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Abstract. The potato-peeling problem asks for the largest convex polygon 
contained inside a given simple polygon. We give an O(n 7) time algorithm to 
this problem, answering a question of Goodman. We also give an O(n 6) time 
algorithm if the desired polygon is maximized with respect to perimeter. 

1. Introduction 

In computat ional  geometry, optimization problems are often posed in a continu- 
ous (as opposed to discrete or combinatorial) setting. One can resort to numerical 
methods to give approximate solutions to any degree of accuracy or solve the 
problem symbolically and reduce the problem to root-finding or to a decision 
procedure for Tarski 's language for elementary geometry and algebra [2, 13]. A 
recent paper  by Sharir and Schorr [19] shows a case where no combinatorial 
finiteness criterion (except indirectly, by a reduction to Tarski's language) is 
known: It is the problem of finding shortest paths between a pair of points 
among polyhedral bodies in space. The preferred method for these problems, 
however, is to find a combinatorial "finiteness criterion" for each problem. One 
example where such an approach works (extremely well, in practice) is linear 
programming. In this paper, we address another such problem, the potato-peeling 
problem described in the abstract. This problem was first posed (in a more general 

*Work in this paper has been supported in part by NSF grants #DCR-84-01898 and ~DCR- 
84-01633, the Office of Naval Research Grant N00014-82-K-0381, and by' grants from Digital 
Equipment Corporation, the Sloan Foundation, the System Development Foundation, and the IBM 
Corporation. This paper contains the main results of the paper "A Polynomial Solution for Potato- 
Peeling and other Polygon Inclusion and Enclosure Problems" presented in the 25th Foundation of 
Computer Science Conference, 1984, Florida. The second half of that paper is submitted for 
publication elsewhere [1]. 



156 J.S. Chang and C. K. Yap 

form than we have stated it) by Goodman [11] who obtained various mathemati- 
cal properties of solutions to the problem. The only partial solution in [11] gives 
the criteria for a finite solution if the polygon has n < 5 sides. Quite indepen- 
dently, Woo [21] studied the same problem dubbing it the "convex skull" 
problem. 1 Not only will we show that the problem is finite in general, but we will 
derive a polynomial time algorithm. 

Our computational model, as is typical in this subject, assumes a random- 
access computer with infinite precision real arithmetic. Observe that the notion of 
a "finiteness criterion" is a relative one, in view of the infinite precision. 
Furthermore, we assume that the solution of simple trigonometric equations takes 
O(1) steps (this amounts to assuming the availability of trigonometric functions 
and their inverses). For example, given angles a, fl and constant c, we assume 
that we can in O(1) time find the angle 8 satisfying 

sin(8 + or) 

s i n ( O - f l )  = c. 

It turns out that our method applies to other problems that have been 
studied. The general framework for these problems can be posed as follows. Let 
~ ,  -~ be families of polygons, and let/.t be a real function on polygons with the 
property that for all P, Q in ,~: 

P ~ Q = # ( P )  S #(Q) .  

Note that this property holds if # measures the area. If the polygons in ~ are 
convex, the property also holds when # measures the perimeter. In this paper, 
polygons are assumed simple in the sense that they are self-avoiding, and 
polygonal regions (also called "polygons" when the context is clear) are simple in 
the sense that the boundary of each region forms a simple polygon. The class of 
(polygon) inclusion and enclosure problems 2 are defined as follows: 

I n c ( ~ ,  .~,/~): Given P e ~ ,  find the #-largest Q e .~ that is included in P. 

E n c ( ~ ,  .~, # ) :  Given P e ~ ,  find the/~-smallest Q e .~ that encloses P. 

These two classes of problems are "duals" in some sense but we know of no 
systematic way whereby an algorithm for a problem can be transformed to one 
for its dual. For instance, the dual of potato-peeling problem is the usual problem 
of computing the convex hull. We review some of the inclusion and enclosure 
problems that have been studied. 

(1) We mainly focus on recent results within the milieu of computational 
geometry. However, it should be pointed out that there is a related much larger 
and older literature arising from the field of operations research. It should be 

Indeed, we are indebted to T. Woo who first brought this problem to our attention. Later, M. 
Sharir pointed out the work of J. Goodman. 

2Ahernatively, these might be called the inscription and the circumscription problems. 
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clear that our problems are closely related to the "stock-cutting problems" which 
are concerned with cutting a sheet of material into smaller subparts under various 
constraints (such as all subparts are congruent to a given shape) and are subject 
to some optimality criteria. See [10] and the references therein. As pointed out in 
[10] lhe enclosure problem is a key subproblem in the more general stock-cutting 
problems. More generally, the enclosure and inclusion problems can be viewed as 
polygon approximation problems. For example, for the purpose of detecting 
collision in robotics we typically approximate a complicated shape by a simpler 
enclosing body. 

(2) The potato-peeling problem is the case, Inc(~l ,  ~con, area) where ~an is 
the family of all simple polygons and ~con is the family of all convex polygons. It 
turns out that we can also solve the potato-peeling problem in the case where 
perimeter rather than area is the measure. A variation of the potato-peeling 
problem does not fall under the above notion of inclusion problems: Find the 
largest convex subregion Q of the given P subject to the constraint that Q is 
obtained from P by at most k cuts. Rectilinear versions of the potato-peeling 
problem have been addressed in [6, 15, 22]. (Note: [6] formulates its problem 
slightly differently but [15] shows its connection to potato peeling.) 

(3) Dobkin and Snyder [9] considered the inclusion problem 
Inc(~con, ~3,area) where ~3 denotes the class of all triangles and in general ~k 
denotes the class of all convex k-gons. Their algorithm runs in linear time. This 
result was extended by Boyce et al. [3] to the problems Inc(~co ~, ~k,area) and 
Inc(~co~, ~k, perimeter) for any fixed k. The running time of these algorithms is 
O(kn log2n). Note that unlike the potato-peeling problem, the finiteness of these 
problems is easy to show: it follows from the fact that the vertices of any maximal 
k-gon must be a subset of the vertices of the input polygon. The techniques of [3, 
9] are not sufficient for the more general problem of Inc(~an, ~k, area) since they 
rely on the convexity of the input polygon. 

(4) Klee and Laskowski [12] considered the enclosure problem 
Enc(:~aaH,~3,area) and derived an O(nlog2n) solution. O'Rourke et al. [16] 
improved it to linear time. DePano [8] described how the method in [12] extends 
to solve Enc(~an, ~k,area) for all k in O(nk-21og2n) time (which is exponential 
in k). Chang and Yap [5] improved DePano's result to O(n31ogk). By further 
refinement, we obtain the bound of O(n21og n log k) in [1]. We remark that Doff 
and Ben-Bassat [10] claimed to have a linear time solution to this problem. 
However, their optimality proof is faulty; indeed O'Rourke [17] has provided 
some counterexamples. 

(5) For the problem of finding the largest rectangle containing a given 
polygon, Toussaint [20] improved a previous quadratic time solution to linear 
time. In general, let O = (01 ..... 8k) be any sequence of angles with each 8 i < ~" 
and E~= 10/ = ( k  -2)~r. Let ~o  denote the family of convex k-gons whose interior 
angles are given by the sequence 19. Thus we have the problem of finding smallest 
polygon from ~o  enclosing a given convex polygon: Enc(~co~, ~a ,  ~t). DePano 
and Aggarwal [7] have solved some of these problems. For the three-dimensional 
versions of these problems, [18] describes an O(n 3) algorithm for the smallest 
rectangular box enclosing a polyhedron. 

(6) And finally problems such as finding the smallest square containing a 
given polygon, are also interesting. In general, let P be any polygon and 
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v o ¥ ~  Yn-I 

Fig. 1. Polygon P = (v 0 . . . . .  v,,_ 1 ). 

s h a p e ( P )  be the family of polygons obtained by the transformations of scaling, 
rotation, translation and reflection of P. Then we have the f i xed  shape problems 

Inc(~a, ,  shape(P ), #) and Enc(~an, shape(P ),/~) for any convex P. The paper [7] 
addresses some of these problem. 

2. Preliminaries 

For  the rest of this paper, unless otherwise stated, we assume a fixed but arbitrary 
polygon P = (o 0, v I . . . . .  on_l) with n comers. P has k > 0 reflex corners: 
Uil , U i . . . . .  O i (0 < i 1 < i 2 < "'" < n ). Write u, for v i (Fig. 1). 

