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A Polynomial Delay Algorithm for Enumerating 2-Edge-Connected
Induced Subgraphs∗

Taishu ITO†a), Yusuke SANO†, Nonmembers, Katsuhisa YAMANAKA†b), and Takashi HIRAYAMA†c), Members

SUMMARY The problem of enumerating connected induced sub-
graphs of a given graph is classical and studied well. It is known that
connected induced subgraphs can be enumerated in constant time for each
subgraph. In this paper, we focus on highly connected induced subgraphs.
The most major concept of connectivity on graphs is vertex connectivity.
For vertex connectivity, some enumeration problem settings and enumera-
tion algorithms have been proposed, such as k-vertex connected spanning
subgraphs. In this paper, we focus on another major concept of graph con-
nectivity, edge-connectivity. This is motivated by the problem of finding
evacuation routes in road networks. In evacuation routes, edge-connectivity
is important, since highly edge-connected subgraphs ensure multiple routes
between two vertices. In this paper, we consider the problem of enumerat-
ing 2-edge-connected induced subgraphs of a given graph. We present an
algorithm that enumerates 2-edge-connected induced subgraphs of an in-
put graph G with n vertices and m edges. Our algorithm enumerates all the
2-edge-connected induced subgraphs in O(n3m |SG |) time, where SG is the
set of the 2-edge-connected induced subgraphs of G. Moreover, by slightly
modifying the algorithm, we have a O(n3m)-delay enumeration algorithm
for 2-edge-connected induced subgraphs.
key words: enumeration algorithm, 2-edge-connected induced subgraph,
reverse search, polynomial delay

1. Introduction

Enumerating substructures of enormous data is a fundamen-
tal and important problem. An enumeration is one of the
strong and appealing strategies to discover some knowledge
from enormous data in various research areas such as data
mining, bioinformatics and artificial intelligence. From this
viewpoint, various enumeration algorithms have been de-
signed.

Graphs are used to represent the relationship of ob-
jects. In web-graphs, web pages are represented by vertices
of graphs and links between web pages are represented by
edges. For social networks, users are represented by ver-
tices of graphs and their friendship relations are represented
by edges. In the area of bioinformatics, molecular inter-
actions are represented by graphs. To discover valuable
knowledge from practical graphs, enumeration algorithms

Manuscript received March 25, 2021.
Manuscript publicized July 2, 2021.
†The authors are with Iwate University, Morioka-shi, 020–

8551 Japan.
∗A preliminary version appeared in the proceedings of the 14th

International Frontiers of Algorithmics Workshop (FAW2020),
Lecture Notes in Computer Science, vol.12340, pp.13–24,
2020 [1].

a) E-mail: shoes14@kono.cis.iwate-u.ac.jp
b) E-mail: yamanaka@cis.iwate-u.ac.jp
c) E-mail: hirayama@cis.iwate-u.ac.jp

DOI: 10.1587/transinf.2021FCP0005

for subgraphs with some properties are studied, such as sim-
ple/induced paths [2]–[5], simple/induced cycles [2]–[5],
subtrees [6], spanning trees [4], [7], [8], k-vertex-connected
spanning subgraphs [9], [10], k-edge-connected spanning
subgraphs [11], maximal k-edge-connected subgraphs [12],
cliques [13], [14], pseudo cliques [15], k-degenerate sub-
graphs [16], matchings [8], induced matchings [17], con-
nected induced subgraphs [8], [18], [19], and so on. Several
years ago, a good textbook on enumeration has been pub-
lished [20]. Recently, Conte and Uno [21] proposed a new
framework for enumerating maximal subgraphs with vari-
ous properties in polynomial delay.

