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A POLYNOMIAL CHARACTERIZATION OF
(/, M)-INVARIANT AND REACHABILITY SUBSPACES*

E. EMRE-? AND M. L. J. HAUTUS{

Abstract. Based on the state space model of P. Fuhrmann, a link is laid between the geometric approach
to linear system theory, as developed by W. M. Wonham and A. S. Morse, and the approach based on
polynomial matrices. In particular polynomial characterizations of (A,B)-invariant and reachability
subspaces are given. These characterizations are used to prove the equivalence of the disturbance decoupling
problem and the exact model matching problem and also to connect the polynomial matrix and the geometric
approach to the construction of observers.

Finally, constructive procedures and conditions are given for computing the supremal (A, B)-invariant
subspace and reachability space and for checking the solvability of the exact model matching problem.

1. Introduction. The geometric approach to linear system theory has proved very
successful in solving a variety of problems (see 17] for a detailed account of this theory).
The principal concepts in this theory, which are instrumental in the description of many
results, are (A, B)-invariant subspaces and reachability (controllability) subspaces. An
alternative approach to linear system design has been developed in [13], [14], [16]. This
theory depends to a large extent on polynomial matrix techniques. It is evident that a
method for translating results of one theory to another is very desirable, because such a
method would yield a better understanding of the relations between the two different
approaches. This would be very useful, in particular since the geometric method may be
viewed as exponent of the so-called "modern control theory" and the polynomial
matrix method may be considered a generalization of the classical frequency domain
methods.

A number of papers with the objective of translating the results of geometric
control theory into polynomial matrix terms have appeared (e.g., [1], [3], [10], [12]).

It is the purpose of this paper to show that a very useful link between the two
approaches can be based on the work of P. Fuhrmann ([7], [8], [9]). Specifically, it will
be shown that using the state space model associated with a system matrix, introduced
by Fuhrmann, one can give characterizations of the concepts of (A, B)-invariant
subspaces and teachability subspaces in terms of polynomial matrices. This will be the
subject of 3 and 6. One application of the polynomial characterization of (A, B)-
invariant subspaces will be given in 4, where it will be shown that the disturbance
decoupling problem (see [17, Chap. 4]) and the exact model matching problem (see [ 16],
[14], [5]) are equivalent problems. Another application is given in 5, where it is shown
that the equivalence of the polynomial matrix and the geometric formulation of
observers can be derived from the results of 3. In 7, the concept of row properness
defined in [14], [16] is used to formulate a necessary and sufficient condition for the
existence of a solution of the exact model matching problem and, hence, of the
disturbance decoupling problem in terms of degrees of polynomial matrices. Also in 7
a constructive characterization of the supremal (A,B)-invariant subspace and
reachability space contained in ker C is given. Finally, in 8, the results of 3 are
extended to the situation where the system is described by Rosenbrock’s system matrix.

The preliminary 2 contains a short description of Fuhrmann’s state space model.
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2. The state space model associated with a matrix fraction representation. Let K
be a field. We denote by K[s] the set of polynomials, and by K(s) the set of rational
functions over K. If 6 is any set and p, q N, we denote by 6ep the set of p-vectors with
components in 6e and by 5epq the set of p x q matrices with entries in 5. If A is a p x q
matrix, we denote by {A} the K-linear space generated by the columns of A. If
U(s)eKqr[s] and :Kq[s]K"[s] is a linear map, then U(s) denotes the result
obtained by applying to each of the columns of U(s).

Let x(s)6K’(s). We denote by (x(s))_, the strictly proper part of x(s) and by
(x(s))_l, the coefficient of s -1 in the expansion of x(s) in powers of s -1.

DEFINITION 2.1. Let T(s) Keq[s]. Then Xr denotes the set of x(s) K[s] for
which there exists a strictly proper u(s) Ka(s) such that T(s)u(s) x(s).

In what follows, XT- plays a fundamental role (compare the closely related concept
of right rational annihilator [4]).

In particular, if p =q and T(s) is nonsingular, then

XT- {x(s) K"[s] T-X(s)x(s) is strictly proper}.

In this particular situation we define the map

zrT-:KP[s]X7 x (s) -- T(s)(T-l(s)x(s))_.

(Compare [7] and [8] where further properties of this map are given.) In the following
we consider XT- a K-linear space. We consider a linear system whose transfer matrix is
given by the left matrix fraction representation

(2.2) G(s) T-(s)U(s).
We assume that G(s) is strictly proper, T(s) K[s], U(s) Kr[s].

Define the linear maps

:X- ---, X- x(s) (sx(s)),

(2.3) Yd K -- XT- u U(s)u,

:XT- Kq :x(s)--(T-(s)x(s))-.
By definition, for x(s)XT, we have 4x(s)= sx(s)-T(s)c(s) for some c(s)6Kq[s].
Since T-l(s)x(s) and T-l4,x(s) are strictly proper it follows that c(s) must be constant.
Hence

(2.4) x(s) sx(s)- T(s)c

for some c K q, depending on x(s).
The following result is proved in [7].
THEOrEM 2.5. The system , := ((, .,) with state space XT- is an observable

realization of G(s). The realization is reachable iff T(s) and U(s) are left coprime.
We will call this realization Z the T-realization of G(s).
Conversely, if we are given an observable system Z (C, A, B), then we construct a

left matrix fraction representation of the transfer matrix of Z in the following way. Let

(2.6) C(sI-a)-= T-(s)S(s),
where S and T are left coprime. Define

(2.7) U(s):=S(s)B.

