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1. Introduction. Let F, = GF(g) denote the finite field of order g = p"
where p is prime and »n > I. The field F, may be viewed as the set of all
polynomials in a of degree < » with coefficients in £, where « is a root of an
irreducible polynomial of degree n over F,. If ceF, is a primitive element
and fie F§, the multiplicative group of nonzero elements of F,, then = c*
for some 0 < k < g—2 and we say that k is the logarithm of B to the base c,

" denoted by log,f = k. Hence the logarithm function is a homomorphism
from the multiplicative group F} onto the additive group Z,_, of integers
modulo g—1.

In this paper we explicitly determine the coefficients of a polynomial .

P.(x)e F,[x] with the property that if feF} and

n—1
(1) PAf) = ¥ ao for some (ag, ..., dy— ;)€ FD
i=0
then
n—1
(‘2} logcﬁ = Z aipi'
i=0

g—1
In particular if P,(x)= ) b;x' then
i=0

n—1
N if i=0,
j=0
n-1 J
3) bi = — i 1<i<g-2,
j=0 crlte-1-d1 _ 1
0 if i=g-1.

In the special case when » =1 we have

p—2
) og. f=—14 Y (> =17 f  for all BeF%.
i=1
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This is in contrast to previous work on the problem of computing
fogarithms in finite fields, the so cailed discrete logarithm problem, which has
focused on producing efficient algorithms for the computation of logarithms.
As indicated in [2] the problem of computing logarithms in finite ficlds has
applications in a variety of areas. Some of these areas include the key
distribution problem for encipherment systems as described by Diffie and
Hellman in [4], authentication and verification schemes, and in communica-
tions where the problem of deternyining the number of cycles between two
states of a linear feedback shift register is equivalent to the computation of
logarithms in an appropriate finite field.

In particular, Pohlig and Hellman in [11] describe a cryptographic
scheme which is secure if and only if the computation of logarithms in the
field F, is infeasible. In [12] Scholtz and Welch studied a multiple access
code and in [9] Merkle and Hellman constructed a public-key distribution
system, both of which require the computation of logarithms in the field F,.

Numerous authors have studied the discrete logarithm problem. Adle-
man [1] and Pohlig and Hellman [11] studied algorithms for computing
logarithms in F, while Coppersmith [3], Knuth [6], [7], and Blake, Fuji-
Hara, Mullin, and Vanstone [2] studied algorithms for computing logarithms
in fields of characteristic two. :

The approach in this paper is upon the construction of an explicit
formula for the logarithm of any element in F}, rather than on the
construction of an algorithm for the computation of logarithms as in the
above papers.

2. Preparatory results. We now prove several lemmas which, while
having straightforward proofs, will be very useful in the sequel.

Lemma 1 If ber,, and b" £ | then
p—1 . ; ; A
Y JBPY = b7 o7 -1y - 12,
J=0

Proof. If b+ 1 then from the calculus of finite differences, see for
example [10], p. 41,

pb?  b*Ti—b  —b(b"-1)

r—1
i = - =
E;’ b—1 (=17  (b—1)
The lemma now follows by substituting b¥ for b.
Lemma 2. If beF , and b* £ 1 then

Pt i i1 i
_;D (BFY = ("7 =1 - 1).

Proof If x#1 then } x' =(x""'—1)f(x~1).
i=0

icm
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Lemma 3. If ber,, and B # 1 then

() 2

n
(Ageenslyg— I)EFF

Proof. Let N; denote the left-hand side of (5). Then
No= 3 ™% a?yi.. ¥ @t

a0t )

ﬂoEFp HEEFP ﬂn._ IEFJJ
By repeated use of Lemma 2 we have
bpn -1~ ag i a;
Nf=-_+t‘—“"' Z b e Z a,—(bp)’
bpl ~1 "OEFP aist

which by Lemma 1 and Lemma 2 becomes
N; = —bP (" — 1)/(b~1) (6" — 1).
But bEFp,., so that b*" = b and hence
N, = —b7/ib" —1).

4y

3. Construction of the polynomial. By the Lagrange Interpolation Formu-
la for finite fields, every function j: F, — F, can be uniquely represented by a
polynomial of degree < g with coefficients in F,; ie. there exists a unique
polynomial P(x)eF [x] of degree < g such that P(B) = f(B) for all BeF,.
The polynomial P(x) can be written in the form

P(x) = ﬁ% JB) 1= (x—pF~*].

