
Math. Program., Ser. A (2011) 126:97–117
DOI 10.1007/s10107-009-0276-7

FULL LENGTH PAPER

A polynomial oracle-time algorithm for convex integer
minimization

Raymond Hemmecke · Shmuel Onn ·
Robert Weismantel

Received: 16 October 2007 / Accepted: 27 January 2009 / Published online: 6 March 2009
© Springer and Mathematical Programming Society 2009

Abstract In this paper we consider the solution of certain convex integer
minimization problems via greedy augmentation procedures. We show that a greedy
augmentation procedure that employs only directions from certain Graver bases needs
only polynomially many augmentation steps to solve the given problem. We extend
these results to convex N -fold integer minimization problems and to convex 2-stage
stochastic integer minimization problems. Finally, we present some applications of
convex N -fold integer minimization problems for which our approach provides poly-
nomial time solution algorithms.

Mathematics Subject Classification (2000) 52B ·52C ·62H ·68Q ·68R ·68U ·68W ·
90B · 90C

1 Introduction

For an integer matrix A ∈ Z
d×n , we define the circuits C(A) and the Graver basis G(A)

as follows. Herein, an integer vector v ∈ Z
n is called primitive if all its components

are coprime, that is, gcd(v1, . . . , vn) = 1.
Let A ∈ Z

d×n and let Oj , j = 1, . . . , 2n , denote the 2n orthants of R
n . Then the

cones

Cj := ker(A) ∩Oj = {z ∈ Oj : Az = 0}
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98 R. Hemmecke et al.

are pointed rational polyhedral cones. Let Rj and Hj denote the (unique) minimal sets
of primitive integer vectors generating Cj over R+ and Cj ∩Z

n over Z+, respectively.
Then we define

C(A) :=
2n⋃

j=1

Rj\{0} and G(A) :=
2n⋃

j=1

Hj\{0}

to be the set C(A) of circuits of A and the Graver basis G(A) of A. It is not hard
to show that C(A) corresponds indeed to all primitive support-minimal vectors in
ker(A) [7].

Already in 1975, Graver showed that C(A) and G(A) provide optimality certificates
for a large class of continuous and integer linear programs, namely for

(LP)A,u,b, f : min
{

f (z) : Az = b, 0 ≤ z ≤ u, z ∈ R
n+
}
,

and

(IP)A,u,b, f : min
{

f (z) : Az = b, 0 ≤ z ≤ u, z ∈ Z
n+
}
,

where the linear objective function f (x) = cᵀx , the upper bounds vector u, and the
right-hand side vector b are allowed to be changed [7]. A solution z0 to (LP)A,u,b, f is
optimal if and only if there are no g ∈ C(A) and α ∈ R+ such that z0+αg is a feasible
solution to (LP)A,u,b, f that has a smaller objective function value f (z0+αg) < f (z0).
Analogously, an integer solution z0 to (IP)A,u,b, f is optimal if and only if there are
no g ∈ G(A) and α ∈ Z+ such that z0 + αg is a feasible solution to (IP)A,u,b, f that
has a smaller objective function value f (z0 + αg) < f (z0).

Thus, the directions from C(A) and G(A) allow a simple augmentation procedure
that iteratively improves a given feasible solution to optimality. While this augmenta-
tion process has to terminate for bounded IPs, it may show some zig-zagging behaviour
even to non-optimal solutions for LPs [8]:

Example 1 Consider the problem

min
{
z1 + z2 − z3 : 2z1 + z2 ≤ 2, z1 + 2z2 ≤ 2, z3 ≤ 1, (z1, z2, z3) ∈ R

3≥0

}

with optimal solution (0, 0, 1). Introducing slack variables z4, z5, z6 we obtain the
problem min{cᵀz : Az = (2, 2, 1)ᵀ, z ∈ R

6≥0} with cᵀ = (1, 1,−1, 0, 0, 0) and

A =
⎛

⎝
2 1 0 1 0 0
1 2 0 0 1 0
0 0 1 0 0 1

⎞

⎠.

The vectors (1, 0, 0,−2,−1, 0), (0, 1, 0,−1,−2, 0), (1,−2, 0, 0, 3, 0), (2,−1, 0,

−3, 0, 0), (0, 0, 1, 0, 0,−1) together with their negatives are the circuits of A. The
improving directions are given by all circuits v for which cᵀv > 0.
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(0,1/4,0)

(0,1,0)

optimum (0,0,1)

(0,1,1)

(1,0,1)

(1/8,0,0) (1/2,0,0) (1,0,0)(0,0,0)

Now start with the feasible solution z0 = (0, 1, 0, 1, 0, 1). Following the directions
(0, 1, 0,−1,−2, 0) and (0, 0,−1, 0, 0, 1) as far as possible, we immediately arrive
at (0, 0, 1, 2, 2, 0) which corresponds to the desired optimal solution (0, 0, 1) of our
problem. However, alternatively choosing only the vectors (−1, 2, 0, 0,−3, 0) and
(2,−1, 0,−3, 0, 0) as improving directions, the augmentation process does not ter-
minate. In our original space R

3, this corresponds to the sequence of movements

(0, 1, 0)→
(

1

2
, 0, 0

)
→

(
0,

1

4
, 0

)
→

(
1

8
, 0, 0

)
→

(
0,

1

16
, 0

)
→ · · ·

clearly shows the zig-zagging behaviour to the non-optimal point (0, 0, 0). ��
Indeed, in order to avoid zig-zagging, certain conditions on the selection of the

potential augmenting circuits must be imposed. As suggested in [8], one can avoid
such an undesired convergence

• by first choosing an augmenting circuit direction freely, and
• by then moving only along such circuit directions that do not increase the objec-

tive value, that is cᵀg ≤ 0, and which introduce an additional zero component in
the current feasible solution, that is supp(z0 + αg) � supp(z0). After O(n) such
steps, we have again reached a vertex and may perform a free augmentation step
if possible.

A natural question that arises is, whether there are strategies to choose a direction from
C(A) and G(A), respectively, to augment any given feasible solution of (LP)A,u,b, f
or (IP)A,u,b, f to optimality in only polynomially many augmentation steps. In this
paper, we answer this question affirmatively, see Theorems 2 and 3. Moreover, we
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employ these theorems to construct polynomial algorithms for the solution of certain
convex integer N -fold minimization problems and of certain convex stochastic integer
minimization problems, see Theorems 7 and 11.