Some of the existing results above focus on closely re-
lated subgraphs. This comes from the fact that some ap-
plications on knowledge discovery need to find closely re-
lated community on graph structures. In this paper, we fo-
cus on highly edge-connected induced subgraphs. This is
motivated by the problem of finding evacuation routes of
road networks in time of disaster. It is easy to imagine that
many roads would be broken, submerged, or closed in the
disaster-hit areas. Knowledge of a single route from the
current position to a shelter is apparently insufficient to se-
cure evacuation routes in case of emergency. From this point
of view, the problem of finding subgraphs with high edge-
connectivity is important, since high edge-connectivity of
graphs ensure multiple routes between two places. Now,
we have the following question: Can we efficiently enumer-
ate all k-edge-connected induced subgraphs? Here, an effi-
cient enumeration implies an output polynomial or a poly-
nomial delay enumeration. Haraguchi and Nagamochi [22]
answered this question and proposed a polynomial delay
enumeration algorithm for k-edge-connected induced sub-
graphs∗∗. The delay of their algorithm is O(min{k+1, n}m6),
where n is the number of vertices and m is the number of
edges in a graph.

In this paper, we focus on the problem of enumerating
all 2-edge-connected induced subgraphs of a given graph
and propose a more efficient enumeration algorithm. The
algorithm is based on reverse search [18]. First, we define
a tree structure, called a family tree, on a set of 2-edge-
connected induced subgraphs of a given graph. Then, by
traversing the tree, we enumerate all the 2-edge-connected
induced subgraphs. For an input graph G with n vertices

∗∗They proposed polynomial delay enumeration algorithms for
connectors and various types of subgraphs. Their results include an
enumeration algorithm of k-edge-connected subgraphs in a graph.
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Fig. 1 An example of a closed-ear decomposition. The graph G has a closed-ear decomposition
P1, P2, P3, P4, P5.

and m edges, our algorithm runs in O(n3m |SG |), where SG

is the set of the 2-edge-connected induced subgraphs of G.
By applying the alternative output technique by Nakano and
Uno [23], we have an enumeration algorithm that runs in
O(n3m) delay.

2. Preliminary

2.1 Graphs and Notations

In this paper, we assume that all graphs are simple, undi-
rected, and unweighted. Let G = (V(G), E(G)) be a graph
with vertex set V(G) and edge set E(G). We define n =
|V(G)| and m = |E(G)|. The neighbor set of a vertex v,
denoted by N(v), is the set of vertices adjacent to v. The
degree of v, denoted by d(v), is the number of vertices in
N(v). A subgraph of a graph G is a graph H = (V(H), E(H))
such that V(H) ⊆ V(G) and E(H) ⊆ {{u, v} | u, v ∈
V(H) and {u, v} ∈ E(G)}.

A path of G is an alternating sequence 〈v1, e1, v2, e2, . . . ,
ek−1, vk〉 of vertices and edges, where ei = {vi, vi+1} for
1 ≤ i ≤ k − 1, such that ei ∈ E(G) holds. The length,
denoted by |P|, of a path P is the number of the edges in the
path. The path is simple if the path contains distinct vertices
and distinct edges. Let P = 〈v1, e1, v2, e2, . . . , ek−1, vk〉 be a
simple path. We write P = 〈v1, v2, . . . , vk〉 by omitting the
internal edges of P. A simple path P is an open ear of G
if d(v) = 2 for each internal vertex v and d(u) > 2 for each
endpoint u holds. A path P = 〈v1, v2, . . . , vk〉 is a cycle if
v1 = vk holds. A cycle is simple if a cycle has distinct inter-
nal vertices and distinct edges. A simple cycle P is a closed
ear of G if d(vi) = 2 for i = 2, 3, . . . , k − 1 and d(v1) > 2.

