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A POLYNOMIAL CLASS OF
MARKUS-YAMABE COUNTEREXAMPLES

Anna Cima, Armengol Gasull and Francesc Mañosas

Abstract
In the paper [CEGHM] a polynomial counterexample to the
Markus-Yamabe Conjecture and to the discrete Markus-Yamabe
Question in dimension n ≥ 3 are given. In the present paper
we explain a way for obtaining a family of polynomial counterex-
amples containing the above ones. Finally we study the global
dynamics of the examples given in [CEGHM].

1. Introduction

Let F : R
n −→ R

n be a C1 map and consider the differential system

(1) ẋ = F (x).

Assume that p is a critical point of (1), i.e., F (p) = 0. We say that p
is a global attractor of the continuous dynamical system (1) if φ(t, x) is
defined for all t > 0 and tends to p as t tends to infinity for each x ∈ R

n,
where φ(t, x) is the solution of (1) with initial condition φ(0, x) = x.

The next conjecture was explicitly stated by Markus and Yamabe (see
[MY]) in 1960.

MYC(n) (Markus-Yamabe Conjecture). Let F be a C1 vector
field defined on R

n such that for any x ∈ R
n, the jacobian of F at x has

all its eigenvalues with negative real part. If F (p) = 0, then p is a global
attractor of ẋ = F (x).

This conjecture was proved for planar polynomial maps in 1988 (see
[MO]) and for planar C1 maps in 1993 (see [F] and [Gu]) and in 1994
(see [G1]). In [B] and [BL] there are examples of smooth vector fields
defined in R

n, n ≥ 4 satisfying the hypothesis of the Conjecture and
having a periodic orbit. On the other hand in [CEGHM], the authors
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give an example of a polynomial vector field in R
n for n ≥ 3 satisfying

the hypothesis of the MYC such that it has orbits which scape at infinity.
A non polynomial counterexample for n ≥ R

3 is presented in [G2].
The goal of this paper is to give a more general family of polynomial

counterexamples and explain how they are obtained. The construction
of the counterexamples is based on two points: The first one concerns on
the characterizacion of vector fields which have solutions of exponential
type, that lead us with the notion of linear quasi-homogeneous vector
fields (see Section 2). The second one deals with the construction of
nilpotent maps (see Section 3).

Using the same tools we can also give an answer to the Discrete
Markus-Yamabe Question, which can be established as follows.

Let F : R
n −→ R

n be a C1 map and consider the sequence:

(2) x(m+1) = F (x(m)), x(0) ∈ R
n.

Now consider the dynamics of the iterations of F . Let p be a fixed point
of F , i.e., F (p) = p. We say that p is a global attractor of the discrete
dynamical system (2) if the sequence x(m) tends to p when m tends to
infinity for any x(0) ∈ R

n. The question is the following:

DMYQ(n) (Discrete Markus-Yamabe Question). Let F be a
C1 map from R

n into itself such that F (0) = 0 and for any x ∈ R
n,

JF (x) has all its eigenvalues with modulus less than one. Is it true
that 0 is a global attractor for the discrete dynamical system generated
by F?

The above problem is introduced in [S] and [CGM]. In this last paper
the authors prove that the answer is negative even in the planar case
and that the conclusion is affirmative if we take into account polyno-
mial maps defined in R

2. The planar example which gives a negative
answer to this question has a periodic orbit of period 4 and is given by
a rational function. In [EH] the authors give a negative answer to this
question for polynomial maps in dimension greather than three. A poly-
nomial counterexample for dimension greather than two is presented in
[CEGHM].

In this paper we also give a family of polynomial maps in R
n for n ≥ 3

satisfying the hypothesis of DMYQ(n) and such that there are some
unbounded orbits.

The paper is organized as follows. In the next section we give some
results on quasi-homogeneous vector fields of degree one. In Section 3 we
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construct the mentioned families of counterexamples. The last section is
devoted to study the global dynamics of the simplest counterexamples
inside the family (the ones given in [CEGHM]).

This paper is partially supported by the DGICYT grant number
PB93-0860.