For this let us introduce the notion of a greedy augmentation vector. Let F ⊆ R
n

be a set of feasible solutions, z0 ∈ F , f : Rn → R any objective function, and let
S ⊆ R

n be a (finite) set of directions. Then we call any optimal solution to

min { f (z0 + αg) : α ∈ R+, g ∈ S, z0 + αg ∈ F} ,

a greedy augmentation vector (from S for z0).

Theorem 2 Let A ∈ Z
d×n, u ∈ Q

n, b ∈ Z
d and c ∈ Q

n be given. Moreover, let
f (z) = cᵀz. Then the following two statements hold.

(a) Any feasible solution z0 to (LP)A,u,b, f can be augmented to an optimal solution
of (LP)A,u,b, f by iteratively applying the following greedy procedure:
1. Choose a greedy direction αg from C(A) and set z0 := z0 + αg.

If αg = 0, that is if α = 0 for all g ∈ C(A), return z0 as optimal solution.
2. As long as it is possible, find a circuit direction g ∈ C(A) and α > 0 such

that z0+αg is feasible, cᵀ(z0+αg) ≤ cᵀz0, and supp(z0+αg) � supp(z0),
and set z0 := z0 + αg.
Go back to Step 1.

The number of augmentation steps in this augmentation procedure is polynomi-
ally bounded in the encoding lengths of A, u, b, c, and z0.

(b) Any feasible solution z0 to (IP)A,u,b, f can be augmented to an optimal solution
of (IP)A,u,b, f by iteratively applying the following greedy procedure:

Choose a greedy direction αg from G(A) and set z0 := z0 + αg.
If αg = 0, that is if α = 0 for all g ∈ G(A), return z0 as optimal solution.

The number of augmentation steps in this augmentation procedure is polynomi-
ally bounded in the encoding lengths of A, u, b, c, and z0.

For our proof of Theorem 2 we refer to Sect. 5.1.
Note that in [4] it was shown that the Graver basis G(A) allows to design a polyno-

mial time augmentation procedure. This procedure makes use of the oracle equivalence
of so-called oriented augmentation and linear optimization established in [18]. How-
ever, the choice of the Graver basis element that has to be used as a next augmenting
vector using the mechanism of [18] is far more technical than our simple greedy
strategy suggested by Theorem 2, part (b).

In this paper, we also generalize part (b) of Theorem 2 to certain Z-convex objec-
tive functions. We say that a function g : Z → Z is Z-convex, if for all x, y ∈ Z

and for all 0 ≤ λ ≤ 1 with λx + (1 − λ)y ∈ Z, the inequality g(λx + (1 − λ)y) ≤
λg(x)+ (1− λ)g(y) holds. With this notion of Z-convexity, we generalize part (b) of
Theorem 2 to nonlinear convex objectives of the form f (cᵀz, cᵀ

1 z, . . . , cᵀ
s z), where

f (y0, y1, . . . , ys) =
s∑

i=1

fi (yi )+ y0 (1)
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A polynomial oracle-time algorithm for convex integer minimization 101

is a separable Z-convex function and where c0, . . . , cs ∈ Z
n are given fixed vectors. In

particular, each function fi : Z→ Z is Z-convex. When all fi ≡ 0, we recover linear
integer optimization as a special case. To state our result, let C denote the s×n matrix
with rows c1, . . . , cs and let G(A, C) denote the Graver basis of

(
A 0
C Is

)
projected onto

the first n variables. As was shown in [9,14], this finite set provides an improving
direction for any non-optimal solution z0 of (IP)A,u,b, f .

Theorem 3 Let A ∈ Z
d×n, u ∈ Z

n, b ∈ Z
d , c ∈ Z

n, c1, . . . , cs ∈ Z
n. Moreover,

let f̄ (z) := f (cᵀz, cᵀ
1 z, . . . , cᵀ

s z), where f denotes a separable Z-convex function
as in (1) given by a polynomial time comparison oracle which, when queried on
x, y ∈ Z

s+1, decides whether f (x) < f (y), f (x) = f (y), or f (x) > f (y) holds
in time polynomial in the encoding lengths of x and y. Moreover, let H be an upper
bound for the difference of maximum and minimum value of f̄ over the feasible set
{z : Az = b, 0 ≤ z ≤ u, z ∈ Z

n+} and assume that the encoding length of H is of
polynomial size in the encoding lengths of A, u, b, c, c1, . . . , cs . Then the following
statement holds.

Any feasible solution z0 to (IP)A,u,b, f̄ can be augmented to an optimal solution of
(IP)A,u,b, f̄ by iteratively applying the following greedy procedure:

Choose a greedy direction αg from G(A, C) and set z0 := z0 + αg.
If αg = 0, that is if α = 0 for all g ∈ G(A, C), return z0 as optimal solution.

The number of augmentation steps in this augmentation procedure is polynomially
bounded in the encoding lengths of A, u, b, c, c1, . . . , cs , and z0.

For our proof of Theorem 3 we refer to Sect. 5.2. As a consequence to Theorem 3,
we construct in Sects. 2 and 3 polynomial time algorithms to solve convex N -fold
integer minimization problems and convex 2-stage stochastic integer minimization
problems, see Theorems 7 and 11. In the first case, the Graver basis under consider-
ation is of polynomial size in the input data and hence the greedy augmentation vector
αg can be found in polynomial time. In the second case, the Graver basis is usually of
exponential size in the input data. Despite this fact, the desired greedy augmentation
vector αg can be constructed in polynomial time, if the fi are convex polynomial func-
tions. Finally, we present some applications of convex N -fold integer minimization
problems for which our approach provides a polynomial time solution algorithm. We
conclude the paper with our proofs of Theorems 2 and 3.

2 N-fold convex integer minimization

Let A ∈ Z
da×n , B ∈ Z

db×n , and c1, . . . , cs ∈ Z
n be fixed and consider the problem

min

{
N∑

i=1

f (i)
(

x (i)
)
:

N∑

i=1

Bx (i) = b(0), Ax (i) = b(i),

0 ≤ x (i) ≤ u(i), x (i) ∈ Z
n, i = 1, . . . , N

}
,
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where we have

f (i)(z) :=
s∑

j=1

f (i)
j

(
cᵀ
j z

)
+ c(i)ᵀz

for given convex functions f (i)
j and vectors c(i) ∈ Z

n , i = 1, . . . , N , j = 1, . . . , s.