Let G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) be
two graphs. The union of G1 and G2 is the graph G1 ∪G2 =

(V(G1)∪V(G2), E(G1)∪E(G2)). A decomposition of a graph
G is a list H1,H2, . . . ,Hk of subgraphs such that each edge
of G appears in exactly one subgraph in the list and G =
H1 ∪ H2 ∪ · · · ∪ Hk holds. A closed-ear decomposition of
G is a decomposition P1, P2, . . . , Pk such that P1 is a cycle
and Pi for i ≥ 2 is either an open ear or a closed ear in
P1 ∪ P2 ∪ · · · ∪ Pi

†. See Fig. 1 for an example.
An edge-cut of G is a set F ⊆ E(G) if the removal

of edges in F makes G unconnected. A graph is k-edge-

†A closed-ear decomposition is an ear decomposition if every
ear in the decomposition is an open ear.

connected if every edge-cut has at least k edges. A bridge is
an edge-cut consisting of one edge. For bridges we have the
following characterization:

Theorem 1 ([24],p.23): An edge is a bridge if and only if
it belongs to no cycle.

From the above theorem, if there is a cycle including an edge
e, e is not a bridge. From the definition, we have the follow-
ing observation.

Observation 1: A graph is 2-edge-connected if and only if
the graph has no bridge.

A 2-edge-connected graph has another characterization:

Theorem 2 ([24],p.164): A graph is 2-edge-connected if
and only if it has a closed-ear decomposition and every cy-
cle in a 2-edge-connected graph is the initial cycle in some
such decomposition.

An induced subgraph of G is a subgraph H =

(V(H), E(H)) such that V(H) ⊆ V(G) and E(H) = {{u, v} |
u, v ∈ V(H) and {u, v} ∈ E(G)}. We say that H is a sub-
graph of G induced by V(H) and denoted by G[V(H)]. Let
S be a subset of V(G). We define H + S as the subgraph
induced by V(H)∪S . Similarly, we define H−S as the sub-
graph induced by V(H) \ S . Let H1 = (V(H1), E(H1)) and
H2 = (V(H2), E(H2)) be two induced subgraphs of G. We
define H1 + H2 as the subgraph induced by V(H1) ∪ V(H2).
We define H1−H2 as the subgraph induced by V(H1)\V(H2).
An induced subgraph is an induced path and induced cycle
if it forms a simple path and simple cycle, respectively.

Observation 2: Let G = (V(G), E(G)) be a 2-edge-
connected graph. Then, G has a closed-ear decomposition
that ends up with an induced cycle of G.

Proof. Let C be a induced cycle of G. Since G is 2-edge-
connected, from Theorem 2, there exists a closed-ear de-
composition that ends up with C. Therefore, the claim is
proved. �

Now, let H = (V(H), E(H)) be a 2-edge-connected in-
duced subgraph of G, and let S ⊆ V(H) be a subset of V(H).
A vertex v in S is a boundary of S if v is adjacent to a vertex
in V(H) \ S . A vertex subset S is removable if H − S is
2-edge-connected.

Lemma 1: Let G be a graph, and let H be a 2-edge-
connected induced subgraph of G. Suppose that H is not
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an induced cycle. Then, H has a removable set.

Proof. From Observation 2, H has a closed-ear decom-
position that ends up with an induced cycle. Let C =

(V(C), E(C)) be such an induced cycle of G. Then, we can
observe that V(H) \ V(C) is a removable set. �

A removable set S of H is minimal if any S ′ ⊂ S is not
a removable set of H. We have the following properties of
minimal removable sets.

Lemma 2: Let G be a graph, and let H be a 2-edge-
connected induced subgraph of G. Let S be a minimal re-
movable set of H. Then, G[S ] is connected.

Proof. Suppose for a contradiction that G[S ] is uncon-
nected. Let S ′ be a subset of S such that G[S ′] is a con-
nected component in G[S ]. Then, S ′ is a removable set,
which contradicts to the minimality of S . �

Lemma 3: Let G be a graph, and let H be a 2-edge-
connected induced subgraph of G. Any minimal removable
set S , |S | ≥ 2, of H has exactly two boundaries.