2. On quasi-homogeneous vector fields of degree one

This section is a development of some results of [A, Chap. 1]. We
say that f : R

n → R is a quasi-homogeneous function with weigths
α1, α2, . . . , αn and quasi-degree d if

(3) f(λα1x1, λ
α2x2, . . . , λ

αnxn) = λd f(x1, x2, . . . , xn),

for all λ > 0 and for all x ∈ R
n. We stress that the weights can be taken

as non zero real numbers.
Notice that if f is a quasi-homogeneous function with weights

α1, α2, . . . , αn and quasi-degree d then, for all constant c ∈ R, c �= 0, f
is also a quasi-homogeneous function with weights cα1, cα2, . . . , cαn and
quasi-degree cd.

On the other hand let f be a quasi-homogeneous analytic function
with weights α1, α2, . . . , αn and write f as a sum of monomials:

f(x) =
∑

r1,r2,... ,rn

Ar1r2...rnx
r1
1 xr2

2 · · ·xrn
n .

Since for all λ > 0 (3) is satisfied, we have that
∑

r1,r2,... ,rn

Ar1r2...rn
xr1

1 xr2
2 · · ·xrn

n λ(r1α1+r2α2+···+rnαn)

= λd
∑

r1,r2,... ,rn

Ar1r2...rn
xr1

1 xr2
2 · · ·xrn

n .

Hence, the only monomials which appear in the decomposition of f are
of the form xr1

1 xr2
2 · · ·xrn

n with r1α1 + r2α2 + · · · + rnαn = d.
We say that F = (F1, F2, . . . , Fn) : R

n → R
n is a quasi-homogeneous

vector field with weights α1, α2, . . . , αn and quasi-degree d if each Fi

is a quasi-homogeneous function with weights α1, α2, . . . , αn and quasi-
degree αi + d− 1, see [BDST, Chap. 7].

We say that F is a linear quasi-homogeneous vector field if it is a
quasi-homogeneous vector field of degree one.

From now on we deal with linear quasi-homogeneous vector fields.
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Proposition 2.1. Let F be a linear quasi-homogeneous vector field
with weights α1, α2, . . . , αn and consider the differential system ẋ =
F (x). Then F is invariant by the change x̄i = λαixi.

Proof: We have to show that if x(t) = (x1(t), x2(t), . . . , xn(t)) is a
solution of ẋ = F (x) then x̄(t) = (λα1x1(t), λα2x2(t), . . . , λαnxn(t)) is
also a solution. This is done in the sequel.

d

dt
x̄i(t) = λαi

d

dt
xi(t) = λαi Fi(x1(t), x2(t), . . . , xn(t))

= Fi(λα1x1(t), λα2x2(t), . . . , λαnxn(t)) = Fi(x̄(t)).

Given the weights α1, α2, . . . , αn we define the “semi straight line”
which passes through a point x ∈ R

n, as

Lx = {(λα1x1, λ
α2x2, . . . , λ

αnxn) : λ ∈ R
+}.

Proposition 2.2. Let F be a linear quasi-homogeneous vector field
with weights α1, α2, . . . , αn and consider the differential system ẋ =
F (x). If αiαj > 0 for all i, j = 1, 2, . . . , n, then the knowledge of the
solutions near the origin determines the global phase portrait of F . Fur-
thermore, if 0 is locally asymptotically stable, then 0 is a global attractor.

Proof: Clearly we can assume that αi > 0 for all i = 1, 2, . . . , n. So
the origin is in the closure of Lx.

Assume that we know the solutions of ẋ = F (x) in a neighbourhood B
of the origin and let x be a point in R

n. Then for λ small enough the point
y = (λα1x1, λ

α2x2, . . . , λ
αnxn) belongs to B. Let y(t) be the solution of

ẋ = F (x) which passes through y. Then, from Proposition 2.1, we know
that

x(t) =
((

1
λ

)α1

y1(t),
(

1
λ

)α2

y2(t), . . . ,
(

1
λ

)αn

yn(t)
)

is also a solution. And it is clear that this solution passes through x. On
the other hand it is clear that if the omega limit of y is the origin, the
same is true for x.