~ iven ~b, we are to find any maximum area crnvex subset Q contained in P; 
it is intuitively clear, but rigorously proved in [11], that Q is a convex polygon. 
For  instance if P is convex than Q is unique and equal to P. 

First we introduce some notations. A chord of P is a maximal line segment 
fully contained in P (note that there could be line segments in P with both end 
points on the boundary of P which are not chords). A chord is extremal if it 
contains two or more corners of P. In particular, an edge of P is always 
contained in an extremal chord. It is clear that a maximum area convex polygon 
must be the intersection of P and m half-planes defined by m chords of 
P ( m  < k )  as follows: Let C 1, C 2 . . . . .  Cm be chords of P such that each C i passes 
through a distinct reflex comer of P. For any chord C of P passing through a 
unique reflex comer u, let C + denote the closed half-plane determined by C such 
that for a sufficiently small disc D centered at u, we have D n C+G P. For a 
chord C that passes through more than one reflex corner, the context will make it 
clear which half-plane is intended. Thus the convex polygon determined by the 

chords C 1, C 2 . . . . .  C m is P N(fq~'~IC + ). 
We first answer a simple case of the problem where the given polygon P has 

just  one reflex comer u 1. From the above observation, the problem amounts to 
determining the chord C through ul that maximizes the area of P N C +. Let - be 
the set of extremal chords through u 1. Clearly I'--[ < n. Consider the butterfly 

region B determined by a pair of adjacent chords aula" and bulb'  taken from - 
(Fig. 2). 

We call u t the center of the butterfly and the line segments [a, b] and [a', b'] 
the tips of the butterfly. The triangles ,xulab and ,xula'b'  form the two wings of 
the butterfly. A chord C embedded in B is determined by any point c in the tip 
[a,b] together with e' in [a', b'] such that c, u 1, and c'  are collinear; C = culc'. 

The problem reduces to choosing for each butterfly a chord C embedded in it 
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b ~  ~"'--X a' 
Fig. 2. Butterfly with center /d 1. 
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such that the area a = C+¢q B is maximized, a is either the union of triangles 
zxulbc and zxula'c' or the union of the triangles zxulac and Aulb'c', depending on 
the orientation of C. The following lemma shows that in both cases either C is 
extremal or u x is the midpoint of the chord: 

lulcl = tulc'l. 

In the later case, we have a balanced chord. 
The pair (L0, L1) of the lines through the two tips of B are the supporting 

lines of B. If  L 0 and L 1 intersect at a point o and o ~ C + (pick any C embedded 
in B, say [a, a']),  then we call the butterfly an A-butterfly. Otherwise it is a 
V-butterfly. See Fig. 3. (See also the next section for the general context for the A 
and V notations.) 

Lemma 1 (Butterfly Lemma). Given the butterfly B determined by an adjacent 

pair of extremal chords aula' and bulb', let C = culc' be a chord embedded in B 

maximizing a. I f  B is an A-butterfly, then C is either balanced or extremal. 

Otherwise B is a V-butterfly and C is extremal. 

Proof. Consider the case where B is an A-butterfly. First without loss of 

generality, assume laull < la 'ul l .  If Ibull > Ib'ull, then by a simple continuity 
argument there is a unique balanced chord C* embedded in B. It  is easy to see 
that any other chord C determines a smaller area than C* (see also [4]). 
Otherwise lbutl < Jb'ull and it is not hard to see that the extremal chord [b, b'] 
maximizes a. In the case of a V-butterfly, if C is not extremal we can perturb C 
so as to enlarge a. Hence we conclude that C must be equal to one of the two 
extremal chords. D 

This lemma clearly leads to a linear time algorithm for the potato-peeling 
problem if P has one reflex corner. In fhe next section, we look at the general 
case and at A- and V-butterflies in a more general setting. 

0 

b~. a' 

~, pt 

o 
Fig. 3. A- and V-butterflies. 
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3. Series of  Butterflies and Chains of Chords 

In this section we will give a finiteness criterion for the potato-peeling problem. 
First let us introduce the terminology related to "sequences of buttert~es" and 
"'sequences of chords." It turns out that sequences of butterflies can be classified 
into two types with quite different algorithmic properties. For simplicity, we 
assume that no three comers are collinear. As in the previous section, for each 
reflex comer  u of the polygon P, we can form a circular list of all extremal 
chords through u. A butterfly of P is the region determined by a pair of adjacent 
chords through some u having the obvious shape. Our definitions for butterflies 
and chords are relative to some fixed polygon P. 

Definition. A series of butterflies ~ = (B1,. . . ,  Bin), rn >__ 1, is any sequence of 
butterflies satisfying 

(1) Let c i be the center of Bi for l < i <  m. Then (c 1,c 2 . . . . .  Cm) forms a 
convex polygon Q contained in P. Q is degenerate if m = 1 or 2. 

(2) The two wings of each butterfly are ordered so that the "forward" wing 
of B i intersects the "backward" wing of B~÷ 1 for i =1 . . . . .  m - 1 .  

Let C O (resp. C1) be the tip of the backward (resp. forward) wing of B: (resp. 
Bin). Then (C 0, C1) is called the (pair of) supporting tips of the series. If L, is the 
line through C~, then (L  o, L: )  is the pair of supporting lines. Note that it is 
possible for L o and L: to be parallel or even be equal. Let rn > 1. If the pair of 
supporting lines are coincident or parallel, or if they intersect at a point on the 

side of the line ClC,, opposite to Q, we will say ( L  o, L~) and (C o, C:) are V-shaped. 
Otherwise we say they are A-shaped. If a series is supported by a pair of 
V-shaped lines, then it is a V-series. Otherwise it is an A-series. (Fig. 4 shows a 
V-series.) These definitions are seen to be extensions of the previous definition of 
an A- or V-butterfly. (Remark: V and A are chosen for the shapes of these 
letters, being mnemonic for the orientations of the supporting l ines--if  we 

imagine the line clc,, as horizontal and Q as sitting above c:c,,.) 

L 
Fig. 4 

Lo L1 Lo L1 

Fig. 5. A V-chain and an A-chain 
(showing only the truncated versions 
of the chords). 
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/ 
Pl ql 'ltl 

p~+l = ql+l ~,,k,, ~*,-1~, - " " ~ . ~  

Fig. 6 

Notation. Let p , q  be distinct points.__Then Plq denotes the reflection of p 

about  q, i.e. P lq is a point on the line pq such that q is the midpoint between p 

and Plq.  
Now we present some definitions for chords. Let (C0, Cm÷l) be a pair of 

chords, not necessarily distinct. A (Co, Cm÷l)-chain of  chords is a sequence of 
chords ( C l ,  C 2 . . . . .  Cm) such that C, intersects C,+ 1 at x i for i = 0  . . . . .  m and 
Q = ( x o ,  X l . . . . .  Xm) is a convex polygon. If  (C0, Cm+x) is A-shaped, then 
(Co, C,,+l)-chain is an A-chain. Otherwise it is a V-chain. (See Fig. 5.) If  
(C o, C,,÷1 ) is understood, we just say "chain." Q is called the core of the chain. 
Call [ x i_ x, x,] the truncated version of the chord C i ( i = 1 . . . . .  m ). The x, '  s are the 
nodes of the chain. A chord C i (i = 1 . . . . .  m) is said to be balanced in cg if there 
exist reflex corners Pi, qi (possibly p, = qi) with the following properties: 

(1) p, and qi both lie in the truncated chord [x,_ 1, x~]. We may assume that 
pi lies between x~_ 1 and q~. 

(2) The midpoint of [x~_l,x,] lies in [pi, q,]. So if p , = q ,  then p, is the 
midpoint. 

(3) (Bracketing property) xglq, lies between x,_ 1 and x,_llp~. (See Fig. 6.) 
This property is so-called because we imagine x,lq~ to be a left bracket 

and x,_ 1 IP~ to be a right bracket. We allow the case where x, I q~ = x,_ x IP,- 
Note that if pi = q,, then x,_xlp, = x, and x~lq~ = x ,_l .  

If  p~ 4~ qi we call (p~,q,) a double-pivot, otherwise it is a single-pivot. The 
concept of double-pivots is not relevant until the next section. The chain ¢g is 
balanced if every chord in cg is balanced in ft. If a balanced chain has only 
single-pivots then it is a simply balanced chain. 

If  ~ = (B1, B 2 . . . . .  Bin) is a series of butterflies, then a sequence of chords 
(C 1, C 2 . . . . .  C,,) is said to be embedded in ~ if each C~ is embedded in B i. The 
sequence of chords in this definition need not be a chain (i.e., some C~ and C~+ 1 
may not intersect). 