Proof. Proof by contradiction. We first assume that the
number of boundaries of S is 1. Let v be the boundary in S .
From 2-edge-connectivity of H, v is adjacent to two or more
vertices in V(H) \ S (otherwise, v is incident to a bridge,
which is contradiction). Hence, H − (S \ {v}) is 2-edge-
connected. This means that S \ {v} is a removable set, which
contradicts to the minimality of S . Next, we assume that the
number of boundaries of S is 3 or more. From Lemma 2,
G[S ] is connected. Hence, for any two boundaries in S ,
there is a path between them in G[S ]. Let x, y be two bound-
aries of S such that the shortest path Px,y between them has
no other boundary as its internal vertex. Note that Px,y is an
induced path of H. Then, S \ V(Px,y) is a removable set of
H. This contradicts to the minimality of S . �

Now, we have the following key lemma.

Lemma 4: Let G be a graph, and let H be a 2-edge-
connected induced subgraph of G. Let S , |S | ≥ 2, be a
minimal removable set of H. Then, G[S ] is a path of length
|S | − 1.

Proof. We assume for a contradiction that G[S ] is not a
path. From Lemma 3, S has two boundaries. Let u, v be
the two boundaries in S . From Lemma 2, there is a path
between u and v. Let Pu,v be a shortest path between u and
v. Note that Pu,v has no other boundary as its internal vertex.
Then, S \ V(Pu,v) is a removable set of H which contradicts
to minimality of S . �

From Lemma 3 and Lemma 4, we can write a minimal
removable set as a sequence S = 〈u1, u2, . . . , uk〉. Moreover,
any internal vertex is not boundary of S . That is, the end-
points of S are boundaries. From now on, we assume that
the two endpoints u1 and uk are boundaries of S .

A path P = 〈w1, w2, . . . , w�〉 with |V(P)| ≥ 2 of H is an
internal ear if (1) w1 and wk are the two boundaries of V(P)

and (2) d(wi) = 2 in H holds for i = 1, 2, . . . , �. An internal
ear P is maximal if there is no internal ear P′ such that P′
includes P as its subpath. We have the following observation
on forms of minimal removable sets.

Observation 3: Let G be a graph, and let H be a 2-edge-
connected induced subgraph of G. Let S = 〈u1, u2, . . . , uk〉
be a minimal removable set of H with two boundaries u1, uk.
Then,

1. if |S | = 1, S forms a path in H with length 0 (in this
case, u1 = uk) and

2. if |S | ≥ 2, S forms a maximal internal ear of H.

Proof. The case of |S | = 1 is trivial. Therefore, in this
proof, we consider the case of |S | ≥ 2, below.

From Lemma 4, S forms a path with two boundaries u1

and uk. We first show that d(u1) = 2 in H. From the 2-edge-
connectivity of H, it can be observed that d(u1) ≥ 2 holds.
Now, suppose that d(u1) > 2 holds. Then, S \ {v1} ⊂ S
is removable, which is a contradiction. Hence, d(u1) = 2
holds. The same discussion can be applied to the case of uk.

Next, we show the maximality of S . Assume for a con-
tradiction that S is not maixmal. Let S ′ be an internal ear
such that it includes S as a subpath. From the definition of
internal ears, it can be observed that H−S includes degree-1
vertex, and hence H − S is not 2-edge-connected. This con-
tradicts that S is removable. �

From Observation 3, a minimal removable set of a 2-
edge-connected induced subgraph H forms a maximal inter-
nal ear of H. However, note that the reverse direction is not
always true.

2.2 Enumeration Algorithms

For algorithms of normal decision problems or optimization
problems, we estimate the running time of the whole algo-
rithm as a function of input size. On the other hands, in enu-
meration problems, we sometimes have exponential outputs
for input size. For enumeration algorithms, we use particu-
lar running-time analysis. In this subsection, we introduce
some analysis ways for enumeration algorithms.