If we dropped the coupling constraint
∑N

i=1 Bx (i) = b(0), this optimization problem
would decompose into N simpler convex problems

min
{

f (i)
(

x (i)
)
: Ax (i) = b(i), 0 ≤ x (i) ≤ u(i), x (i) ∈ Z

n
}

, i = 1, . . . , N ,

which could be solved independently. Hence the name “N -fold convex integer pro-
gram”. The N -fold matrix of the ordered pair A, B is the following (db+Nda)×Nn
matrix,

[A, B](N ) :=

⎛

⎜⎜⎜⎜⎜⎝

B B B · · · B
A 0 0 · · · 0
0 A 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A

⎞

⎟⎟⎟⎟⎟⎠
.

For any vector x = (x (1), . . . , x (N )) with x (i) ∈ Z
n for i = 1, . . . , N , we call the

number |{i : x (i) �= 0}| of nonzero building blocks x (i) ∈ Z
n of x the type of x .

In [11], it was shown that there exists a constant g(A, B) such that for all N the
types of the Graver basis elements in G([A, B](N )) are bounded by g(A, B). In [4],
this was exploited to solve linear N -fold IP in polynomial time.

Lemma 4 (Results from [4])

• For fixed matrices A and B the sizes of the Graver bases G([A, B](N )) increase
only polynomially in N.

• For any choice of the right-hand side vector b = (b(0), b(1), . . . , b(N )), an initial
feasible solution x0 can be constructed in time polynomial in N and in the encoding
length of b.

• For any linear objective function cᵀz = ∑N
i=1 c(i)ᵀz(i), this solution x0 can be

augmented to optimality in time polynomial in N and in the encoding lengths of
b, c, u = (u(1), . . . , u(N )), and x0.

Using Theorem 3, we can now generalize this polynomial time algorithm to convex
objectives of the form above. Let us prepare the main result of this section by showing
that the encoding lengths of Graver bases from [9,14] increase only polynomially in
N . For this, let C denote the s × n matrix with rows c1, . . . , cs .
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Lemma 5 Let the matrices A ∈ Z
da×n, B ∈ Z

db×n, and C ∈ Z
s×n be fixed. Then the

encoding lengths of the Graver bases of

([A, B], C)(N ) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B B · · · B

A

A

. . .

A

C Is

C Is

. . .
...

C Is

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

increase only polynomially in N.

Proof The claim follows from the results in [4] by rearranging the rows and columns
as follows

([A, B], C)(N ) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B 0 B 0 · · · B 0
A 0
C Is

A 0
C Is

. . .
. . .

A 0
C Is

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This is the matrix of an N -fold IP with Ā = ( A 0
C Is

)
and with B̄ = ( B 0 ). Hence, the

sizes and the encoding lengths of the Graver bases increase only polynomially in N .
��

Now that we have shown that the Graver basis is of polynomial size, we can consider
each Graver basis element g independently and search for the best α ∈ Z+ such that
x0+αg is feasible and has a smallest objective value. This can be done in polynomial
time as the following lemma shows.

Lemma 6 Let f : R → R be a convex function given by a comparison oracle.
Then for any given numbers l, u ∈ Z, the one-dimensional minimization problem
min{ f (α) : l ≤ α ≤ u} can be solved by polynomially many calls to the comparison
oracle.
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Proof If the interval [l, u] contains at most 2 integers, return l or u as the minimum,
depending on the values of f (l) and f (u). If the interval [l, u] contains at least 3
integers, consider the integers �(l + u)/2 − 1, �(l + u)/2, �(l + u)/2 + 1 ∈ [l, u]
and exploit convexity of f to bisect the interval [l, u] as follows:

If f (�(l + u)/2 − 1) < f (�(l + u)/2) holds, then the minimum of f must be
attained in the interval [l, �(l+u)/2]. If, on the other hand, f (�(l+u)/2) > f (�(l+
u)/2+1), then the minimum of f must be attained in the interval [�(l+u)/2+1, u].
If none of the two holds, the minimum of f is attained in the point α = �(l + u)/2.

Clearly, after O(log(u−l)) bisection steps, the minimization problem is solved. ��
The results in [4] together with the previous two lemmas now immediately imply

the main result of this section.

Theorem 7 Let A, B, C be fixed integer matrices of appropriate dimensions. Let N ,
u = (u(1), . . . , u(N )), b = (b(0), b(1), . . . , b(N )), and convex functions f (i)

j : R→ R

mapping Z to Z given by polynomial time evaluation oracles be the input data. Then
the problem

min

{
N∑

i=1

f (i)
(

x (i)
)
:

N∑

i=1

Bx (i) = b(0), Ax (i) = b(i),

0 ≤ x (i) ≤ u(i), x (i) ∈ Z
n, i = 1, . . . , N

}
,

can be solved in time polynomial in the encoding length of the input data.

Proof Polynomial time construction of an initial feasible solution from which we can
start our augmentation process follows immediately from the results in [4].

To show that this feasible solution can be augmented to optimality in polynomial
time, we note that by Theorem 3 only polynomially many greedy augmentation steps
are needed. By Lemma 5, we only need to check polynomially many directions g to
search for a greedy augmentation vector. But this can be done in polynomial time by
Lemma 6. ��

3 Convex 2-stage stochastic integer minimization

Multistage stochastic integer programming has become an important field of optimi-
zation, see [3,12,15] for details. Typically, the objective is assumed to be linear, but
recent approaches that deal also with deviation or risk quickly lead to nonlinear sto-
chastic optimization problems [13,17]. Below we consider a special type of convex
objective.