Let ~ = (B 1, B 2 . . . . .  Bin) be a series and (C1,C 2 . . . . .  C,,) be a sequence of 
chords that is embedded in ~ .  We say the sequence is optimal (for ~ )  if the area 
of 

~,1=1 

is a local maximal, i.e., any sufficiently small perturbation of the chords produces 
a sequence with smaller area. A sequence of chords is optimum (for a series of 
butterflies) if its area is maximum over all sequences embedded in the series of 
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XO 

IX! L(x2) 

L(.,3) Fig. 7 

butterflies. I f  the optimal or optimum sequence of chords turns out to be a chain, 
we call it an optimal or optimum chain. 

Before proving a basic lemma next, we introduce a useful concept. Let L be a 
fixed line and let V be the corners of the polygon P and ( Pl . . . . .  Pm) be some 
subset of the reflex corners of P. An (L,  Pa . . . . .  pm)-path is a polygonal path of 
the form 

n =  (Xo, Xl . . . . .  xm), 

where x o ~ L and for i = 1  . . . . .  m and Pi is the midpoint of [xi_ 1, x~]. For any 
point x and line L, let L ( x )  denote the line through x parallel to L. Note that 

the line L ( x i )  is a function of L and Pl, P2,. . . ,  Pi only (i.e., L(x i )  is indepen- 
dent of Pi÷l , . . . ,  Pm and the particular choice of II) .  Furthermore for any 
i = 0 . . . . .  m, any point x on L(x~) determines a unique (L,  Pl . . . . .  pm)-path and 
vice versa. In particular, the choice of any x ~ L determines a path. We can think 
of a path as a configuration in a system of "interconnecting levers;" each 

[xi_ 1, xi] is a stretchable lever on the fixed axis p~ and nodes x/_ 1 and x~ are 
constrained to glide along parallel slots L(X~_l) and L(x~), respectively. We call 
x o ~ L critical if the (L,  Pl . . . . .  pm)-path at x 0 has the property that for some i, 

either 
(a) [x i_ 1, xi] passes through some corner in ( v o, v 1 . . . . .  v~_ 1 ) -- ( P l  . . . . .  Pm ) 

o r  
(b) or xi_l ,  x i, xi+ 1 are collinear. 

A minimal interval I _  L bounded by two critical points is called a critical 

interval. An (L ,  Pl . . . . .  p,,)-path is said to belong to I if its first node x o is in L If 
the nodes (x  o, x 1 . . . . .  x, ,)  form the corners of a simple polygon Q in the indicated 
order, then we define the area of the path to be the area of Q. The area of Q 
depends only on (L,  Px . . . . .  p, ,)  but not on the choice of II .  This area-invariance 

proper ty  is due to the fact that each p~ is the midpoint of the segment [x~_ x, x~], 
i = 0 . . . . .  m and hence as the "levers" go up and down, Q loses exactly as much 

area as it gains. We exploit this property to show: 

Lemma 2 (V-Lemma). Let cg = (C1,C2,...,Cm) be a cha& that is optimal for a 

V-series of butterflies ~ = ( B 1, B 2 . . . . .  Bin). I f  the supporting lines of ~ are not 

parallel or coincident, then at least one of the Ci's is extremal. I f  the supporting 

lines are parallel or coincident, then we can modify the chords without decreasing the 

area defined by the chain so that at least one of the chords becomes extremaL 
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~ ,It 1 

LO L 1 ~ 

L0(x:) 

Fig. 8. The dotted chain represents the 
perturbation. 

Proof The case m = 1 is the consequence of the Butterfly Lemma. So let m > 1. 
For each 1 < i < m, consider the butterfly B centered at pi and supported by C,_ 1 
and C,. According to the Butterfly Lemma, C, is either extremal or balanced 
when truncated. If C i is extremal, then we are done. Thus assume without loss of 
generality that the truncated version of each chord C, (i = 1 . . . . .  m) is balanced. If 
X0, X 1 . . . . .  X m are the nodes, then (x0, x 1 . . . . .  x, ,)  forms an (L0, Pl . . . . .  pm)-path. 
However if L 0 and L 1 are not parallel, we can perturb the chord C,, out of 
balance while keeping all other chords balanced, resulting in another chain 
~ '  = (C[, C~ . . . .  , C,~,) with nodes (x~, x~ . . . . .  x~,). (See Fig. 8.) 

Hence ~tx'0, x'x,..., x'm_ljX is an (L 0, Px, Pz . . . . .  pro_ 1)-path and C,, and C,', are 
embedded in the V-shaped butterfly supported by Lo(x, ,  ) and Ll(xm+ 1) = Lx- If 
m is even, and the perturbation x~ is in a direction along L 0 away from the 
intersection of L o and L1, then the area of c¢, is increased. If m is odd, we 
perturb in the opposite direction. More precisely, in addition to the area-invari- 
ance of the (L  0, Pl, P2 . . . . .  pm_l)-path, CL contributes a gain in area that equals 
the area of Ax2x'vy in Fig. 8. Thus cg, results in a larger area than cg, 
contradicting the local optimality of c¢. Finally if the lines are parallel or 
coincident, we can perturb xm along Lo(xm) = L 1 without changing the area of 
the series since the perturbed series is an (L o, Pl . . . . .  pm)-path. We can perturb 
x,, until the corresponding x 0 is critical, implying that one of the chords is 
extremal. [] 

We next investigate the considerably more subtle A-series of butterflies. 

Lemma 3 (A-Lemma). Let ~ be an A-series of butterflies. Then 

(a) ~ has at most one simply balanced chain ~*  embedded in it. 

(b) Let cg be an optimal sequence of chords embedded in ~ .  Then either 

contains an extremal chord or ¢g is a simply balanced chain (which is 

unique by (a)). 

Proof (a) is proved in the next section in a slightly more general setting. To see 
(b), suppose C; is an unbalanced chord in a chain with no extremal chords. 
Perturbing Ci toward the balance position (this is possible since Ci is not 
extremal), while keeping all other chords unchanged, increases the area of the 
series and therefore violates the local optimality. [] 
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Lemma 4. Let  Q be a maximal  convex polygon in P such that Q = 0 7'= 1Ci + for 

some sequence (Co, C 1 . . . . .  Cm) of  chords o f  P. Then at least two chords in the 

sequence are extremal. 

Proof  Assume to the contrary that Q has 0 or 1 extremal chord. Note that 
(C2 . . . . .  Cm) forms a (Co, C1)-chain. Without loss of generality, assume that this 
chain contains no extremal chords. Clearly (C 2 . . . . .  Cm) is a V-chain, and by the 
V-lemma, it is not optimal. [] 

The above lemmas provide us with a finiteness criterion in the sense that we 
can guess that Q is determined by a sequence C1, C 2 . . . . .  C k of extremal chords 
together with series of butterflies supported by (C,,Ci+I) for i = 1  . . . . .  k. This 
gives an exponential time algorithm provided that we can find simply balanced 
chains for any given series of butterflies in exponential time. We next show that 
such chains can in fact be found in polynomial time. 

4. A Geometric Problem 

The problem of finding the balanced chain in an A-series of butterflies can be 
reduced to an abstract geometric problem. First we transplant some notations 
from the previous section to a different geometric setting. We now assume a fixed 
set R of points in the plane. Let L ÷ be the half-plane to the right of a directed 
line L. Given a pair of directed lines (L  0, Lx), let a chord denote a line segment 
contained in L~ n L~ passing through at least one point of R and with 
endpoints in L 0 and L 1. A chord is extremal if it passes through two or more 
points of R. As before the points of R in a chord are called the pivots of the 
chord. The definitions of chains and nodes are the same as in Section 3. Let 
cg = (C1, C2 . . . . .  Cm) be an (L  0, Lx)-chain with ( x  o, x t . . . . .  x , , )  as nodes. (See Fig. 

9.) The convex polygon Q = (x 0, x 1 . . . . .  Xm) is the core of C. The polygonal path 
(x 0, x 1 . . . . .  xm) partitions L~ N Li  ~ into a finite and an infinite regions. Let 
p(cg) denote the open infinite region so defined. We say cg is empty with respect 
to R if p(~ ')  does not contain any point of R. The definition of balanced chains 
is the same as in the previous section, with the set R playing the role of the 
corners of P. (As usual, assume for simplicity that no three points of R are 
collinear.) Now let us consider the following problem: 

Let R be the given set of points on the plane. For each pair of directed 
lines ( L  o, L1) such that L 0 and L x each passes through an ordered pair 
of points from R, find the balanced (L  o, L1)-chain that is empty. 

