 →→ C2 is
defined as the reflexive transitive closure of →. The following substitution lemmas
are useful in proving the subject reduction theorem.

Lemma 4.2.1. If λlet,[] ` K,L, T {x : σ1}¤ C1 : σ2 and λlet,[] ` K,L, T ¤ C2 :
σ1 then λlet,[] ` K,L, T ¤ [C2/x]C1 : σ2.

Proof. The proof is by induction on the typing derivation of C1. The only
interesting case is variable axiom. Other cases are similar to Lemma 2.2.4.

Suppose K,L, T {x : σ1} ¤ y : τ2 is a var axiom. The case for x 6= y is trivial.
Suppose x = y. Let σ1 = ∀t1::k1 · · · tn::kn.τ1. Then K ` ∀t1::k1 · · · tn::kn.τ1 ≥ τ2

and therefore there must be some S such that dom(S) = {t1, · · · , tn}, (K, S) respects
K{t1::k1 · · · tn::kn} and S(τ1) = τ2. If n = 0, i.e., σ1 is a monotype, then σ1 = τ2,
and therefore λlet,[] ` K,L, T ¤ C2 : τ2. Otherwise K,L, T ¤ C2 : σ1 must be
derived by gen, and therefore λlet,[] ` K{t1::k1 · · · tn::kn},L, T ¤ C2 : τ1 such
that {t1, · · · , tn} does not appear in T or L. By Lemma 2.2.3 for λlet,¦, we have
λlet,[] ` K,L, T ¤ C2 : τ2.

Lemma 4.2.2. If λlet,[] ` K,L{I : idx (l, τ1)}, T ¤ C : τ and L ` I : idx (l, τ1)
then λlet,[] ` K,L, T ¤ [I/I]C : τ .

Proof. This is provde by induction on the typing derivation of C. We only
show the case for rule index. The cases for iapp, modify, and variant can be
shown similarly. All the other cases follow directly from the induction hypothesis.

Suppose K,L{I : idx (l, τ1)}, T ¤ C1[I1] : τ is derived by rule index from
K,L{I : idx (l, τ1)}, T ¤C1 : τ2, from K ` τ2 :: {{l′ : τ}}, and from L{I : idx (l, τ1)} `
I1 : idx (l′, τ2). By the induction hypothesis, λlet,[] ` K,L, T ¤ [I/I]C1 : τ2.
There are two cases to be considered. First, suppose I1 = I. Then we have τ1 = τ2

and l = l′, and therefore K ` τ2 :: {{l : τ}} and L ` I : idx (l, τ2). By the typing
rule, λlet,[] ` K, T ¤ ([I/I]C1)[I] : τ , i.e., λlet,[] ` K, T ¤ [I/I](C1[I]) : τ .
Second, suppose I1 6= I. Then either |idx (l′, τ2)| is defined and I1 = |idx (l′, τ2)|
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 873

or I1 ∈ dom(L). In either case, L ` I1 : idx (l′, τ2) and by the typing rule,
λlet,[] ` K, T ¤ ([I/I]C1)[I1] : τ . But [I/I](C1[I1]) = ([I/I]C1)[I1].

Theorem 4.2.3. If λlet,[] ` K, T ,L ¤ C1 : σ and C1 →→ C2 then λlet,[] `
K, T ,L¤ C2 : σ.

Proof. It is sufficient to show the theorem for monotypes. The proof is similar
to Theorem 2.2.5 using the above two substitution lemmas.

4.3 Compilation Algorithm

We develop a compilation algorithm for λlet,¦ using type information obtained by
type inference. The type inference algorithm has already converted a given λlet,¦
term into an explicitly typed term of Λlet,¦, which contains all the type information
necessary for compilation. So we present the compilation algorithm as an algorithm
to compile Λlet,¦ terms into λlet,[] terms.

As explained in the introduction, our strategy for compiling polymorphic func-
tions containing polymorphic record operations is to insert appropriate index ab-
stractions. Under this strategy, a polymorphic function of type σ in λlet,¦ is compiled
into a term having the type that is obtained from σ by inserting necessary index
abstractions indicated by the kinded type quantifiers of σ. To establish the rela-
tionship formally between the type of a source code and the type of the compiled
code, we first define the following auxiliary notions.

The set of index types contained in t of kind k, denoted by IdxSet(t::k), is defined
as the following set.

IdxSet(t::U) = ∅
IdxSet(t::{{F}}) = {idx (l, t)|l ∈ dom(F)}
IdxSet(t::〈〈F 〉〉) = {idx (l, t)|l ∈ dom(F)}

This definition is extended to polytypes and kind assignments as follows:

IdxSet(∀t1::k1 · · · tn::kn.τ) = IdxSet(t1::k1) ∪ · · · ∪ IdxSet(tn::kn)

IdxSet(K) =
⋃
{IdxSet(t::k)|(t::k) ∈ K}

For a given type σ of λlet,¦, the corresponding type (σ)∗ of λlet,[] is defined as

(∀t1::k1 · · · tn::kn.τ)∗ = ∀t1::k1 · · · tn::kn.idx (l1, t′1) ⇒ · · · idx (lm, t′m) ⇒ τ

such that idx (l1, t′1), · · · , idx (lm, t′m) is the set of index types in IdxSet(t1::k1) ∪
· · · ∪ IdxSet(tn::kn) ordered as: idx (l, ti) precedes idx (l′, tj) iff i < j or i = j and
l ¿ l′. In particular, (τ)∗ = τ for any monotype τ . The following is an example.

(∀t2::{{a : bool, b : int}}.∀t3::{{a : t2}}.t2 → t3)∗ =
∀t2::{{a : bool, b : int}}.∀t3::{{a : t2}}.idx (a, t2) ⇒ idx (b, t2) ⇒ idx (a, t3) ⇒ t2 → t3

This definition is extended to type assignments as follows:

(T)∗ = {x : (T (x))∗|x ∈ dom(T)}
For a kind assignment K, define the index assignment LK determined by K as
LK = {I : idx (l, t)|idx (l, t) ∈ IdxSet(K), each I fresh}.

ACM Transactions on Programming Languages and Systems, 1995.

874 · Atsushi Ohori

The compilation algorithm is given in Figure 15 as an algorithm C that takes
LK, (T)∗ and M and computes a term of the implementation calculus. Since LK
has the property that there is at most one (I, idx (l, t)) ∈ LK for any pair (l, t),
each I mentioned in the algorithm is unique, and therefore C is a deterministic
algorithm.

The compilation preserves types as shown in the following theorem.

Theorem 4.3.1. If Λlet,¦ ` K, T ¤ M : σ, then C(LK, (T)∗,M) succeeds with
C such that λlet,[] ` K,LK, (T)∗ ¤ C : (σ)∗.

Proof. This is provded by induction on the structure of M . Here we show the
cases for variables, field selection, and generalization. Cases for variants and modify
expressions can be shown similar to that of field selection. All the other cases follow
easilily from the corresponding induction hypotheses.

(x τ1 · · · τn): Suppose Λlet,¦ ` K, T ¤ (x τ1 · · · τn) : τ . Let S = [τ1/t1, · · · , τn/tn].
Then T (x) = ∀t1::k1 · · · ∀tn::kn.τ0, K ` S(ti) :: S(ki) and τ = S(τ0). By the defi-
nition of (T)∗, (T)∗(x) = ∀t1::k1 · · · ∀tn::kn.idx (l1, t′1) ⇒ · · · idx (lm, t′m) ⇒ τ0 such
that {idx (l1, t′1), · · · , idx (lm, t′m)} = IdxSet(∀t1::k1 · · · ∀tn::kn.τ0). By the rule var,
λlet,[] ` K,LK, (T)∗ ¤ x : idx (l1, S(t′1)) ⇒ · · · idx (lm, S(t′m)) ⇒ S(τ0). Let Ii be
those mentioned in the algorithm. For each idx (l, S(t′i)), if S(t′i) is a type vari-
able t then t ∈ dom(K), and therefore by the property of LK, there is Ii such
that (Ii : idx (l, S(t′i))) ∈ LK, and Ii = Ii. If S(t′i) is not a type variable then
Ii = |idx (li, S(t′i))|. Therefore in either case LK ` Ii : idx (l, S(t′i)). Therefore the
algorithm succeeds with (x I1 · · · Im) and λlet,[] ` K,LK, (T)∗ ¤ (x I1 · · · Im) : τ .

M1 : τ1¦l: Suppose Λlet,¦ ` K, T ¤ M1 : τ1¦l : τ2. Then Λlet,¦ ` K, T ¤ M1 : τ1

and K ` τ1 :: {{l : τ2}}. By the induction hypothesis, C(LK, (T)∗,M1) = C1 such
that λlet,[] ` K,LK, (T)∗ ¤ C1 : τ1. Let I be the one mentioned in the algorithm.
If τ1 is a type variable t, then t ∈ dom(K). Since K ` t :: {{l : τ2}}, K(t) = {{F}}
such that F contains l : τ2. Then by the property of LK, there is some I such that
(I : idx (l, t)) ∈ LK and I = I. If τ1 is not a type variable then |idx (l, τ1)| = i
for some integer i and I = i. Therefore in either case LK ` I : idx (l, τ1). Then
C(LK, (T)∗,M1 : τ1¦l) succeeds with C1[I] and λlet,[] ` K,LK, (T)∗ ¤ C1[I] : τ2.

Poly(M :σ): Suppose Λlet,¦ ` K, T ¤Poly(M :σ) : σ. Then σ = ∀t1::k1 · · · ∀tn::kn.τ
such that Λlet,¦ ` K′, T ¤ M : τ , Cls(K′, T , τ) = (K,∀t1::k1 · · · ∀tn::kn.τ). Let
∀t1::k1 · · · ∀tn::kn.idx (l1, t′1) ⇒ · · · ⇒ idx (lm, t′m) ⇒ τ1 = (σ)∗. Then LK′ =
LK{I1 : idx (l1, t′1), · · · , Im : idx (lm, t′m)} (I1, · · · , Im fresh). By the induction hy-
pothesis, C(LK′ , (T)∗,M) = C such that λlet,[] ` K′,LK′ , (T)∗ ¤ C : τ . Then
C(LK, (T)∗,Poly(M :σ)) succeeds with λI1 · · ·λIm.C. By applying the rule iabs to
λlet,[] ` K′,LK′ , (T)∗¤C : τ repeatedly, we have λlet,[] ` K′,LK, T ¤λI1 · · ·λIm.C :
idx (l1, t′1) ⇒ · · · idx (lm, t′m) ⇒ τ . Since LK is well formed under K, ti 6∈ FTV (LK∪
(T)∗) (1 ≤ i ≤ n). Therefore we have λlet,[] ` K,LK, (T)∗¤C : (∀t1::k1 · · · ∀tn::kn.τ)∗,
as desired.

