
A Polynomial Chaos Approach to Robust
Multiobjective Optimization

Silvia Poles1, Alberto Lovison2

1 EnginSoft S.p.A., Optimization Consulting
Via Giambellino, 7 35129 Padova, Italy

s.poles@enginsoft.it
2 University of Padua, Department of Pure and Applied Mathematics

Via Trieste, 67 35121 Padova, Italy
lovison@math.unipd.it

Abstract. Robust design optimization is a modeling methodology, com-
bined with a suite of computational tools, which is aimed to solve prob-
lems where some kind of uncertainty occurs in the data or in the model.
This paper explores robust optimization complexity in the multiobjective
case, describing a new approach by means of Polynomial Chaos expan-
sions (PCE). The aim of this paper is to demonstrate that the use of PCE
may help and speed up the optimization process if compared to standard
approaches such as Monte Carlo and Latin Hypercube sampling.

Keywords. Uncertainty Quantification, Multiobjective Robust Design,
Monte Carlo, Latin Hypercube, Polynomial Chaos

1 Introduction

Robust design optimization has recently started to gain attention within the
engineering and scientific communities since many real world optimization prob-
lems, in numerous disciplines and application areas, contain uncertainty.

This uncertainty may derive from errors in measuring, or from difficulties in
sampling, or moreover can depend on events and effects in the future that are
not completely known.

Often the design parameters may only be determined only up to some toler-
ance or, in many cases, they vary according to a probability distribution. Deter-
ministic approaches to optimization do not consider the impact of such varia-
tions, and as a result, design solutions may be very sensitive to these variations.
In this paper we focus on this source of uncertainty and propose an approach
based on Polynomial Chaos expansions to quantify and control uncertainty dur-
ing the optimization process.

2 A framework for robust multiobjective optimization

An ordinary multiobjective optimization (MO) problem:

min
x∈Rn

(f1(x), . . . , fk(x)) , (1)

Dagstuhl Seminar Proceedings 09041
Hybrid and Robust Approaches to Multiobjective Optimization
http://drops.dagstuhl.de/opus/volltexte/2009/2000

2 S. Poles, A. Lovison

assumes that all the design parameters x1, . . . , xn are completely controllable,
and that the functions f1, . . . , fk are deterministic, as in the case of computer
experiments.

In real problems, x1, . . . , xn can be affected by uncertainty, this means that
they vary over a certain range Θ following some probability distribution Di. In
such cases, the problem parameters xi should be substituted by random vari-
ables. For example we may have,

xi 7→ Xi(xi) ∼ Di,

where Di could be a normal distribution N (xi, σi) centered at xi and with a
fixed standard deviation σi. As a consequence each fj becomes itself a random
variable, defined as:

fj(x1, . . . , xn) −→ Fj(x1, . . . , xn) := fj(X1(x1), . . . , Xn(xn)), j = 1, . . . , k

This process is illustrated in Figure 1(a), where it is shown how the random-
ness in an input variable x propagates through a certain f . If the deterministic
parameter x becomes the floating center of a probability distribution X(x) as
above, the dependent variable y = f(x) becomes an indexed family of random
variables F (x) := f(X(x)), as depicted in Figure 1(b).

In this context, simply rewriting (1) substituting variables with random vari-
ables,

min
x∈Rn

(F1(x), . . . , Fk(x))

does not make sense. As reported in [4], we should solve our multiobjective opti-
mization problem redefining our task as minimizing the means of the stochastic
objectives

min
x∈Rn

(
µF1(x), . . . , µFk(x)

)
or with more sophisticated approaches as minimizing means plus κ standard
deviations:

min
x∈Rn

(
µF1(x) + κσF1(x), . . . , µFk(x) + κσFk(x)

)
This means that first of all we have to solve a problem of uncertainty quantifi-
cation, estimating the statistical moments of all the responses F1, . . . , Fk.