From a mathematical point of view, the data describing a convex 2-stage sto-
chastic integer program is as follows. Let T ∈Z

d×m , W ∈Z
d×n , c1, . . . , cs ∈ Z

m ,
d1, . . . , ds ∈ Z

n be fixed, and consider the problem

min{Eω( f ω(x, y)) : T x +W y = bω, 0 ≤ x ≤ ux , 0 ≤ y ≤ uω
y , x ∈ Z

m, y ∈ Z
n},
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A polynomial oracle-time algorithm for convex integer minimization 105

where ω is some probability distribution in a suitable probability space and where f
is a convex function of the form

f ω(x, y) :=
s∑

j=1

f ω
j

(
cᵀ
j x + dᵀ

j y
)

in which each f ω
j : R→ R is a convex function. Herein, the x is called the first-stage

decision and y the second-stage or recourse decision.
Discretizing the probability distribution using N scenarios, we obtain the following

convex integer minimization problem

min

{
N∑

i=1

f (i)
(

x, y(i)
)
: T x +W y(i) = b(i), 0 ≤ x ≤ ux ,

0 ≤ y(i) ≤ u(i)
y , x ∈ Z

m, y(i) ∈ Z
n, i = 1, . . . , N

}
,

where we have

f (i)(x, y) :=
s∑

j=1

f (i)
j

(
cᵀ
j x + dᵀ

j y
)

for given convex functions f (i)
j . Note that fixing the first-stage decision x would

decompose the optimization problem into N simpler convex problems

min
{

f (i)
(

x, y(i)
)
:W y(i) = b(i) − T x, 0 ≤ y(i)≤u(i)

y , y(i)∈Z
n
}

, i = 1, . . . , N ,

which could be solved independently. However, the problem of finding a first-stage
decision x with smallest overall costs would still remain to be solved.

In order to apply Theorem 3 to convex stochastic integer programming, let us
restate some fundamental results from [10] that we need for the proofs of Lemma 9
and Theorem 11 below.

Lemma 8 (Results from [10]) Let T and W be integer matrices of appropriate dimen-
sions. Then the following statements hold.

• A vector (v,w1, . . . , wN ) is in the kernel of the matrix

[T, W ](N ) :=

⎛

⎜⎜⎜⎝

T W 0 · · · 0
T 0 W · · · 0
...

. . .

T 0 0 · · · W

⎞

⎟⎟⎟⎠

if and only if (v,wi ) ∈ ker
(
[T, W ](1)

)
for all i , that is, if T v+Wwi = 0 for all i .
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• For (v,w1, . . . , wN ), we call v a first-stage building block and w1, . . . , wN

second-stage building blocks. With this notation, the Graver bases for the matri-

ces [T, W ](N )
decompose into only a finite number of first-stage and second-stage

building blocks. These building block depend only on T and W and are independent
of N .

• For any given linear objective, any given right-hand side vector and any non-
optimal feasible solution z0 = (x0, y(1)

0 , . . . , y(N )
0 ), an improving vector to z0

can be reconstructed from the building blocks in time linear in the number N of
scenarios and in the encoding length of z0.

Note that this finiteness result from [10] does not imply that the Graver basis of

[T, W ](N )
is of polynomial size in N . In fact, even for fixed matrices T and W , one

can easily construct an exponential size counter-example where already two (second-
stage) building blocks wi and wj can be used to form 2N Graver basis elements.

Before we present the main result of this section, let us show that there exists a
polynomial time optimality certificate also for convex 2-stage stochastic integer min-
imization problems of the type above, if the matrices T and W are kept fixed. For this,
let C denote the s×m matrix with rows c1, . . . , cs , and let D denote the s× n matrix
with rows d1, . . . , ds .

Lemma 9 Let T , W , C, and D be fixed integer matrices of appropriate dimensions. Let
N , u = (u(1), . . . , u(N )), b = (b(1), . . . , b(N )), and convex functions f (i)

j : R → R

mapping Z to Z given by polynomial time evaluation oracles be the input data. Then
the following two statements hold.

1. The Graver bases of the matrices

[T, W, C, D](N ) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T W
T W
...

. . .

T W
C D Is

C D Is
...

. . .
. . .

C D Is

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

decompose into a finite number of first-stage and second-stage building blocks
that are independent of N .

2. For any given convex objective
∑N

i=1 f (i)
(
x, y(i)

)
as defined above, any given

right-hand side vector b and any non-optimal feasible solution z0, an improving
vector to z0 can be reconstructed from the building blocks in time linear in the
number N of scenarios, in the encoding lengths of z0 and u, and in the number of
calls to the evaluation oracles.
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A polynomial oracle-time algorithm for convex integer minimization 107

Proof To prove our first claim, we rearrange blocks within the matrix [T, W, C, D](N )

as follows:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T W 0
C D Is

T W 0
C D Is
...

. . .

T W 0
C D Is

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
[(

T
C

)
,

(
W 0
D Is

)](N )

,

which is the matrix of a 2-stage stochastic integer program with N scenarios and fixed
matrices

(
T
C

)
and

( W 0
D Is

)
. Hence, its Graver basis consists of a constant number of

building blocks independent of N . This proves the first claim.
To prove the second claim, note that the results from [9,14] show that the Graver

basis of [T, W, C, D](N )
projected down onto the variables corresponding to T and

W columns gives improving directions for non-optimal solutions z0 to

min

{
N∑

i=1

f (i)
(

x, y(i)
)
: T x +W y(i) = b(i), 0 ≤ x ≤ ux ,

0 ≤ y ≤ u(i)
y , x ∈ Z

m, y ∈ Z
n, i = 1, . . . , N

}
.

Thus, these directions consist of only a constant number of building blocks independent
of N . Let z = (x, y(1), . . . , y(N ))be a feasible solution and letg = (v,w(1), . . . , w(N ))

be an augmenting vector formed out of the constant number of first-stage and second-
stage building blocks. To be an improving direction, g must satisfy the following
constraints:

• T (x + v)+W (y(i) + w(i)) = b(i), i = 1, . . . , N ,
• 0 ≤ x + v ≤ ux ,
• 0 ≤ y(i) + w(i) ≤ u(i)

y , i = 1, . . . , N ,
• ∑N

i=1 f (i)
(
x + y, y(i) + w(i)

)
<

∑N
i=1 f (i)

(
x, y(i)

)
.

For each of the finitely many first-stage building blocks perform the following test:
If 0 ≤ x + v ≤ ux , try to find suitable second-stage building blocks satisfying the
remaining constraints, which for fixed v simplify to

• T v +Ww(i) = 0, i = 1, . . . , N ,
• 0 ≤ y(i) + w(i) ≤ u(i)

y , i = 1, . . . , N ,
• ∑N

i=1 f (i)
(
x + v, y(i) + w(i)

)
<

∑N
i=1 f (i)

(
x, y(i)

)
.