Combining this result with Theorem 3.5.1, we have the following.

Corollary 4.3.2. If WK(K, T , e) = (K′, S, M, σ) then λlet,¦ ` K′, S(T)¤e : σ
and C(LK′ , (S(T))∗, M) succeeds with C such that λlet,[] ` K′,LK′ , (S(T))∗ ¤ C :
(σ)∗.
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 875

C(L, T , (x τ1 · · · τn)) =let (∀t1::k1 · · · tn::kn.idx(l1, t′1) ⇒ · · · idx(lm, t′m) ⇒ τ) = T (x)
S = [τ1/t1, · · · , τn/tn]

Ii =

{
i if |idx(l, S(t′i))| = i
I if |idx(l, S(t′i))| is undefined and (I : idx(l, S(t′i))) ∈ L

in (x I1 · · · Im)

C(L, T , cb) = cb

C(L, T , λx : τ.M) = λx.C(L, T {x : τ}, M)

C(L, T , M1 M2) = C(L, T , M1) C(L, T , M2)

C(L, T , {l1 = M1, · · · , ln = Mn}) = {C(L, T , M1), · · · , C(L, T , Mn)}

C(L, T , M : τ ¦l) = let C = C(L, T , M) and

I =

{
i if |idx(l, τ)| = i
I if |idx(l, τ)| is undefined and (I : idx(l, τ)) ∈ L

in C[I]

C(L, T , modify(M1:τ ,l,M2)) = let C1 = C(L, T , M1),
C2 = C(L, T , M2), and

I =

{
i if |idx(l, τ)| = i
I if |idx(l, τ)| is undefined and (I : idx(l, τ)) ∈ L

in modify(C1,I,C2)

C(L, T , (〈l=M〉:τ)) = let C = C(L, T , M) and

I =

{
i if |idx(l, τ)| = i
I if |idx(l, τ)| is undefined and (I : idx(l, τ)) ∈ L

in 〈I=C〉

C(L, T , case M of 〈l1=M1,· · ·,ln=Mn〉) =
switch C(L, T , M) of C(L, T , M1),· · ·,C(L, T , Mn)

C(L, T , Poly(M1 : ∀t1::k1 · · · ∀tn::kn.τ1)) =
let ∀t1::k1 · · · ∀tn::kn.idx(l1, t′i) ⇒ idx(lm, t′m) ⇒ τ1

= (∀t1::k1 · · · ∀tn::kn.τ1)∗

C1 = C(L{I1 : idx(l1, t′1), · · · , In : idx(lm, t′m)}, T , M1) (I1, · · · , Im fresh)
in λI1 · · ·λIm.C1

C(L, T , let x:σ=M1 in M2) = let C1 =C(L, T , M1)
C2 = C(L, T {x : (σ)∗}, M2)

in let x=C1 in C2

Fig. 15. Compilation algorithm.

ACM Transactions on Programming Languages and Systems, 1995.

876 · Atsushi Ohori

The above result shows that the compilation algorithm maps a term of type σ to
a term of type (σ)∗. Since (τ)∗ = τ , the compilation preserves all the monotypes.

4.4 Eliminating Vacuous Type Variables from λlet,¦ Typing

The above algorithm translates a kinded typing of Λlet,¦ into a kinded typing of
λlet,[]. For this to serve as a compilation algorithm for λlet,¦, there is one subtle point
to be taken care of. This is related to the problem of coherence [Breazu-Tannen
et al. 1991]. As shown in Ohori [1989], Damas-Milner system of ML is not coherent
with respect to Core XML, and the same is true for the relationship between λlet,¦
and Λlet,¦. (See also Harper and Mitchell [1993] for a related discussion.)

The source of the failure of coherence is free type variables used in a typing
derivation that do not appear in the type or the type assignment in the result
typing. Those type variables also cause a problem in applying the compilation
algorithm developed in the previous subsection. To see this, consider the raw term
(λx.cb) (λx.(x¦l) + 1). The type inference algorithm produces the following typing
in λlet,¦,

{t::{{l : int}}}, ∅¤ (λx.cb) (λx.(x¦l) + 1) : b

corresponding to the following typing in Λlet,¦:
{t::{{l : int}}}, ∅¤ (λx:t → int.cb) (λx:t.(x¦l) + 1) : b

The kinded type variable t is introduced to typecheck polymorphic field selection x¦l,
but it does not appear in the type assignment or the result type and therefore will
never be further instantiated. As a consequence, the given closed term is translated
to an open term in Λlet,¦ containing a free index variable denoting the position of l
which will not be determined.

Our solution to this problem is to refine the Milner-style type inference algorithm
given in Section 3 to eliminate these “redundant” or vacuous type variables. We
say that a type variable t in K, T ¤ e : τ is vacuous if t ∈ dom(K) and t 6∈
EFTV (K, τ) ∪ EFTV (K, T).

We assume that there is a predefined base type b0. The choice of b0 is unim-
portant. Let K, T ¤ e : τ be a typing, and let t be a vacuous type variable of
the typing such that t 6∈ FTV (K(t)). Then K is written as K′{t::k}. Define the
canonical instance τt of t in K as follows:

τt =





b0 if k = U
{F} if k = {{F}}
〈F 〉 if k = 〈〈F 〉〉

We can eliminate t from the typing by applying kinded substitution (K′, [τt/t]). If
the set of vacuous type variables has no mutual cyclic dependency in K, then it
has a sequence t1, · · · , tn such that ti 6∈ FTV (K(tj)) if 1 ≤ i ≤ j ≤ n. Then by
repeating the above process for t1, · · · , tn, we obtain a sequence of kinded substitu-
tion (Ki, [τti/ti]). We define a canonical instantiation for K, T ¤ e : τ as a kinded
substitution (Kn, [τn/tn] ◦ · · · ◦ [τi/t1]). From this definition, the following results
can be easily proved.

Lemma 4.4.1. If (K0, S0) is a canonical instantiation of a typing K, T ¤ e : τ ,
then (K0, S0) respects K.
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 877

By Lemma 2.2.3, we have the following.

Corollary 4.4.2. If λlet,¦ ` K, T ¤ e : τ and (K0, S0) is a canonical instanti-
ation of K, T ¤ e : τ then λlet,¦ ` K0, T ¤ e : τ .

This shows that if the set of vacuous type variables has no cyclic dependency then
we can eliminate them without affecting the typing property of the term. We call
K0, T ¤ e : τ the canonical instance of λlet,¦ ` K, T ¤ e : τ .

We identify a program in λlet,¦ as a closed typing of the form:

∅, ∅¤ e : σ

We refine the type inference algorithm defined in the previous section so that just
before the type abstraction at the top level it takes a canonical instance of the
inferred typing if one exists; otherwise it reports type error. Since a program must
have a closed typing, and therefore its derivation does not contain a kind assignment
with cyclic dependency, this process does not change the typability of programs.
From a program of the above form of λlet,¦ the refined type inference algorithm
produces the following closed typing of Λlet,¦

∅, ∅, ∅¤ Poly(M :σ) : σ

We regard these closed typings as units of separate compilation.
With this refinement, the compilation algorithm given in the previous subsection

serves as a compilation algorithm for λlet,¦. Corollary 4.3.2 becomes the following.

Corollary 4.4.3. If e is a well typed λlet,¦ program, then WK(∅, ∅, e) succeeds
with (∅, S, M, σ) for some S,M, σ such that λlet,¦ ` ∅, ∅¤e : σ, Λlet,¦ ` ∅, ∅¤M : σ,
and C(∅, ∅, M) succeeds with C such that λlet,[] ` ∅, ∅, ∅¤ C : (σ)∗.

Let us show examples of compilation. From a λlet,¦ term λx.x¦Name, the type
inference process produces the following program

Λlet,¦ ` ∅, ∅ ¤ Poly(λx:t2.x¦Name : ∀t1::U.∀t2::{{Name : t1}}.t2 → t1)

: ∀t1::U.∀t2::{{Name : t1}}.t2 → t1

For this program, the compilation algorithm produces the following result

C(∅, ∅, Poly(λx:t2.x¦Name : ∀t1::U.∀t2::{{Name : t1}}.t2 → t1)) = λI.λx.x[I]

which has the following typing:

λlet,[] ` ∅, ∅, ∅¤ λI.λx.x[I] : ∀t1::U.∀t2::{{Name : t1}}.idx (Name, t2) ⇒ t2 → t1

A program

let name=λx.x¦Name in (name {Name=”Joe”,Office=403},
name {Name=”Hanako”,Age=21,Phone=7222})

is converted to the following program in Λlet,¦ as seen in the previous section:

E ≡ let name:∀t1::U.∀t2::{{Name : t1}}.t2 → t1
= Poly(λx:t2.x¦Name : ∀t1::U.∀t2::{{Name : t1}}.t2 → t1)

in ((name string {Name : string, Office : string})
{Name=”Joe”,Office=403},

(name string {Name : string, Age : int, Phone : int})
{Name=”Hanako”,Age=21,Phone=7222})

ACM Transactions on Programming Languages and Systems, 1995.

878 · Atsushi Ohori

and the compilation algorithm produces the following result

C(∅, ∅, E) = let name=λI.λx.x[I] in (name 1 {”Joe”,403},
name 2 {21,”Hanako”,7222})

which has the expected typing and evaluates to (”Joe”,”Hanako”).
The next is an example of a program involving polymorphic variant and vacuous

type variable elimination. The following program of λlet,¦

let point = 〈Cartesian={X=2.0,Y=3.0}〉 in
case point of 〈Cartesian=λc.sqroot(square(c¦X) + square(c¦Y)), Polar=λp¦R〉

is converted into the following program in Λlet,¦.
F ≡ let point:∀t::〈〈Cartesian : {X : real, Y : real}〉〉.t

= Poly((〈Cartesian={X=2.0,Y=3.0}〉:t)
: ∀t::〈〈Cartesian : {X : real, Y : real}〉〉.t)

in case (point 〈Cartesian : {X : real, Y : real}, Polar : {R : b0}〉) of
〈Cartesian= λc:{X : real, Y : real}.sqroot(square(c¦X)+square(c¦Y)),
Polar=λp:{R : b0}.x¦R〉

From this, the compilation algorithm produces the following code:

C(∅, ∅, F) = let point=λI.〈I={2.0,3.0}〉
in switch (point 1) of 〈λc.sqroot(square(c[1]) + square(c[2])), λx.x[1]〉

Note that vacuous type variable elimination is properly performed for Polar branch
of the case statement, and the unused field extension x¦R is compiled into index
expression with the default index value 1.

4.5 Correctness of Compilation

In Section 4, we have shown that the compilation algorithm preserves typing. This
section shows that the compilation algorithm also preserves the operational behav-
ior of a program. Since we have shown that the type system of λlet,¦ is sound with
respect to its operational semantics, the preservation of operational behavior will
also establish that the type system of λlet,¦ is sound with respect to the operational
semantics of the compiled code in λlet,[].