3 Quantifying uncertainty

Quantifying uncertainty means to describe as precisely as possible the statistical
features of the random variables Fj . It would be desirable to determine the full
probability distribution function (PDF) of Fj , however, in most of the real world
applications, it is sufficient to estimate mean and the standard deviation.

From now on, we will indicate simply F instead of Fj keeping in mind that
the uncertainty quantification has to be performed for every objective function
Fj in the problem at hand.

Polynomial Chaos for Multiobjective Optimization 3

(a) (b)

Fig. 1. (a) Graph of the function f(x) in (4). In abscissa a Monte Carlo sample
from the distribution X, in ordinate the corresponding sample of f(X). (b) The
effect on the objective function when uncertainty is introduced in the input
variable.

3.1 Analytical approach

The objective f can be given by a mathematical expression, like a polynomial,
or could be implicitly defined by an equation, or a partial differential equation.1

When an analytical expression is given, the statistical moments can be de-
termined exactly by means of symbolic integration:

µF = E [f(X)] =
∫
f(x)w(x)dx

σF =
√
E [(f(x)−mF)2] =

√∫
f(x)2w(x)dx− µ2

F .

where w(x) is the probability law of the random variable X. Integration may
be difficult (or even impossible) for complex functions, this means that solv-
ing uncertainty quantification analytically is unworkable. Moreover, in most of
engineering design optimization problems the full analytical formulations are
unavailable and other approaches are needed.

3.2 Monte Carlo Sampling

The most classical methodology consists in drawing a random sample
{
x(1), . . . , x(N)

}
from the joint distribution D1 ⊗ · · · ⊗ Dn, i.e., drawing N random numbers
1 A typical situation is when the uncertain variable y is defined as the solution of a

stochastic partial differential equation, L(x)y = g(x), where L is a partial differential
operator and x is a (set of) stochastic variable(s).

4 S. Poles, A. Lovison

{
x

(1)
i , . . . , x

(N)
i

}
from every distribution Di and then collecting the vectors

x(1) :=
(
x

(1)
1 , . . . , x(1)

n

)T
,

x(2) :=
(
x

(2)
1 , . . . , x(2)

n

)T
,

...
...

x(N) :=
(
x

(N)
1 , . . . , x(N)

n

)T
.

A sample sY :=
{
y(1), . . . , y(N)

}
of the uncertain dependent variable Y is com-

puted through application of f to each one of the x(j):

y(j) := f
(
x

(j)
1 , . . . , x(j)

n

)
, j = 1, . . . , N. (2)

Finally, the mean and standard deviation of Y are estimated by the mean and
the corrected standard deviation of the sample sY :

µY ' µ̄Y := 〈sY 〉 =
1
N

N∑
j=1

y(j),

σY ' σ̄Y :=

√√√√ 1
N − 1

N∑
j=1

(
y(j) − µ̄Y

)2
.

It is well known that statistics obtained via Monte Carlo are reliable, but are
very poor in accuracy. It is possible to prove that the statistical moments, and
as a result the mean and the standard deviation, of a random sample converge
to the exact moments of the full distribution of Y as 1√

N
, i.e.,

|µ̄Y (N)− µY | 6 C
1√
N
, N = sample size. (3)

This means that to halve the estimation error it is necessary a four times larger
sample, and to reduce the error of an order of magnitude (1/10) it is necessary
to take a sample 100 times larger.

Example 1. Let Y = f(X), where

f(x) := 20

e− (x+2.7)2

2

√
2π

+
e
− (x−2.7)2

2(22)

√
2π2

 , (4)

X ∼ N (2, 0.8), i.e., p(x) =
e
− (x−2)2

2(0.82)

√
2π0.8

. (5)

Polynomial Chaos for Multiobjective Optimization 5

Symbolic computation lead to exact mean and standard deviation for Y :

µY = E [f(X)] =
∫
f(x)p(x)dx ' 3.5209849377883446,

σY =
√
E [(f(x)− µY)2] =

√∫
f(x)2p(x)dx− µ2

Y ' 0.5073131752261475.