Let A be an enumeration algorithm for an enumera-
tion problem Π with input size n and output size α. The
algorithm A is output polynomial if A solves Π in O(ncαd)
time, where c, d are some constants. The algorithm A P-
enumerates ifA solves Π in O(ncα) [25]. Then, we say that
A enumerates every solution of Π in O(nc) time for each. A
delay of A is a computation time between two consecutive
outputs. The algorithmA is polynomial delay if (1) the first
solution is output in O(nc) time for some constant c and (2)
the delay of A is bounded above by O(nc) [26]. Then, we
say that,A enumerates every solution in O(nc) delay.

3. Family Tree of 2-Edge-Connected Induced Sub-
graphs

In this section, we define a tree structure among the set of
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Fig. 2 (a) A 2-edge-connected induced subgraph H1. (b) The parent
P(H1) of H1. P(H1) is obtained from H1 by removing {4, 5, 8, 10, 9}, which
is the smallest minimal removable set of H1. (c) A 2-edge-connected in-
duced subgraph H2. (d) The parent P(H2) of H2. P(H2) is obtained from
H2 by removing {3}, which is the smallest minimal removable set of H2.

2-edge-connected induced subgraphs of an input graph. The
vertices of the tree structure corresponds to the set of 2-
edge-connected induced subgraphs, each edge corresponds
to a parent-child relation between two 2-edge-connected in-
duced subgraphs, and the root is the empty graph.

We define some notations. Let G = (V(G), E(G)) be a
graph with a labeled-vertex set V(G) = {v1, v2, . . . , vn} and
an edge set E(G). Let SG be the set of the 2-edge-connected
induced subgraphs of G, and letCG ⊆ SG be the set of the in-
duced cycles of G. We say that vi is smaller than v j, denoted
by vi ≺ v j, if i < j holds. Let H = (V(H), E(H)) be a 2-edge-
connected induced subgraph of G. Let S 1 = 〈u1, u2, . . . , uk〉,
(u1 ≺ uk), and S 2 = 〈w1, w2, . . . , wk〉, (w1 ≺ wk), be two min-
imal removable sets of H. S 1 is smaller than S 2 if u1 ≺ w1

holds. Note that, for two minimal removable sets S 1 and S 2,
S 1 ∩ S 2 = ∅ holds.

Let S be the smallest minimal removable set of H.
Then, we define the parent of H, as follows.

P(H) :=

⎧
⎪⎪⎨
⎪⎪⎩

∅ (H ∈ CG)

H − S (H ∈ SG \ CG),

where ∅ reperesents the empty graph, which is the graph
with 0 vertex and 0 edge. We say that H is a child of the
parent of P(H). Examples of parents are shown in Fig. 2. If
H ∈ SG \ CG holds, H has a removable set from Lemma 1.
Hence, H always has its parent. Moreover, the parent is
defined uniquely, since the smallest minimal removable set
is unique in H. Note that P(H) is also a 2-edge-connected
induced subgraph of G. For a 2-edge-connected induced
subgraph in CG, we define its parent as the empty graph ∅.
By repeatedly finding parents from H, we obtain a sequence
of 2-edge-connected induced subgraphs of G or the empty
graph. We define the sequence PS(H) = 〈H1,H2, . . . ,H�〉,
where H1 = H and Hi = P(Hi−1) for i = 2, 3, . . . , �, the
parent sequence of H. An example of a parent sequence
is shown in Fig. 3. This sequence ends up with the empty
graph, as shown in the following lemma.