For terms of base types, the desired property is simply being that the original
term and the compiled term evaluate to the same constant value. We need to
generalize this to arbitrary types including polytypes. Our strategy is to apply the
idea of logical relations to lift the above relationship to arbitrary types.

Let σ be a closed type of λlet,¦. Let termσ be the set {e|λlet,¦ ` ∅, ∅¤ e : σ}, and
let Termσ be the set {M |λlet,[] ` ∅, ∅, ∅ ¤ M : (σ)∗}. We define a type-indexed
family of relations {Rσ ⊆ termσ × Termσ} by induction on σ as follows.

(e, C) ∈ Rσ ⇐⇒ (1) e ↓ iff C ↓ and
(2) one of the following conditions holds

—if σ = b then if e ↓ e′ and C ↓ C ′ then e′ = C ′.
—if σ = τ1 → τ2 then for any e0, C0 such that (e0, C0) ∈ Rτ1 , (e e0, C C0) ∈ Rτ2 .
—if σ = {l1 : τ1, · · · , ln : τn} then if e ↓ e′ and C ↓ C ′ then e′ = {l1 = e1, · · · , ln =

en}, C ′ = {C1, · · · , Cn} such that (ei, Ci) ∈ Rτi for all 1 ≤ i ≤ n.
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 879

—if σ = 〈l1 : τ1, · · · , ln : τn〉 then if e ↓ e′ and C ↓ C ′ then there is some i such that
e′ = 〈li = e′′〉, C ′ = 〈i = C ′′〉 and (e′′, C ′′) ∈ Rτi .

—if σ = ∀t1::k1. · · · tn::kn.τ such that

(σ)∗ = ∀t1::k1. · · · tn::kn.idx (l1, t′1) ⇒ · · · idx (lm, t′m) ⇒ τ

then for any ground substitution S satisfying {t1::k1. · · · tn::kn},
(e, (· · · (C i1) · · · im)) ∈ RS(τ)

where ij = |S(idx (lj , t′j))| (1 ≤ j ≤ m).

Note that by the type soundness theorem (Theorem 3.2.1) of λlet,¦ and the subject
reduction theorem (Theorem 4.2.3) of λlet,[], if e ∈ termσ, C ∈ Termσ, e ↓ e′, and
C ↓ C ′ then e′ ∈ termσ, C ′ ∈ Termσ. Furthermore, by the definition of Rσ, if
(e, C) ∈ Rσ then (e′, C ′) ∈ Rσ.

Let T be a closed type assignment of λlet,¦. A T -environment in λlet,¦ is a function
η1 such that dom(η1) = dom(T) and for any x ∈ dom(η1), η1(x) ∈ termT (x). A
(T)∗-environment in λlet,[] is a function η2 such that dom(η2) = dom(T) and for
any x ∈ dom(η2), η2(x) ∈ Term(T)∗(x). Let L be a well-formed, closed, index
assignment. A (T)∗-environment η2 in λlet,[] is uniquely extended to the function
defined on dom(T)∪dom(L) by setting its value of I to be |L(I)| for all I ∈ dom(L).
We write η2

L for the extension of η2 to dom(L).
The relation R is extended to environments. RT is the relation between T -

environments in λlet,¦ and (T)∗-environments in λlet,[] such that (η1, η2) ∈ RT iff
for any x ∈ dom(T), (η1(x), η2(x)) ∈ RT (x).

We now have the following theorem, whose proof is deferred to the Appendix.

Theorem 4.5.1. Let Λlet,¦ ` K, T ¤ M : σ be any typing. If C(LK, (T)∗,M) =
C then for any ground substitution S that respects K, and for any pair of environ-
ments (η1, η2) ∈ RS(T), (η1(erase(M)), η2

S(LK)(C)) ∈ RS(σ).

For a program, we have the following.

Corollary 4.5.2. If e is a well-typed λlet,¦ program, then WK(∅, ∅, e) succeeds
with (∅, S,M, σ) for some S, M, σ and C(∅, ∅,M) succeeds with C for some C such
that (e, C) ∈ Rσ.

If we define the set of observable types by the following syntax

ω ::= b | {l : ω, · · · , l : ω} | 〈l : ω, · · · , l : ω〉
then the relation Rω is essentially the identity (modulo representation of records and
variants), and therefore a program of an observable type in λlet,¦ and its compiled
term evaluates to the essentially same value.

5. IMPLEMENTATION

Using the polymorphic typing and the compilation method presented in this arti-
cle we have extended Standard ML with polymorphic record operations, and we
have implemented its compiler, called SML]. SML] is an extension of the Stan-
dard ML of New Jersey compiler [Appel and MacQueen 1991] on which it is based.

ACM Transactions on Programming Languages and Systems, 1995.

880 · Atsushi Ohori

The extended language deals with the features of Standard ML including pat-
tern matching, weak type variables, and explicit type declarations, which can be
freely mixed with polymorphic record operations. Moreover, it preserves the ef-
ficiency of the original compiler and extends it to polymorphic manipulation of
records. SML] produces the same code for monomorphic record operations. For
polymorphic manipulation of records, it is necessary to perform extra function ap-
plication to pass necessary index values. But they occur only when polymorphic
record functions are instantiated. So we believe that the overhead due to index
applications is in most cases negligible. Indeed, a simple iteration of the example
function name does not show meaningful difference in execution speed compared to
the corresponding monomorphic function written in Standard ML of New Jersey.
(1,000,000 calls of #Name in SML] take 20.74 seconds while the same number of calls
of (#Name:{Name:string, Age:int} -> string) in Standard ML of New Jersey
takes 20.50 seconds.) This implementation substantiates this article’s claim that
the method presented here provides a theoretically sound and practical basis for
extending ML with record polymorphism.

SML] does not include polymorphic variants. The current definition of Standard
ML couples monomorphic variants (defined through datatype declarations) with
other language features including user-defined recursive types, pattern matching,
and constructor binding. As a consequence, the introduction of polymorphic vari-
ants requires either substantial language changes or the introduction of a new class
of syntactic objects whose role largely overlaps with ML’s datatypes. To include
them, it is therefore essential to redesign Standard ML. Another limitation of the
current version of SML] is that it does not evaluate the inside of index abstraction,
and therefore it does not necessary preserve the order of evaluation. In the current
version of SML], the author adopted the strategy to implement index abstraction
using the ordinary closure creation mechanism of the New Jersey system. To imple-
ment completely the operational semantics defined in this article, it is necessary to
develop a new evaluation scheme for index abstraction and index application. We
shall discuss possible strategies to overcome these limitations in the conclusions.

The rest of this section outlines the extension of Standard ML and the imple-
mentation of the SML] compiler.

5.1 Extension to Standard ML

Standard ML’s type expressions are extended with kind constraints. This is done
by introducing the following syntax for type variables having a record kind:

’a#{l1:ty1,· · ·,ln:tyn,...}
’’b#{l1:ty′1,· · ·,ln:ty′n,...}

which represent a type variable a and an equality type variable b under the kind
assignment of the form {a::{{l1 : ty1, · · · ln : tyn}}, · · ·} and {b::{{l1 : ty′1, · · · ln :
ty′n}}, · · ·}, respectively, where ty′1, · · · , ty′n are restricted to equality types. In SML]

both syntax can appear wherever ’a or ’’b are allowed.
Standard ML already contains records and field selection. The syntax for record

formation is identical to the one used in this article. In addition, ML provides the
following pattern for record operations:

pat ::= · · · | {l = pat,· · ·,l = pat} | {l = pat,· · ·,l = pat,...}
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 881

(* simple examples *)

- fun moveX point = #> point => {x = #x point + 1};

val moveX = fn : ’a#{x:int,...} -> ’a#{x:int,...}

- moveX {x=1,y=2};

val it = {x=2,y=2} : {x:int,y:int}

- moveX {x=1, y=2, z=3, color="Green"};

val it = {color="Green",x=2,y=2,z=3} : {color:string,x:int,y:int,z:int}

(* database like examples *)

- fun wealthy {Salary =s,...} = s > 100000;

val wealthy = fn : ’a#{Salary:int,...} -> bool

- fun young x = #Age x < 24;

val young = fn : ’a#{Age:int,...} -> bool

- fun youngAndWealthy x = wealthy x andalso young x;

val youngAndWealthy = fn : ’a#{Age:int,Salary:int,...} -> bool

- fun select display l pred =

fold (fn (x,y) => if pred x then (display x)::y else y) l nil;

val select = fn : (’a -> ’b) -> ’a list -> (’a -> bool) -> ’b list

- fun youngAndWealthyEmployees l = select #Name l youngAndWealthy;

val youngAndWealthyEmployees = fn

: ’b#{Age:int,Name:’a,Salary:int,...} list -> ’a list

Fig. 16. Interactive programming session in SML].

where the last “...” is a part of ML syntax for “flexible records” in ML parlance
and should not be confused with the metanotation we have used. There is also the
following syntax

#l for field selection function λx.x¦l

as explained in the introduction. In SML], these patterns and expressions are freely
used without type specifications, as shown in the following example:

- fun FirstName {Name=x,...} = #First x;

val FirstName = fn : ’c#{Name:’b#{First:’a,...},...} -> ’a

which shows an interactive session of SML] where the user’s input is prompted by
“-” and where the system’s output is printed in the format “val x = value : type.”

In addition, SML] introduces the following term constructor:

#> e => {l1=e1,· · ·,ln=en}
for nested field modification modify(· · ·(modify(e,l1,e1)· · ·),ln,en) whose syntax is
chosen to make it compatible with the rest of the language definition.

Figure 16 shows programming examples. The second half of the example demon-
strates the usefulness of record polymorphism for data-intensive applications such
as database programming. In particular, the last function demonstrates that an
SQL-style database query language can be cleanly integrated into a polymorphic
record calculus. (The interested reader is referred to Buneman and Ohori [1995] for
more discussion on polymorphism and type inference in database programming.)

ACM Transactions on Programming Languages and Systems, 1995.

882 · Atsushi Ohori

5.2 Implementation Strategies

The implementation has been done by modifying the Standard ML of New Jersey
compiler (version 0.75). The main modification consists of (1) the replacement of
the type inference module with a new one which incorporates the kinded unification
and the compilation algorithm and (2) a refinement of pattern match compilation
and value binding.

The new type inference module closely follows the algorithm presented in this
article with additional refinements for Standard ML’s equality types and weak
polymorphism. To integrate these features, the actual kind of a type variable in
SML] consists of the product of record/variant kind, equality flag, and weakness
measure. With this refinement, our record polymorphism can be freely mixed with
these features.