Performing 20 replications of Monte Carlo with increasing sample sizes N = 8,
16,. . . , 8192, 16384 brings the results reported in Table 1, reported also in log–
log scales in Figure 3. Summarizing the simulation results, we can notice that in
order to obtain an error of 1% we need a sample of approximately 256 points for
the mean and 8192 points for the standard deviation, while to reach the 0.1%
accuracy we need 16384 points for the mean. The 0.1% accuracy is not reached
within our simulation. Approximately, we should need an 800000 large sample.

nData Average Error Mean Average Error StDev

8 0.13523321821576068 0.1610272359435758
16 0.11711965574510605 0.0864659032341357
32 0.059222020366550845 0.04713102966918838
64 0.057784528160956625 0.05253445820159186
128 0.03838430554585017 0.034136016860713006
256 0.022344036432755 0.020111546424191107
512 0.02061047535304621 0.015098327730704386
1024 0.009641651869702561 0.010470922893152998
2048 0.010312701913743005 0.008504295088329538
4096 0.007855294629528543 0.006264945824679183
8192 0.003879754790574208 0.004073598991190089
16384 0.0029156602991482483 0.0034092125680575958

Table 1. Monte Carlo simulations replicated 20 times for the problem in 4

4 Latin Hypercube Sampling

If our purpose is to speed up the convergence of statistical moments of a random
sample to the actual statistical moments of the probability distribution from
which the sample is taken, there exists a smarter strategy: a Latin Hypercube
Sampling (LHS) (see [5]).

Latin Hypercubes is a sampling strategy which has the following good marginal
property: projecting the sample along each single variable produced a stratified
sampling. More precisely, if

{
x(1), . . . , x(N)

}
is a LHS, and every variable is di-

vided in N strata with equal probability, every single stratum will be occupied by
exactly one point. In figure 2(a) it is shown how to divide (−∞,+∞) into equal

6 S. Poles, A. Lovison

strata according to a standard normal distribution. A stratified sampling of N
points will put a point in each slice. An LHS in two dimension of N points can
be obtained dividing every variable into N equal slices and putting the points
in such a way that every column would contain only one point and the same for
every row, as shown in Figure 2(b-c). Doing so, the projections on each variable
will result in a stratified sampling.

(a) (b) (c)

Fig. 2. Latin Hypercube Samplings. In panel (a) R = (−∞,+∞) is subdivided
in slices with the same probability, according to a standard normal distribution.
In panel (b) the two variables are uniformly distributed while in panel two (c)
the two variables are normally distributed.

Latin hypercube sampling has been designed specifically to produce better
accuracy than Monte Carlo in uncertainty quantification. In fact it could be
proved that the error in estimating the statistical moments of the uncertain
variable scales as 1

N , where N is the sample size, i.e.,

|µ̄Y (N)− µY | 6 C
1
N
, N = sample size. (6)

This means that to halve the estimation error it suffices to double the sample
size, while, in order to reduce the error of an order of magnitude (1/10) it suffices
to take a sample 10 times larger.

Example 2. Let Y = f(X), as in the example above. Performing 20 replications
of Latin hypercube sampling with increasing sizes N = 8, 16,. . . , 8192, 16384
brings the results reported in Table 2, reported also in log–log scales in Figure
3. Summarizing, we can notice that in order to obtain an error of 1% we need
a sample of approximately 16 points for the mean and 128 points for the stan-
dard deviation, while to reach the 0.1% accuracy we need 64 and 2048 points,
respectively.