Then G(s)= T-a(s)U(s) is the required representation. We have the following result.
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THEOREM 2.8. The T-realization ofG(s) T-I(s)U(s), where Tand Uare defined
by (2.6) and (2.7) is isomorphic to the system ,.

Proof. Using the dual of [11, Cor. 4.11], we see that $(s) is a basis matrix of XT.
Hence the linear map

:K XT :x--S(s)x

is an isomorphism. Using the equation

T(s)C=S(s)(sI-A),

which follows from (2.6), one derives easily the relations g6e 6eA, 6eB, 6e C.
In particular, g6ex =g(S(s)x)= zrT.(S(s)(sI-A)x)+zrT-(S(s)Ax)= zrT-(T(s)Cx)+
zrT-(S(s)Ax) $(s)Ax YAx.

It follows that (C, A, B) and (c, g,) are isomorphic. [3
Using Theorem 2.8, we may transform results obtained for the particular realiza-

tion (’, ,) to any observable system.

3. (, )-invariant sulslaees.We give a characterization of the (’, )-invariant
subspaces of the T-realization of a transfer matrix G(s) T-l(s)U(s), as defined in the
previous section. For the definition of (4, )-invariant subspaces we refer to 17].

THEOREM 3.1. Let (s) be a qm polynomical matrix. Then {(s)} is an
(, )-invariantsubspace ofXT-iffthere exist Ca gqm, F1 Kr’andA K""such
that

(3.2) T(s)C1 + U(s)F1 (s)(sI-A1).

Proof. Suppose that {(s)} is an (’, )-invariant subspace, i.e.,

(3.3) {(s)} c_ {(s)}+ Im .
Applying (2.4) to each column of (s), we fine that 4(s)= l(S), where

(3.4) a(s) := s(s)-T(s)C1

for some C1 Kq". On the other hand, (3.3) implies

(3.5) l(S) (s)A1 + U(s)F1

for someA K"" and F1 Kr". Combining (3.4) and (3.5) yields (3.2). Conversely,
if we assume (3.2), then

(3.6) T-l(s)(s) (C1 + T-I(s)U(s)F1)(sI-A1)-1

is strictly proper and hence {(s)} Xr. Furthermore, if we define l(s) by (3.4), then
(3.5) follows from (3.2) and, hence, {l(S)} XT-. It follows that

’(xI)’(S)) "rt’T(SXIt(s)) 7rT(XI(S) + T(s)C1) xItl(s).

Thus, (3.5) implies (3.3). El
If the matrix (s) occurring in Theorem 3.1 has full column rank, it is possible to

give an interpretation to the matricesA 1, F1, C1. For in that case there exists a K-linear
map :XT K satisfying

(3.7) (s) F.
Then (3.2) implies

(3.8) (./- -’)(x) (s)A 1.
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It follows that {(s)} is an (M- -)-invariant subspace, and thatA is the matrix of the
restriction of s4- to {(s)} with respect to the basis matrix (s). In addition, F1 is
the matrix (with respect to the basis matrix (s) of {(s)} and the natural basis inK r) of. Finally, we have

(3.9) (s)-- C1

so that C1 is the matrix of the restriction of to {(s)} with respect to the basis matrix
(s) of {(s)} and the natural basis of K q.
The last result gives a characterization of (d, )-invariant subspaces contained in

ker.
COROLLARY 3.10. Let (s)Kq"[s]. Then {(s)} is an (M,)-invariant

subspace contained in ker iff there exist matrices F, A such that

(3.11) U(s)F (s)(sI-Ax).

Proof. According to (3.9), we must have C1 0 in formula (3.2). [3
COROLLARY 3.12. Xu is the largest (M, )-invariant subspace o]XTcontained in

ker ’.
Proof. According to (3.10), we have for an arbitrary (M, )-invariant subspace

{(s)} contained in ker :
W(s)= U(s)F(sI-A)-.

Hence {(s)}c__Xu (see Definition 2.1). It remains to be shown that Xu itself is an
(s4, )-invariant subspace. If (s) is a basis matrix of Xu then there exists a strictly
proper matrix Q(s) such that U(s)Q(s) (s). Let (F1, A1, B1) be a reachable realiza-
tion of Q(s), so that

(I)(s) U(s)FI(sI-A1)-IB1.
It follows from Lemma 3.13 that

W(s) := U(s)F(sI-AI)-1

is a polynomial matrix. By Corollary 3.10, {(s)} is an (s4, )-invariant subspace. Hence
{(s)}_ {(s)}. On the other hand, since (s) (s)B, it follows that {(s)} c__ {(s)}.
Consequently, Xu {(s)} {(s)} is an (M, )-invariant subspace. I-I

LEMMA 3.13. Let O(s) gln[s], A Knn, B Knr, (A, B) reachable. If O(s)
(sI-A)-aB is a polynomial matrix then O(s)(sI-A)- is a polynomial matrix.