Some work was needed to refine the compilation for pattern matching and value
binding. Consider, for example, the following simple binding:

val (x,y) = (#A,#B)

Since x and y will be used independently, the compiler should produce the binding
of the following types:

x : ’a#{A:’b} -> ’b

y : ’a#{B:’b} -> ’b

Therefore, index abstraction insertion and polymorphic generalization must be done
for x and y separately according to the corresponding portion of the code. To
achieve this effect, the SML] compiler transforms ML’s value binding of the form

val pat = expr

where pat is a pattern containing variables {x1, · · · , xn} into the following form

val (x1,· · ·,xn) = let f = expr in ((fn pat => x1) f,
...
(fn pat => xn) f)

The inner binding is the ordinary let binding and is transformed by the method
described in this article. The compiler then transforms the outer val binding by
eliminating vacuous type variables separately from the typing of each variable xi,
performing index abstraction and polymorphic type generalization for each com-
ponent corresponding to xi separately, and finally translating to a binding of the
implementation calculus. In the actual implementation, all of these steps are done
in one step using the type information of the original term. For example, the above
example is transformed into the following binding

val (x,y) = let F = λI1λI2.(λx.x[I1], λy.y[I2])
in (λI3.(F I3 1),λI4.(F 1 I4))

where 1 is the default index value introduced in the process of vacuous type vari-
able elimination explained earlier. A similar treatment is necessary for mutually
recursive function definitions of the form:

fun f1 pat1 = expr1

...
and fn patn = exprn

ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 883

This is transformed into the following code

val (f1,· · ·,fn) = let F = rec f1 pat1 = expr1

...
and fn patn = exprn

in (F ¦1,· · ·,F ¦n)
where rec f pat = expr · · · and pat = expr is the construct for mutually recur-
sive functions without polymorphic generalization. The binding is then transformed
into a term in the implementation calculus in a similar way as in the case of the
complex value binding explained above. By this treatment, SML] allows record
polymorphism to be freely mixed with arbitrary complex value binding and mutu-
ally recursive function definitions.

A prototype SML] system is available from Kyoto University. The interested
reader should copy the README file from ftp.kurims.kyoto-u.ac.jp at the
directory pub/paper/member/ohori by anonymous FTP or consult the web page
http://www.kurims.kyoto-u.ac.jp/~ohori/smlsharp.html.

6. CONCLUSIONS

We have given a polymorphic type discipline for records and variants as an extension
of the Girard-Reynolds second-order lambda calculus and have defined an ML-style
polymorphic record calculus that corresponds to a predicative subcalculus of the
second-order system. The type system of the ML-style record calculus is shown to
be sound with respect to its operational semantics. For this calculus, we have given
a type inference algorithm and proved its soundness and completeness with respect
to its polymorphic type system. We have then developed an efficient compilation
method for the ML-style polymorphic record calculus. The compilation method
translates any type-correct term in the polymorphic record calculus into a term in
a calculus where (1) records are represented as directly indexable vectors and (2)
variants are represented as values tagged with a natural number that is used as
the index to the vector of functions in a switch statement. The correctness of the
compilation algorithm is shown by applying the idea of logical relation to set up a
desired relation between the operational behavior of the polymorphic record calcu-
lus and that of the implementation calculus. Based on these results, Standard ML
has been extended with polymorphic record operations, and a full-scale prototype
compiler has been implemented.

There are a number of further issues to be considered. Here we only briefly
mention some of them.

A More Complete Implementation. As mentioned in the previous section, there
are two major limitations of the current SML] implementation: it lacks polymorphic
variants and is not faithful to the operational semantics defined in this article
because it does not evaluate inside of index abstraction.

Since the basic techniques of implementing polymorphic variants are the same as
those required for polymorphic records, there is no technical difficulty in introduc-
ing them. In fact, pure variants can be encoded using records by regarding a variant
type 〈l1 : τ1, · · · , ln : τn〉 as ∀t::U.{l1 : τ1 → t, · · · , ln : τn → t} → t and by encoding
variant constructors and case statements analogous to the standard encoding of

ACM Transactions on Programming Languages and Systems, 1995.

884 · Atsushi Ohori

booleans and conditional statements. Therefore they can be implemented by the
implementation mechanism for polymorphic records. However, a labeled variant
type in Standard ML is coupled with user-defined recursive types. This coupling
works well when labeled variants are restricted to be monomorphic, but is incom-
patible with polymorphic manipulation of labeled variants since the possibility of
polymorphic manipulation is eliminated. To incorporate polymorphic variants into
Standard ML, we need to redesign the language to separate the mechanism of la-
beled variants from the user-defined recursive types. We are currently considering
a proper syntax and the corresponding formal definition of the Standard ML with
polymorphic labeled variants.

It is more challenging to refine SML] to make it faithful to the operational se-
mantics defined in this article. Although we have not yet developed a complete
implementation technique, we believe that it is possible to develop a reasonably
efficient system that evaluates inside of index abstractions by treating index ab-
straction and index application specially. Let us briefly explain a possible strategy.

From the above observation on implementation of polymorphic variants, we can
restrict our attention to polymorphic record operations. The compilation algorithm
has the property that if it produces an implementation term of the form λI.C then
I in C occurs inside of an ordinary lambda abstraction, and therefore evaluation
of C does not involve evaluation of I. The evaluation of λI.C can then be done as
follows. When evaluating λI.C, the system first allocates a dummy entry for I in
the environment and evaluates C. This should yield a closure whose environment
contains I. This closure is saved as a template. The application of the function λI.C
to an actual index value i can be implemented by making a copy of the template
closure and updating the I entry in the environment to i. It is still needed to
develop a method to propagate this technique for nested index abstraction of the
form λI. · · · (λI ′.C) I · · ·. The author intends to develop a systematic method to
achieve the desired semantics, which will also be useful for various type-inference-
based program specialization discussed below.

Type-Inference-Based Program Specialization. The compilation method presented
in this article can be characterized as specialization of polymorphic functions us-
ing type information. In this respect, our work shares the same motivation as the
paradigm of “intentional type analysis” [Harper and Morrisett 1995]. Their frame-
work is based on runtime type analysis and is therefore more general. For example,
certain features of overloading can comfortably be represented in their framework.
It is an interesting issue whether or not our method can be combined with their
framework. There are also several recent papers on the efficient implementation of
polymorphic languages using explicit type information. Examples include a poly-
morphic unboxed calculus [Ohori and Takamizawa 1995] which specialize polymor-
phic functions according to the size information obtained by type inference, mixed
representation optimization [Leroy 1992] by inserting appropriate box-unbox co-
ercions guided by type information, tag-free garbage collection [Tolmach 1994] by
translating a raw term to an explicitly typed second-order term, specialization of
Haskell type classes [Wadler and Blott 1989] using type information [Hall et al.
1994; Peterson and Jones 1993], and list representation optimization [Hall 1994;
Shao et al. 1994]. Since program translations in all of these approaches and ours
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 885

appear to share some general structure, a detailed comparison among them may
shed some light on the general property of a type-inference-based approach to pro-
gram specialization.

Our compilation method may also be applied to optimizing the “soft type system”
of Cartwright and Fagan [1991] and Wright and Cartwright [1994]. In the soft type
system, types are implicitly treated as elements of a variant type. By checking type
tag at runtime, this approach allows more-flexible typing than the conventional
static typing. Our compilation method for polymorphic variants might be used to
reduce the cost of a runtime check.

Compilation of a Calculus with Subtyping. We would like to extend our compi-
lation technique to a polymorphic type discipline with subtyping, which is another
important paradigm for flexible treatment of labeled records and labeled variants.
Its flexibility is based on the following subsumption rule:

sub
e : τ1 τ1 ≤ τ2

e : τ2

There seems to be an inherent difficulty in compiling a calculus containing this rule.
To see the difficulty, consider the expression:

e ≡ if e1 then {A = ”abc”, B = true} else {B = true, C = ”abc”}
where e1 is some boolean expression. With the existence of the subsumption rule,
this expression has the type {B : bool}. However, the actual set of labels of
the value denoted by this expression depends on the value denoted by e1, and
therefore the offset of the label B cannot be statically determined. It is there-
fore impossible to determine statically the necessary index value in a program
such as (λx. x¦B) e. With the subsumption rule, a typing judgment of the form
∅¤ e : {l1 : τ1, · · · , ln : τn} no longer implies that e denotes a record value having
the exact type {l1 : τ1, · · · , ln : τn}. A similar problem arises in compiling a calculus
that allows heterogeneous collections [Buneman and Ohori 1995]. This observation
suggests that compilation should incorporate some degree of dynamic type testing
at runtime. One approach might be to combine our method and the intensional
type analysis of Harper and Morrisett [1995].

Application to Other Labeled Data Structures. Our flexible typing and compi-
lation method for record polymorphism may also be applicable to several other
systems where labels play an important role.

In Common Lisp [Steele 1984], parameters to a function may be labeled. It is
straightforward to model simple labeled parameters using labeled records. How-
ever, Common Lisp also allows optional arguments with default values. This feature
cannot easily be modeled in a simple type discipline. One approach to represent
these features in a record calculus is to extend it with an “optional-field selection”
operation (e¦l ? d) which behaves like e¦l if e is a record containing an l field;
otherwise it evaluates to the default value d. Our polymorphic type discipline and
the compilation method can be extended to support this construct. Recently, Gar-
rigue and Aı̈t-Kaci [1994] developed a lambda calculus that supports a more-flexible
labeled parameter passing mechanism where labeled currying and labeled partial
application are allowed. Furuse and Garrigue [1995] extended it with optional ar-

ACM Transactions on Programming Languages and Systems, 1995.

886 · Atsushi Ohori

guments and developed a compilation method. It is an interesting further research
to investigate the possibility of combining their approach and ours.

Our approach may also be applicable to object-oriented programming. A calcu-
lus with record subtyping is often considered as a formal model for object-oriented
programming, where a “class” is represented as a record type and where an “ob-
ject” is represented as a record containing methods; method invocation is done
by field selection. In this model, the feature of “method inheritance” is achieved
through flexible typing of field selection. Since kinded typing allows similar flexi-
ble typing of field selection, we believe that our second-order record calculus Λ∀,¦,
when extended with recursive types and other features, can serve as an appropriate
basis for type systems for object-oriented programming. Since kinded typing does
not have complicated interaction with function type and since there is an efficient
compilation algorithm for the calculus, we further believe that our record calculus,
when properly extended, can be a simpler and practical alternative to a calculus
with subtyping.

APPENDIX

PROOFS OF MAJOR THEOREMS

Theorem 3.4.1. The algorithm U takes any kinded set of equations and com-
putes its most general unifier if one exists and reports failure otherwise.

Proof. We first show that if the algorithm returns a kinded substitution then
it is a most general unifier of a given kinded set of equations.

It is easily verified that each transformation rule preserves the following property
on 4-tuple (E,K, S,SK).