Lo £1 

Fig. 9. ( Ci, C2, C3) is an empty ( Lo, Ll )- 
chain (the points of R are indicated by × ). 
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~(~-~) ~0,~) ~(~) 

AI=D~ B~=E~ 

I t i -  1 [ 

1 i , t 

P i  ~ i ~' q i  x i 

i 1 i t 
e i t i 

A I , B i ~ 

Fig. 10. The regions A,, /9,, B, and E, (two cases). 

Theorem 5. Let ( Lo, Lz) be a pau of directed lines and R be a set of points on the 
plane. Then there is a unique balanced ( Lo, L1)-chain that is empty with respect 

to R. 
Let us note that this theorem implies Lemma 3(a), as promised. We show a 

useful lemma along the way to proving this theorem. The following notations are 
needed for this lemma: 

Notations. Let cg be a balanced chain and let (p,, qi) be the pivot of the chord 
C~ in ff (possibly Pi = q,) and Iet (x 0, x I . . . . .  Xm) denote the nodes of c£. If 
p, v~ qi, then assume q, lies between p~ and x,. Recall that for any point p, L l ( p )  
denotes the line through p and parallel to L 1. Define the region Si to be the strip 
between the parallel lines Ll (x i_ l )  and Ll(Xi) where Ll (x ,_ t )  is excluded from 
S, but Ll(x~) is included. Define the region A, to be the strip between the 
parallel lines L t(x ,_ l) and L l(p~): it is important to note that we exctude the 
line L l ( x i _ l )  from A i but include Ll(p~ ) in A r The region B, is the strip 
between Ll (P ,  ) and Ll(xi_l]pi): again Ll (p ,  ) is excluded but Ll(Xi_l[p, ) is 
included. Similarly, D~ (resp. Ei) is the strip and between the lines Ll(x,[q,)  and 
Ll(q ,  ) (resp. Lz(qi ) and Ll (x i )  ) where Ll(x,[q, ) (resp. Ll(q,))  is excluded but 
Ll(  qi ) (resp. Lz(x i )  is included. Thus A, N B i =O,  D, t~ E i =O,  and S i = A i to B i 
U D, u E,. Recall that the chain ~ divides the quadrant L~ O L~ into a finite 
region and an infinite O(~). It is convenient to regard this finite region to be 
above the chain and p(ff)  to be below it. Thus each of the strips S~, A,, B~, etc., 
will be broken up into two half-strips, above and below the chain, respectively. 
See Figs. 10 and 11 for these regions. Let a, = A~ t.)D i and fli = B, U E,. Note 

B tflD j 

A I  1 ' ' ' 

! | 

B t - D i  i D I - B I  

xi 

* 

A I N D I  BiNE i 

Et-B I 

Fig. 11. The shaded areas are forbidden for nodes of ~g': two cases. 
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that, except in the extreme case of x,_  1 [P, = x,  lq,, a, n fl, is nonempty because of 
the bracketing property. Also pi = q, iff A, = D, iff B, = E,. 

Lemma 6. Let  L o, L'  o, L 1 be distinct lines. Let ff = ( C 1 ,  C 2 . . . . .  fro) (resp. ~ '  = 

( C {, C~ . . . . .  C',/) ) be a balanced ( Lo, La)-chain (resp. ( L'o, L1)-chain ). Let  x~s, pj s 

be the nodes and pivots of c~,. I f  both ~ and ~ '  are empty, then x~ cannot lie above 

c~ in a, for  any i and j .  

Proof  Assume for the sake of contradiction that x~ lie above ff in a i for some j 
and i. If j = m', by definition x ' ,  lies in E m and hence is not in any a,. Choose j 
to be the largest index such that X~ (J < m') is above the chain in a, for some i. 
Hence xj+ 1 and x '  ' , j+2 are either lying below ~ or not in a k for some k. We will 
prove that x j÷l or x~+ 2 lies above the chain in some a k ( k  > i), thereby 
contradicting our choice of j .  We consider two cases next. 

(a) Consider the case where xj+ 1 is in S k form some k > i. If x~+ 1 lies below 
W, then p~+x would be below ft. This contradicts the assumption that ff is 
empty. Thus, x~+ 1 lies above c¢ in S k - a k. Suppose x~+ t lies above the chain in 
E~ (the proof for B k - a k is similar). C '  must intersect Ll (qk  ) below the chain j + l  

(otherwise qk would be in 0(¢¢'), contradicting the emptiness of c¢,). Let z 
denote this intersection point. Similarly Cj'+I intersects L~(pi  ) below C, at some 
point y (see Fig. 12). Then the midpoint of the segment [x~, x~+l] lies in [y, z]. 
Note that p~+~ must lie to the fight of y and q~+~ to the left of z to satisfy the 
bracketing property. Since p j+ 1 must lie to the left of q~+ 1, this implies both p~+l 
and q j÷ 1 lie below the chain c¢, contradiction. 

(b) Finally, consider the case when X~÷l stays in S,. If x';÷l is below ~, then 
above ~ m a k for some k > i. an argument similar to part (a) shows that x~÷ 2 is J 

Otherwise x~+ 1 above ff in fli and we have three possibilities: (i) x~ ~ A, and 
t E "" ' E  ' ~ " '" P P " x +l f l i , (n )  x D i a n d x  +x E i , ( m )  b o t h x j  and xj+ l a r e m  B, c q D , . N o w  J J .J 

(i) implies p~ ~ p(c¢ ') and (fi) implies q, ~ 0 ( ~ ' )  contradicting the emptiness of 
~ ' .  If (iii) holds, then this contradicts our choice of j .  [] 

Proof  o f  Theorem 5. There are two parts to this theorem: (i) there cannot be 
more than one balanced chain and (ii) there exists at least one balanced chain. 

(Uniqueness). Let ff = ( C I , C  2 . . . . .  Cm) be a balanced chain. We derive a 
contradiction by assuming the existence of another balanced chain ~ ' =  
(C{ ,C~ . . . . .  C,~,,). Let p~, x, and p~, x~ be the pivots and nodes of ff and ~ ' ,  
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/I i 
Lo L~(xo) L~(pl) 

Bt 

LI(XO[PI) Fig. 13 

respectively. To apply the previous lemma we only have to show that x~ lies in 
%.1  for some i, j .  Initially assume x6 4: x 0. Suppose x~) is below x o on L 0. (See 
Fig. 13). Observe that x~ must lie above ~g otherwise p~ is below ~.  If x~ lies in 
any a,, we are done. So let x~ lie in f l , - a , .  Note that x~ is to the right of 
Ll(xolPl  ). If  x~ is in B 1, then p~ is below ~,  a contradiction. If x~ is in E 1, let z 
be the intersection of C{ with Ll(ql  ). Then z must be below ~. Note that the 
midpoint of C{ lies to left of z and hence p~ lies to the left of z. This implies p~ 
is below cd, a contradiction. Therefore x6 cannot lie below x o. If x 6 is above x o 
on L o, then a symmetrical argument applies by exchanging the roles of cg and 

It remains to consider the possibility x6 = x o. Since W 4= cg,, let x~. l  be the 
first node such that xj+~ 4= xj+ 1. Suppose x~÷ 1 does not lie in the line through 
[x/, x j .  1]- An analysis similar to the above shows that x j .  1 lies in ct k for some k. 
Finally suppose x~. 1 lies in the line through [xj, x~.~]: if it lies in the segment 
[xl, x~.l] ,  then x~÷2 must lie in some a k by the same argument as the previous 
case. Otherwise, Xj÷l clearly is in A j .  2 and again we have a contradiction. 

(Existence). The existence proof can be regarded as an algorithm, although 
we do not know of a polynomial time bound on its complexity. 