Proof. We decompose the rational matrix O(s)(sI-A)- into its polynomial and its
strictly proper part"

O(s)(sI -A)- P(s) +R (s);

then

Ro := R(s)(sI-A)= O(s)-P(s)(sI-A)

is a polynomial of degree zero and hence constant. It follows that

Ro(sI-A)-XB O(s)(sI-A)-B-P(s)B
is a strictly proper polynomial and hence zero. Since (A, B) is reachable, this implies
Ro 0 and hence

O(s)(sI-A)- P(s). l
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The foregoing implies that the set of (M, )-invariant subspaces in ker is
uniquely determined by the numerator polynomial matrix of the matrix fraction
representation of the transfer function matrix:

COROLLARY 3.14. Let U(s) gqXr[s], Ti(s) gqXq[s], 1, 2, such that

G,(s) := T.1 (s)U(s)

is strictly properfor 1, 2. Let %, Mi, i) be the Ti-realization of Gi(s) fori 1, 2. Then
M Xcr is an (M1, 31)-invariant subspace o] Xrl contained in ker 1 iffM is an
(2, 32)-invariant subspace o]’Xr2 contained in ker 2.

REMARK 3.15. Theorem 3.1 may be specialized to the case U(s) 0, that is, 0.
In this case we have a realization of G(s) 0 with the same state space Xr and the same
map as before. An (M, )-invariant subspace of Xr then is just an M-invariant
subspace. Thus we obtain the following characterization of M-invariant subspaces.

PROPOSITION. Let (s) be a q x m polynomial matrix. Then, {(s)} is an sC-
invariant subspace ofXr iff there existC Kq", A1 Km" such that

T(s)C1 (s)(sI A 1).

4. Exact model matching and disturbance decoupling. If we have an observable
system (C, A, B) with state spaceX then we may consider the problem of characterizing
the (A, B)-invariant subspaces contained in ker C. Using the isomorphism given in
Theorem 2.8, we transform the problem to the case of a suitable T-realization. For this
case we may appeal to Corollary 3.10, by which a complete characterization is given. It
is important that, as already noted in Corollary 3.14, this characterization depends only
on the numerator poly_nomial U(s). Consequently, we have the following result.

THEOREM. Let , (C, A, B) be a realization with state space X of a transfer
matrix G(s) T-l(s)U(s), and let (q, sg, 3) be the T-realization ofG(s). If, and Z
are isomorphic by the isomorphism ." X-, Xr, then M

_
X is an (A, B)-invariant

subspace contained in ker c iff there exist constant matrices F1, A satisfying

U(s)F W(s)(sI-A ),

where q(s) is a basis matrix of(M).
Thus we see how characterizations for (, )-invariant subspaces of the particular

state space model Y., can be generalized to arbitrary (observable) state space models.
In this section we use the theory developed thus far to show the equivalence of the

exact model matching problem and the disturbance decoupling problem.
PROBLEM 4.1. (Disturbance decoupling problem (DDP)). Given the system

(4.2) 2(t) Ax(t) + Bu(t) + Eq(t), y(t) Cx(t),

where (C, A) is observable, determine a constant matrix F such that if
u(t) Fx(t), >-_ O,

the output y(t) does not depend on q(t), >= 0.
The following result has been given in [17, Thm. 4.2] in a slightly different but

equivalent formulation"
THEOREM 4.3. Problem 4.1 has a solution iff there exists a subspaceM of the state

space such that

AM
_
M + {B}, {E} c_M c_ ker C. l-1

In this paper we will also consider a slightly modified problem (compare also 18]).
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PROBLEM 4.4. (Modified disturbance decoupling problem (MDDP)). Given system
(4.2), determine constant matrices F andD such that if

u(t) =Fx(t)+Dq(t),

the output does not depend on q(t).
In the modified problem, one assumes that not only the state but also the

disturbance is directly available for measurement. Similarly to (4.3) we have the
following result.

THEOREM 4.5. Problem 4.4 has a solution iff there exists a subspaceM such that

AMcM+{B}, {E}cM+{B}, MckerC.

The exact model matching problem is defined as follows.
PROBLEM 4.6. Given transfer function matrices Gx(s) and G2(s) determine a (i)

strictly proper or (ii) proper rational matrix O(s) such that

Gl(s)O(s)=G2(s).

Problem 4.6(i) will be called the exact model matching problem (EMMP), and
Problem 4.6(ii) will be called the modified exact model matchingproblem (MEMMP). It
is the purpose of this section to show that the existence of a solution of Problem 4.1 is
equivalent to the existence of a solution of Problem 4.6(i). Similarly" Problem 4.4 has a
solution itt Problem 4.6(ii) has a solution. We will concentrate on the modified
problems. The original problems can be dealt with similarly.

First we have to indicate which MEMMP corresponds to a given MDDP and vice
versa. Let us start with system (4.2). The data Gx(s) and G2(s) of MEMMP are then
defined by

GI(S) :- C(sI-A)-IB, G2(s) := C(sI-A)-XE.
Conversely, if we are given Gx(s) and G2(s) in MEMMP, we construct an observable
realization (C, A, [B, El) of the transfer matrix [Gx(s), G2(s)]. Then C, A, B, E are the
data for MDDP. Thus, we have a one to one correspondence between MEMMP’s and
MDDP’s.

Following Theorem 2.8, we assume that

C(sI-A)-X= T-l(s)S(s)
with T(s) and $(s) relatively prime, and U(s)=S(s)B; and we consider the T-
realization (, , N) of Gl(S)= T-l(s)U(s). According to Theorem 2.8, the map
5:x S(s)x :K Xr is an isomorphism. Consequently, we introduce the polynomial
matrix R (s) := $(s)E as representative of E in Xr. Then we have G2(s)= T-I(s)R (s)
and we can state the following result.