(1) K and K∪SK are well-formed kind assignments; E is well-formed under K; S is
a well-formed substitution under K; dom(K) ∩ dom(SK) = ∅; and dom(SK) =
dom(S).

We establish that if the above property holds for the 4-tuple then each transforma-
tion rule also preserves the following properties on 4-tuples.

(2) For any kinded substitution (K0, S0), if (K0, S0) respect K and S0 satisfies E∪S
then (K0, S0) respect SK.

(3) The set of unifiers of (K ∪ SK, E ∪ S).

The case for Rule (i) is trivial, and those for (v) and (ix) follow from the assump-
tions. Since the rules (vi) – (viii) have the same shape as the rules (ii) – (iv)
respectively, their proofs are the same as the corresponding proofs. Below, we show
Properties 2 and 3 for the rules (ii) – (iv).

Rule (ii).

(E ∪ {(t, τ)}, K ∪ {(t, U)}, S, SK) =⇒
([τ/t](E), [τ/t](K), [τ/t](S) ∪ {(t, τ)}, [τ/t](SK) ∪ {(t, U)}) if t 6∈ FTV (τ)

Property 2. Let S0 satisfy [τ/t](E) ∪ [τ/t](S) ∪ {(t, τ)} and (K0, S0) respect
[τ/t](K). Then S0 = S0 ◦ [τ/t], and S0 satisfies E ∪ {(τ, t)} ∪ S. Since τ is well
formed under K, S0(τ) is well formed under K0, and K0 ` S0(τ) :: U . Therefore
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 887

(K0, S0) respects K ∪ {(t, U)}. Then by Property 2 of the premise of the rule,
(K0, S0) respects SK, and therefore (K0, S0) respects [τ/t](SK) ∪ {(t, U)}.

Property 3. Let S0 be any substitution. S0 satisfies E ∪ {(t, τ)} ∪ S iff S0

satisfies [τ/t](E) ∪ [τ/t](S) ∪ {(t, τ)}. Let K0 be any kind assignment such that
(K0, S0) is a kinded substitution. Suppose S0 satisfies E ∪ {(t, τ)} ∪ S. Then
since S0 = S0 ◦ [τ/t] and t 6∈ dom(K), (K0, S0) respects K iff (K0, S0) respects
[τ/t](K). Similarly, (K0, S0) respects SK iff (K0, S0) respects [τ/t](SK). Therefore
(K0, S0) is a unifier of (K ∪ {(t, U)} ∪ SK, E ∪ {(t, τ)} ∪ S) iff it is a unifier of
([τ/t](K) ∪ [τ/t](SK) ∪ {(t, U)}, [τ/t](E) ∪ [τ/t](S) ∪ {(t, τ)}).

Rule (iii).

(E ∪ {(t1, t2)}, K ∪ {(t1, {{F1}}), (t2, {{F2}})}, S, SK) =⇒
([t2/t1](E ∪ {(F1(l), F2(l))|l ∈ dom(F1) ∩ dom(F2)}),
[t2/t1](K) ∪ {(t2, [t2/t1]({{F1 ± F2}}))},
[t2/t1](S) ∪ {(t1, t2)}, [t2/t1](SK) ∪ {(t1, {{F1}})})
Property 2. Let S0 satisfy [t2/t1](E ∪{(F1(l), F2(l))|l ∈ dom(F1)∩ dom(F2)}))∪

[t2/t1](S) ∪ {(t1, t2)} and (K0, S0) respect [t2/t1](K) ∪ {(t2, [t2/t1]({{F1 ± F2}}))}.
Then S0 = S0 ◦ [t2/t1]; S0 satisfies E ∪ {(t1, t2)} ∪ S; and (K0, S0) respects K ∪
{(t1, {{F1}}), (t2, {{F2}})}. Then by Property 2 of the premise of the rule, (K0, S0)
respects SK. Therefore (K0, S0) respects [t2/t1](SK) ∪ {(t1, {{F1}})}.

Property 3. Let S0 be any substitution satisfying {(t1, t2)}. Then S0 satisfies
E ∪ S iff S0 satisfies [t2/t1](E) ∪ [t2/t1](S). Let K0 be any kind assignment such
that (K0, S0) is a kinded substitution. Since S0 = S0 ◦ [t2/t1] and t1 6∈ dom(K),
(K0, S0) respects K iff (K0, S0) respects [t2/t1](K). Similarly, (K0, S0) respects SK
iff (K0, S0) respects [t2/t1](SK). We also have the following:

(S0 satisfies {(F1(l), F2(l))|l ∈ dom(F1) ∩ dom(F2)} and
K0 ` S0(t1) :: S0({{F1}}) and K0 ` S0(t2) :: S0([t2/t1]({{F1 ± F2}})))

iff (K0 ` S0(t1) :: S0({{F1}}) and K0 ` S0(t2) :: S0({{F2}})).

This proves Property 3.

Rule (iv).

(E ∪ {(t1, {F2})}, K ∪ {(t1, {{F1}})}, S, SK) =⇒
([{F2}/t1](E ∪ {(F1(l), F2(l))|l ∈ dom(F1)}), [{F2}/t1](K),
[{F2}/t1](S) ∪ {(t1, {F2})}, [{F2}/t1](SK) ∪ {(t1, {{F1}})})

if dom(F1) ⊆ dom(F2) and t 6∈ FTV ({F2})
Property 2. Let (K0, S0) respect [{F2}/t1](K) and S0 satisfy [{F2}/t1](E ∪

{(F1(l), F2(l))|l ∈ dom(F1)})∪[{F2}/t1](S)∪{(t1, {F2})}. Then S0 = S0◦[{F2}/t1],
S0 satisfies E ∪ {(t1, {F2})} ∪ S, and (K0, S0) respects K. Since dom(F1) ⊆
dom(F2) and S0 satisfies {(F1(l), F2(l))|l ∈ dom(F1)}, K0 ` S0(t1) :: S0({{F1}}).
Then (K0, S0) respects K∪ {(t1, {{F1}})}. By Property 2 of the premise of the rule,
(K0, S0) respects SK, and therefore (K0, S0) respects [{F2}/t1](SK). This proves
Property 2.

Property 3. Let S0 be any substitution satisfying {(t1, {F2})}. Then S0 satisfies
E∪S iff S0 satisfies [{F2}/t1](E)∪[{F2}/t1](S). Let K0 be any kind assignment such

ACM Transactions on Programming Languages and Systems, 1995.

888 · Atsushi Ohori

that (K0, S0) is a kinded substitution. Since S0 = S0 ◦ [{F2}/t] and t 6∈ dom(K),
(K0, S0) respects K iff (K0, S0) respects [{F2}/t](K). Similarly, (K0, S0) respects
SK iff (K0, S0) respects [{F2}/t](SK). This proves Property 3.

We now conclude the proof of the correctness of the algorithm. Let (K, E) be a
given kinded set of equations.

Suppose the algorithm terminates with (K′, S). Then there is some SK such
that (E,K, ∅, ∅) is transformed to (∅,K′, S,SK) by repeated applications of trans-
formation rules. Property 1 trivially holds for (E,K, ∅, ∅). Then (K′, S) is a kinded
substitution; dom(S) ∩ dom(K′) = ∅, and therefore (K′, S) respects K′. S also
trivially satisfies S ∪ ∅. Then by Property 2, (K′, S) also respects SK. There-
fore (K′, S) is a unifier of (K′ ∪ SK, ∅ ∪ S). By Property 3, it is also a unifier of
(K, E). Let (K0, S0) be any unifier of (K, E). By Property 3, it is also a unifier of
(K′ ∪ SK, ∅ ∪ S). But (K′, S) is also a unifier of (K′ ∪ SK, ∅ ∪ S), and S0 = S0 ◦ S.
Thus (K′, S) is more general than (K0, S0).

Conversely, suppose the algorithm fails. Then (E,K, ∅, ∅) is transformed to
(E′,K′, S′,SK′) for some E′,K′, S,SK such that E′ 6= ∅, and no rule applies to
(E′,K′, S′,SK′). It is clear from the definition of each rule that (K′ ∪SK′, E′ ∪S′)
has no unifier, and therefore by Property 3, (K, E) has no unifier.

The termination can be proved by showing that each transformation rule de-
creases the complexity measure of the lexicographical pair consisting of the size of
the set dom(K) and the total number of occurrences of type constructors (including
base types) in E.

Theorem 3.5.1. If WK(K, T , e) = (K′, S, M, τ) then the following properties
hold:

(1) (K′, S) respects K and λlet,¦ ` K′, S(T) ¤ e : τ ,
(2) erase(M) = e and Λlet,¦ ` K′, S(T) ¤ M : τ ,
(3) if λlet,¦ ` K0, S0(T) ¤ e : τ0 for some (K0, S0) and τ0 such that (K0, S0)

respects K then there is some S′ such that (K0, S
′) respects K′, τ0 = S′(τ), and

S0(T) = S′ ◦ S(T).

If WK(K, T , e) = failure then there is no (K0, S0) and τ0 such that (K0, S0)
respects K and λlet,¦ ` K0, S0(T) ¤ e : τ0.

Proof. Property 2 of the first statement follows directly from the proof of Prop-
erty 1 and the relationship between the two type systems. It is also a routine matter
to show that if the algorithm fails for some term then there is no typing for that
term. In what follows, we show Properties 1 and 3 of the first statement. Proof
is by induction on the structure of e. Here we only show the cases for x, e1¦l, and
let x=e1 in e2. The cases for modify(e1,l,e2) and 〈l=e1〉 are similar to the case for
e1¦l. Other cases are essentially the same as the corresponding proof for ML [Damas
and Milner 1982].

Case x. Suppose WK(K, T , x) = (K′, S,M, τ). Then T (x) = ∀t1::k1 · · · tn::kn.τ ′

and K′ = K{s1::k′1, · · · , sn::k′n}, S = ∅,M = (x s1 · · · sn), τ = [s1/t1, · · · , sn/tn](τ ′)
where s1, · · · , sn are fresh and k′i = [s1/t1, · · · , sn/tn](ki) (1 ≤ i ≤ n).

Property 1. (K′, ∅) trivially respects K. Since (K′, [s1/t1, · · · , sn/tn]) respects
K′{t1::k1, · · · , tn::kn}, K′ ` ∀t1::k1 · · · tn::kn.τ ′ ≥ τ . Then K′, T ¤ x : τ .
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 889

Property 3. Suppose (K0, S0) respects K and K0, S0(T) ¤ x : τ0. By the bound
type variable convention and the assumption being that s1, · · · , sn are fresh, we
can assume that none of t1, · · · , tn, s1, · · · , sn appears in dom(S0) or {S0(t)|t ∈
dom(S0)}. Then (S0(T))(x) = ∀t1::S0(k1) · · · ∀tn::S0(kn).S0(τ ′), and there is some
S1 such that dom(S1) = {t1, · · · , tn}, S1(S0(τ ′)) = τ0, K0 ` S1(ti) :: S1(S0(ki)) (1 ≤
i ≤ n). Let S2 = S1 ◦ S0 ◦ [t1/s1, · · · , tn/sn]. Then (K0, S2) respects K, and
S2(si) = S1(ti) and S2(k′i) = S1(S0(ki)). Therefore K0 ` S2(si) :: S2(k′i). Thus
(K0, S2) respects K{s1::k′1, · · · , sn::k′n}. Also, we have τ0 = S1(S0(τ ′)) = S2(S(τ)),
and S0(T) = S2(S(T)). This proves Property 3.