More interesting dynamical behaviours appear for quasi-homogeneous
vector fields with weights of different sign (see Sections 3 and 4).

Example. Consider the family of systems


ẋ = −x

ẏ = −y + ax2z + bx4

ż = −z + cx2.
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All these systems are linear quasi-homogeneous with weights (1, 4, 2).
On the other hand, the characteristic polynomial of the linear part is
independent of the point and it is equal to P (λ) = (λ + 1)3. So we are
in the hypothesis of the Markus Yamabe conjecture. Since 0 is locally
asymptotically stable from the above result we deduce that 0 is a global
attractor.

Let ẋ = F (x) and let x ∈ R
n. We say that the solution which passes

through x is of exponential type if

x(t) = (x1e
m1t, x2e

m2t, . . . , xne
mnt)

for some m1,m2, . . . ,mn ∈ R.

Proposition 2.3. Let F be a linear quasi-homogeneous vector field
with weights α1, α2, . . . , αn and let Lx be the “semi straight line” which
passes through x. Then Lx is invariant by the flow of ẋ = F (x) if and
only if the solution which passes through x is of the form xi(t) = xie

mit

where mi = cαi for some c ∈ R.

Proof: Let Lx = {(λα1x1, λ
α2x2, . . . , λ

αnxn) : λ ∈ R
+} and consider

the parametrization λ = et, i.e.,

Lx = {(eα1tx1, e
α2tx2, . . . , e

αntxn) : t ∈ R
+}.

If Lx is invariant by the flow, then it exists some µ(t) ∈ R such that

αie
αitxi = µ(t)Fi(eα1tx1, e

α2tx2, . . . , e
αntxn).

Due to the homogeneity of F this last condition can be written as αixi =
µ(t)Fi(x). Hence µ(t) ≡ µ is independent on t. Hence

(4) αixi = µFi(x).

If µ = 0, then x = 0. Since 0 is a critical point of ẋ = F (x) the
solution can also be considered as a solution of exponential type.

If µ �= 0, consider xi(t) = xie
αi
µ t. Then x(t) is the solution which

passes through x:

x′
i(t) =

αi

µ
xie

αi
µ t = Fi(x)e

αi
µ t = Fi(x1e

α1
µ t, x2e

α2
µ t, . . . , xne

αn
µ t).

The last equality is due to the fact that F is a linear quasi-homogeneous
vector field with weights α1, α2, . . . , αn.
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Now let x be such that xi(t) = xie
mit with mi = cαi is a solution of

ẋ = F (x).
If c = 0, then xi(t) = xi for all t ∈ R, and all the points of Lx are

critical points of ẋ = F (x).
If c �= 0, then x′

i(t) = Fi(x(t)) implies

cαixie
cαit = Fi(x1e

cα1t, x2e
cα2t, . . . , xne

cαnt) = ecαitFi(x).

Hence αixi = (1/c)Fi(x). Then, from (4), we see that Lx is an invariant
straight line.

Remark 2.4. There are some systems which have solutions of ex-
ponential type and they are not quasi-homogeneous. For instance, the
system {

ẋ = −x + xy − x2y2 + 2x2y

ẏ = y + x2 − x3y − 2xy2

has the solution x(t) = x0e
t, y(t) = (1/x0)e−t and it is not a quasi-

homogeneous vector field.

If F is a linear quasi-homogeneous vector field with weights
α1, α2, . . . , αn and we look for the solutions of exponential type we have
to solve the system of equations

Fi(x) = cαixi, i = 1, 2, . . . , n

where c is a real number. This is a system of n quasi-homogeneous
equations. It is easy to see that the set of solutions of this type of
systems, either, it reduces to the origin or, if x is a solution of the system
then each point in Lx is also a solution. Solving the above system we
can find the invariant “semi straight lines”.

Proposition 2.5. Let F be a linear quasi-homogeneous vector field
and consider the differential system ẋ = F (x). Then the integration of
ẋ = F (x) in R

n reduces to the integration of a system in R
n−1.

