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Abstract

This paper presents the first polynomial time algorithm to compute geodesics in a CAT(0) cubical

complex in general dimension. The algorithm is a simple iterative method to update breakpoints

of a path joining two points using Miller, Owen and Provan’s algorithm (Adv. in Appl. Math,

2015) as a subroutine. Our algorithm is applicable to any CAT(0) space in which geodesics

between two close points can be computed, not limited to CAT(0) cubical complexes.
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1 Introduction

Computing a shortest path in a polyhedral domain in Euclidean space is a fundamental and

important algorithmic problem, which is intensively studied in computational geometry [16].

This problem is relatively easy to solve in the two-dimensional case; it can generally be

reduced to a discrete graph searching problem where some combinatorial approaches can be

applied. In three or more dimensions, however, the problem becomes much harder; it is not

even discrete. In fact, it was proved by Canny and Reif [8] that the shortest path problem

in a polyhedral domain is NP-hard. Mitchell and Sharir [17] have shown that the problem

of finding a shortest obstacle-avoiding path is NP-hard even for the case of a region with

obstacles that are disjoint axis-aligned boxes. On the other hand, there are some cases where

one can obtain polynomial time complexity. For instance, it was shown by Sharir [24] that

a shortest obstacle-avoiding path among k disjoint convex polyhedra having altogether n

vertices, can be found in nO(k) time, which implies that this problem is polynomially solvable

if k is a small constant.

What determines the tractability of the shortest path problem in geometric domains?

One of promising answers to this challenging question is global non-positive curvature, or

CAT(0) property [14]. CAT(0) spaces are metric spaces in which geodesic triangles are

“not thicker” than those in the Euclidean plane, and enjoy various fascinating properties

generalizing those in Euclidean and hyperbolic spaces. As Ghrist and LaValle [13] observed,

no NP-hard example in [17] is a CAT(0) space. One of the significant properties of CAT(0)
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spaces is the uniqueness of geodesics: Every pair of points can be joined by a unique geodesic.

Computational and algorithmic theory on CAT(0) spaces is itself a challenging research

field [5].

One of fundamental and familiar CAT(0) spaces is a CAT(0) cubical complex. A cubical

complex is a polyhedral complex where each cell is isometric to a unit cube of some dimension

and the intersection of any two cells is empty or a single face. Gromov [14] gave a purely

combinatorial characterization of cubical complexes of non-positive curvature as cubical

complexes in which the link of each vertex is a flag simplicial complex. Chepoi [9] and

Roller [22] established that the 1-skeletons of CAT(0) cubical complexes are exactly median

graphs, i.e., graphs in which any three vertices admit a unique median vertex. It is also

shown by Barthélemy and Constantin [4] that median graphs are exactly the domains of

event structures [18]. These nice combinatorial characterizations are one of the main reasons

why CAT(0) cubical complexes frequently appear in mathematics, for instance, in geometric

group theory [22, 23], metric graph theory [3], concurrency theory in computer science [18],

theory of reconfigurable systems [1, 12], and phylogenetics [6].

There has been several polynomial time algorithms to find shortest paths in some CAT(0)

cubical complexes. A noteworthy example is for a tree space, introduced by Billera, Holmes

and Vogtmann [6] as a continuous space of phylogenetic trees. This space is shown to be

CAT(0), and consequently provides a powerful tool for comparing two phylogenetic trees

through the unique geodesic. Owen and Provan [19, 20] gave a polynomial time algorithm for

finding geodesics in tree spaces, which was generalized by Miller et al. [15] to CAT(0) orthant

spaces, i.e., complexes of Euclidean orthants that are CAT(0). Chepoi and Maftuleac [10] gave

an efficient polynomial time algorithm to compute geodesics in a two dimensional CAT(0)

cubical complex. These meaningful polynomiality results naturally lead to a question: What

about arbitrary CAT(0) cubical complexes?

Ardila, Owen and Sullivant [2] gave a combinatorial description of CAT(0) cubical

complexes, employing a poset endowed with an additional relation, called a poset with

inconsistent pairs (PIP). This can be viewed as a generalization of Birkhoff’s theorem that

gives a compact representation of distributive lattices by posets. In fact, they showed that

there is a bijection between CAT(0) cubical complexes and PIPs. (Through the above-

mentioned equivalence, this can be viewed as a rediscovery of the result of Barthélemy and

Constantin [4], who found a bijection between PIPs and pointed median graphs.) This

relationship enables us to express an input CAT(0) cubical complex as a PIP: For a poset

with inconsistent pairs P , the corresponding CAT(0) cubical complex KP is realized as a

subcomplex of the |P |-dimensional cube [0, 1]P in which the cells of KP are specified by

structures of P . Adopting this embedding as an input, they gave the first algorithm to

compute geodesics in an arbitrary CAT(0) cubical complex. Their algorithm is based on an

iterative method to update a sequence of cubes that may contain the geodesic, where at each

iteration it solves a touring problem using second order cone programming [21]. They also

showed that the touring problem for general CAT(0) cubical complexes has intrinsic algebraic

complexity, and geodesics can have breakpoints whose coordinates have nonsolvable Galois

group. This implies that there is no exact simple formula for the geodesic and therefore in

general, one can only obtain an approximate one. Unfortunately, even if the touring problem

could be solved exactly, it is not known whether or not their algorithm is a polynomial one;

that is, no polynomial time algorithm has been known for the shortest path problem in a