Polynomial Chaos for Multiobjective Optimization 7

nData Average Error Mean Average Error StDev

8 0.03838708340684853 0.0823640656227671
16 0.030567950211235484 0.040710534223220365
32 0.007571863928251643 0.01648128041162316
64 0.003418078142074843 0.006587126182655906
128 0.0024618618972161777 0.004848681021425105
256 0.0018873455437873998 0.003133046085056787
512 5.648087501843202E-4 0.0012508917015900789
1024 4.2176395159760905E-4 0.001042445154700511
2048 2.665184159121647E-4 4.888817764855613E-4
4096 1.1563639765082012E-4 2.1436136917031833E-4
8192 4.724986318238589E-5 7.123204436129126E-5
16384 3.0972434058185175E-5 4.675409217411719E-5

Table 2. Latin hypercube sampling replicated 20 times for the problem in 4

5 Polynomial Chaos

There exists also a methodology far more efficient than Monte Carlo and Latin
hypercube samplings for estimating statistical moments of uncertain dependent
variables. This methodology originates from the work of Norbert Wiener (see [7])
and is called Polynomial Chaos Expansion. This methodology consists essentially
in expanding the uncertain variable in a suitable series and then determine ana-
lytically (and thus exactly) the statistical moments of the truncated expansion.
The expansion itself is referred to as the “chaos”, while the maximum degree of
the expansion is called the “chaos order”. As a result, it can be proved that the
estimate of the statistical moments converge to true values at exponential rate,
i.e., the error in the estimates scales as exp(−N), where N is the sample size.

Consider for the moment a one dimensional problem. Assume that X is
distributed according a probability density function w(x). Let us fix a family of
polynomials

P = {p0(x), p1(x), . . . , pk(x), . . . } , where pi(x) has degree i,

and assume that f(x) is a linear combination of a finite subset of this family,

f(x) :=
k∑
i=0

αipi(x).

Formally, the m–th statistical moment of Y could be written as

〈ym〉 =
∫

(f(x))mw(x)dx =
∫ (k∑

i=0

αipi(x)

)m
w(x)dx =

=
∫ ∑

αi1 . . . αimpi1(x) . . . pim(x)w(x)dx =

=
∑

αi1 . . . αim

∫
pi1(x) . . . pim(x)w(x)dx. (7)

8 S. Poles, A. Lovison

Computing symbolically the integral of any product of the polynomials p0(x), . . . , pk(x), . . .
it would be possible to compute any statistical moment of Y .

The key point to realize an effective procedure is to notice that for every
probability density function w(x) there exists a special family of orthogonal
polynomials for which the w–scalar product

〈pi(x), pj(x)〉w :=
∫
pi(x)pj(x)w(x)dx = 0, whenever i 6= j.

In particular, if w(x) is Gaussian, w(x) = e−
x2
2√

2π
, the family of orthogonal poly-

nomials is formed by the Hermite polynomials:

He0(x) = 1,
He1(x) = x,

He2(x) = x2 − 1,

He3(x) = x3 − 3x,

He4(x) = x4 − 6x2 + 3,

He5(x) = x5 − 10x3 + 15x,

He6(x) = x6 − 15x4 + 45x2 − 15,

He7(x) = x7 − 21x5 + 105x3 − 105x,
...

...

Their w(x)–norm is:

‖Hek‖2w = 〈Hek(x), Hek(x)〉w :=
∫
Hek(x)2w(x)dx = k!.

Moreover, they satisfy the recursion formula, which helps in writing the infinite
sequence,

Hen+1(x) = xHen(x)− nHen−1(x). (8)

The special family of polynomials orthogonal with respect to the probability
distribution w(x) simplifies dramatically the formula for the statistical moments
(7). Indeed, consider the mean of f(X), i.e., the first statistical moment

µY =
〈
y1
〉

=
∫

(f(x))w(x)dx =
∫ (k∑

i=0

αipi(x)

)
w(x)dx =

=
k∑
i=0

αi

∫
pi(x)w(x)dx. (9)

Being p0(x) = 1,
∫
pi(x)w(x)dx ≡ 0 for every i > 0, thus

µY = α0.