Proof: Consider the transformation (outside x1 = 0)

y1 = x1,

yj = xα1
j x

−αj

1 , j ≥ 2,

and using the homogeneity of F we have that

Fi(x) = Fi(x1, x
α2
α1
1 y

1
α1
2 , . . . , x

αn
α1
1 y

1
α1
n ) = x

αi
α1
1 F̃ (y2, y3, . . . , yn).
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Then, the system ẋ = F (x) reduces to:



ẏ1 = y1F̃1(y2, y3, . . . , yn)

ẏj = α1y
α1−1

α1
j F̃j(y2, y3, . . . , yn) − αjyjF̃1(y2, y3, . . . , yn), j ≥ 2.

Hence, we have that the last n − 1 equations only depend on the last
n−1 variables and the first one has separate variables if we already know
yj(t) for j = 2, 3, . . . , n.

Remark 2.6. Let F be a linear quasi-homogeneous vector field and
consider the discrete dynamical system generated by F . Then, it is easy
to obtain similar results to Propositions 2.1, 2.2 and 2.4. In particular the
points lying in invariant “semi straight lines” (notice that now invariant
means F (Lx) ⊂ Lx) have also solutions of exponential type (i.e., x(m) =
(x(0)

1 am
1 , x

(0)
2 am

2 , . . . , x
(0)
n am

n ) for some constants a1, a2, . . . , an ∈ R). In
order to find the invariant straight lines we have to solve the system of
equations

Fi(x) = λαi xi

where λ is a real positive number.

3. Construction of counterexamples

In this section we will give a classes of polynomial maps which satisfy
simultaneously the hypothesis of the MYC and the hypothesis of the
DMYQ.

Lemma 3.1. (See [CGM]). Let F be a polynomial map from R
n

into itself such that for any x ∈ R
n, JF (x) has all its eigenvalues with

modulus less than one. Then the characteristic polynomial of (DF )x is
independent on x.

Due to Lemma 3.1 we start with simple maps with characteristic
polynomial independent on x. Particularly we consider maps of type
F (x) = λI +N , where λ ∈ R, I is the identity map and N is a nilpotent
map (i.e., (DN)x has all its eigenvalues equal zero at each x ∈ R

n).
Then, (DF )x has all its eigenvalues equal λ at each x ∈ R

n. Hence,
we will consider λ < 0 (resp. |λ| < 1) for the continous (resp. discrete)
problem.

Assume that n = 2. Then N nilpotent implies that

∂N1

∂x
+

∂N2

∂y
≡ 0 and

∂N1

∂x

∂N2

∂y
− ∂N1

∂y

∂N2

∂x
≡ 0.
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So, it exists some H(x, y) with N1(x, y) = −∂H
∂y (x, y), N2 = ∂H

∂x (x, y) and
the hessian of H is identically zero. From a classical result of differential
geometry we have that these type of maps can be written, through an
affine transformation, as H(u, v) = u+g(v) (see [C] and also [D]). Hence,
H(x, y) = αx+βy+γ+g(ax+by+c) provide us a family of MY examples
in R

2:

F (x, y) = (λx− bf(ax + by + c), λy + af(ax + by + c))

where f = g′, which can be extended to R
n for n ≥ 3 by

F (x) = (λx1 − b(x3)f(u), λx2 + a(x3)f(u), λx3, . . . , λxn)

with u = a(x3)x1 +b(x3)x2 +c(x3) and a, b, c arbitrary smooth functions
of x3.

Taking a(x3) = axl
3, b(x3) = bxm

3 and f(u) = uk (a, b ∈ R, k, l,m ∈ N)
we obtain the following:

Theorem 3.2. The family of maps

F (x) = (λx1 − bxm
3 (ax1x

l
3 + bx2x

m
3 )k,

λx2 + axl
3(ax1x

l
3 + bx2x

m
3 )k, λx3, . . . , λxn)

satisfy the following properties:
(1) For all a, b, λ ∈ R, k, l,m ∈ N they are linear quasi-homogeneous

with weights

(α1, α2, . . . , αn) = (m + kl, l + km, 1 − k, . . . , 1 − k).