THEOREM 4.7. Let {(s)} be an (sg, )-invariant subspace in ker , so that there
exist constant matrices Fx and A satisfying

(4.8) U(s)F1 (s)(sI A 1).

In addition, assume that {R (s)}_ {(s)}+{U(s)}, so that there exist matrices B1 and D1
such that

(4.9) R (S)= xIt(s)B1 + U(s)D1.

Then Q(s) := Fl(sI-Ax)-XB1 +Dx is a solution ofMEMMP. Conversely, let Q(s) be a
solution ofMEMMP and let (F1, A x, Bx, Dx) be a reachable realization of Q(s). Then
there exists a polynomial matrix (s) satisfying (4.8) and (4.9).
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Proof. If (s) satisfies (4.8) and (4.9) then

U(s)Q(s)- (s)B1 + U(s)D1 R (s),

which implies Gl(s)Q(s) G2(s). Conversely the latter equation implies U(s)Q(s)-
R (s). Hence,

(4.10) U(s)FI(sI-A1)-IB1 R(s)- U(s)D1.

Since (A1, B1) is reachable it follows from Lemma 3.13 that

(4.11) (s) := U(s)F(sI-A1)-1

is a polynomial. Now (4.10) and (4.11) imply (4.9) and (4.8).
COROLLARY 4.12. MEMMP has a solution iff the corresponding MMDP has a

solution.
Similarly one proves
PROPOSITION 4.13. EMMP has a solution iff the correspondingDDP has a solution.
Thus, if we want to solve (M)EMMP, we may construct the data A, B, C, E of

(M)DDP and solve the latter problem. Then we do not only obtain a solution Q(s) of
(M)EMMP but also a realization Of this solution. In this respect, it is important to note
that the solution of (M)EMMP only depends on the numerator polynomials U(s) and
R (s). Consequently, by a suitable choice of T(s) (not necessarily equal to the original
denominator polynomial) we may try to obtain a simple (M)DDP; compare [3]. We will
formulate this idea more explicitly in 6. Also in 6, we will give existence conditions
for a solution of (M)EMMP and, hence, of (M)DDP in terms of U(s) and R (s).

The following result states that if disturbance decoupling is at all possible by a
(dynamic) control depending causally upon q(t), then it is possible by a feedback control
of the form u Fx +D lq.

COROLLARY 4.14. Let there exist a proper rational matrix H(s) such that, if the
control u H(s)q is used in (4.2), the output does not depend on q. Then MDDP has a
solution. If there exists a strictly proper matrix H(s) with this property, then DDP has a
solution.

Proof. If the control u H(s)q is used in (4.2), then the transfer function matrix
from q to y is Gl(s)H(s)+ G(s). If y does not depend on q, then this transfer matrix
must be zero, hence

GI(s)H(s) -a2(s),

that is, -H(s) is a solution of MEMMP. Consequently, by Corollary 4.12, MDDP has a
solution.

5. Observers. We consider several formulations of the observer problem, which is
a well-known problem in linear system theory. Further references on the subject can be
found in [14], [15], [16], [19], [20], [2] and [6].

Thus far two types of formulation of this problem have appeared in the literature:
the geometric formulation (see [19], [20], and [2]) and the polynomial matrix formula-
tion (see [14], [15], and 16]).

Here, our purpose is (based on the results on the connections of the geometric
theory of linear systems and polynomial matrix approaches developed in 3) to show
explicitly the algebraic equivalence of the geometric and the polynomial matrix
formulations of this problem, including the case where some of the inputs may be
unknown.
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Let 5; (C, A, B) be a given system over R. Let C- be a subset of C satisfying
C-f’l R #. We call a rational function u(s) stable (with respect to C-) if u(s) has no
poles in C\C-. In the continuous time interpretation of E, one might choose C-=
{s e CIRe s < 0} and in discrete time C- {s e CI Isl < 1}, but also different choices
of C- are possible.

We assume that C Nqn, B e Nnr and that in addition to , we are given a
feedthrough matrix D x Nqr. In continuous time, the interpretation (Y_,, D) reads:

(5.1) 2 Ax + Bu, y Cx + Du,

and the transfer function of (, D) is

G(s) G.D(S) C(sI-A)-IB + D.
DEFINITION 5.2. LetL ". A system (,,) (, :, , :) is an L-observer of

(, D) iffor every initial value Xo of E, Yo ofX and every controlfunction u, the output of

(5.3) =+iy, =+Dy

satisfies" -Lx is stable (in particular rational).
The observer uses only the output of (Y_,, D). If one wants to consider the situation

in which partial or total knowledge of the input of 5; is available, one can incorporate
this in the problem by a suitable choice of D. In particular, if the input is completely
known, one introduces new matrices ,/ and a new output 37 of E according to

so that 7 x +/u represents the total data available for the estimation of Lx.
Let us use the following notation"

G(s) := G.,(s)= C(sI-A)-B +D,
(S) := O,,l(S) (sI- /)-IB -1-/,

GL(S) := L(sI-A)-IB.
Then we have the following result.

THEOREM 5.4. Let the system be reachable and let be observable. Then the
following statements are equivalent:

(i) (Y.,, D) is an L-observer of (:E, D).
(ii) GL(s)= G(s)G(s) and tr(a)_ C-.
(iii) There exists a real matrixM such that

DD O,

MA AM +BC,

L CM+DC,

MB BD

and o’(A c_ C-.