Lemma 5: Let H be a 2-edge-connected induced subgraph

Fig. 3 An example of the parent sequence of a 2-edge-connected in-
duced subgraph. (a) A 2-edge-connected induced subgraph H. (b) The
parent P(H) of H. P(H) is obtained from H by removing {2}. (c) The
parent P(P(H)) of P(H). P(P(H)) is obtained by removing {3}. (d) The
parent P(P(P(H))) of P(P(H)). P(P(P(H))) is obtained by removing
{4, 5, 8, 10, 9}. (e) Finally, the root, the empty graph, is obtained by re-
moving {1, 6, 7}.

of a graph G, and let PS(H) = 〈H1,H2, . . . ,H�〉 be the par-
ent sequence of H. Then, H� is the empty graph ∅.
Proof. We define a potential function φ(I) = |V(I)| for an
induced subgraph I. It is observed that φ(I) = 0 if and only
if I is the empty graph. Let Hi, 1 ≤ i ≤ � − 1, be a 2-edge-
connected induced subgraph on PS(H). If Hi ∈ SG \ CG,
then there always exists its parent P(Hi) from Lemma 1.
Otherwise, Hi ∈ CG, its parent is the empty graph. There-
fore, φ(P(Hi)) ≤ φ(Hi) holds. Hence, Hi � Hj holds for any
i, j with i � j. Thus, the claim is proved. �

From Lemma 5, by merging the parent sequences of all 2-
edge-connected induced subgraphs of G, we have the tree
structure, called family tree, in which (1) the root is the
empty graph, (2) the vertices except the root are 2-edge-
connected induced subgraphs of G, and (3) each edge corre-
sponds to a parent-child relation of two induced subgraphs
of G. An example of the family tree is shown in Fig. 4.

4. Enumeration Algorithm

In this section, we present an enumeration algorithm for the
2-edge-connected induced subgraphs of an input graph. In
the previous section, we defined the family tree rooted at the
empty graph. Our algorithm enumerates 2-edge-connected
induced subgraphs by traversing the tree. The children of
the root in the tree are the induced cycles of an input graph.
Our algorithm first enumerates the induced cycles of an in-
put graph. Then, for each induced cycle, we traverse the
subtree rooted at the cycle. To traverse the family tree, we
have to design an enumeration algorithm for induced cy-
cles of a graph and a child-enumeration algorithm for any 2-
edge-connected induced subgraph. Fortunately, an efficient
induced-cycle-enumeration algorithm is already known [5].
In our algorithm, we use the existing algorithm for enumer-
ating the induced cycles of a graph. Now, in this section, we
present a child-enumeration algorithm for 2-edge-connected
induced subgraphs of a graph, below.

Let G = (V(G), E(G)) be a graph with a labeled-vertex
set V(G) = 〈v1, v2, . . . , vn〉 and an edge set E(G). Let SG be
the set of 2-edge-connected induced subgraphs of G, and let
CG ⊆ SG be the set of the induced cycles of G. To gener-
ate a child, we do the reverse operation for finding parents
which is to attach a maximal internal ear to H. If the vertex
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Fig. 4 An example of family tree of the input graph, drawn in the upper-left of the figure.

Fig. 5 A case that 2-edge-connected induced subgraph H of an input
graph G has exponential child-candidates.

set S of the attached path is the smallest minimal remov-
able set in H + S , then H + S is a child of H. Otherwise,
H + S is not a child. Let I(H, s, t) be the set of paths P such
that P is a maximal internal ear in H + P from s to t for
s, t ∈ N(H), where N(H) :=

⋃
u∈V(H) N(u) ∩ (V(G) \ V(H)).

For any different two s, t ∈ N(H) and for any P ∈ I(H, s, t),
H+P is a candidate of a child, that is, H+P may be a child.
Therefore, if we generate all the paths in I(H, s, t) for every
s, t ∈ N(H), then all the children of H are enumerated by
checking whether or not H + P for each P ∈ I(H, s, t) is a
child. However, this method may take exponential time. It
can be observed that |I(H, s, t)| can be an exponential of the
number of vertices in V(G)\V(H) when G−H has a “ladder”
subgraph, as shown in Fig. 5 (one can choose to pass or not
each rung in a ladder subgraph). Hence, there may be ex-
ponential child-candidates. If all the exponential candidates
are non-children, the above child-enumeration method takes
exponential time for checking whether or not H has at least
one child. However, fortunately, we can check whether or

not H has at least one child in polynomial time, as follows.
M(H) denotes the set of minimal removable sets of