It is easy to check that if g = p" then the binomial coefficient

(q__l)z(u—l)i(modp) for i=0,1,...,q~1
1
so that we may rewrite P(x) as
g—1 ;
P(x)= 3 bx
i=0
~ where
© b,-={f(0} S
=Y fpprt i 1<ig<g-1.
fleFy

Let ceF , be a primitive element so that if SeF} then f=c¢* for
some 0<k<qg—2 and log. fi=k We wish to construct a polynomial

n—1
P.(x)eF,[x] with the property that if P.(f)= ) @a' for some
i=0
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n—1
(ag, ..., dy_y)eFy, then log f= Za,-p". Moreover, we want P,(0)
i=0
n—1

=(p—1) 3 o so that P.(x) is a permutation of F,.
i=o

n-1
Clearly by =P (0)=(p—1} Y o’
. (=0
Since no permutation of F, can have degree dividing g—1 we have
b,-1 = 0. Moreover from {6)

g-1
Suppose P.(x) = ) b x'eF,[x].
i=0

bh=- L fBFT, Isi<g-2,
ﬂEF;
In order to sum over all feF;, we may sum over all {ac, ..., 8~ )6 F}
n—1i .
such that 0 ) ap'<g—2 ie. we may sum over all (ap, ..., @.1)&F},

i=0
except (p—1,..., p—1). Thus for I <i<g—2 we have

h=— %

i3
(@05 .ndy— IEFD
#(p=1.orp—1)

(ag+ ..+, pt~ Lg—1-1i) -
c 0 n 1P [a0+”'+an—la" lj-

Hence if we let b =¢f"17" to simplify the notation, we obtain

b= —[

agt..+a _.lp"'“i - -
b " [ao+ ... +ap-y e ']]—1— ... —o?
(Agyserrity— I’EFP

which may be rewritien as
r—1

n—1

- i agt...ta,_q1p" 1 : .

b==Xo } @Yo, 1<i<g-2
=0 (ag,..oay-—1)efp i=0

By Lemma 3 with j=0,1,...,n—1 we get

-3 o if =0,
=0
_ r—1 J
im0 gplla-1-n_4
0 f i=qg-1,

so that we may state

icm
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TneoreM 4. Suppose ceF, is a primitive element, Be F¥, and
PAD) = ﬂi; a_;xj for some (a,, ..., a,_1)eF},
j=
where the cogfficients of P,(X) are given by (8). Then
N log, f = "i: a;p.
J=

The following corollary is of interest in its own right.

CoroLLARY 3. If q =p an odd prime, ceF, is a primitive element, and
BeF}, then

p—2
(8) log. =1+ (P71 i-1"1f.
i=1
The next coroliary illustrates several interesting properties of the coeffi-
cients of the polynomial representing log, x in the field F,, p an odd prime.
CoroLLARY 6. If p is an odd prime and ceF, is a primitive element then
() bi+byy;=p—1 for 0<i<p—1,
(1) by = {p—1)/2,
(i) {bo, by, oo, by} =F,, .
(iv) If m is a positive divisor of p—1, let 6(c, m) denote the set of
coefficients in P.(x) corresponding to those exponents that are divisible by m.
If ¢, is another primitive element of F,, then %(c,, m)= %{c, m).

Proof Cases (i) and (ii) are easy and for case (iii), suppose that for
0<i,j<p—1 with i <j we have b;=b,. Then c*"!~'=¢P*"J 50 that
¢i~t =1, a contradiction since ¢ is a primitive element in F,. To prove (iv),
for a fixed primitive element c, consider ¢? 7' for each 0 <i<p—2.If ¢ is
another primitive element so that ¢, = ¢* with (k,p—1) = 1, then the set of
elements ¢f~ !~/ for 0 < j < p—2 runs through F} and hence for each i there
exists a unique j such that c¢f™ '~/ = ¢ 7% Suppose that ¢; =c* with
(k, p—1) = 1 so that if m is a positive divisor of p~1 then (k, m) = 1. Thus
we have JEmlTA-w-1-D 1 go that i—kj=0(mod p—1) and hence
i—kj = 0 {mod m). Thus i = kj+ ms for some integer s so that since (k, m} = 1,
we have thai m divides i if and only if m divides j. Hence we have shown
that a==(c" ' —1)"*e%(c,m) if and only if ac¥(c;, m).

4. Yliustrations. As an illustration of the above theory consider the field
Fo=1{0,1,a,a+1} where a®> =a+1. Let ¢ be a primitive element so that

. e=ua or e =a+1. Clearly by = 1+a and by = 0 while from (6)

1
bf=3 i

. 'i,—1+c2‘3‘”--1’. i=1,2
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If ¢ =¢ then b, =0 and b, = a+1 so that
Po() = @+ D) x> +(x+1).
Hence
P,(1})=0 so that log,1=0-2+0=0,
P,y =1 so that log,a=0-24+1=1,
Plo+l)=a sothat log(a+1)=1-2+0=2
If c=a+1 then P,y (x)=(¢+1}x+(z+1) so that
log,+1(1)=0, log,,,(@=2, and log,,.,(@+1)=1.

As an illustration of the results in Corollaries 5 and 6 let p =7 and
¢ =3, Then we have

logs x = 4x° + x* +3x® + 5x2 4 2x + 6.

Similarly if ¢ =5 we-obtain

logs x = 2x* +5x* 4+ 3x* -+ x2+4x+6
so that

F3, N =F,=%(5, 1),

%(3,2)=1{0,1, 5, 6} = €(5, 2),

%3,3) =1{0,3, 6} =%(5,3),

%(3, 6) = {0, 6} = % (5. 6).
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