Proof. (i)=), (ii). If Xo 0, o 0, then we have

-L =H(s)a,

where H(s)= G(s)G(s)-G(s), and y,, u are Laplace transforms. Choosing, in
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particular, u e^’uo with A C, we find

:9-L= y.(s-A)-"-H(s)Uo.
Since )3-L has to be stable for all n N, h C, Uo, it follows that H(s) O.

Furthermore, if Xo O, u O, then

:-L,f (sI-)-$o.

Since (C, A) is observable, the stability of :-L implies that r(A)
_
C-.

(ii) => (iii). We use the matrix fraction representation

O’o(S) := B’(sI-A’)-IC’= T-I(s)U(s)

defined by B’(sI-A’)-= T-(s)S(s), U(s)= S(s)C’, and we consider the T-realiza-
tion (, M,) of G’o(S) (see Theorem 2.8). Then the equation G(s)G(s)= GL(s) may
be rewritten as

Hence, if we write

(5.5)

then

(5.6)

U(s) + T(s)D’)’(s) S(s)L’.

W(s) := (U(s)+ T(s)D’):’(sI-’)-,

W(s)C’ SL’ U + TD’)D’.

Since (C, A) is observable, it follows from Lemma 3.13 that W(s) is a polynomial
matrix. Equation (5.5) implies

U(s)B’ + T(s)D’B’= W(s)(si-A’).

Hence, {W(s)} is an (M, )-invariant subspace, and

(5.7) M(s) sg(s)- T(s)D’B’ = (s)A’ + U(s)B’

(see (3.4)). We consider again the map defined in the proof of Theorem 2.8"
x S(s)x. Then we define M’ b-lW(s), so that S(s)M’ W(s). It follows from (5.7)
that

A’M’ MSfM’ dW(s) W(s)A’+ U(s)B’ M’A’ x C’B’.

Hence, A’M’ M’A’ + C’B’.
Furthermore, (5.6) implies"

T-l(s)W(s)’- T-(s)S(s)L’ + T-1UD’=
Since the left-hand Side is strictly proper, it follows that D’D 0 and

5M’C’ L’ +C’D O,

Hence,

M’C’-L’+C’D’ =0.

Finally, it follows from (5.7) that

T-l(s)U(s)’ + T-(s)(s)fix’ sT-XW(s)-D’: ’.

Hence,

B’M’ W(s) (T-(s)*(s))_x D’:’
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since T-l(s)U(s) and T-l(s)(s) are strictly proper.
(iii) ::> (i). A short calculation yields

-Lx C(-Mx),

d
d-- Mx A Mx ),

and the result follows from r(A)_ C- [3
The equivalence (ii):> (i) is given in 15], and the equivalence (i):> (iii), with the a

priori assumption (in the proof of (i)::), (ii)) that-Mx is stable, is given in [2]. Notice
that here the stability of-Mx is a consequence, rather than an assumption (see the
proof of (iii) ::), (i)). For the situation of availability of the whole input, this was also
shown in [6].

REMARK 5.8. The results of this section can easily be extended to systems over an
arbitrary field K, provided an appropriate definition of stable rational function has been
defined. Such a definition can be given as follows: Let :t/be a multiplicative subset of
K[s] (i.e., p(s) l, g(s) ell ::>p(s)g(s) ; 1 ). Then we say that a rational
function r(s)e K(s) is stable if r(s) has the representation r(s)= p(s)/q(s) with p(s)
K[s], q(s) l. Then the stable functions form a ring. In the situation described above
we have

{p(s) K[s]lp(s) 0=> s C-}.

In the general situation Theorem 5.4 remains valid if one replaces the condition
r(A) C- with "(sI- fi)-i is stable".

A particular example, which is relevant for discrete time systems, over arbitrary
fields, is

/:= {s" In =0, 1,...}.

An observer constructed according this multiplicative set is called a deadbeat
observer.

{i. Reaehalility snlslaees. Let (s) be a full column rank basis matrix of an
(, )-invariant subspace. Recall the interpretation of the matricesA 1, F1, C1 given in
(3.7), (3.8) and (3.9). Let B1 be any constant m x p matrix such that {(s)B1} {U(s)},
say

(s)B1 U(s)L1.

Then B1 is the matrix of the (codomain) restriction of Y3L1 to {(s)}. It follows that

(g-3)’Ll v (s)AB v

for every v eK p. Consequently,

(6.1) (4-IL)={(s)[B,..., An-IB1]}.
This formula immediately implies the following result.

THEOREM 6.2. Let (s) be a (full column rank) basis matrix ofan (4, )-invariant
subspace. Then

(i) {(s)} is a teachability subspace iff there exists a constant matrixB such that
{T(s)B1}

_
{U(s)}, and (A1, Ul) is reachable (here A1 is given by (3.2)).

(ii) IfB is a constant matrix such that

(6.3) {(s)B 1} {U(s)} (’] {xI)’(s)},
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then {q(s)[B1,’’’, A’-IB1]} is the supremal reachability subspace contained
in {(s)}.

Let us now consider reachability subspaces contained in ker c. Let (s) be a basis
matrix of such a space. According to Corollary 3.1 0, there exist matrices F1 andA such
that

(6.4) (s) U(s)FI(sI-A1) -1.
It follows from Theorem 6.2 that there exists B1 such that (A1, B1) is reachable and
{(s)B1}

_
{U(s)}, say (s)B1 U(s)L1. Hence

(6.5) U(s)Q(s) U(S)tl,

where Q(s):= FI(sl-A1)-IB1. Also, since (s) has full column rank, (F1, A1) is
observable, as follows from (6.4). Hence (F1, A 1, B1) is a minimal realization of Q(s).