For fixed v, this problem decomposes into N independent minimization problems:

min
{

f (i)
(

x + v, y(i)+w(i)
)
: T v+Ww(i) = 0, 0 ≤ y(i)+w(i)≤u(i)

y , w(i) ∈ Z
n
}
,

i = 1, . . . , N .
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Note that these minimization problem can be solved in polynomial time, since the
problem matrix is fixed. If for those optimal values

∑N
i=1 f (i)

(
x + v, y(i) + w(i)

)
<∑N

i=1 f (i)
(
x, y(i)

)
holds, we have found an improving vector g = (v,w(1), . . . , w(N ))

for z0. If one of these minimization problems is infeasible or if
∑N

i=1 f (i)
(
x + v, y(i) + w(i)

) ≥ ∑N
i=1 f (i)

(
x, y(i)

)
, then no augmenting vector for z0 can

be constructed using the first-stage building block v. If for no first-stage building
block v, an augmenting vector can be constructed z0 must be optimal. If there was an
augmenting vector for z0 with some first-stage building block v, this vector or even a
better augmenting vector would have been constructed by the procedure above when
the first-stage building block v was considered. ��
Note that the augmenting vector constructed in the proof of the previous lemma does
not need to be a Graver basis element (it may not be minimal), but every Graver basis
element could be constructed in this way, guaranteeing the optimality certificate. It
remains to show how to construct a greedy augmentation vector from the building
blocks from the Graver basis. Note that the procedure in the previous proof constructs
an augmenting vector also for a fixed step length α. To compute a greedy augmentation
vector, however, one has to allow α to vary. But then, the minimization problem does
not decompose into N independent simpler problems. It is this difficulty that forces
us to restrict the set of possible convex functions.

Definition 10 We call a convex function f : R
m+n → R that maps Z

m+n to Z

splittable, if for all fixed vectors x ∈ Z
m , y, g1, g2 ∈ Z

n , and for all finite intervals
[l, u] ⊆ R, there exists polynomially many (in the encoding length of the problem
data) intervals I1, . . . , Ir such that

• [l, u] =
r⋃

i=1
Ir ,

• Ii ∩ Ij ∩ Z = ∅ for all 1 ≤ i < j ≤ r , and
• for each j = 1, . . . , r , either f (x, y + αg1) ≤ f (x, y + αg2) or f (x, y + αg1) ≥

f (x, y + αg2) holds for all α ∈ Ij .

Note that convex polynomials of fixed maximal degree k are splittable, as f (x, y+
αg1)− f (x, y+αg2) switches its sign at most k times. Hence each interval [l, u] can
be split into at most k + 1 intervals with the desired property. Algorithmically, these
splitting points can be found via binary search using the Sturm sequence.

With the notion of splittable convex functions, we can now state and prove the main
theorem of this section.

Theorem 11 Let T , W , C, D be fixed integer matrices of appropriate dimensions.
Then the following holds.

(a) For any choice of the right-hand side vector b, an initial feasible solution z0 to

min

{
N∑

i=1

f (i)
(

x, y(i)
)
: T x +W y(i) = b(i), 0 ≤ x ≤ ux ,

0 ≤ y(i) ≤ u(i)
y , x ∈ Z

m, y(i) ∈ Z
n, i = 1, . . . , N

⎫
⎬

⎭,
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can be constructed in time polynomial in N and in the encoding length of the
input data.

(b) Then, for any choice of splittable convex functions f (i), this solution z0 can be
augmented to optimality in time polynomial in the encoding length of the input
data.

Proof Let us prove part (b) first. This proof follows the main idea behind the proof of
Lemma 9. Let z = (x, y(1), . . . , y(N )) be a feasible solution and let g = (v,w(1), . . . ,

w(N )) be an augmenting vector formed out of the constant number of first-stage and
second-stage building blocks. Again, for fixed v, we wish to consider each scenario
independently. For this, note that the possible step length α ∈ Z+ is bounded from
above by some polynomial size bound uα , since our feasible region is a polytope. Since
the convex functions f (i) are splittable, we can for each scenario partition the interval
[0, uα] into polynomially many subintervals Ii,1, . . . , Ii,ri such that for each interval
Ii,j there is either no building block leading to a feasible solution or a well-defined
building block wi,j with T v+Wwi,j = 0 and 0 ≤ y(i)+αwi,j ≤ u(i) that minimizes
f (i)(x + v, y(i) + αwi,j) for all α ∈ Ii,j .

Taking the common refinement of all intervals Ii,j , i = 1, . . . , N , j = 1, . . . , ri ,
one obtains polynomially many intervals J1, . . . , Jt , such that for each interval Ji and
for all α ∈ Ji , there is a well-defined building block for each scenario minimizing the
function value. For this fixed vector g = (v,w(1), . . . , w(N )) we then compute the
best α ∈ Ji , and then compare these values

∑N
i=1 f (i)

(
x + αv, y(i) + αw(i)

)
to find

the desired greedy augmentation vector. Applying Theorem 3, this proves part (b).
Finally, let us prove part (a). For this, introduce nonnegative integer slack-variables

into the second-stages to obtain a linear IP with problem matrix

[T, (W, Id ,−Id)](N ) :=

⎛

⎜⎜⎜⎝

T W Id −Id 0 0 0 · · · 0
T 0 0 0 W Id −Id · · · 0
...

. . .

T 0 0 0 0 0 0 · · · W Id −Id

⎞

⎟⎟⎟⎠

whose associated Graver basis is formed out of only constantly many first- and
second-stage building blocks. Using this extended formulation, we may immediately
write down a feasible solution. Using only greedy directions from the Graver basis

of [T, (W, Id ,−Id)](N )
, we can minimize the sum of all slack-variables in polyno-

mially many augmentation steps. Part (b) now implies that an optimal solution to this
extended problem can be found in polynomial time. If all slack-variables are 0, we
have found a feasible solution to our initial problem, otherwise the initial problem is
infeasible. ��

Let us conclude with the remark that these polynomiality results for convex
2-stage stochastic integer minimization can be extended to the multi-stage situation
by applying the finiteness results from [2].
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4 Some applications

Consider the following general nonlinear problems over an arbitrary set F ⊆ Z
n of

feasible solutions:

Separable convex minimization: Find a feasible point x ∈ F minimizing a separa-
ble convex cost function f (x) := ∑n

i=1 fi (xi ) with each fi a univariate convex
function. It generalizes standard linear optimization with cost f (x) = ∑n

i=1 ci xi

recovered with fi (xi ) := ci xi for some costs ci .
Minimum lp-distance: Find a feasible point x ∈ F minimizing the lp-distance to

a partially specified “goal” point x̄ ∈ Z
n . More precisely, given 1 ≤ p ≤ ∞ and

the restriction x̄ I := (x̄i : i ∈ I ) of x̄ to a subset I ⊆ {1, . . . , n} of the coordi-

nates, find x ∈ F minimizing the lp-distance ‖xI − x̄ I ‖p := (
∑

i∈I |xi − x̄i |p)
1
p

for 1 ≤ p <∞ and ‖xI − x̄ I ‖∞ := maxi∈I |xi − x̄i | for p = ∞.