We now give a "scan line" algorithm for computing the balanced (L  o, LI)- 
chain. A sequence of (Lo(t) ,  L1)-chains are computed where Lo(t ) is a line 
parallel to L o at a distance t to the left of L o. Imagine the line Lo(t ) moving 
from the infinite left toward L 0 as t approach 0 from oo. As t ~ O, Lo(t ) ~ L o 
and the (Lo(t) ,  L1)-chain becomes the (L  0, L1)-chain. During the process, there 
are events, to, t~ . . . . .  t m that divide the scanning process into intervals where 
changes in the (Lo(t), L1)-chain are smooth within each interval. More specifi- 
cally, between events the pivots remain the same and the slope of each chord 
changes at a smooth rate (with respect to t). Initially the (Lo(oO), L~)-chain 
consists of an infinite chord parallel to L~ through the point Pl in R n L~ that is 
farthest f rom L~. Then this chord turns continuously counterclockwise about p~ 
as Lo(t ) gradually moves toward L 0 until the chord hits a new point ql in R and 
a double pivot (p~, q~) is formed. This is the first critical moment  t o. 

As Lo(t  ) continues to move closer to L 0 and x 0 moves toward x 1 (as usual, 
x, denotes the i th node of the balanced chain, (7,. is the ith chord, etc.), xolp~ 
moves toward both xt[ql and Px and the midpoint r I of C 1 moves toward ql. 
Two things can happen at the next critical moment t = tl: either (a) XolPl meets 
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x~ ]ql and the double-pivot chord "splits" into two single-pivot chords balanced 
at Pt  and qt or else (b) r 1 meets ql and the chord starts turning counterclockwise 
around q~ "leaving" p~ behind. (a) If the splitting event occurs first, we will have 
a chain of size 2, and as Lo(t ) moves further in, in order to balance C 1 and C 2, 
x 0 and x~ move inwards and x 1 moves outwards along the direction of L 1. 

(Note: " inwards" and "outwards" are with respect to any point inside the core Q 
of the chain.) This continues until t = t 2 when a point in R is hit by either C 1 or 
C 2 and turns a single-pivot chord into a double-pivot chord. (b) If the leaving 
event occurs first, the double-pivot chord turns into a single-pivot chord while 
continuing to turn counterclockwise until t = t 2 when it hits another point of R 
and turns itself into a double-pivot chord. So this process of forming double 
pivots, splitting and leaving continues until t = t,, when Lo(t ) reaches L 0. 

In general, consider the (Lo(t) ,  L1)-chain (C 1, C 2 . . . . .  Cm). Let Cj,j (for some 
Jo, 1 < Jo < m + 1) denote the leftmost double-pivot chord where we choose Jo = m 
+1 and CJo = L 1 if there are no double-pivot chords• As Lo(t ) moves, the 
even-numbered nodes (x2i,2i < J0) move inwards while odd-numbered nodes 
(x2, + 1, 2i + 1 < Jo) move outwards along the direction parallel to C.. Observe that 

I o  • 

C,, for i = 1 . . . . .  J0 - 1 ,  turns clockwise if i is even and counterclockwise other- 
wise. This implies that the length of the truncated version of Cjo decreases iff J0 is 
even. The rest of the (Lo(t) ,  L1)-chain remains unchanged. We can classify the 
possible events into five categories: 

(1) (Flat tening)Two consecutive chords C2i and C2,+1 could flatten out and 
become a double-pivot chord. It should be noted that C2i_ 1 and C2, 
cannot flatten out. 

(2) (Hitting) One of the single-pivot chord could hit a point in R thus 
becomes a double-pivot chord. 

(3) (Splitting) If J0 is odd, the truncated version of Cso could shorten to such 
an extent that x. x lP~ meets x, I q , .  Then Cj0 loses the bracketing 

J 0  ~ J 0  . J 0  . J 0  

property and splits into two smgle-pwot chords. 
(4) (Leaving P:0) When Cj0 is shortening, another situation could also arise. 

The midpoint % could meet qs0 before sphttmg occurs. Subsequently, Cj0 
will" turn counterclockwise around q~jo leaving PJo behind. In effect, Cjo 
turns into a single-pivot chord balanced at q j0. . . 

(5) (Leaving qj ) Finally, if J0 is even the chord Cjo is lengthening and tlae 
only event t°hat can happen is the midpoint rj0 moving left and meeting 
pjo. Subsequently, Ci0 will pivot clockwise around PJo leaving qjo behind. 

The algorithm first establishes a balanced chain for (L(to) ,  L~) and then 
repeats the following step until Lo(t ) reaches Lo: 

Find the leftmost double-pivot chord, Ci0 on the current (Lo(t) ,  L ~)-chain. In 
the case of a chain consisting of just single-pivot chords, take L 1 for Cjo. It is not 
too hard to compute the values of t when flattening, leaving or splitting occur at 
each Ci, since those are determined by the chain alone• The hitting event at each 
C i is more difficult to compute since it involves points not on the chain. But it is 
clear the point  hit by Ci has to be on the convex hull of some subset of R 
containing p~. So we partition the plane into Jo strips and two half-planes by the 

lines Ljo(t~), i = 0 . . . .  , Jo where Ljo(t~) is the line through x~ parallel to Cjo. Let 

H; be the convex hull of those points of R in the strip between Ljo(t~_~) and 
Ljo(ti). The point hit by an even-numbered chord C2i is the point on H2~ 
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clockwise f rom P2,; the point  hit by C2i+1 is the next point  on Hz,+I  counter- 
clockwise f rom P2i,~ ~. So for each i we can compute  the value of t when an event 
involving Ci occurs. The next event at t = tk+ 1 is determined by one with the 
smallest  of  such t values. To  complete  the present  step, we just  update  the 
(Lo( t ) ,  L1)-chain accordingly. 

This  concludes our proof  of  the existence of a unique balanced chain for any 

(Lo, L1). 

5. Decomposition of Balanced Chains 

Let R be a fixed set of n points, and { p l  . . . . .  Pm} _c R. Recall the definition of 
( L,  p l  . . . . .  pm)-paths, critical points, and critical intervals in Section 3. In this 
section we use these concepts to describe certain processes for composing a chain 
f rom smaller  chains, and for decomposing a chain into smaller ones. 

L e m m a  7. Given (L0, Pl  . . . . .  p,,), we can determine all the critical intervals of 

(Lo,  Pl  . . . . .  pm)-paths in O(n togn)  time. 

Proof  Pick an arbi trary point  x o on L o. Form the unique pa th  1~= 
(x  o, x 1 . . . . .  x , , )  and divide the plane into strips determined by the parallel lines 
Lo(x,) .  This  takes linear time. For  each r ~ R, determine in O ( l o g m )  = O( logn)  
t ime the index i, 1 < i _< m, such that r and Pi are in the same strip. Then we can 
in O(1) t ime determine the critical point  y ~  L 0 corresponding to the 
(L0, Pl  . . . . .  pm)-patb that passes through r. Also for each i = 1  . . . . .  m - 1 ,  we can 
in O(1) t ime determine the critical point  corresponding to the ( L  0, p 1 . . . . .  p , , ) -path  
where (x,  _ 1, xi ,  x,  + 1) are collinear. [] 

For  two points  x, y on the line Lo(x , )  (for any i), it is convenient to say that 
they are ( L  0, Pt  . . . . .  p,,)-equivalent if the path  through x and y both belong to 
the same critical interval. We define the critical interval containing a chain to be 

the one which contains the first node x 0. 
We now describe a decomposition process: Let cg = (C 1 . . . . .  C,,) he a simply 

balanced ( L  o, L1)-chain below a set R of points with pivots  Pl . . . . .  Pm and nodes 
(x  o, x 1 . . . .  , x , , ) ,  m > 0. (g determines a corresponding (L0, Pl  . . . . .  p,,, )-path, 
(x  o, x 1 . . . . .  xm). I f  m is even (resp. odd), we consider moving the point  x o along 
L o in the direct ion towards (resp. away from) the intersection of L 0 and L v We 
move  x o until it reach the first critical point  x 0. Recall that if (x6, x~ . . . . .  x ' , )  is 
the (Lo,  P l , - - . ,  Pm)'P ath at x~, then for some k >_ 0 (see Fig. 14) 

(a) either [x~., x~,+l ] passes through a point  r in R - ( Pl . . . . .  Pm}, or 
(b) ' ' x '  Xk, Xk+l, k+2 are collinear. 
It  should be  noted at this momen t  that our decision to move x 0 in the chosen 

direction (depending on the pari ty of m)  implies that  x "  lies outside the 
quadran t  L ~ - n L ~  and more  importantly,  the segment [ x ' l , x ' ]  does not 

become parallel  to L v 
First consider  possibility (a). For  clarity, we will initially assume that  possibil- 

ities (a) and  (b) do not occur simultaneously and that  r is unique. Let L 2 be the 
directed line f rom Pk+~ to r. For  i = 1  . . . . .  k, let C i' denote  the chord determined 
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x k + l  

r L t 
! - ' |  " -  t 
¢ PI+I  ~ .  l 

+ 

Lo L I Fig. 14. [x~,, x[ + 1] passes through r. 

by [x~_ 1, x,']. Observe that 

4 '  = (c; . . . . .  