Polynomial Chaos for Multiobjective Optimization 9

Computing the second statistical moment, we get, by the orthogonality of the
pi(x),

〈
y2
〉

=
∫

(f(x))2w(x)dx =
∫ (k∑

i=0

αipi(x)

)2

w(x)dx =

=
∑

i1=0,...,k
i2=0,...,k

αi1αi2

∫
pi1(x)pi2(x)w(x)dx =

=
∑

i=0,...,k

α2
i

∫
pi(x)2w(x)dx =

∑
i=0,...,k

α2
i ‖pi(x)‖2 . (10)

Therefore, the standard deviation is computed straightforwardly:

σY =
√
σ2
Y =

√
〈Y 2〉 − µ2

Y .

Things can be even simpler taking normalized polynomials, i.e., multiplying by
a suitable constant every polynomial such that

‖pi(x)‖2 = 〈pi(x), pi(x)〉 = 1.

In the case of normal distributions, one can consider the normalized Hermite
polynomials:

H̃ek(x) :=
Hek(x)√

k!
, =⇒

∥∥∥H̃ek(x)
∥∥∥ = 1, ∀k = 1, 2,

Doing so the variance of Y can be written as:

σ2
Y =

k∑
i=1

α2
i .

The formulas result very simple and effective.
Moreover, orthogonality guarantees that every polynomial expression of max-

imum degree k can be written uniquely as an expansion in the orthogonal family,
i.e., the coefficients αi are well defined.

For uniform, beta exponential and gamma probability distributions there
exist families of orthogonal polynomials, and corresponding chaoses. The corre-
spondence is summarized in Table 5.

In the case of multiple variables, assuming they are independently distributed,
it is possible to write multivariate chaoses considering the tensorial products of
the univariate polynomials corresponding to the distributions of every single
variable.

For instance, in the two dimensional case, for two identical normal distribu-
tions, the family of orthogonal polynomials orthogonal associated to the joint

10 S. Poles, A. Lovison

Distribution Probability Density Orthogonal Polynomials Support Range

Normal e
− x

2
2√

2π
Hermite Hen(x) (−∞, +∞)

Uniform 1/2 Legendre Pn(x) (−1, +1)

Beta (1−x)α(1−x)β

2α+β+1B(α+1,β+1)
Jacobi P

(α,β)
n (x) (−1, +1)

Exponential e−x Laguerre Ln(x) (0, +∞)

Gamma xαe−x

Γ (α+1)
Generalized Laguerre L

(α)
n (x) (0, +∞)

Table 3. Wiener–Askey scheme on relations between probability distributions
and orthogonal polynomials.

probability distribution w1(x1)⊗ w2(x2) starts with:

p0(x1, x2) = 1,
p1(x1, x2) = He1(x1),
p2(x1, x2) = He1(x2),
p3(x1, x2) = He2(x1),
p4(x1, x2) = He1(x1)He1(x2),
p5(x1, x2) = He2(x2),

...

thus, for writing a polynomial chaos in two variables of order 2, we have 6
parameters αi, i = 1, . . . , 5:

f(x1, x2) =
5∑
i=1

αipi(x1, x2).

More generally, to write a polynomial chaos in d variables of order k, the number
of free parameters is

#
{
αi

∣∣∣ deg(f) = k, x = (x1, . . . , xd)
}

=
(
k + d
d

)
=

(k + d)!
k!d!

.

To have an idea on how the minimum sample size scales with dimensionality and
chaos order, see Table 5.

5.1 Polynomial Chaos applied to a general function: Chaos
Collocation

It is clear that if the function f to be studied is a polynomial the problem is
finished, because the previous paragraph offers a methodology which will produce
analytically exact values for mean and standard deviation.

Polynomial Chaos for Multiobjective Optimization 11

N >
(k+d)!
k!d!

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

d = 1 2 3 4 5 6 7 8 9

d = 2 3 6 10 15 21 28 36 45

d = 3 4 10 20 35 56 84 120 165

d = 4 5 15 35 70 126 210 330 495

d = 5 6 21 56 126 252 462 792 1287

d = 6 7 28 84 210 462 924 1716 3003

d = 7 8 36 120 330 792 1716 3432 6435

d = 8 9 45 165 495 1287 3003 6435 12870

d = 9 10 55 220 715 2002 5005 11440 24310

d = 10 11 66 286 1001 3003 8008 19448 43758

d = 11 12 78 364 1365 4368 12376 31824 75582

d = 12 13 91 455 1820 6188 18564 50388 125970
...