Note that a common special case of the above is the natural problem of lp-norm
minimization over F , min{‖x‖p : x ∈ F}; in particular, the l∞-norm minimization
problem is the min-max problem min{maxn

i=1 |xi | : x ∈ F}.
In our discussion of N -fold systems below it will be convenient to index the var-

iable vector as x = (x1, . . . , x N ) with each block indexed as xi = (xi,1, . . . , xi,n),
i = 1, . . . , N .

We have the following corollary of Theorem 7, which will be used in the applica-
tions to follow.

Corollary 12 Let A and B be fixed integer matrices of compatible sizes. Then there is
an algorithm that, given any positive integer N, right-hand sides bi , and upper bound
vectors ui , of suitable dimensions, solves the above problems over the following set
of integer points in an N-fold program

F =
{

x = (x1, . . . , x N ) ∈ Z
N×n :

N∑

i=1

Bxi = b0,

Axi = bi , 0 ≤ xi ≤ ui , i = 1, . . . , N
}

(2)

in time which is polynomial in N and in the binary encoding length of the rest of the
input, as follows:

1. For i = 1, . . . , N and j = 1, . . . , n, let fi,j denote convex univariate functions.
Moreover, let f (x) := ∑N

i=1
∑n

j=1 fi,j(xi,j) be given by a comparison oracle.
Then the algorithm solves the separable convex minimization problem

min

⎧
⎨

⎩

N∑

i=1

n∑

j=1

fi,j(xi,j) : x ∈ F
⎫
⎬

⎭.

2. Given any I ⊆ {1, . . . , N } × {1, . . . , n}, any partially specified integer point
x̄ I := (xi,j : (i, j) ∈ I ), and any integer 1 ≤ p < ∞ or p = ∞, the algorithm

123



A polynomial oracle-time algorithm for convex integer minimization 111

solves the minimum lp-distance problem

min
{‖xI − x̄ I‖p : x ∈ F}

.

In particular, the algorithm solves the lp-norm minimization problem min{‖x‖p :
x ∈ F}.

Proof Consider first the separable convex minimization problem. Then this is just
the special case of Theorem 7 with cj := 1j the standard j-th unit vector in Z

n for
j = 1, . . . , n and ci := 0 in Z

n for i = 1, . . . , N . The objective function in Theorem 7
then becomes the desired objective,

N∑

i=1

f i (xi ) =
N∑

i=1

n∑

j=1

fi,j(c
ᵀ
j xi )+ ci xi =

N∑

i=1

n∑

j=1

fi,j(xi,j).

Next consider the minimum lP -distance problem. Consider first an integer 1 ≤ p <∞.
Then we can minimize the integer-valued p-th power ‖x‖pp instead of the lp-norm itself.
Define

fi,j(xi,j) :=
{ |xi,j − x̄i,j |p, if (i, j) ∈ I ;

0, otherwise.

With these fi,j , the objective in the separable convex minimization becomes the desired
objective,

N∑

i=1

n∑

j=1

fi,j(xi,j) =
∑

(i,j)∈I

|xi,j − x̄i,j |p = |xI − x̄ I |pp.

Next, consider the case p = ∞. Let w := max{|ui,j | : i = 1, . . . , N , j = 1, . . . , n}
be the maximum upper bound on any variable. We may assume w > 0 else F ⊆ {0}
and the integer program is trivial. Choose a positive integer q satisfying q log(1 +
(2w)−1) > log(Nn). Now solve the minimum lq -distance problem and let x∗ ∈ F be
an optimal solution. We claim that x∗ also minimizes the l∞-distance to x̄ . Consider
any x ∈ F . By standard inequalities between the l∞ and lq norms,

‖x∗I − x̄ I‖∞ ≤ ‖x∗I − x̄ I ‖q ≤ ‖xI − x̄ I ‖q ≤ (Nn)
1
q ‖xI − x̄ I‖∞.

Therefore

‖x∗I − x̄ I ‖∞ − ‖xI − x̄ I ‖∞ ≤ ((Nn)
1
q − 1)‖xI − x̄ I ‖∞ ≤ ((Nn)

1
q − 1)2w < 1

where the last inequality holds by the choice of q. Since ‖x∗I − x̄ I ‖∞ and ‖xI − x̄ I ‖∞
are integers we find that indeed ‖x∗I − x̄ I ‖∞ ≤ ‖xI − x̄ I‖∞ holds for all x ∈ F and
the claim follows. ��

123



112 R. Hemmecke et al.

4.1 Congestion-avoiding (multi-way) transportation and routing

The classical (discrete) transportation problem is the following. We wish to transport
commodities (in containers or bins) on a traffic network (by land, sea or air), or route
information (in packets) on a communication network, from n suppliers to N custom-
ers. The demand by customer i is di units and the supply from supplier j is sj units. We
need to determine the number xi,j of units to transport to customer i from supplier j on
channel i ← j subject to supply-demand requirements and upper bounds xi,j ≤ ui,j on
channel capacity so as to minimize total delay or cost. The classical approach assumes
a channel cost ci,j per unit flow, resulting in linear total cost

∑N
i=1

∑n
j=1 ci,jxi,j . But

due to channel congestion when subject to heavy traffic or heavy communication load,
the transportation delay or cost on a channel are actually a nonlinear convex function
of the flow over it, such as for example fi,j(xi,j) = ci,j |xi,j |αi,j for suitable αi,j > 1,
resulting in nonlinear total cost

∑
i,j fi,j(xi,j), which is much harder to minimize.

This example has been considered in the context of noncooperative games, see, e.g.,
[16, Example 1].