COROLLARY 6.6. There exists a nontrivial reachability subspace contained in ker

iff
{ U(s)} 0 xt, {o}.

Proof. If (s) is a basis matrix of the (, )-invariant subspace Xtr and (s)=
U(s)FI(sI-A1)-1, then the supremal reachability subspace contained in Xt (or,
equivalently, in ker ) is nontrivial iff B1 0,whereB1 is a matrix satisfying (6.3). [3

According to (6.5), O(s)-L1 is a nontrivial right zero matrix of U(s).
Consequently, if the supremal reachability subspace contained in is nonzero, then
U(s) is not left invertible. The converse, however, is not true. For example, if
U(s) Ul(S), 0] where Ul(s) is left invertible, then it is easily seen that U(s) is not left
invertible, and {U(s)} 71Xtr {0}. In order to give a necessary and sufficient condition
for the existence of a maximal reachability subspace contained in ker c, we consider the
K[s]-module

(6.7) A := {v(s) Kr[s]l U(s)v(s) 0}.

This module is generated by the columns of a matrix M(s) (see 15, Thm. 3.1]).
COROLLARY 6.8. There exists a nontrivial reachability subspace contained in ker c

iff the module A defined in (6.7) is not generated by a constant matrix.

Proof. Let M(s) be a generator matrix of minimal degree, say M(s)=
Mos k +" "+Mk. Then s-kM(s)= O(s)-L1, where O(s)=Mls -1 +. +Mks -k and
L1 =-M0. We have

U(s)O(s)=U(s)L1

and U(s)L1 O, since, otherwise, [M(s)-skMo, M0] would be a generator matrix of
lower degree than k. It follows that {U(s)L1} {U(s)}f’]Xu, so that {U(s)}fqXcr # {0}.

Conversely, suppose that A is generated by a constant matrix, say D, and that
v{U(s)}f’lXtz, say v U(s)c U(s)r(s), where c is a constant vector and r(s) is a
strictly proper rational vector. It follows that there exists a rational vector q(s) such that
c-r(s)=Dq(s). Decomposing q(s) into a polynomial and a strictly proper part
q(s) =ql(s)+q2(s), we conclude that c =Dql(s), so that v U(s)c 0. Hence,
{ U(s)}ox {0}.

Now we have a procedure for constructing reachability subspaces contained in
ker . Choosing any matrix L1 such that {U(s)L1}_Xu, we have U(s)O(s)= U(s)L1
for some strictly proper O(s). If (F1, A1, B1) is a minimal realization of O(s), it follows
that q(x) := U(s)FI(sI-A 1)-1 is a basis matrix of a reachability subspace, provided the
columns of q(s) are independent. In general, it seems difficult to formulate conditions
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upon L1 and Q(s) that guarantee that (s) has full column rank. A sufficient condition
for this is that Q(s) be a strictly proper rational matrix with minimal McMillan degree
satisfying the equation U(s)Q(s)= U(s)LI. Indeed, if in this case (s) does not have
full column rank, there exists (s) with less columns than such that {(s)} {(s)}.
Since {(s)} is an (sg, )-invariant subspace, there exist F2, A2 such that (s)=
U(s)F2(sI-A2)-a. Also, there exists D1 such that (s)= (s)D1. Hence,

U(s)O(s)-- xIt(s)B1 ((s)D1B1 U(s)Q2(s) U(s)L1,

where Q2(s):= F2(sI-A2)-aDIB1 has lower McMillan degree than O(s).
THEOREM 6.9. Let L1 be a constant matrix such that {U(s)LI}={U(s)}fqXu. Let

Q(s) be a strictly proper rational matrix of minimal McMillan degree, satisfying the
equation U(s)Q(s) U(s)LI. Let (F1, AI, B1) be a minimal realization of Q(s). Then
xlz(s) := U(s)FI(sI-AI)-1 is a basis matrix of the supremal reachability space contained
in ker .

Proof. The supremal reachability subspace contained in ker c is the (unique)
minimal (, )-invariant subspace satisfying (Im ) (3 o/_ 7/"

_
o/g, where o/# is the

supremal (sg, )-invariant subspace gontained in ker . To see this, observe that an
(4, )-invariant subspace 7/" satisfying (Im) f3 /d/"

_
7/’
_

is( --)-invariant for
every such that is (1 -’)-invariant. Indeed, ( ") 7/"

_
(4 -) //V W

and (4- Y3’) 7/’
_

7/’+ Im imply

(1-)c_ Wf3 (+Im)= o//.+ o/g.f-)im
_ .

Since {U(s)}f]Xu={U(s)L1}={xIt(s)B}_{xIt(s)}Xu, and because of the minimal
McMillan degree of Q(s), the result follows. 71

In the next section, it will be shown how Theorem 6.9 can be used for the explicit
construction of the supremal reachability subspace.

7. Constructive characterizations. Conditions for solvability and the charac-
terization of solutions of various problems can be made explicit by the use of row and
column proper matrices (see [16]). This will be the subject of this section.