(2) For all λ ∈ R with λ < 0 (resp. |λ| < 1) they satisfy the hypothesis
of the MYC (resp. the DMYQ).

(3) For all λ ∈ R with λ < 0 (resp. |λ| < 1) k an even number, l, k, l−
m ∈ N different from zero and for all a, b ∈ R the differential
system ẋ = F (x) (resp., the discret dynamical system generated
by F ) has unbounded orbits.

Proof: The proof of (1) and (2) is straightforward. In order to see (3)
we begin considering the dynamical system ẋ = F (x). The system of
equations Fi(x) = cαixi writes as:

(5)




λx1 − bxm
3 (ax1x

l
3 + bx2x

m
3 )k = c(m + kl)x1

λx2 + axl
3(ax1x

l
3 + bx2x

m
3 )k = c(l + km)x2

λxi = c(1 − k)xi, i = 3, 4, . . . , n
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which gives the solutions

(6)




c =
λ

1 − k
> 0,

x1 =
−bB

aA
x2x

m−l
3

xk−1
2 xl+km

3 =
−B

a

(
A

bλ(l −m)

)k

where A = λ (1−k)−(m+kl)
1−k and B = λ (1−k)−(l+km)

1−k . It is clear that
system (5) has always real solutions. Let x̄1, x̄2 and x̄3 be one of them
and let x̄i be arbitrary real numbers for i = 4, 5, . . . , n. Then



x1(t) = x̄1e
λ(m+kl)

1−k t

x2(t) = x̄2e
λ(l+km)

1−k t

xi(t) = x̄ie
λt, i = 3, 4, . . . , n

is a solution of ẋ = F (x). And it is clear that x1(t), x2(t) → ∞ as
t → ∞.

Now consider the discret dynamical system generated by F . From
Remark 2.6 we have to solve the system of equations Fi(x) = µαixi, i.e.,


λx1 − bxm

3 (ax1x
l
3 + bx2x

m
3 )k = µm+klx1

λx2 + axl
3(ax1x

l
3 + bx2x

m
3 )k = µl+kmx2

λxi = µ1−kxi, i = 3, 4, . . . , n
which gives the solutions

(7)




µ = λ
1

1−k

x1 =
−bD

aC
x2x

m−l
3

xk−1
2 xl+km

3 =
−D

a

(
C

b(C −D)

)k

where C = λ − λ
m+kl
1−k and D = λ − λ

l+km
1−k . Notice that |µ| > 1. As

before take x̄1, x̄2 and x̄3 a solution of (7) and x̄i arbitrary real numbers
for i = 4, 5, . . . , n. Then



x
(n)
1 = x̄1

(
λ

m+kl
1−k

)n

x
(n)
2 = x̄2

(
λ

l+km
1−k

)n

x
(n)
i = x̄i (λ)n

, i = 3, 4, . . . , n
gives the complete orbit which begins in x̄ = (x̄1, x̄2, . . . , x̄n) and clearly
x

(n)
1 , x(n)

2 → ∞ as n → ∞.
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4. On the global dynamics of simple counterexamples

One of the easiest examples of map F (x) given in Proposition 3.2 is

(8) F (x1, x2, x3) = (−x1 + x3(x1 + x2x3)2,−x2 − (x1 + x2x3)2,−x3).

The above map is the one considered in [CEGHM]. The goal of this
section is firstly to describe the global phase portrait of the equation
ẋ = F (x) and secondly to study an analogous discrete problem.

The following theorem is the main result concerning to the first prob-
lem.

Theorem 4.1. Consider the initial value problem

(9)
{

ẋ = F (x)
x(0) = x0 = (x0

1, x
0
2, x

0
3)

where F (x) is given in (8), and denote by φ(t, x0) its solution defined in
the maximal interval Ix0 = (α(x0), β(x0)). Then

(1) The vector field defined by F satisfies the hypothesis of the Mar-
kus-Yamabe Conjecture.

