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The mouse agouti-related protein (AGRP) is a powerful ap-
petite effector that results in hyperphagia and the develop-
ment of obesity when administered intracerebroventricularly
or when overexpressed in transgenic mice. Animal studies
have also shown that exogenous administration of AGRP pre-
disposes toward hedonic intake of high fat and high sucrose
diets. The human ortholog (hAGRP) maps on chromosome
16q22 and has similar physiological properties, as tested in
animal models. A polymorphism was identified in the third
exon of hAGRP, c.199G3A, that resulted in a nonconservative

amino acid substitution, Ala67Thr. Computational analysis of
the protein showed significant differences in the coils of the
two polymorphic isoforms of the protein. Human studies
showed no genotype effects in individuals with a mean age of
25 yr. However, the G/G genotype was significantly associated
with fatness and abdominal adiposity in the parental popu-
lation with a mean age of 53 yr. The c.199G3A polymorphism
in hAGRP could, therefore, play a role in the development of
human obesity in an age-dependent fashion. (J Clin Endocri-
nol Metab 87: 4198–4202, 2002)

THE HYPOTHALAMUS PLAYS an important role in the
regulation of energy homeostasis (1, 2). Human agouti-

related protein (hAGRP) is expressed in the arcuate nucleus of
the hypothalamus, testes, and adrenal gland and is up-regu-
lated in obese and diabetic mice (3, 4). AGRP has been char-
acterized as a potent anabolic effector of food intake (5). The
murine and human orthologs stimulate hyperphagia when ad-
ministered intracerebroventricularly (6, 7) or when overex-
pressed in transgenic mice (8). Streptozotocin-induced diabetes
resulted in up-regulation of AGRP (9), whereas chronic intra-
cerebroventricular administration of AGRP resulted in a de-
crease in the expression of uncoupling protein 1 in the rat (10),
suggesting a role for AGRP in energy expenditure. Leptin
down-regulates AGRP expression (11–13), whereas hAGRP can
itself be a negative regulator of leptin action (14). The carboxyl-
terminus region has been shown to be more active than other
portions of the protein. A synthetic isoform of the hAGRP
protein containing the 46 carboxyl-terminus cysteine-rich res-
idues, hAGRP-(87–132), was able to effectively bind the mela-
nocortin receptors MC3R, MC4R, and MC5R and inhibit the
binding of �MSH (15, 16). The minimal promoter of hAGRP
was recently characterized, and two putative binding sites were
identified for the signal transducers and activators of transcrip-
tion (17) that have binding sites for the long isoform of the leptin
receptor (18, 19). AGRP is thought to exert its orexigenic effects
by antagonizing the action of �MSH at its receptors, MC3R and
MC4R. This takes place by the activation of AGRP/neuropep-
tide Y neurons (20, 21), which results in increased expression of

the two neuropeptides. In the paraventricular nucleus, in-
creased amounts of AGRP/neuropeptide Y block the action of
�MSH by binding its receptor MC4R (22–27), which leads to an
increase in appetite and food intake.

A single nucleotide polymorphism (SNP) in the minimal
promoter of the gene, �38C3T, was recently shown to
affect promoter activity (28). Moreover, the genotype with
the high promoter activity, C/C, was significantly associ-
ated with both obesity and type 2 diabetes in Africans (28).
This SNP was found in Africans and Africans of the Di-
aspora, but not in Caucasian Americans. In the present
study we report a recently identified polymorphism in the
coding region, c.199G3A (17), that was found in Cauca-
sian Americans, but not in Africans and Africans of the
Diaspora. Two other groups recently reported the same
SNP. Vink et al. (29) found that the c.199G3A polymor-
phism was significantly associated with the eating disor-
der anorexia nervosa, whereas Dubern et al. (30) did not
find a significant association with body mass index (BMI)
or percent fat mass in obese children. Here we show that
the c.199G3A polymorphism could affect the secondary
structure of the protein, and that the G/G genotype is
significantly associated with human adiposity in an age-
dependent fashion.

Subjects and Methods
Subjects

The HERITAGE Family Study cohort consists of 483 white subjects
(233 men and 250 women) from 99 nuclear families and 259 black
subjects (88 men and 171 women) from 105 family units. The study
design and inclusion criteria have been described previously (31). To be

Abbreviations: AGRP, Agouti-related protein; BMI, body mass
index; hAGRP, human agouti-related protein; SNP, single nucleotide
polymorphism.
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eligible, the individuals were required to be in good health, i.e. free of
diabetes, cardiovascular diseases, or other chronic diseases that would
prevent their participation in an exercise training program. Subjects
were also required to be sedentary, defined as not having engaged in
regular physical activity over the previous 6 months. Individuals with
resting systolic blood pressure greater than 159 mm Hg and/or diastolic
blood pressure more than 99 mm Hg were excluded. The study protocol
had been approved by each of the institutional review boards of the
Heritage Family Study research consortium. Written informed consent
was obtained from each participant.