It is often natural that the number of suppliers is small and fixed while the num-
ber of customers is very large. Then the transportation problem is an N -fold integer
programming problem. To see this, index the variable vector as x = (x1, . . . , x N )

with xi = (xi,1, . . . , xi,n) and likewise for the upper bound vector. Let bi := di for
i = 1, . . . , N and let b0 := (s1, . . . , sn). Finally, let A = (1, . . . , 1) be the 1 × n
matrix with all entries equal to 1 and let B be the n×n identity matrix. Then the N -fold
constraints Axi = bi , i = 1, . . . , N and B(

∑N
i=1 xi ) = b0 represent, respectively the

demand and supply constraints. The feasible set in (2) then consists of the feasible
transportations and the solution of the congestion-avoiding transportation problem is
provided by Corollary 12 part 1. So we have:

Corollary 13 Fix the number of suppliers and let fi,j , i = 1, . . . , N, j = 1, . . . , n,
denote convex univariate functions. Moreover, let f (x) := ∑N

i=1
∑n

j=1 fi,j(xi,j) be
given by a comparison oracle. Then the congestion-avoiding transportation problem
can be solved in polynomial time.

This result can be extended to multi-way (high-dimensional) transportation prob-
lems as well. In the 3-way line-sum transportation problem, the set of feasible solutions
consists of all nonnegative integer L × M × N arrays with specified line-sums and
upper bound (capacity) constraints,

F :=
⎧
⎨

⎩x ∈ Z
L×M×N :

∑

i

xi,j,k = rj,k ,
∑

j

xi,j,k = si,k ,
∑

k

xi,j,k = ti,j,

0 ≤ xi,j,k ≤ ui,j,k

⎫
⎬

⎭. (3)

If at least two of the array-size parameters L , M, N are variable then even the classical
linear optimization problem over F is NP-hard [5]. In fact, remarkably, every integer
program is a 3×M×N transportation program for some M and N [6].But when both
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L and M are relatively small and fixed, the resulting problem over “long” arrays, with
a large and variable number N of layers, is again an N -fold program. To see this, index
the variable array as x = (x1, . . . , x N ) with xi = (x1,1,i , . . . , xL ,M,i ) and likewise
for the upper bound vector. Let A be the (L + M) × L M incidence matrix of the
complete bipartite graph KL ,M and let B be the L M × L M identity matrix. Finally,
suitably define the right-hand side vectors bh , h = 0, . . . , N in terms of the given
line sums rj,k , si,k , and ti,j . Then the n-fold constraint B(

∑N
h=1 xh) = b0 represents

the line-sum constraints where summation over layers occurs, whereas Axh = bh ,
h = 1, . . . , N , represent the line-sum constraints where summations are within a sin-
gle layer at a time. Then we can minimize in polynomial time any separable convex
cost function

∑L
i=1

∑M
j=1

∑N
k=1 fi,j,k(xi,j,k) over the set of feasible transportations

F in (3). So we have:

Corollary 14 Fix any L and M and let fi,j,k , i = 1, . . . , L, j = 1, . . . , M, k =
1, . . . , N, denote convex univariate functions. Moreover, let f (x) := ∑L

i=1
∑M

j=1∑N
k=1 fi,j,k(xi,j,k) be given by a comparison oracle. Then the congestion-avoiding

3-way transportation problem can be solved in polynomial time.

Even more generally, this result holds for “long” d-way transportations of any fixed
dimension d and for any hierarchical sum constraints, see Sect. 4.3 below for the
precise definitions.

4.2 Error-correcting codes

Linear-algebraic error correcting codes generalize the “check-sum” idea as follows: a
message to be communicated on a noisy channel is arranged in a vector x . To allow
for error correction, several sums of subsets of entries of x are communicated as well.
Multi-way tables provide an appealing way of organizing the check-sum protocol. The
sender arranges the message in a multi-way M1×· · ·×Md array x and sends it along
with the sums of some of its lower dimensional sub-arrays (margins). The receiver
obtains an array x̄ with some entries distorted on the way; it then finds an array x̂
having the specified check-sums (margins), that is lp-closest to the received distorted
array x̄ , and declares it as the retrieved message. For instance, when working over the
{0, 1} alphabet, the useful Hamming distance is precisely the l1-distance. Note that the
check-sums might be distorted as well; to overcome this difficulty, we determine ahead
of time an upper bound U on all possible check-sums, and make it a fixed part of the
communication protocol; then we blow each array to size (M1+ 1)×· · ·× (Md + 1),
and fill in the new “slack” entries so as to sum up with the original entries to U .

To illustrate, consider 3-way arrays of format L×M× N (already augmented with
slack variables). Working over alphabet {0, . . . , u}, define upper bounds ui,j,k := u
for original message variables and ui,j,k := U for slack variables. Then the set of
possible messages that the receiver has to choose from is

F :=
⎧
⎨

⎩x ∈ Z
L×M×N :

∑

i

xi,j,k=
∑

j

xi,j,k=
∑

k

xi,j,k=U, 0 ≤ xi,j,k ≤ ui,j,k

⎫
⎬

⎭.

(4)

123



114 R. Hemmecke et al.

Choosing L and M to be relatively small and fixed, F is again the set of integer points
in an N -fold system. Corollary 12 part 2 now enables the efficient solution of the
error-correcting decoding problem

min{‖x̂ − x̄‖p : x̂ ∈ F}.

Corollary 15 Fix L , M. Then 3-way lp error-correcting decoding can be done in
polynomial time.

4.3 Hierarchically-constrained multi-way arrays

The transportation and routing problem, as well as the error-correction problem, have
very broad and useful generalizations, to arrays of any dimension and to any hierar-
chical sum constraints. We proceed to define such systems of arrays.

Consider d-way arrays x = (xi1,...,id ) of size M1 × · · · × Md . For any d-tuple
(i1, . . . , id) with ij ∈ {1, . . . , Mj}∪{+}, the corresponding margin xi1,...,id is the sum
of entries of x over all coordinates j with ij = +. The support of (i1, . . . , id) and of
xi1,...,id is the set supp(i1, . . . , id) := {j : ij �= +} of non-summed coordinates. For
instance, if x is a 4× 5× 3× 2 array then it has 12 margins with support H = {1, 3}
such as x3,+,2,+ =∑5

i2=1
∑2

i4=1 x3,i2,2,i4 . Given a family H of subsets of {1, . . . , d}
and margin values vi1,...,id for all tuples with support in H, consider the set of integer
nonnegative and suitably upper-bounded arrays with these margins,

FH :=
{

x ∈ Z
M1×···×Md : xi1,...,id = vi1,...,id , supp(i1, . . . , id) ∈ H ,

0 ≤ xi1,...,id ≤ ui1,...,id

}
.