H. We can observe that, for any P, P′ ∈ I(H, s, t),M(H +
P) \ {P} = M(H + P′) \ {P′} holds. Therefore, if, for any
P ∈ I(H, s, t), P is the smallest minimal removable set
among M(H + P), then every P′ ∈ I(H, s, t) \ {P} is also
the smallest one among M(H + P′). This implies that, if
H+P for P ∈ I(H, s, t) is a child of H, then H+P′ for every
P′ ∈ I(H, s, t) \ {P} is also a child of H. Hence, we focus on
determining whether or not H + P for a path P ∈ I(H, s, t),
where s, t ∈ N(H) and s ≺ t, is a child of H. In the fol-
lowing case-analysis, we consider whether or not attaching
P ∈ I(H, s, t) to H produces a child.

Case 1: s ≺ v for every v ∈ V(H).
Obviously, for any path P ∈ I(H, s, t), V(P) is the

smallest minimal removable set in H + P. Therefore, H + P
is a child of H.

Case 2: Otherwise.
Let P be any path in I(H, s, t). If V(P) is the smallest

one among M(H + P), then H + P is a child, and hence
every P′ ∈ I(H, s, t) \ {P} is also a child. Otherwise, H + P
is a non-child, and hence every P′ ∈ I(H, s, t) \ {P} is also a
non-child.

Examples of children are shown in Fig. 6. The figure in-
cludes three child-candidates of a 2-edge-connected induced
subgraph.

Now, from the above case-analysis, we have the algo-
rithm described in Algorithm 1 and Algorithm 2. In Algo-
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Fig. 6 Examples of children. (a) An input graph G. (b) A 2-edge-
connected induced subgraph H of G. The smallest minimal removable set
of H is {3}. (c) The induced subgraph obtained from H by inserting {2}.
This is a child, since the smallest minimal removable set is {2}. (d) The
induced subgraph obtained from H by inserting {4, 5, 8}. This subgraph is
a child, since {4, 5, 6} is the smallest minimal removable set. Note that, in
this case, although 3 ≺ 4 holds, {3} turns non-removable. (e) The induced
subgraph obtained from H by inserting {8, 10, 9}. Here, the smallest mini-
mal removable set is {1}. Hence, this is not a child. Note that, in this case,
the set {1} turns removable.

Algorithm 1: Enum-2-Edge-Conn-Ind-Subgraphs(G =
(V(G), E(G)))
1 begin
2 /* An input is a simple, unweighted, and

undirected graph G = (V(G), E(G)). Outputs

are all the 2-edge-connected induced

subgraphs of G. */

3 Let C(G) be the set of the induced cycles of G.
4 foreach C ∈ C(G) do
5 Call Find-Children(G,C)

Algorithm 2: Find-Children(G = (V(G), E(G)),
H = (V(H), E(H)))
1 begin
2 /* Find all the children of a given

2-edge-connected induced subgraph H. */

3 Output H.
4 foreach s, t ∈ N(H), s ≺ t do
5 if s ≺ v for every v ∈ V(H) then
6 foreach P ∈ I(H, s, t) do
7 Find-Children(G, H + P)

8 else
9 Let P be any path in I(H, s, t).

10 ConstructM(H + P).
11 if V(P) is the smallest one amongM(H + P) then
12 foreach P ∈ I(H, s, t) do
13 Find-Children(G, H + P)

rithm 1, we are required to enumerate the induced cycles in
an input graph G. This enumeration can be done using an
existing algorithm [3], which enumerates all the induced cy-

cles in CG in Õ(m + n |CG |) time, where Õ( f ) is a shorthand
for O( f · polylog n).