Case e1¦l. Suppose the algorithm succeeds for e1¦l. Then we must have the
following. WK(K, T , e1) = (K1, S1,M1, τ1), U(K1{t1::U, t2::{{l : t1}}}, {(t2, τ1)}) =
(K2, S2) (t1, t2 fresh), and WK(K, T , e1¦l) = (K2, S2 ◦ S1, S2(M1)¦l, S2(t1)).

Property 1. By Theorem 3.4.1, (K2, S2) respects K1 and K2 ` S2(τ1) :: {{l :
S2(t1)}}. By the induction hypothesis, (K1, S1) respects K and K1, S1(T)¤ e1 : τ1.
By Lemma 2.1.1, (K2, S2 ◦ S1) respects K. By Lemma 2.2.3, K2, S2 ◦ S1(T) ¤ e1 :
S2(τ1). By the rule dot, we have K2, S2 ◦ S1(T) ¤ e1¦l : S2(t1).

Property 3. Suppose (K0, S0) respects K and K0, S0(T)¤e1¦l : τ1
0 . Then we must

have K0, S0(T)¤e1 : τ2
0 and K0 ` τ2

0 :: {{l : τ1
0 }}. By the induction hypothesis, there

is some S1
0 such that (K0, S

1
0) respects K1; τ2

0 = S1
0(τ1); and S0(T) = S1

0 ◦ S1(T).
Then K0 ` S1

0(τ1) :: {{l : τ1
0 }}. Consider S2

0 = [τ1
0 /t1, τ

2
0 /t2]◦S1

0 . Since t1, t2 are fresh,
we have K0 ` S2

0(t2) :: {{l : S2
0(t1)}} and K0 ` S2

0(t) :: S2
0(K1(t)) for t ∈ dom(K1).

So (K0, S
2
0) respects K1{t1::U, t2::{{l : t1}}}. Also S2

0(t2) = S2
0(τ1). So (K0, S

2
0) is

a unifier of (K1{t1::U, t2::{{l : t1}}}, {(t2, τ1)}). Therefore by Theorem 3.4.1, there
is some S3

0 such that (K0, S
3
0) respects K2 and S2

0 = S3
0 ◦ S2. Then we have

τ1
0 = S3

0 ◦ S2(t1), S0(T) = S1
0 ◦ S1(T) = S2

0 ◦ S1(T) = S3
0 ◦ S2 ◦ S1(T) as desired.

Case 〈l = e1〉. Suppose the algorithm succeeds for 〈l = e1〉. Then we must
have: WK(K, T , e1) = (K1, S1,M1, τ1) and WK(K, T , 〈l = e1〉) = (K1{t::〈〈l :
τ1〉〉}, S1,M2, t) where t fresh.

Property 1. By induction hypothesis, K1, S1(T)¤e1 : τ1. Since K1{t::〈〈l : τ1〉〉} `
t :: 〈〈l : τ1〉〉, by the typing rule K1{t::〈〈l : τ1〉〉}, S1(T) ¤ 〈l = e1〉 : t.

Property 3. Suppose (K0, S0) respects K and K, S0(T) ¤ 〈l = e1〉 : τ0. Then
by the typing rules, K0, S0(T) ¤ e1 : τ1

0 and K0 ` τ0 :: 〈〈l : τ1
0 〉〉. By induction

hypothesis, there is some S1
0 such that (K0, S

1
0) respects K1; S1

0(τ1) = τ1
0 ; and

S1
0(S1(T)) = S0(T). Let S2

0 = [τ0/t] ◦ S1
0 . Then since t is fresh, K0 ` S2

0(t) :: 〈〈l :
S2

0(τ1)〉〉. Therefore (K0, S
2
0) respects K1{t::〈〈l : τ1〉〉}, S2

0(S1(T)) = S1
0(S1(T)) =

S0(T). S2
0(t) = τ0, as desired.

Case let x=e1 in e2. Suppose WK(K, T , let x=e1 in e2) = (K′, S, M, τ). Then
we must have: WK(K, T , e1) = (K1, S1,M1, τ1), Cls(K1, S1(T), τ1) = (K′1, σ1),
WK(K′1, (S1(T)){x : σ1}, e2) = (K2, S2, M2, τ2), and K′ = K2, S = S2 ◦ S1,M =
let x:S2(σ1) = Poly(S2(M1 : σ1)) in M2, τ = τ2.

Property 1. By the induction hypothesis, (K1, S1) respects K and K1, S1(T) ¤

e1 : τ1. By the rule gen, K′1, S1(T) ¤ e1 : σ1. By the induction hypothesis
on e2, (K2, S2) respects K′1, and K2, S2 ◦ S1(T){x : S2(σ1)} ¤ e2 : τ2. We show

ACM Transactions on Programming Languages and Systems, 1995.

890 · Atsushi Ohori

that for any t ∈ dom(K), S(t) is well formed under K′1. By the definition of
the type inference algorithm and the unification algorithm, if t 6∈ EFTV (K, T),
then t does not appear in τ or S, and therefore FTV (S(t)) ⊆ dom(K′1). Suppose
t ∈ EFTV (K, T). By a simple induction on the derivation of t ∈ EFTV (K, T), it is
shown that FTV (S(t)) ⊆ EFTV (K1, S(T)), and therefore FTV (S(t)) ⊆ dom(K′1).
Thus in either case S1(t) is well formed under K′1. Then (K′1, S1) respects K, and by
Lemma 2.1.1, (K2, S2◦S1) respects K. By Lemma 2.2.3, K2, S2◦S1(T)¤e1 : S2(σ1).
Then by the typing rule let, K2, S2 ◦ S1(T) ¤ let x=e1 in e2 : τ2

Property 3. Suppose (K0, S0) respects K, and K0, S0(T) ¤ let x=e1 in e2 : τ0.
Then we must have: K′0, S0(T) ¤ e1 : τ1

0 , (K0, σ
1
0) = Cls(K′0, S0(T), τ1

0) and
K0, (S0(T)){x : σ1

0} ¤ e2 : τ0. By the definition of Cls, we can write K′0 =
K0{t01::k0

1, · · · , t0m::k0
m} such that {t01, · · · , t0m} = EFTV (K′0, τ1

0)\EFTV (K′0, S0(T)),
and σ1

0 = ∀t01::k0
1 · · · t0m::k0

m.τ1
0 . By the induction hypothesis, there is some S1

0 such
that (K′0, S1

0) respects K1; τ1
0 = S1

0(τ1); and S0(T) = S1
0 ◦ S1(T). By the definition

of Cls, K1 and σ1 can also be written as: K1 = K′1{t1::k1, · · · , tn::kn} such that
{t1, · · · , tn} = EFTV (K1, τ1) \ EFTV (K1, S1(T)), and σ1 = ∀t1::k1 · · · tn::kn.τ1.
By the bound type variable convention, {t1, · · · , tn} ∩ {t01, · · · , t0m} = ∅. Since
(K′0, S1

0) respects K1, K0{t01::k0
1, · · · , t0m::k0

m} ` S1
0(ti) :: S1

0(ki) (1 ≤ i ≤ n). Let
S2

0 be the restriction of S1
0 on dom(S1

0) \ {t1, · · · , tn}, and let S3
0 be the substi-

tution [S1
0(t1)/t1, · · · , S1

0(tn)/tn]. We show that, for each 1 ≤ i ≤ n, S2
0(ki) is

well formed under K0{t1::S2
0(k1), · · · , ti−1::S2

0(ki−1)}. Since S1
0(ki) is well formed

under K′0, it is enough to show that FTV (S2
0(ki)) ∩ {t01, · · · , t0m} = ∅. Suppose

t ∈ FTV (S2
0(ki)). Then there is some t′ such that t ∈ FTV (S2

0(t′)), t′ ∈ FTV (ki).
Since ti ∈ EFTV (K1, τ1), by the definition of EFTV , t′ ∈ EFTV (K1, τ1). By our
assumption on K1, for any j ≥ i, tj 6∈ FTV (ki). Therefore either t ∈ {t1, · · · , ti−1},
or t ∈ S2

0(EFTV (K1, S1(T))). But it is shown by induction on the construc-
tion of EFTV (K1, S1(T)) that S2

0(EFTV (K1, S1(T))) ⊆ EFTV (K′0, S0(T)). Thus
t 6∈ {t01, · · · , t0m}, and K0{t1::S2

0(k1), · · · , tn::S2
0(kn)} is well formed. By similar ar-

gument, it is shown that S2
0(τ1) is well formed under K0{t1::S2

0(k1), · · · , tn::S2
0(kn)}.

Then (K0{t01::k0
1, · · · , t0m::k0

m}, S3
0) respectsK0{t1::S2

0(k1), · · · , tn::S2
0(kn)}, and τ1

0 =
S3

0(S2
0(τ1)). Thus K0 ` ∀t1::S2

0(k1) · · · ∀tn::S2
0(kn).S2

0(τ1) ≥ ∀t01::k0
1 · · · ∀t0m::k0

m.τ1
0 .

Then by Lemma 3.1.2, K0, (S0(T)){x : ∀t1::S2
0(k1) · · · ∀tn::S2

0(kn).S2
0(τ1)})) ¤ e2 :

τ0. Since S2
0(σ1) = ∀t1::S2

0(k1) · · · ∀tn::S2
0(kn).S2

0(τ1) and S0(T) = S2
0(S1(T)),

K0, S
2
0((S1(T)){x : σ1}) ¤ e2 : τ0. Since (K0, S

1
0) respects K1, (K0, S

2
0) respects

K′1. We can then apply the induction hypothesis to e2 and conclude that there
is some S4

0 such that (K0, S
4
0) respects K2 and τ0 = S4

0(τ2) and S4
0(S2(S1(T))) =

S2
0(S1(T)) = S1

0(S1(T)) = S0(T). This proves Property 3 for the case of the let
expression.

Theorem 4.5.1. Let Λlet,¦ ` K, T ¤ M : σ be any typing. If C(LK, (T)∗,M) =
C then for any ground substitution S that respects K, and for any pair of environ-
ments (η1, η2) ∈ RS(T), (η1(erase(M)), η2

S(LK)(C)) ∈ RS(τ).

Proof. By induction on the structure of M .