Table 4. Number of parameters in a chaos of order k in d variables, i.e., minimum
size of a sample to be employed for chaos collocation.

In a more general case, assuming that the function f can be expanded in
series with respect to the sequence of orthogonal polynomials, i.e., when f is
analytical, the polynomial chaos method will produce an infinite series:

f(x) =
∞∑
i=0

αipi(x),

µY = α0,

σ2
Y =

∞∑
i=1

α2
i ‖pi(x)‖2w .

(11)

In numerical terms, it is necessary to arrest the expansion at a certain order,
and the values for mean and standard deviation, exact for the truncated chaos,
will be only an approximation of the true mean and standard deviation:

f(x) ∼=
k∑
i=0

αipi(x),

µY ∼= α0,

σ2
Y
∼=

k∑
i=1

α2
i ‖pi(x)‖2w .

(12)

Another problem consists in determining the coefficients, problem that can be
faced in two ways. Exploiting the orthogonality of the polynomials, coefficients

12 S. Poles, A. Lovison

can be determined by Galerkin projections:

〈f(x), pi(x)〉 =

〈∑
j

αjpj(x), pi(x)

〉
= αi ‖pi(x)‖2 ,

αi =
〈f(x), pi(x)〉
‖pi(x)‖2

.

(13)

The problem is shifted to which of computing effectively the integral 〈f(x), pi(x)〉 =∫
f(x)pi(x)w(x)dx. The best way to tackle it is via Gaussian integration formu-

las. In one dimension, a sample of k + 1 points is needed to apply the formula.
The points will be the Gaussian nodes associated to the weighting function w(x),
i.e., they will be the zeros of the orthogonal polynomial of degree k+1. Higher di-
mension requires even smarter strategy. The best solution is to employ Smolyak
sparse grids, in order to keep reasonable the size of the sample employed for
integration.

A simpler strategy for determining the αs consists in a nonlinear regression,
a procedure called chaos collocation. αs are chosen in order to minimize the sum
of the squares of the differences between f(x) and a chaos of order k, over an
assigned set of points {x̄1, . . . , x̄N}:

αi : min
αi

N∑
j=1

∣∣∣∣∣f(x̄j)−
k∑
i=1

αipi(x̄j)

∣∣∣∣∣
2

,

{x̄1, . . . , x̄N} , arbitrary sample

(14)

The size N of the sample has to be at least equal or larger than the number of
parameters α, i.e., N > (k+d)!

k!d! , as noticed above.
Even if the points can be chosen arbitrarily, it seems an attractive idea to

employ Latin hypercube samplings, because they can be of arbitrary size N ,
independently on d, and they are such that along every variable xi there will be
a point for each one of the strata with equal probability.

5.2 Polynomial Chaos Accuracy

In fact, it can be proved that the approximation is very good, i.e., as already
mentioned above, the error scales as exp(−N). This means that in order to halve
the error, it suffices to take a sample only log(2) times larger, and to reduce the
error of an order of magnitude, it suffices to consider a sample log(10) ' 3 times
larger.

Example 3. Let Y = f(X), as in (4) above. Uncertainty quantification via poly-
nomial chaos has been performed as follows. Let the order of the chaos expansion
be k = 1, 2, 3, . . . , 14. For every value k it has been extracted a sample of size
twice as large as the number of free parameters to be determined, i.e.,

Nk = 2× (d+ k)!
d!k!

= 2(k + 1).

Polynomial Chaos for Multiobjective Optimization 13

Next chaos collocation has been performed by least squares. The procedure has
been replicated 40 times. The results are reported in Table 3 and in Figure 3,
compared with the results of Monte Carlo and Latin hypercube.