(2) Define v0 = (x0
1 + x0

2x
0
3)x

0
3, w0 = x0

2(x
0
3)

2. Then

lim
t→β(x0)

||φ(t, x0)|| =
{

0, if (v0, w0) ∈ W s(0, 0)
∞, if (v0, w0) /∈ W s(0, 0)

where W s(0, 0) denotes the basin of attraction of the origin for
the system

(v̇, ẇ) = (−2v − w,−3w − v2).

Proof: The proof of (1) is a direct consequence of Proposition 3.2
taking a = b = −1.

If we search for invariant “semi straight lines” of system (8) we see
that Lx is invariant if and only if (x1, x2, x3) ∈ L(±18,−12,±1). In fact,
x1(t) = ±18et, x2(t) = −12e2t, x3(t) = ±e−t are two solutions of
(8) which clearly are not bounded (we notice that the solution given
in [CEGHM] is one of them).

On the other hand we use Proposition 2.5 to reduce the dimension of
the system outside the invariant plane x3 = 0. To be exact consider the
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quasi-homogeneous change of variables H(x1, x2, x3) = (v, w, z), outside
x3 = 0, defined by

(10) (v, w, z) = ((x1 + x2x3)x3, x2x
2
3, x3).

Thus (8) is transformed into

(11) (v̇, ẇ, ż) = (−2v − w,−3w − v2,−z).

Now consider the planar quadratic system

(12) (v̇, ẇ) = (−2v − w,−3w − v2).

The global dynamics of (12) in the (v, w)-plane can be studied without
major difficulties. We describe it in the sequel (see also Figure 1): There
are two critical points, an attracting node at O = (0, 0) and a hyperbolic
saddle at S = (6,−12). The unstable separatrices of the saddle point
are contained in the invariant algebraic curve 2v3 − 3w2 = 0. The stable
separatrices of this point have empty α-limit (they come from a critical
point at infinity) and are the boundary between the basin of attraction of
the attracting node, W s(0, 0), and the set of points which have α-limit
and ω-limit empty (except for the unstable separatrix of the saddle).
Moreover for these points we have that w(t) tends to infinity when t
tends to right endpoint of the interval of definition of the solution.

O

S

W s(0, 0)

Figure 1. Phase portrait of (12) in the Poincaré disk.

Take x0 ∈ R
3 such that (v0, w0) ∈ W s(0, 0). We want to prove that

limt→ω(x0) φ(t, x0) = 0. If x0
3 = 0 the proof is trivial. If x0

3 �= 0, unmaking
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the change of variables (11) we have that

u(t) =
v(t)
x0

3e
−t

,

y(t) =
w(t)

(x0
3e

−t)2
.

Since v(t) and w(t) are defined for all t ≥ 0 we get that ω(x0) = ∞ and
hence we need to prove that limt→∞ φ(t, x0) = 0. In other words we
have to compute

lim
t→∞

v(t)
x0

3e
−t

, and lim
t→∞

w(t)
(x0

3e
−t)2

.

Since for system (12) the eigenvalues of the node are −2 and −3 we can
apply Poincaré’s Theorem (see [AA, p. 72] which ensures that (12) is in
a neighbourhood of the origin, analytically conjugate to its linear part
at the origin. That is the speed of convergence at zero of v(t) and w(t)
is at least e−2t. Therefore

lim
t→∞

(u(t), y(t), z(t)) = (0, k, 0)

for some real number k. Considering the first change of variables we get

lim
t→∞

x(t) = (0, k, 0).

Since (0, 0, 0) is the only critical point of (8), we obtain that k = 0 and
we have concluded this part of the proof.

Now let x0 ∈ R
3 be such that (v0, w0) /∈ W s(0, 0). Clearly in this case

x0
3 �= 0. If ω(x0) �= ∞ then limt→ω(x0) ||x(t)|| = ∞ so we assume that

ω(x0) = ∞. Then we get

lim
t→∞

||x(t)|| ≥ lim
t→∞

|x2(t)| = lim
t→∞

w(t)
(x0

3e
−t)2

= ∞.