C p  t is a balanced (L0, L2)-chain. However ( k+l . . . . .  C',) does not represent a 
balanced (L2, Ll)-chain because the pivot p,, is at the midpoint of [ x , ' _ l , x ' , ]  
but  x',, is not on L 1. To obtain a balanced (L2 ,  Lt)-chain, we continue as 
follows: For  i = k + 1 . . . . .  m, define the point 

x•' = LI(x , )  ¢q L2(x;). 

Note  that the set of triangles (see Fig. 15) 

zxx,x'~x;' ( i = k + l  . . . . .  m)  

are congruent. Let Ci" be the chord determined by [x;'_ 1, x~']. Then we note that 

4 " =  ( c ; ' + 1  . . . . .  c ' )  

is a balanced ( L  2, L1)-chain. Consider the ( L  2, Pk+l, Pk+2 . . . . .  pm)-path corre- 
sponding to (g": It is important to see from our construction that xk+ 1 and x~+ 1 

lies in the same critical interval with respect to ( L  2, Pk+l, Pk+2 . . . . .  p,,), i.e., as 
we move from x'k'+l to x~,+l, the (L  2,pk+a,pk+2 . . . . .  pm)-paths encountered 
along the way are noncritical. 

Now consider possibility (b) where again we initially assume for simplicity 

that the k such that x~,, x '  x '  k+x, k+2 are collinear is unique. Let L 2 be the line 
through x~ and x~+ 1. As before we immediately obtain an (L0, L2)-chain cg, of 
length k. I t  is not hard to see that we can define an (L 2, L1)-chain cg,, of length 
m - k - 2  by the same method as above. 

This completes our decomposition process for oK. The resulting pair of chains 
~g' and oK,, will be called the decomposition of cg. I t  should be noted however, 
that cg, and cg,, are in general not below the set R. Rather cg, and cg,, are 

below some sets R( Lo, L2) and R( L2, L1), respectively, where R( Lo, L2)U 
R ( L  2, Lx) = R. As it turns out in our application, we do know the sets R(L  o, L2) 
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L2 = L~(~D 

//{ 

L° a LI(~,) 

Fig. 15 

and R ( L 2 ,  L t ) .  To show the dependence of (L  o, L1)-chains on the set R, we may 
also call it an (Lo, L 1, R)-chain. Thus we have shown constructively that every 
chain of length m > 0 can be decomposed into two chains of length < m. 

We have assumed that k is unique in (a) and (b) above. It is not hard to 
provide the modification necessary for the general case. T is decomposed into 
more than two chains if the k in (a) and (b) is not unique. 

We next consider how the above process may be reversed, i.e., given two 
balanced chains, check if they form the decomposition of some chain cg and if so, 
construct c~. 

Let ~ '  be the balanced (L  0, L2)-chain below R" and ~g" the balanced 
(L  2, Lt)-chain below R ' .  If  i f '  and cg,, form the decomposition of some cg 
below the set R = R ' U  R", then this could come about by the decomposition 
process in one of the two ways corresponding to possibilities (a) and (b) above. 

(A) We first verify whether case (a) holds: With the usual notations for cg, 
and cg,, (viz., cg, is an (L  0, L 2, R')-chain of length m',  C "  is an (L  2, L, R")-  
chain of length m",  x~ and x}' are the nodes of ¢g' and cg,, respectively, etc.), 
let L 2 be a line through p and q in R. We first verify in constant time that x~,,, 
p, q, x~' occur in that order in L 2 and that the two chains do not intersect (see 
Fig. 16). Then we proceed as follows: Let m = m '  + m "  + 1 and set 

 i=li: 
~,P:'--,,,'-I 

if i = 1  . . . . .  m '  

if i = m '  + 1 and m "  = even 

if i = m'  + 1 and m"  = odd 

if i = m ' + 2  . . . . .  m.  
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/ 
Lo 

,,'.. I, q 4 !'2 

L1 Fig. 16 

Set 

X !  ! m'+l = Xm'lPm'+l' 

= L t x "  Xm,+l L l ( X g  )(3 0t m'+l]" 

Let  I I '  be  the ( L  o, p]  . . . . .  p~,,+l)-path corresponding to moving f rom the node 
x~,,,+t to x,,,,+l and H "  the ( L  1, p] ' ,  p~', . . . .  p,~,,)-path corresponding to moving 
x g  to xm,+v (See Fig. 17.) Verify that x,,,,+l and x~,,,+l are ( L  o, p~ . . . . .  P~:+I ) -  

equivalent  and  xm,+l and xg  are ( L  1, p] ' ,  p~', . . . .  p,'~,,)-equivalent. It  is easy to 
see that  these two equivalence conditions hold if and only if 5 '  and cg,, form a 
decompos i t ion  of the ( L  o, L1)-balanced chain cg. 

(B) T o  verify if case (b) holds, we proceed in essentially the same way: Let 

m = m ' +  m " + 2  and 

~P:'-.,,-2 

if i = 1 . . . . .  rn'  

if i = m ' + l  

if i = m '  + 2  

if i > m '  + 2 .  

Set x '  - ' , , , ,+t=x', , lp and x ' . + z - x . , . + l j q .  W e  should verify that  the cg, and ~ ' "  

do  not  intersect  and 

P 
Xm'+2 

Lo(.~,,+l) L~Oo) \ 

Lo L1 

~ig. 17 
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occur in that order on L z. This being the case, set 

~., .+~ = Lt(x~' )  n L o ( ~ ; . , + D .  

We must verify that Xm,+2 and xm,+2' are (L o, Pa,...' , p~,,)-equivalent and x,,,+2 
and x~' are (Ll ,  p",,,p~,,_ 1 . . . . .  pi')-equivalent to ensure the validity of the 
composition process. 

I f  ~ '  and i f "  form the decomposition of c~ then we can easily reconstruct 
~ .  Hence: 

Lemma 8. Given the balanced ( L o, L2, R')-chain ~' ,  the balanced (L2, L l, R") -  
chain ~ "  and the critical intervals of these chains, it takes O(1) time to verify if the 

balanced (L0, Lt, R'  U R")-chain ¢£ decomposes into ~ '  and ~" .  It takes O(n)  
time to construct c~ when it exists. 

Note that when computing critical intervals for (L  o, Pl . . . . .  pm)-path on L o, 
we need to extend the path to include one of the pivots on L v The reason is if the 
chain is to compose with another chain to its right, then those critical intervals are 
needed. 

6. A Potato-Peeling Algorithm 

By a potato of P, we mean any maximum area convex polygon contained in P. 
Although our goal is to compute the potato itself, it is convenient to describe the 
algorithm for computing the area of the potato. It is easy to modify the algorithm 
to compute the potato in addition to its area. 

We now define some useful notations and data structures. For points r, s on 
the boundary of P, let P[r, s] be the polygon whose corners are r and s together 
with the corners in P occurring clockwise from r to s. Note that P[r, s] is a 
simple polygon iff the segment [r,s] is contained in P. Let C,,j denote the 
oriented chord from v i to oj if the segment [v,, vfl c P, otherwise C,,j is unde- 
fined. For each corner v, of P, define _ to be the set of extremal chords from v, : 

- i  "~ = ( G , j l C , , j  is defined}. 

Clearly I "i] < n. It is easy to compute all the sets E i in O(n21ogn) time. Let - 
denote the union of all the -",'s. 

Let (C,.j, Ck, t) be a pair of directed chords from E. Then define R(C,,~, Ck.i) 

be the corners of P clockwise from vj to v k (inclusive). Let L 0 and L 1 be the 
directed lines obtained by extending C,, j and C,,/, respectively. From now on, we 
simply refer to the balanced (L  0, t l ,  R(G. j ,  Ck,l))-chain below the set 

R ( Ci, j, Ck.l) as the ( Ci, ~, Ck,l)-chain. 