Chaos Order Sample Size Average Error Mean Average Error StDev

1 4 0.09344069282015036 0.10429522822805484
2 6 0.019326055906163132 0.0697189377206368
3 8 0.011271788209210331 0.02654736033749695
4 10 8.03467578078676E-4 0.001684371972847451
5 12 7.877378937433344E-4 0.0028642320499342065
6 14 6.138461875910162E-4 0.0018260971296785306
7 16 2.663000586760944E-4 8.607678781524158E-4
8 18 3.311333063379607E-4 2.9924223556135885E-4
9 20 3.4444147888486044E-4 3.7666167066683075E-4
10 22 6.672160731088228E-5 1.358801147891109E-4
11 24 4.41927163589595E-5 1.2805374914218737E-4
12 26 8.515981157662944E-5 2.491946753026775E-4
13 28 8.775184447483708E-5 2.5355458755216276E-4
14 30 1.2559038776682741E-5 1.1160349235239675E-5

Table 5. Polynomial Chaos replicated 40 times for the problem in (4)

We notice that an error of 1% is obtained with a sample of 8 points for the
mean and with 12 points for the standard deviation, while a 0.1% is reached
with 12 and 20 points, respectively.

The comparison of the performances of the three methodologies is summa-
rized in Table 3.

Sample size needed Sample size needed
to reach 1% accuracy to reach 0.1% accuracy

for Mean / St Dev for Mean / St Dev

Monte Carlo 256 / 8192 16384 / –(' 800000?)

Latin hypercube 16 / 128 64 / 2048

Polynomial Chaos 8 /12 12 / 20

Table 6. Summary of the performances of Monte Carlo, Latin hypercube and
polynomial chaos for the problem (4).

14 S. Poles, A. Lovison

Latin Hypercubes

Monte Carlo

Polynomial Chaos

10 100 1000 104

Sample
size

10-4

0.001

0.01

0.1

Average
error

Mean

Latin Hypercubes

Monte Carlo

Polynomial Chaos

10 100 1000 104

Sample
size

10-4

0.001

0.01

0.1

Average
error

Standard Deviation

Fig. 3. Polynomial Chaos replicated 40 times compared with results from Latin
hypercube and Monte Carlo for the problem in 4. The plot is represented in
Log–Log scales. The convergence to zero is exponential, i.e., the slope in log–log
scale tends to −∞.

6 Conclusions and future works

In this paper we present some preliminary studies on the use of PCE for un-
certainty quantification for solving multiobjective optimization problems when
objective functions are not known analytically. This study shows that we can
have a considerable reduction in terms of number of required evaluations when
applying PCE instead of other classical approaches such as Monte Carlo or Latin
hypercube samplings. This is an important result especially when the multiobjec-
tive optimization problem requires the evaluation of time consuming functions.
A line of future work is to deepen into the study and application of the PCE
in order to understand how constraints and boundaries can be included in the
problem and how to deal practically with functions that, formally, cannot be
expanded in series.

References

1. R Askey and J Wilson 1985 Some basic hypergeometric polynomials that generalize
Jacobi polynomials Memoirs Amer. Math. Soc. AMS Providence RI 319

2. R Ghanem and J Red–Horse 1999 Propagation of probabilistic uncertainty in com-
plex physical systems using a stochastic finite element approach Phisica D 133
137–144

3. R Ghanem and P Spanos 1991 The stochastic finite element method: a spectral
approach Springer

Polynomial Chaos for Multiobjective Optimization 15

4. A. C. Mattson and A. Messac 2005 Pareto frontier based concept selection under
uncertainty, with visualization Optimization and Engineering 6(1) Special Issue
on Multidisciplinary Design Optimization

5. M D McKay, R J Beckmkan and W J Conover 1979 A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code Technometrics 21 239–245

6. Xiu D and Karniadakis G 2002 The Wiener–Askey polynomial chaos for stochastic
differential equations SIAM J. Sci. Comput. 24(2) 619–644

7. N Wiener 1938 The homogeneous chaos Amer. J. Math. 60 897–936

	Silvia Poles, Alberto Lovison