The congestion-avoiding transportation problem over FH is to find x ∈ FH mini-
mizing a given separable convex cost

∑
i1,...,id

fi1,...,id (xi1,...,id ). The error-correcting
decoding problem over FH is to estimate an original message as x̂ ∈ FH minimizing
a suitable lp-distance ‖x̂ − x̄‖p to a received message x̄ .

Again, for long arrays, that is, of format M1 × · · · × Md−1 × N with d and
M1, . . . , Md−1 fixed and only the length (number of layers) N variable, the set FH is
the set of feasible points in an N -fold systems and, as a consequence of Corollary 12,
we can solve both problems in polynomial time.

Corollary 16 Fix any d, M1, . . . , Md−1 and family H of subsets of {1, . . . , d}. Then
congestion-avoiding transportation and error-correcting decoding over FH can be
solved in polynomial time for any array length Md := N and any margin values
vi1,...,id for all tuples (i1, . . . , id) with support in H.

5 Proofs of Theorems 2 and 3

In this section we finally prove Theorems 2 and 3. For this, we employ the following
fact.
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Lemma 17 (Theorem 3.1 in Ahuja et al. [1]) Let H be the difference between
maximum and minimum objective function values of an (integer valued) optimiza-
tion problem.

Suppose that f k is the objective function value of some solution of a minimization
problem at the k-th iteration of an algorithm and f ∗ is the minimum objective function
value. Furthermore, suppose that the algorithm guarantees that for every iteration k,

( f k − f k+1) ≥ β( f k − f ∗)

(i.e., the improvement at iteration k + 1 is at least β times the total possible improve-
ment) for some constant 0 < β < 1 (which is independent of the problem data). Then
the algorithm terminates in O((log H)/β).

5.1 Proof of Theorem 2

Let�denote the least common multiple of all non-vanishing maximal subdeterminants
of A. Note that the encoding length log � is polynomially bounded in the encoding
lengths of the input data A, u, b and c. Hence, the objective function values of two
vertices are either the same or differ by at least 1/�.

Let f 0 = � ·cᵀz0 denote the normalized objective value of the initially given feasi-
ble solution and by f 1, f 2, . . ., denote the normalized objective values of the vertices
z1, z2, . . ., that we reach at the end of the second steps of the augmentation procedure.
Note that the difference H between maximum and minimum normalized objective
function values of (LP)A,u,b, f has an encoding length log H that is polynomially
bounded in the encoding lengths of the input data A, u, b and c. We now show that

( f k − f k+1) ≥ β( f k − f ∗)

holds for 0 < β = 1/n < 1 and conclude by Lemma 17, that we only have to
enumerate O((log H)n), that is polynomially many, vertices.

Consider the vector z∗−zk ∈ ker(A). There is some orthant Oj such that z∗−zk ∈
ker(A) ∩Oj . Hence, we can write

z∗ − zk =
n∑

i=1

αigi

for some αi ∈ R+ and gi ∈ C(A)∩Oj , i = 1, . . . , n. As αigi has the same sign pattern
as zk−z∗, one can easily check that the components of zk+αigi lie between the com-
ponents of zk and of z∗. Hence they are nonnegative. As gi ∈ ker(A), we have Agi = 0
and thus A(zk + αigi ) = Azk = b for any choice of i = 1, . . . , n. Consequently,
zk + αigi is a feasible solution for any choice of i = 1, . . . , n. Finally, we have

� · cᵀ(zk − z∗) =
n∑

i=1

� · cᵀ(−αigi ) =
n∑

i=1

� · cᵀ(zk − (zk + αigi ))
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from which we conclude that there is some index i0 such that

� · cᵀ(zk − (zk + αi0gi0)) = � · cᵀ(−αi0gi0) ≥
1

n

n∑

i=1

� · cᵀ(−αigi )

= 1

n
� · cᵀ(zk − z∗) = 1

n
( f k − f ∗).

Note that a greedy choice for an augmenting vector cannot make a smaller augmen-
tation step than the vector αi0gi0 . Thus,

f k − f k+1 ≥ � · cᵀ(zk − (zk + αi0gi0)) ≥
1

n
( f k − f ∗).

This proves part (a).
The proof of part (b) is nearly literally the same. Clearly, in the integer situation,

we may choose � = 1. If z1, z2, . . . denote the vectors that we reach from our initial
feasible solution z0 via greedy augmentation steps, we only have to be careful about
the choice of β. In the integer situation, we need to choose β = 1/(2n − 2), since
for the integer vector z∗ − zk ∈ ker(A) ∩Oj at most 2n − 2 vectors from the Hilbert
basis of Cj = ker(A) ∩Oj are needed to represent each lattice point in Cj ∩ Z

n as a
nonnegative integer linear combination of elements in G(A)∩Oj [19]. Thus, we need
to apply O((log H)(2n − 2)) = O((log H)n) augmentation steps, a number being
polynomial in the encoding length. ��

5.2 Proof of Theorem 3

In [9,14], it was shown that G(A, C) allows a representation

(z∗ − zk,−C(z∗ − zk)) =
2(n+s)−2∑

i=1

αi (gi ,−Cgi ),

where each αi ∈ Z+ and where each (gi ,−Cgi ) lies in the same orthant as
(z∗−zk,−C(z∗−zk)). It follows again from the results in [19] that at most 2(n+s)−2
summands are needed. Similarly to the proof of Theorem 2, we can already conclude
from this representation that zk + αigi is feasible for all i = 1, . . . , 2(n + s)− 2.

Moreover, in [14] it was shown that for such a representation superadditivity holds,
that is,

f̄ (z∗)− f̄ (zk) ≥
2(n+s)−2∑

i=1

[ f̄ (zk + αigi )− f̄ (zk)]

and thus, rewritten,

f̄ k − f̄ ∗ = f̄ (zk)− f (z∗) ≤
2(n+s)−2∑

i=1

[ f̄ (zk)− f̄ (zk + αigi )].
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Therefore, there is some index i0 such that

f̄ k − f̄ k+1 = f̄ (zk)− f̄ (zk + αi0gi0) ≥
1

2(n + s)− 2
[ f̄ (zk)− f̄ (z∗)]

= 1

2(n + s)− 2
( f̄ k − f̄ ∗),

and the result follows from Lemma 17. ��
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