Definition. A pair of chords (C, ,, C,  t) is admissible if the corners v;, vj, v k, v / 
occur in this cyclic order on the bo~undary of P. A (C i ,, C k t)-chain is als0 called 
admissible if (C i j, C k 1) is admissible and the first and'tast nodes, x 0 and x,, (for 
some m), lie in CI,j and C,,/, respectively. A (C, C")-chain ~ and a ( C ' ,  C')-chain 
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c~, are compatible if 
(1) Both cg and ~g' are admissible. 
(2) The last node x,, (for some m) of T,  the first node x~ of T '  and the 

pivots (p ,  q) of C"  occur in the following order: 

, X r Xm, p q, O" 

For any chord Ci. j ~ 7., we call the point midway between the double-pivot v, 
and vj the reference point of C i i. 

Before giving an algorithm for the potato-peeling problem, we first introduce 
an area measure for polygons. Let P = (v 0' v~ . . . . .  u,_l) be a polygon that is not 
necessarily simple, with n corners where (x , , ) ; )  is the coordinate of corner 
v,, i = 0 . . . . .  n - 1. The area of P is defined as 

2 × A R E A ( P )  = Y'~ xi(y,+ l -  y,). 
i = 0  

This is called the signed area [14] of P. If P is simple polygon, then this 
definition gives the expected notion of area, with a positive sign if the corners are 
given in counterclockwise order and negative otherwise. Recall that we previously 
define the "area"  of a chain or path. We now redefine the area of a (C, C')-chain 
to be AREA((c, x 0, x l , . . . ,  x m, c')) where c and c' are the respective reference 
points of C and C'  and the x, 's are nodes of the (C, C')-chain. 

The following algorithm is described in three main steps. 

Step L We introduce the matrix A indexed by pairs of chords such that for 
C,C'~ '~ ,  A(C,C')  is the area of the unique balanced (C,C')-chain, if it is 
admissible. Otherwise A ( C , C ' ) = -  o0. Initially set A(C,C') to - o 0  for all 
(C, C').  Then for each admissible pair (C, C'), find R(C, C'). It is easy by a brute 
force method to compute all the (C 0, C1)-chains of lengths 0 or 1 in time O(n6). 
Note that the chain has length 0 precisely where R(C, C')A C+n C '÷ is empty. 

To compute admissible chains of all lengths, we proceed in stages. The first 
stage is the computation of admissible chains of lengths 0 and 1. At stage i + 1 we 
compute more admissible chains by composing admissible chains computed in the 
previous stages. To compute a (C, C')-chain at stage i + 1, we iterate through all 
chords C "  checking whether the (C, C")-  and (C",  C')-chains have been com- 
puted in previous stages and whether they form a decomposition of the (C, C')-  
chain. If so, construct the (C, C')-chain. At the same time, we should compute the 
critical intervals for the (C, C')-chain with respect to the enlarged set of points, 
R(C, C'):  this takes O(n log n) time as shown in Lemma 7. In order to facilitate 
composition of chains, we can determine at the same time the critical interval to 
which the first node of the (C, C')-chain belongs. 

To analyze the complexity of this procedure, we divide the cost into two 
parts: (i) the cost for verifying the possibility of composition and (ii) the cost of 
actually composing the chains and computing the critical intervals. There are 
O(n) stages. At each stage, we go through all triples (C, C" ,  C ' )  verifying if it is 
possible to compose the (C, C") -  and (C",  C')-chains. Hence, at each stage, there 
are n 6 instances of testing for a possible composition where each test takes O(1) 
time. Since there are n stages, the cost of part (i) is O(n7). Because of the 
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uniqueness of the balanced chains, there are at most O(tl 4) chains that are 
composed during the entire procedure. The cost of part (ii) is O(nSlogn) since 
each composition and computation of critical intervals take O(n log n) time. Thus 
the total cost of computing the A matrix is O(nT). 

Step II. First we introduce the matrix M with entries indexed by pairs (C, C ' )  
of extremal chords. M(C, C') is the maximum area of admissible (C, C')-chains: 
M(C,C') - - -ce  if (C,C') is not an admissible pair of chords. M can be 
computed in stages where in stage s (s = 1,2 . . . .  , n -  1) we compute the entries 
M(C, C') where 

C E E,, C' E ,~j, and j - i = s (modn) .  

Note that in stage s =1, we have j = i + l(mod n) and the constraint that (C, C')  
forms an admissible pair implies that C must be the chord C,, j. Let c and c' be 
the reference points of C and C', respectively. Then M(C, C') is given by the 
area of Acvjc'. (See Fig. 18.) In general, for stage s >1,  we use the recursive 
formula: 

M(C,  C ' )  = max{ A(C, C ' ) ,  n~ax { M(C,  C" )  + M ( C " ,  C') + AREA(Acc"c')} ), 

where C "  ranges over E k, k has the range i < k < j,  and c" is the reference point 
of C".  (See Fig. 19.) To justify this formula, note that M(C,C') is either 
determined by the balanced (C, C')-chain or else it is determined by a chain that 
has an extremal chord C"  ~ -E k. Note that we do not check compatibility between 
M(C, C") and M(C", C'). If they are not compatible, then they cannot form an 
optimal chain• Thus it is not necessary to exclude them from the maximization. It 
takes O(n 2) steps to carry out the maximization for each entry of M. Thus the 
whole matrix M takes O(n 6) steps in total to compute. 

C" C" 

¢ ¢ 

Fig• t9 
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Step I l L  The potato-peeling problem is now solved: We know that there are 
m > 2 extremal chords that form part of the boundary of the potato. It can be 
found in O(n  4) time as follows: 

max{ M ( C,  C ' ) + M ( C ' ,  C ) : C ~ Ei , C '  ~ =-~ , for all i and j ) .  

Notice again we do not check compatibility between M ( C ,  C p) and M ( C ' ,  C). 

7. Potato Peeling--Perimeter Measure 

The potato-peeling problem under the perimeter measure can be solved in the 
slightly better time bound O(n 6) by using essentially the same techniques. 
However, some additional properties here make a much simpler algorithm possi- 

ble. 
First of all, we give a finiteness criterion for the problem. Let us consider the 

simplest case of  the perimeter optimization problem where the given polygon has 
just one reflex corner, say v o. As with the area measure, the problem is to 
determine the chord C = [c, c'] through v 0 that maximizes the perimeter of the 
convex polygon P n C+. 

We shall prove that C may be assumed to be one of the two extremal chords 
of the butterfly containing C. Thus in contrast to the area measure, we need not 
consider a third possibility (such as C being balanced). 

Consider the butterfly B that contains C. Let L 0 and L~ be the two 
supporting lines of B. If L 0 and L1, the two supporting lines of B, are parallel, 
then the perimeter is independent of the choice of C; we are done. Hence assume 
that L o and L 1 intersect at a point o. Referring to Fig. 20, let 

a = LaPO~o, 

fl ~ ,17"- LaoPo, 

0 = Lm,oC. 

Note that 0 < a < fl < ~r. Then O satisfies a < 0 < ft. And by the law of sines we 

b 

Y 
v0 

Fig. 20. The perimeter determined by a 
chord in a butterfly. 
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have 

loci II'ocl Iovot 
sing = sin(rr - / 3 )  - sin(/3 - 0 ) '  

Ivoc'l toc'l IOVol 
s i n a  = sin(rr - 8)  - sin(O - a ) "  

Without  loss of  generality, let us assume Io%l = 1. Hence we have 

sin/3 sin a 
Icc'l = Icv0l + Iv0c'l = sin(fl - 8)  ~" sin(O - a ) '  

sin 0 
loci = sin(/3 - 0 ) '  

sing 
]°c'l = s i n ( # -  a)  ' 

Notation. Given any two points a and b on the boundary  of P, let S[a, b] 
denote  the length of polygonal path clockwise between a and b if the path 

contains no reflex vertex, and - oo otherwise. 
We now obtain the perimeter L as a function of 8. It suffices to show that L 

has no local maximum to prove that C is extremal. We consider the following two 
cases: 

(1) B is a V-butterfly: C + contains o and the perimeter L(O) of the convex 

polygon determined by the chord C is 

L(O) = lacl + Icc'l + Ic'b'l + S[b', a] 

= loci + Icc'l + Ic'ol - Ioal - Ib'ol + S [ b ' ,  a ]  

= loci + Icc'l + Ic'ol + constant 

_ sin 0 + sin a sin 0 + sin/3 
s i n ( P - a )  -~ s--~n(/~-O)) +cons tan t ,  

dL cos 0 sin(O - a ) - ( s i n g  + s ina)cos(O - a )  

= sin2(0 - a )  

cos 0 sin(fl  - 0 ) + (sin 0 + sin/3)cos(/3 - O) 
+ 

sin2(fl - 8)  

s ina(1  + cos(O - a ) )  sin fl(1 + cos(fl  - 8 ) )  
- -  . ] -  

sin2(O - a )  sinZ(fl - 8) 

- sin a sin 

= 1 - c o s ( O -  a )  + 1 - c o s ( / 3 -  0 ) '  

dZ___~L= sinasin(O-a)  + sinflsin(f l-O) 

dO2 ( 1 - c o s ( O -  a ) )  2 ( 1 - c o s ( f l -  8) )  2. 