For each generated induced cycle, we traverse the sub-
tree rooted at the cycle using Algorithm 2. In the line 10
in Algorithm 2, the algorithm constructsM(H + P). This
can be done, as follows. For each vertex u with degree 3
or more in H + P, we check whether or not H + P − {u}
is 2-edge-connected. If the answer is yes, {u} is a mem-
ber of M(H + P). This check can be done in O(m) time
using a depth-first search. For each vertex u with degree
2 in H + P, we first find the maximal internal ear includ-
ing u by traversing from u (this can be found in O(n) time).
Let P′ be the found path. Then, we check whether or not
H + P − P′ is 2-edge-connected (this takes O(m) time us-
ing a depth-first search). If the answer is yes, V(P′) is a
member of M(H + P). The above process can list all the
members ofM(H+P) up and done in O(nm)+O(nm). Note
that the number of the internal ears in H + P is bounded
by O(n). All the paths in I(H, s, t) can be enumerated us-
ing an enumeration algorithm for induced paths [3], which
enumerates all the paths in I(H, s, t) in Õ(m + n |I(H, s, t)|)
time. Now, we estimate the running time of one recursive
call of Algorithm 2. Suppose that H has k children. For
each O(n2) pairs of s and t, we construct M(H + P). This
takes O(n3m) time. Since H has k children, the enumeration
algorithm for induced paths runs at most k times in lines
6 or 12. Let {s1, t1}, {s2, t2}, . . . , {sx, tx} be pairs of vertices
in N(H) such that, for P ∈ I(H, si, ti), H + P is a child of
H. Let ki = |I(H, si, ti)|. Note that there exists ki children
generated by attaching P ∈ I(H, si, ti). Then, k =

∑
1≤i≤x ki

holds. Now, the total running time for enumerating paths
in I(H, si, ti) is bounded by

∑
1≤i≤x Õ(m + nki), which is

bounded by k · Õ(m + n). Hence, each recursive call of Al-
gorithm 2 takes O(n3m) + k · Õ(m + n) time. Therefore, we
have the following theorem.

Theorem 3: Let G = (V(G), E(G)) be a graph with n ver-
tices and m edges. Let SG be the set of the 2-edge-connected
induced subgraphs of G. One can enumerate all the 2-edge-
connected induced subgraphs of G in O(n3m |SG |) time.

Proof. All the children of the root of the family tree, namely
the induced cycles of G, can be enumerated in Õ(m+ n |CG |)
time [3]. The recursive call for any 2-edge-connected in-
duced subgraph H takes O(n3m) + k · Õ(m + n) if H has k
children. Hence, the total running time of our algorithm is
bounded by O(n3m |SG |). �

Now, we show that one can enumerate 2-edge-
connected induced subgraphs in O(n3m) delay. Suppose that
there exist O(TC)-delay and O(TP)-delay enumeration algo-
rithms for induced cycles and s-t paths, respectively. As
shown in Algorithm 1 and Algorithm 2, first, we enumer-
ate induced cycles of an input graph G by the O(TC)-delay
enumeration algorithm. Then, for each induced cycle, we
traverse the subtree rooted at the cycle. In that traversal, we
apply the alternative output technique [23]. In the technique,
2-edge-connected induced subgraphs with even-depth in the
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tree are output before their children and 2-edge-connected
induced subgraphs with odd-depth in the tree are output af-
ter their children. In the above traversal, we have an output
per at most 3 edge traversals in each subtree. Each edge
traversal takes O(max{n3m,TP}) time. Hence, we have the
following corollary.

Corollary 1: Let G = (V(G), E(G)) be a graph with n
vertices and m edges. One can enumerate every 2-edge-
connected induced subgraph of G in O(max{n3m,TP,TC})
delay.

Uno and Satoh [5] proposed efficient enumeration al-
gorithms for induced cycles and s-t paths of a given graph.
From [5], one can see that TC ,TP ∈ O(n3m) holds. Hence,
we have the following corollary.

Corollary 2: Let G = (V(G), E(G)) be a graph with n
vertices and m edges. One can enumerate every 2-edge-
connected induced subgraph in O(n3m) delay.
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