Case (x τ1 · · · τn). Suppose Λlet,¦ ` K, T ¤ (x τ1 · · · τn) : τ . Then by the
type system, there are some k1, · · · , kn, τ0 such that T (x) = ∀t1::k1 · · · tn::kn.τ0,
τ = [τ1/t1, · · · , τn/tn](τ0), and (K, [τ1/t1, · · · , τn/tn]) respects K{t1::k1, · · · , tn::kn}.
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 891

Let ∀t1::k1 · · · tn::kn.idx (l1, t′1) ⇒ · · · idx (lm, t′m) ⇒ τ0 = (T)∗(x). There are
Ij(1 ≤ j ≤ n) such that LK ` Ij : idx (lj , [τ1/t1, · · · , τn/tn](t′j)). Now sup-
pose C(LK, (T)∗, (x τ1 · · · τn)) = M . Then M = x I1 · · · Im. By the assump-
tion on η1, η2, (η1(x), η2(x)) ∈ R∀t1::S(k1)···∀tn::S(kn).S(τ0). By the definition of
I, η2

S(LK)(Ij) = |idx (lj , [S(τ1)/t1, · · · , S(τn)/tn](t′j)))|. Since S respects K and
(K, [τ1/t1, · · · , τn/tn]) respects K{t1::k1, · · · , tn::kn}, [S(τ1)/t1, · · · , S(τn)/tn] is a
ground substitution respecting {t1::S(k1), · · · , tn::S(kn)}. Then by the definition of
R, (η1(x), (η2

S(LK)(x I1 · · · Im))) ∈ RS(τ), as desired.

Case λx : τ1.M . Suppose Λlet,¦ ` K, T ¤ λx : τ1.M1 : τ1 → τ2. Then
Λlet,¦ ` K, T {x : τ1} ¤ M1 : τ2. Suppose C(LK, (T)∗, λx : τ1.M1) = C. Then
C = λx.C1 such that C1 = C(LK, (T {x : τ1})∗,M1). Let e1 = erase(M1). By the
bound variable convention and the definition of evaluation contexts, η1(λx.e1) =
λx.η1(e1) ↓ λx.η1(e1), and η2

S(LK)(λx.C1) = λx.η2
S(LK)(C1) ↓ λx.η2

S(LK)(C1). Let
(e0, C0) ∈ RS(τ1) be any pair of related elements. Then e0 ↓ iff C0 ↓. Sup-
pose e0 ↓ e′0 and C0 ↓ C ′0. By the type soundness theorem (Theorem 3.2.1) of
λlet,¦ and the subject reduction theorem (Theorem 4.2.3) of λlet,[], e′0, C

′
0 are also

terms of the same types of e0, C0 respectively, and therefore (e′0, C
′
0) ∈ RS(τ1). By

the definition of evaluation contexts, ((λx.η1(e1)) e0) ↓ e′ iff [e′0/x](η1(e1)) ↓ e′,
and ((λx.η2

S(LK)(C1)) C0) ↓ C ′ iff [C ′0/x](η2
S(LK)(C1)) ↓ C ′. But [e′0/x]η1(e1) =

η1{x 7→ e′0}(e1), and [C ′0/x]η2
S(LK)(C1) = η2{x 7→ C ′0}S(LK)(C1). Since (e′0, C

′
0) ∈

RS(τ1), (η1{x 7→ e′0}, η2{x 7→ C ′0}) ∈ RS(T {x:τ1}). By the induction hypothesis,
(((λx.η1(e1)) e0), ((λx.η2

S(LK)(C1)) C0)) ∈ RS(τ2). Thus (λx.e1), C) ∈ RS(τ1)→S(τ2).

Case M1 M2. Suppose Λlet,¦ ` K, T ¤ M1 M2 : τ1. Then Λlet,¦ ` K, T ¤ M1 :
τ2 → τ1 and Λlet,¦ ` K, T ¤ M2 : τ2 for some τ2. Suppose C(LK, (T)∗,M) = C.
Then C = (C1 C2) such that C1 = C(LK, T ,M1) and C1 = C(LK, T ,M2). By the
induction hypotheses for M1 and M2, (η1(erase(M1)), η2

S(L)(C1)) ∈ RS(τ2→τ1) and
(η1(erase(M2)), η2

S(L)(C2)) ∈ RS(τ2). Then by the definition of the relations R,
(η1(erase(M1 M2)), η2

S(τ1)
(C1 C2)) ∈ RS(τ1).

Case {l1=M1,· · ·,ln=Mn}. Suppose Λlet,¦ ` K, T ¤ {l1 = M1, · · · , ln = Mn} :
{l1 : τ1, · · · , ln : τn}. Then Λlet,¦ ` K, T ¤ Mi : τi (1 ≤ i ≤ n). Suppose
C(LK, (T)∗, {l1=M1,· · ·,ln=Mn}) = C. Then C = {C1, · · · , Cn} such that Ci =
C(K, T ¤ Mi : τi) (1 ≤ i ≤ n). Let ei = erase(Mi) (1 ≤ i ≤ n). By the
definitions of the reduction systems, η1({l1 = e1, · · · , ln = en}) ↓ iff η1(ei) ↓
for all i, and η2

S(L)({C1, · · · , Cn}) ↓ iff η2
S(L)(Ci) ↓ for all i. Furthermore, if

η1({l1 = e1, · · · , ln = en}) ↓ e′ then e′ = {l1 = e′1, · · · , ln = e′n} such that η1(ei) ↓ e′i
for (1 ≤ i ≤ n). Similarly for η2

S(L)({C1, · · · , Cn}). By the induction hypothe-
ses, (η1(ei), η2

S(L)(Ci)) ∈ RS(τi) for each i. Thus we have (η1({l1 = e1, · · · , ln =
en}), η2

S(L)({C1, · · · , Cn})) ∈ RS({l1:τ1,···,ln:τn}).

Case M1:τ1¦l. Suppose Λlet,¦ ` K, T ¤ M1 : τ1¦l : τ2. Then Λlet,¦ ` K, T ¤ M1 :
τ1, K ` τ1 :: {{l : τ2}}. Suppose C(LK, (T)∗,M1:τ1¦l) = C. Then C = C1[I] such
that C1 = C(LK, (T)∗, M1) and LK ` I : idx (l, τ1). Let e1 = erase(M1). By the
induction hypothesis, (η1(e1), η2

S(LK)(C1)) ∈ RS(τ1). Since η1(e1) ↓ iff η1(e1¦l) ↓,
ACM Transactions on Programming Languages and Systems, 1995.

892 · Atsushi Ohori

and η2
S(LK)(C1) ↓ iff η2

S(LK)(C1[I]) ↓, we have η1(e) ↓ iff η2
S(LK)(C) ↓. Suppose

η1(e1) ↓ e′1 and η2
S(LK)(C1) ↓ C ′1. Since ∅ ` S(τ1) :: {{l : S(τ2)}}, S(τ1) is a ground

record type of the form {· · · , l : S(τ2), · · ·}. Then by the definition of R, e′1 =
{· · · , l = e′, · · ·}, C ′1 = {· · · , C ′, · · ·} such that C ′ is at the index |idx (l, S(τ1))| and
(e′, C ′) ∈ RS(τ2). This proves (η1(e1¦l), η2

S(LK)(C)) ∈ RS(τ2).

Case Poly(M1:σ). Let ∀t1::k1 · · · tn::kn.τ1 = σ, and ∀t1::k1 · · · tn::kn.idx (l1, t′1) ⇒
· · · idx (lm, t′m) ⇒ τ1 = (σ)∗. Suppose Λlet,¦ ` K, T ¤ Poly(M1:σ) : σ. Then Λlet,¦ `
K{t1::k1 · · · tn::kn}, T ¤ M1 : τ1. Suppose C(LK, (T)∗, Poly(M:σ)) = C. Then
C = λI1 · · ·λIm.C1 such that C1 = C(LK{I1:idx(l1,t′1),···,Im:idx(lm,t′m)}, (T)∗, M1).
Let e = erase(M1). Let S′ be any ground substitution such that dom(S′) =
{t1, · · · , tn} and such that it respects {t1::S(k1) · · · tn::S(kn)}. Then S′ ◦S respects
K{t1::k1, · · · , tn::kn} and (η1, η2) ∈ RS′◦S(T). By the induction hypothesis,

(η1(e), η2
S′◦S(LK{t1::k1,···,tn::kn})

(C1)) ∈ RS′◦S(τ1).

But LK{t1::k1,···,tn::kn} = LK{I1 : idx (l1, t′1), · · · , Im : idx (lm, t′m)}, and there-
fore η2

S′◦S(LK{t1::k1,···,tn::kn})
= η2

S(LK){I1:idx(l1,S′(t′1)),···,Im:idx(lm,S′(t′m))}. Let ij =
|idx (lj , S′(t′j))| (1 ≤ j ≤ m). Then we have

η2
S′◦S(LK{t1::k1,···,tn::kn})

(C1) = [i1/I1, · · · , im/Im](η2
S(LK)(C1)).

By the definition of evaluation, λI1 · · · Im.η2
S(LK)(C1) ↓ iff η2

S(LK)(C1) ↓. Since
each t′i is a type variable, by the type system, Ii in η2

S(LK)(C1) does not ap-
pear in any subterm of the forms {C1, · · · , Cn}[Ii], modify({C1,· · ·,Cn},Ii,C

0),
switch 〈Ii=C0〉 of C1,· · ·,Cn. Now if λI1 · · · Im.η2

S(LK)(C1) ↓ λI1 · · · Im.C ′1, then
the same property holds for Ii and C ′i, otherwise the subject reduction property of
λlet,[] (Theorem 4.2.3) would have been violated. Thus:

λI1 · · · Im.η2
S(LK)(C1) ↓ λI1 · · · Im.C ′1

iff ((λI1 · · ·λIm.η2
S(LK)(C1)) i1 · · · im) ↓ [i1/I1, · · · , im/Im](C ′1)

iff [i1/I1, · · · , im/Im](η2
S(LK)(C1)) ↓ [i1/I1, · · · , im/Im](C ′1)

Then the induction hypothesis and the definition of the relation R implies that
(η1(e), η2

S(L)(λI1 · · ·λIm.C1)) ∈ RS(∀t1::k1···tn::kn.τ1).

Case let x:σ = M1 in M2. Suppose Λlet,¦ ` K, T ¤ let x : σ = M1 in M2 : τ .
Then Λlet,¦ ` K, T {x : σ} ¤ M2 : τ , Λlet,¦ ` K, T ¤ M1 : τ , e = let x = e1 in e2

such that e1 = erase(M1) and e2 = erase(M2), C = let x=C1 in C2 such that
C1 = C(LK, T ,M1), C2 = C(LK, T {x : σ}, M2). The desired result follows by the
induction hypotheses.