Body composition

Stature was measured to the nearest 0.1 cm with the subject standing
erect on a flat surface, with heels, buttocks, and back pressed against the
stadiometer, and the head positioned in the Frankfort horizontal plane.
Body mass was recorded to the nearest 100 g using a balance scale with
subjects clothed only in a light-weight bathing suit. BMI was calculated
by dividing body mass (kilograms) by stature squared (meters). Body
density was assessed by underwater weighing (32). Body density was
converted to percent body fat (32). The reproducibility of the body
density and fat mass measurements was very high, with intraclass
correlations for repeated measures ranging between 0.97 and 1.00 with-
out significant differences among the four clinical centers involved in
this study (31). Computed tomography scans were used to determine
abdominal total fat, abdominal sc fat, and abdominal visceral fat as
previously described (33). The computed tomography scans were ob-
tained between the fourth (L4) and fifth (L5) lumbar vertebrae. Areas
were calculated by delineating them with a graph pen and then
computing using an attenuation range from �30 to –190 Hounsfield
units (34).

Genotyping for the c.199G3A polymorphism

The c.199G3A polymorphism was scored by amplification of the
second coding exon with the following primers: agrpga1, 5�-agt ctc ccc
tgg cat aaa cc-3�; and agrpga2; gta gtg tcg tcg ctg gtg ag-3�, essentially as
previously described for this polymorphism (17). Briefly, PCR cycling
conditions were as follows: 1 cycle at 94 C for 4 min, followed by 35
cycles, each consisting of a step at 94 C for 60 sec, a step at 60 C for 60
sec, and a step at 72 C for 60 sec. A final extension step at 72 C for 5 min
was also applied. PCR was carried out in 20-�l volumes. Amplicons
were digested in a 30-�l volume containing 1 U of the enzyme BsmAI,
as prescribed by the manufacturer (New England Biolabs, Inc., Beverly,
MA). The G/G genotype does not digest with BsmAI. Genotyping was
performed in a blinded fashion without prior knowledge of the partic-
ipants or their phenotypes.

Statistical analyses

A �2 test was used to confirm that the observed genotype frequencies
were in Hardy-Weinberg equilibrium. The normality of the distributions
was checked with the Shapiro-Wilk statistic of the univariate procedure
of the SAS statistical software package (SAS Institute, Inc., Cary, NC).
Associations between the AGRP c.199G[arrow]A SNP and adiposity
phenotypes were analyzed using a mixed procedure in the SAS software
package. Nonindependence among family members was adjusted for
using a sandwich estimator, which asymptotically yields the same pa-
rameter estimates as ordinary least squares or regression methods, but
the se values and consequently hypothesis tests are adjusted for the
dependencies. The method is general, assuming the same degree of
dependency among all members within a family. Body composition
phenotypes were adjusted for age and sex; abdominal visceral fat was
adjusted also for total fat mass. Generation-specific associations between
genotype and body composition phenotypes were tested by adding a
generation by genotype interaction term into the mixed model. Values
are given as the mean and sem.

Nomenclature

The nomenclature adopted for referencing gene names, symbols,
and polymorphism descriptions was according to den Dunnen and

Antonarakis (34a) and the Nomenclature Working Group (http://
archive.uwcm.ac.uk/uwcm/mg/docs//mut_nom.html).

Results

An SNP was identified in the third exon of the gene,
c.199G3A (counting as nucleotide 1 of the cDNA the ade-
nine in the translation initiator, ATG) that resulted in a non-
conservative amino acid substitution of the monocarboxylic
alanine at position 67 by the hydroxyl-containing threonine
(Ala67Thr). Algorithmic analysis (35, 36) was undertaken to
predict the impact of the polymorphism on the secondary
structure of the molecule, which could impact the functional
activity of the protein. Windows 1 and 2 for the predicted
coils were only slightly affected, but window 3 was signif-
icantly affected, with the probability score dropping by ap-
proximately 50% (Fig. 1). These data were confirmed using
an alternative algorithm (37) (data not shown).