If R KPq[s] has rows rx(s), ", rp(s), then deg ri(s) is called the ith row degree
ofR (s). The coefficient vector of s ’ in ri(s), where ui deg ri(s) is called the ith leading
coefficient row vector, and is denoted by [ri]r. We denote by [R]r the matrix of leading
coefficient row vectors, that is, the constant matrix with rows [rx]r, ", [rp]r. Similarly,
[R ]c denotes the matrix of leading coefficient column vectors, that is, [R ]c ([R’])’. A
matrix is called row (column) proper if [R]([R ]c) is nonsingular. A row proper matrix is
easily seen to be right invertible. Conversely, we have (see [16, Thm, 2.5.7])

LEMMA 7.1. If L(s) KPq[s] is right invertible there exists a unimodular matrix
M(s) KPP[s] such that M(s)L(s) is row proper with row degrees u, , up satisfying, <-... <= up. If L(s) KPq[s] is not right invertible, them exists a unimodular matrix
M(s) such that

M(s)L(s)=[Ll(s)]0

where L(s) is row proper with row degrees , <-. <= ’l. The number of rows of Ll(S)
equals the rank of L(s).

The row degrees u are independent of M(s) (which is not unique) and will be
called the row indices of L(s).

The following result (see [14, Property 2.2]) states a simple criterion for the
properness of a rational matrix T-(s) U(s) if the denominator polynomial matrix is row
proper.
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LEMMA 7.2. Let T(s) be row proper with row degrees 1)1, 1)q. Ifthe row degrees of
U(s) are hi," , hq then T-(s)U(s) is proper iffh <-_ vi (i 1,. , q) and strictly proper
iff Ai < 1}i (i i, ", q).

Observe that if T is not row proper, there exists a unimodular matrix M(s) such
that T(s):= M(s)T(s) is row proper. If we define Ua(s):= M(s)U(s), we have
T-(s)U(s) T- (s)U(s), and we may apply Lemma 7.2.

Let us now consider (M)EMMP as defined in Problem 4.6. Assume that we have a
matrix fraction representation T-(s)[ U(s), R (s)] of [G(s), G_(s)]. Then the equation
for O(s) reads

(7.3) U(s)Q(s)=R(s).

In order that this equation has a (not necessarily proper) rational solution, it is
necessary and sufficient that rank U(s)=rank [U(s),R(s)]. For the existence of a
proper solution additional conditions have to be imposed. Writing down the ith row of
(7.3)

Ui(S)((S)- ri(s),

we note that a necessary condition for the existence of a proper solution is deg ui(s)>=
deg ri(s). The following result shows that this is also sufficient provided that U(s) has the
form

with U(s) row proper. According to Lemma 7.1, this can always be obtained by
premultiplying (7.3) with a suitable unimodular matrix M(s).

THEOREM 7.4. Let M(s) be a unimodular matrix such that

U(s)
M(s)R(s)

I_R(s)J
M(s)U(s)

0

where U(s) is row proper Let the row degrees of U(s) be v, 1)l and let the row
degrees ofR(s) be A, ., At. Then (7.3) has a proper solution iffR(s)=0 and Ai <-_
(i 1,..., l). Equation (7.3) has a strictly proper solution iff R(s)=0 and Ai <
(i=1,...,l).

Proof. The conditions are necessary according to the foregoing discussions. Now
assume that the conditions hold. Then there exists L grl such that U(s)L is a row
proper matrix with row degrees u, , Ul. Define

O(s) := L(UI(s)L)-IRI(S).
Then Q(s) satisfies (7.3). It follows from (7.2) that Q(s) is proper. The proof for the
strictly proper solution is similar.

We can express the result of Theorem 7.4 in a way not involving explicitly the
matrix M(s):

COROLLARY 7.5. Equation (7.3) has a proper solution iff U(s) and [U(s), R(s)]
have the same rank and the same row indices.

In [14], no explicit condition for the solvability is given. In [5], a condition is given
in terms of the kernel of the matrix U(s), R (s)]. The conditions given in Theorem 7.4
and Corollary 7.5 are directly expressed in terms of the matrices U(s) and R (s).

The set Xu is the largest (M, )-invariant subspace contained in ker c. By
definition x(s)Xu iff the equation

U(s)v(s)=x(s)



A POLYNOMIAL CHARACTERIZATION 433

has a strictly proper solution v(s). Therefore, using Theorem 7.4, we can give a
constructive characterization of Su.

COROLLARY 7.6. Let M(s) be as in Theorem 7.4. Then x(s)Xu iff
y(s) := M(s)x(s) satisfies the conditions

deg yi(s) < vi (i i, l),

yi(s) 0 (i=/+1,... ,q).

Here yi(s) denotes the ith component o] y(s). In particular, if we introduce the row vector
w(s) := [s-, ,1], then M-(s) W(s) is a basis matrix ofXu, where

W(s) := [ W(s)
with Wx(s) := diag (wl-a(S), Wl-X(s)).

One way of solving (7.3), already mentioned in 4, is the reformulation of (7.3) as a
(M)DDP. In doing so, it is not necessary to use the original denominator matrix T(s).
One might try to find a new denominator matrix Tx(s) such that T- (s)U(s) is strictly
proper and Tl(s) is as simple as possible. If we choose Tl(s) row proper, then according
to Lemma 7.2, it suffices for the strict properness of T-1 U, that the row degrees of Tx
are larger than the row degrees of U. If we denote the latter by A x, , A 1, the simplest
choice of Tx(s) is Tl(s)= diag (sX,+x, ., sXl+l).