Remark 4.2. Let us call V s(0) the basin of attraction of 0 for
system (8). In order to describe it we notice that the transformation
H(x1, x2, x3) = (v, w, z) given in (10) is a diffeomorphism between the
half space x3 > 0 (resp. x3 < 0) and z > 0 (resp. z < 0). Furthermore it
satisfies

H(L(x0
1,x0

2.x0
3)

) = {(v0, w0, z), zx0
3 > 0}.
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So each vertical line (v0 and w0 fixed) in the space (v, w, z) splits into two
“semi straight lines” in the space (x1, x2, x3). This fact and the result
of Theorem 4.1 let us to see that ∂V s(0) = H−1({(v, w, z), (v, w) ∈
∂W s(0, 0), z �= 0} (where ∂E denotes the topological boundary of E)
and hence, this boundary has two connected components.

Remark 4.3. The solution of (8) found in [CEGHM] for proving
that the origin is not a global attractor is the one corresponding to
(v0, w0) = (6,−12) that is, the saddle point of (12), which is in the
boundary of W s(0, 0).

Remark 4.4. It is easy to test that (2v3 − 3w2)−5/6 is an integrating
factor for the vector field defined by (12). Therefore a first integral
can be found for (12). The effective computation of this first integral
needs to know a primitive of the function (ax + b)−5/6x−2/3. It is well
known (see for instance [Ch]) that this primitive cannot be expressed in
terms of elementary functions. Therefore it seems natural to believe that
the boundary of W s(0, 0) cannot be expressed in terms of elementary
functions.

Remark 4.5. Another way to describe the global dynamics of (9) was
suggested us by our colleague Xavier Chavarriga. It consists first in con-
sidering the transformation (v, w, z) = (u/z, y/z, z) and later (h,w, z) =
(v3/3−w2/2, w, z) applied to (10). With these last variables (10) writes
as (ḣ, ẇ, ż) = (0,−(3h + 3/2w2)2/3z,−z) and it can be easily studied.
In particular the solution found in [CEGHM] lives inside the invariant
surface h = 0, where the flow of (9) can be explicitly obtained from the
above expression. We have choosed our approach because it can be ap-
plied to any quasi-homogeneous vector field (see Proposition 2.5) while
the above change is thought just for simplifying system (9).

A similar result to Theorem 4.1 can be presented to describe the global
dynamics of the counterexample to the discrete Markus-Yamabe question
given in [CEGHM] by the map

(13) F (x1, x2, x3)=
(

1
2
x1+x3(x1 + x2x3)2,

1
2
x2−(x1 + x2x3)2,

1
2
x3

)
.

Theorem 4.6. Consider the discrete dynamical system generated by
F given in (13). That is

{
xn+1 = F (xn)
x0 = (x0

1, x
0
2, x

0
3) ∈ R

3
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Then

(1) The map F is under the hypothesis of the discrete Markus-Yamabe
Question.

(2) Define v0 = (x0
1 + x0

2x
0
3)x

0
3 and w0 = x0

2(x
0
3)

2. Then

lim
n→∞

||xn|| =
{

0 if (v0, w0) ∈ W s(0, 0)
∞ if (v0, w0) /∈ W s(0, 0)

where W s(0, 0) denotes the basin of attraction of the origin for
the discrete dynamical system generated by

(14) G(v, w) = (v/4 − w/8 + v2/4, w/8 − v2/4).

The proof of this last theorem follows the same steps that the proof
of the Theorem 4.1. The major difference consists in checking that the
two eigenvalues of the attracting node of the discrete dynamical system
generated by (14), (0, 0) are 1/4 and 1/8 and so the critical point is
under the hypothesis of Poincaré’s Theorem for diffeomorphisms (see
[AA, p. 99]).

Remark 4.7. The basin of attraction of the origin for system (12)
is well described in the proof of Theorem 4.1 and in Figure 1. On the
other hand the description of this basin for the discrete dynamical system
generated by (14) is not so easy. We do not study this problem here.
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