The cases for modify(M1,l,M2) and (〈l=M〉:σ) are similar to that of M : τ ¦l.

ACKNOWLEDGMENTS

The author would like to thank Yasuhiko Minamide for careful reading of a draft of
this article and providing many useful comments, and Jacques Garrigue for helpful
discussions. The author also thanks the anonymous referees for helpful comments
for improving the presentation of the article.
ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 893

REFERENCES

Appel, A. W. and MacQueen, D. B. 1991. Standard ML of New Jersey. In Proceedings of
the 3rd International Symposium on Programming Languages and Logic Programming.
Lecture Notes in Computer Science, vol. 528. Springer-Verlag, Berlin, 1–13.

Barendregt, H. 1984. The Lambda Calculus: Its Syntax and Semantics, rev. ed. Studies in
Logic and the Foundations of Mathematics, vol. 103. North-Holland, Amsterdam.

Breazu-Tannen, V. and Coquand, C. 1988. Extensional models for polymorphism. Inf. Com-
put. 59, 85–114.

Breazu-Tannen, V., Coquand, T., Gunter, C., and Scedrov, A. 1991. Inheritance as ex-
plicit coercion. Inf. Comput. 93, 172–221.

Bruce, K. B., Meyer, A. R., and Mitchell, J. C. 1990. The semantics of second-order
lambda calculus. Inf. Comput. 85, 76–134.

Buneman, P., Jung, A., and Ohori, A. 1991. Using powerdomains to generalize relational
databases. Theor. Comput. Sci. 91, 1, 23–56.

Buneman, P. and Ohori, A. 1995. Polymorphism and type inference in database programming.
ACM Trans. Database Syst. to appear.

Cardelli, L. 1988. A semantics of multiple inheritance. Inf. Comput. 76, 138–164.

Cardelli, L. 1994. Extensible records in a pure calculus of subtyping. In Theoretical Aspects of
Object-Oriented Programming, C. Gunter and J. Mitchell, Eds. MIT Press, Cambridge,
Mass., 373–426.

Cardelli, L. and Mitchell, J. 1989. Operations on records. In Proceedings of Mathemati-
cal Foundation of Programming Semantics. Lecture Notes in Computer Science, vol. 442.
Springer-Verlag, Berlin, 22–52.

Cardelli, L. and Wegner, P. 1985. On understanding types, data abstraction, and polymor-
phism. ACM Comput. Surv. 17, 4 (Dec.), 471–522.

Cartwright, R. and Fagan, M. 1991. Soft typing. In Proceedings of the ACM Conference on
Programming Language Design and Implementation. ACM, New York, 278–292.

Connor, R., Dearle, A., Morrison, R., and Brown, F. 1989. An object addressing mecha-
nism for statically typed languages with multiple inheritance. In Proceedings of the ACM
OOPSLA Conference (New Orleans, La.). ACM, New York, 279–285.

Courcelle, B. 1983. Fundamental properties of infinite trees. Theor. Comput. Sci. 25, 95–169.

Damas, L. and Milner, R. 1982. Principal type-schemes for functional programs. In Proceed-
ings of the ACM Symposium on Principles of Programming Languages. ACM, New York,
207–212.

Fagin, R., Nievergelt, J., Pippenger, N., and Strong, H. 1979. Extendible hashing — a
fast access method for dynamic files. ACM Trans. Database Syst. 4, 3, 315–344.

Felleisen, M., Friedman, D. P., Kohlbecker, E., and Duba, B. 1987. A syntactic theory
of sequential control. Theor. Comput. Sci. 52, 205–237.

Fuh, Y.-C. and Mishra, P. 1988. Type inference with subtypes. In Proceedings of ESOP ’88.
Lecture Notes in Computer Science, vol. 300. Springer-Verlag, Berlin, 94–114.

Furuse, J.P. and Garrigue, J. 1995. A label selective lambda calculus with optional argu-
ment and its compilation method. RIMS Preprint 1041, Research Instit. for Mathematical
Sciences, Kyoto Univ., Kyoto, Japan.

Gallier, J. and Snyder, W. 1989. Complete sets of transformations for general E-unification.
Theor. Comput. Sci. 67, 2, 203–260.

Garrigue, J. and Äıt-Kaci, H. 1994. The typed polymorphic label-selective λ calculus. In
Proceedings of the ACM Symposium on Principles of Programming Languages. ACM, New
York, 35–47.

Girard, J.-Y. 1971. Une extension de l’interpretation de gödel à l’analyse, et son application
à l’élimination des coupures dans l’analyse et théorie des types. In the 2nd Scandinavian
Logic Symposium. North-Holland, Amsterdam.

Hall, C. 1994. Using Hindley-Milner type inference to optimize list representation. In Proceed-
ings of the ACM Conference on Lisp and Functional Programming. ACM, New York.

ACM Transactions on Programming Languages and Systems, 1995.

894 · Atsushi Ohori

Hall, C., Hammond, K., Peyton Jones, S., and Wadler, P. 1994. Type class in Haskell.
Tech. rep., Univ. of Glasgow, Glasgow, Scotland.

Harper, R. and Mitchell, J. C. 1993. On the type structure of Standard ML. ACM Trans.
Program. Lang. Syst. 15, 2, 211–252.

Harper, R. and Morrisett, G. 1995. Compiling polymorphism using intensional type analysis.
In Proceedings of the ACM Symposium on Principles of Programming Languages. ACM,
New York, 130–141.

Harper, R. and Pierce, B. 1991. A record calculus based on symmetric concatenation. In
Proceedings of the ACM Symposium on Principles of Programming Languages. ACM, New
York, 131–142.

Jategaonkar, L. A. and Mitchell, J. 1993. Type inference with extended pattern matching
and subtypes. Fundam. Inform. 19, 127–165.

Leroy, X. 1992. Unboxed objects and polymorphic typing. In Procceedings of the ACM Sym-
posium on Principles of Programming Languages. ACM, New York, 177–188.

Milner, R. 1978. A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17,
348–375.

Milner, R., Tofte, M., and Harper, R. 1990. The Definition of Standard ML. MIT Press,
Cambridge, Mass.

Mitchell, J. 1984. Type inference and type containment. In Semantics of Data Types. Lecture
Notes in Computer Science, vol. 173. Springer-Verlag, Berlin, 257–277.

Mitchell, J. 1990. Type systems for programming languages. In Handbook of Theoretical
Computer Science, J. van Leeuwen, Ed. MIT Press, Cambridge, Mass., 365–458.

Ohori, A. 1989. A simple semantics for ML polymorphism. In Proceedings of the ACM/IFIP
Conference on Functional Programming Languages and Computer Architecture (London,
England). ACM, New York, 281–292.

Ohori, A. 1990. Semantics of types for database objects. Theor. Comput. Sci. 76, 53–91.

Ohori, A. 1992. A compilation method for ML-style polymorphic record calculi. In Proceedings
of the ACM Symposium on Principles of Programming Languages. ACM, New York, 154–
165.

Ohori, A. and Buneman, P. 1988. Type inference in a database programming language. In
Proceedings of the ACM Conference on LISP and Functional Programming (Snowbird,
Utah). ACM, New York, 174–183.

Ohori, A. and Buneman, P. 1989. Static type inference for parametric classes. In Proceed-
ings of the ACM OOPSLA Conference (New Orleans, La.). ACM, New York, 445–456.
Extended version in Theoretical Aspects of Object-Oriented Programming, C. Gunter and
J. Mitchell, Eds. MIT Press, Cambridge, Mass., 121–148, 1994.

Ohori, A. and Takamizawa, T. 1995. A polymorphic unboxed calculus as an abstract ma-
chine for polymorphic languages. RIMS Preprint 1031, Research Instit. for Mathematical
Sciences, Kyoto Univ., Kyoto, Japan.

Peterson, J. and Jones, M. 1993. Implementing type classes. In Proceedings of the ACM
Conference on Programming Language Design and Implementation. ACM, New York, 227–
236.

Rémy, D. 1989. Typechecking records and variants in a natural extension of ML. In Proceedings
of the ACM Symposium on Principles of Programming Languages. ACM, New York, 77–87.

Rémy, D. 1992. Typing record concatenation for free. In Proceedings of the ACM Symposium
on Principles of Programming Languages. ACM, New York, 167–176.

Rémy, D. 1994a. Efficient representation of extensible records. In Proceedings of the ACM
SIGPLAN Workshop on ML and Its Applications. ACM, New York, 12–16.

Rémy, D. 1994b. Type inference for records in a natural extension of ML. In Theoretical
Aspects of Object-Oriented Programming, C. Gunter and J. Mitchell, Eds. MIT Press,
Cambridge, Mass., 67–96.

Reynolds, J. 1974. Towards a theory of type structure. In the Paris Colloqium on Program-
ming. Springer-Verlag, Berlin, 408–425.

ACM Transactions on Programming Languages and Systems, 1995.

A Polymorphic Record Calculus and Its Compilation · 895

Robinson, J. A. 1965. A machine-oriented logic based on the resolution principle. J. ACM 12,
23–41.

Shao, Z., Reppy, J., and Apple, A. W. 1994. Unrolling lists. In Proceedings of the ACM
Conference on Lisp and Functional Programming. ACM, New York.

Stansifer, R. 1988. Type inference with subtypes. In Proceedings of the ACM Symposium on
Principles of Programming Languages. ACM, New York, 88–97.

Steele, G.L. 1984. Common LISP: The Language. Digital Press, Burlington, Ma.

Tolmach, A. 1994. Tag-free garbage collection using explicit type parameters. In Proceedings
of the ACM Conference on Lisp and Functional Programming. ACM, New York, 1–11.

Vasconcelos, V. 1994. A process-calculus approach to typed concurrent objects. Ph.D. thesis,
Dept. of Computer Science, Keio Univ., Yokohama, Japan.

Wadler, P. and Blott, S. 1989. How to make ad hoc polymorphism less ad hoc. In Proceedings
of the ACM Symposium on Principles of Programming Languages. ACM, New York, 60–76.

Wand, M. 1987. Complete type inference for simple objects. In Proceedings of the 2nd IEEE
Symposium on Logic in Computer Science (Ithaca, New York). IEEE, New York, 37–44.

Wand, M. 1988. Corrigendum : Complete type inference for simple object. In Proceedings of
the 3rd IEEE Symposium on Logic in Computer Science. IEEE, New York, 132.

Wand, M. 1989. Type inference for records concatenation and simple objects. In Proceedings
of the 4th IEEE Symposium on Logic in Computer Science. IEEE, New York, 92–97.

Wright, A. and Cartwright, R. 1994. A practical soft type system for scheme. In Proceedings
of the ACM Conference on Lisp and Functional Programming. ACM, New York, 250–262.

Received April 1995; revised September 1995; accepted October 1995

ACM Transactions on Programming Languages and Systems, 1995.