The well characterized HERITAGE family study (HEalth,
RIsk factors, exercise Training, And GEnetics) (31) was used
to examine the association of the c.199G3A SNP with BMI,
adiposity, and abdominal fat. The basic characteristics of the
study population are presented in Table 1. Four hundred and
eighty-two individuals were genotyped, including 183 par-
ents (unrelated individuals) and 299 offspring (related indi-
viduals). There were no A/A homozygotes identified in the
Caucasian sample, whereas a sample of 225 African-Amer-
icans showed complete absence of this SNP. There was a
significant interaction between genotype and generation in
the Caucasian sample for adiposity phenotypes (P � 0.0097).
The offspring were therefore analyzed as a separate group.
The mean age of the offspring was 25 yr, and that of the
parents was 53 yr (Table 1). There were no significant asso-
ciations between the c.199G3A polymorphism and mea-
sures of human fatness (BMI, fat mass, percent body fat, and
abdominal visceral fat) in the offspring (all offspring or a
single offspring per family; Table 2). However, all 4 measures
of human fatness were significantly higher in the homozy-
gous, G/G, parents even when abdominal visceral fat was
adjusted for fat mass (Table 2).

Discussion

In the present study we report a polymorphism in the
coding region of AGRP, c.199G�A, that was significantly
associated with the development of obesity in humans, but
in an age-dependent fashion. The plasma levels of hAGRP
have previously been reported to be higher in obese men (38),
but in the case of the c.199G3A polymorphism it would
more likely be the activity and binding affinity for the mela-
nocortin receptors that could be affected. It should be pointed
out that the amino acid substitution Ala67Thr is outside of the
protein fragment that has been shown to retain activity (res-
idues 83–132) (16). Nonetheless, algorithmic analysis of the
secondary structure of the two isoforms of the polymorphic
protein revealed differences in the coils of the two proteins
(35, 36). These findings were confirmed by another algorithm
also predicting coiled coils (37). We further performed mul-
tiple alignments (data not shown) using AGRP protein se-
quences from different species (human, mouse, bovine, and
porcine). The alanine at position 67 was 100% conserved, but
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FIG. 1. Graphical presentation of the impact of the Ala67Thr polymorphism on the secondary structure of the protein. Different windows of the
predicted coiled coils are numbered and pointed to by the arrows. A, Coiled coils for the Ala67Ala isoform; B, coiled coils for the Thr67Thr isoform.
The algorithm used for the prediction of the coils was previously described (35, 36).
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this is not surprising given that most of the AGRP amino acid
residues are 100% conserved between mammalian species.
We hypothesize that the functional properties of AGRP could
be altered by this polymorphism due to conformational
changes made to the protein structure, as has been shown for
missense mutations in other genes (39, 40). This hypothesis,
however, requires functional testing (e.g. x-ray crystallogra-
phy and measurement of melanocortin binding by the mu-
tant) to confirm the impact of the SNP on the activity of the
protein.

AGRP induced feeding when administered in the arcuate
nucleus and dorsomedial and ventromedial nuclei (24) and
induced c-Fos-like expression in the accumbens shell and
central amygdala (41), which are key extrahypothalamic
feeding and reward centers. Furthermore, studies in rats
have shown that AGRP administration resulted in increased
consumption of the high sucrose diet over the low sucrose
option (42) and preference for the high fat diet over the low
fat option (43), suggesting that AGRP could play a role in
macronutrient selection. We hypothesize, therefore, that the
A allele of this SNP could predispose heterozygous individ-
uals toward a subtle, but chronic, selection of certain foods
that might result in lower BMI, lower fat mass, lower percent
body fat, and lower visceral adiposity. This hypothesis, how-
ever, requires further investigation, in particular of the avail-
ability of data that take into consideration the nutritional
composition of foods that were consumed by the study pop-
ulation. We also performed a separate analysis of the off-
spring for ages between 30 and 40 yr to examine whether the
G/A genotype in the older offspring had the same effect as it
did on the parents. There were no significant associations in
this subset, but the sample sizes were relatively small (5 G/A
and 64 G/G). These data tentatively suggest that the effects

of the G/A genotype on visceral adiposity are only evident in
the older population.

In the present study we showed that the c.199G3A SNP
was consistently associated with four different measures of
human fatness: BMI, fat mass, percent body fat, and abdom-
inal visceral fat, all adjusted for gender and age. Importantly,
these findings were true in the case of the parents, but not in
the case of the offspring, which suggests that the G/A geno-
type could exert its effects in an age-dependent fashion. We
conclude that the c.199G3A polymorphism in hAGRP is
significantly associated with late-onset obesity in humans
and could provide a diagnostic marker for fatness in Cau-
casian populations.
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