Since a,  /3, 0 - a, and /3  - 0 are all in the first two quadrants,  d2L/dO 2 > O. 
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x 

y 
Fig. 21. 
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Chord [u, v] is semiextremal, but [u, w] is not. 

(2) B is an A-butterfly: Similarly we have 

L(O)  = la'c'l + Ic'cl + Icbl + S[b,  a'] 

= - Ic 'ol  + Ic'cl  - l c o l  + l a 'o l  + Ibo l  + S [ b ,  a ' ]  

= - Ioc ' l  + Ic'cl  - Ico l  + c o n s t a n t  

sin a - sin 0 sin/3 - sin 0 
- sin(0 - a) -~ sin(/3 - 0) + constant, 

dL sin a sin/3 

dO 1 + c o s ( O -  a) 1 + c o s ( / 3 -  O) ' 

--=dZL s i n a s i n ( O - a )  ~- s in /3s in( /3-O)  > 0 .  

dO: (1 +cos(O - a))  2 (1 + c o s ( / 3 -  O)) 2 

In both cases L(O) does not have any local maximum. We have proved the 
following lemma: 

Lemma 9. For a polygon with one reflex corner, the maximal perimeter is 

determined by an extremal chord through the reflex corner. 

A chord is semiextremal if it passes through a reflex comer and shares a 
common endpoint with an extremal chord (See Fig. 21.) 

Lemma 10. Let cg = (C1 ' C2 . . . . .  C,n) be an optimal chain of chords for a series of 

butterflies (B 1, B 2 . . . . .  Bin). For each i, 1 <_ i <_ m, either both C~ and Ci+ 1 are 

extremal, or one of them is extremal and the other is semiextremal. 

Proof. By definition of a chain, C i and Ci+ 1 must intersect. We say two line 
segments overlap if their intersection has positive length. There are two cases: 

(1) B,. and Bi+ 1 "intersect fully" i.e., the forward tip of B i does not overlap 
the backward tip of Bi+ 1 (See Fig. 22). If we consider C~ to be fixed, then Lemma 
9 implies that C~+ 1 must be extremal in P n C~ + . But since B~ and Bi+l do not 
share a tip, we see that C~+1 must in fact be extremal in P. Similarly, Ci is 
extremal. 

(2) The forward tip of B~ overlaps the backward tip of B,+ v First we assume 
that the two overlapping tips are identical (i.e., [a, b] in Fig. 23). Let c be the 
intersection of C~ and C~+1. It is not hard to see that Lemma 9 implies that c lies 
on the boundary of B i N Bi+ x. Suppose c does not lie on the shared tip T 
( T =  [a, b]). Again Lemma 9 implies that C~ and C,+t must be extremal in their 

respective butterflies. 
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Fig. 22. Two butterflies that intersect fully. 
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Now consider the case where c is on the shared tip. The perimeter L = L(c) 
determined by c is 

L ( c )  = [cct[ + ]cc,+l] + ]cta,] + [C,+lb,+i] + S[b,+t,a,] 

= (]CCt[ "4" ]ciatl-4-[£b[) d-- ([oCt+l] + ]c,+tb,+l[ + [ca]) 

-lab[ + S[b,+ 1,a,] 

= L i ( c )  + L , + l ( C  ) + c o n s t a n t ,  

where L,(c)  and L,+t(c) are the perimeter functions for the butterflies B, and 
B,+ t, respectively. From the proof of Lemma 9 we know that both Li(c ) and 
L,+ 1(c) have positive second derivatives. Hence L(c) has positive second deriva- 
tive. We conclude that L has no local maximum for c in the range [a, b] and the 
maximal perimeter is determined by an endpoint of the shared tip. Hence both C, 
and C,+ 1 are extremal. Finally if we drop the assumption that the overlapping 
tips of B, and B t + 1 are identical, the analysis can be modified in the obvious way 
to show that one of C, and C,+ 1 is extremal and the other is semiextremal. 

We conclude that in all cases at least one of C, and C, +1 is extremal and the 
other is either extremal or semiextremal. [] 

N o t a t i o n .  For vertices v,, v t of P, let P[i, j] denote the simple polygon formed 
from the vertices of P clockwisely between v, and %. P[i, j] is undefined if [v,, v/] 
is not fully contained in P. For chords C, ~ - , ,  Cj c Ej, let P[i, j, C,, Cj] denote 
the connected component of P[i, j]• Ct + N C~ + that is bounded by [v t, v/]. Note 
that P[i, j] (~ C/ (~  Cj + need not be a connected region. 

Define M,°j (C, ,~)  to be the perimeter of the polygon P[i, j,C,,CI] (not 
counting the le'ngth of the edge [O/, vi]) if P[i, j] is defined; and - ~ otherwise. 

G ~  

¢ b 

, , /  

~ /  al+l 
¢'1+1 

bl+l 

Fig. 23. Two butterflies with overlapping tips. 
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M ° can be computed in O(n 4) time. Let Mi*I(C ~, Cs) denote the perimeter of the 
largest convex polygon contained in P[i, j~Ci, Cj] (again the edge [j ,  i] is not 
counted). For  fixed i and j ,  we can regard each Mi*j(Ci, Cj) as an n X n matrix. 

Now we are ready to present an O(n 6) time algorithm for finding the largest 
perimeter potato. Again, instead of computing the potato itself, we will pretend 
that we are only computing its perimeter. 

Our problem is essentially reduced to computing M*. To show this reduc- 
tion, suppose that the potato in P is determined by a set of chords where at least 
two are extremal. So the maximum perimeter is given by 

max {M,* j (C, ,Cj )+ M/*i(Cj, C,) }, 
i . i~u.c;Ez, ,%~-j  

where U is the set of reflex vertices of P. This expression can be evaluated in 
O(n 4) time, given M*. The case where there is at most one extremal chord in the 
potato can be done in O(n 5) time using a brute force method. Note that this case 
implies that the potato is determined by at most three chords. It remains to show 
how to determine M*. 

To compute M*, we define two additional n x n matrixes M 1 and M e. With 
i, j ,  C i, Ci as before, and for m = 1,2, we define M,~(C,, Cs) to be the perimeter of 
the largest convex polygon contained in P[i, j, C,, Cj] determined by at most m 
semiextremal chords in addition to C i, Cj (but no other extremal chords). Again 
the length of the edge [i, j ]  is not counted as part of the perimeter. We then have 
the following formula: 

M,t,(C,,C,) max {M',.j (C,,Cj),M, zs(C,,Cj), , M,*k(C,,Ck) 
i < k < J , C A E - , ,  , 

+M~..s(C,.C,) } • 

This formula is justified by the fact that if the potato in P[i, j ,C , ,~]  is 
determined by three or more chords, then at least one is extremal. As in the case 
of the area measure, we can recursively compute the entries of M* in n stages. 
We initialize M*  to M °, i.e., Mi*j(C ,, Cj) = M,°j(C,, Cj), to start this recursion. It 
is easy to see that O(n 6) time suffices for the overall computation, assuming the 
availability of M °, M 1, and M 2. 

Both M x and M 2 can be computed in O(n 6) steps. We now describe briefly 
how M 2 is computed. For reflex vertices v i, v s and extremal chord C, ~ .X,, 
CJ ~ .xj, let C and C'  be the two extremal chord that determine Mi2j(C,, C/). We 

c~ ¢I 

Fig. 24. Computing M 2. 
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observe that C and C' are disjoint and share endpoints respectively with C i and 
C/. (See Fig. 24.) It is clear that C and C' can be found in O(n 2) steps by an 
exhausted search, provided that all the semiextremal chords are precomputed. 
Since there are O(n 4) entries in M 2, it takes O(n 6) steps to compute M 2. We can 

similarly compute M x. 

8. Conclusion 

This paper gives the first polynomial-time solution to the potato-peeling problem. 
We have introduced the interesting geometric concept of balanced chains which 
holds the key to the problem. Computing these chains is the bottleneck to a faster 
algorithm for the problem. Our solution also exploits dynamic programming in 
several key steps. 
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