For this computation, it is not necessary that U(s) be in row proper form. But if we
transform U(s) such that it has the form given in Theorem 7.4, then the dimension of
the state space will be minimal. These ideas are worked out in more detail in [3].

We conclude this section with a construction of the supremal reachability subspace
contained in ker . To this end, we consider the space

A :- {v(s)K(s)l U(s)v(s)-O},

and we choose a minimal basis for A (see [5]), that is, a basis for A (see (6.7)) which is
column proper. We define La :-[M]c. Furthermore we choose any D(s)Kl[s]
which has the same column degrees M(s) and such that [D]c L Then we observe (by
Lemma 7.2) that, if

N(s):=LaD(s)-M(s),

then O(s) := N(s)D-X(s) is strictly proper. Now we have
THEOREM 7.7. (i) { U(s)L1} Xu ( { U(s)},
(ii) O(s) is a strictly proper rational matrix of minimal McMillan degree satisfying

(7.8) U(s)O(s)=U(s)La.

Hence, if (F1, A1, B1) is a minimal realization of O(s), then (s) := U(s)Fx(sI-Ax)-1

is a basis of the supremal reachability subspace contained in ker .
Proof. (i) Since U(s)M(s) 0, it is easily seen that (7.8) is satisfied. This implies that

{U(s)L 1} c__Xu 71 { U(s)}. Suppose that there exists a matrix L Of full column rank such
that {U(s)L1}c_ {U(s)/Sx}, and U(s)/S1 U(s)O(s) for some strictly proper O(s). Let
),/ be right coprime polynomial matrices such that ((s)- l(s)l-a(s), and/(s) is
column proper with [D] I. Then

U(s)(N(s)- LID(S)) O.

Since 0(s) is strictly proper, the columns of/(s)-/S1/(s) are linearly independent
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over K(s). But then L1 cannot have more columns than L1. Consequently, {U(s)L}
{U(s)L}.

(ii) Suppose that O(s)- lql’(s)-(s) has a lower McMillan degree than O(s) and
that N(s) and D(s) are relatively prime and that D(s) is column proper with [D (s)] I.
Then we have

U(s)(N(s)-LD(s)) O,

and hence, N(s)-LID(S)= M(s)R(s). By the "predictable degree property" (see [5,
3, Remark]), this implies that the sum of the column degrees of D(s), and hence

deg det D(s) is not less than deg det D(s), which contradicts our assumption.

8. Generalization to systems represented by Rosenbrock’s system matrix. In this
section, we indicate how the result of 3 can be generalized to the case where the system
is represented by a system matrix

T(s) U(s)](8.1) P(s)
V(s) W(s)J’

where T(s) K’’[s] is nonsingular and P(s) K(q+l)(q+r) Is]. We assume that the
transfer function matrix

G(s) := V(s)T-I(s)U(s)+ W(s)

and the matrix T-l(s)U(s) are strictly proper. If the latter condition is not satisfied, we
can obtain this by strict system equivalence (see [13, 3.1]). Indeed, if we define

U(s) := rr(U(s)),

then

O(s) := T-l(s)(U(s) Ul(S))

is a polynomial matrix. Therefore,

[ T(s)
P(s) :=

I.-V(s)
U(s)

W(s) + V(s)O(s)

is a polynomial system matrix with the same transfer matrix G(s).
In [9], it is shown that the maps

sC Xr --,Xr x (s zrr(sx (s )),

3 K -->XT U U s u,

"XT "> Kl’x(s) ’’> (V(s) T-l(s)x(s))_l
yield a realization (, M,) of G(s) which is reachable iff T(s) and U(s) are left
coprime, and observable iff T(s) and V(s) are right coprime.

It is easily seen that Theorem 3.1 is equally valid in this situation. Instead of
Corollary 3.10 we get

THEOREM 8.2. Let W(s) be a q x m polynomial matrix. Then {(s)} is an (M, )-
invariant subspace in ker iff there exists CI K", F K"*, A K"" and an
x m polynomial matrix (s) such that

(8.3) IV1] [*(s)](si_Ax)"P(s)
F !_ (s).l

Proof. By Theorem 3.1, {*(s)} is an (M, 3)-invariant subspace of XT iff for some
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Cx, El, A1 we have (3.2) and hence (3.6). But then

xlt(s) V(s) T-(s)W(s))_l

=((V(s)C +(G(s)- W(s)F))(sI-A)-)-
((V(s)C- W(s)F)(sI-A)-)_

since G(s) and (sI-A)- are both strictly proper. Now it follows from Lemma (8.5)
that

(8.4) (s) := (-V(s)CI + W(s)Fx)(sI-Ax)-is a polynomial iff xlt(s)= 0. Combining (3.2) and (8.4) yields the desired result.
LEMMA 8.5. Let Q(s) Ktn[s], A K. If

(O(s)(sI-A-1))_l =0,
then O(s)(sI-A)-x is a polynomial matrix.

The proof is analogous to the proof of Lemma 3.13 and will be omitted.
The generalization of Corollary 3.12 can be expressed in terms of the map

Kq[s]"
r/x(s)/x(s).Kq+l[s].->
y(s)JL

COROLLARY 8.6. The largest (sg, Yd)-invariant subspace ofXT-contained in ker
is (Xp).

The proof is similar to the proof of Corollary 3.12 and will be omitted.
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