CAT(0) cubical complex in general dimension.
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Main result. In this paper, we present the first polynomial time algorithm to compute

geodesics in a CAT(0) cubical complex in general dimension, answering the open question

suggested by these previous work; namely we show that:

Given a CAT(0) cubical complex K represented by a poset with inconsistent pairs

P and two points p, q in K, one can find a path joining p and q of length at most

d(p, q) + ǫ in time polynomial in |P | and log(1/ǫ).

The algorithm is quite simple, without depending on any involved techniques such as

semidefinite programming. To put it briefly, our algorithm first gives a polygonal path

joining p and q with a fixed number (n, say) of breakpoints, and then iteratively updates

the breakpoints of the path until it becomes a desired one. To update them, we compute

the midpoints of the two close breakpoints by using Miller, Owen and Provan’s algorithm.

The resulting number of iterations is bounded by a polynomial in n. Key tools that lead to

this bound are linear algebraic techniques and the convexity of the metric of CAT(0) spaces,

rather than inherent properties of cubical complexes. Due to its simplicity, our algorithm is

applicable to any CAT(0) space where geodesics between two close points can be found, not

limited to CAT(0) cubical complexes. We believe that our result will be an important step

toward developing computational geometry in CAT(0) spaces.

Application. A reconfigurable system [1, 12] is a collection of states which change according

to local and reversible moves that affect global positions of the system. Examples include

robot motion planning, non-collision particles moving around a graph, and protein folding;

see [12]. Abrams, Ghrist and Peterson [1, 12] considered a continuous space of all possible

positions of a reconfigurable system, called a state complex. Any state complex is a cubical

complex of non-positively curved [12], and it becomes CAT(0) in many situations. In the

robotics literature, geodesics (in the l2-metric) in the CAT(0) state complex corresponds to

the motion planning to get the robot from one position to another one with minimal power

consumption. Our algorithm enables us to find such an optimal movement of the robot in

polynomial time.

2 Computing geodesics in CAT(0) spaces

In this section we devise an algorithm to compute geodesics in general CAT(0) spaces, not

limited to CAT(0) cubical complexes.

2.1 CAT(0) space

Let (X, d) be a metric space. A geodesic joining two points x, y ∈ X is a map γ : [0, 1] → X

such that γ(0) = x, γ(1) = y and d(γ(s), γ(t)) = d(x, y)|s − t| for all s, t ∈ [0, 1]. The image

of γ is called a geodesic segment joining x and y. A metric space X is called (uniquely)

geodesic if every pair of points x, y ∈ X is joined by a (unique) geodesic.

For any triple of points x1, x2, x3 in a metric space (X, d), there exists a triple of points

x̄1, x̄2, x̄3 in the Euclidean plane E
2 such that d(xi, xj) = dE2(x̄i, x̄j) for i, j ∈ {1, 2, 3}.

The Euclidean triangle whose vertices are x̄1, x̄2 and x̄3 is called a comparison triangle for

x1, x2, x3. (Note that such a triangle is unique up to isometry.) A geodesic metric space

(X, d) is called a CAT(0) space if for any x1, x2, x3 ∈ X and any p belonging to a geodesic

segment joining x1 and x2, the inequality d(x3, p) ≤ dE2(x̄3, p̄) holds, where p̄ is the unique

point in E
2 satisfying d(x̄i, p̄) = dE2(xi, p) for i = 1, 2. See Figure 1.

ICALP 2018
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Figure 1 CAT(0) space.

This simple definition yields various significant properties of CAT(0) spaces; see [7] for

details. One of the most basic properties of CAT(0) spaces is the convexity of the metric.

A geodesic metric space (X, d) is said to be Busemann convex if for any two geodesics

α, β : [0, 1] → X, the function f : [0, 1] → R given by f(t) := d(α(t), β(t)) is convex.

◮ Lemma 2.1 ([7, Proposition II.2.2]). Every CAT(0) space is Busemann convex.

A Busemann convex space X is uniquely geodesic. Indeed, for any two geodesics α, β :

[0, 1] → X with α(0) = β(0) and α(1) = β(1), one can easily see that α and β coincide, since

d(α(t), β(t)) ≤ (1 − t)d(α(0), β(0)) + td(α(1), β(1)) = 0 for all t ∈ [0, 1]. This implies that:

◮ Theorem 2.2 ([7, Proposition II.1.4]). Every CAT(0) space is uniquely geodesic.

2.2 Algorithm

Let X be a CAT(0) space. We shall refer to an element x in the product space Xn+1 as a

chain, and write xi−1 to denote the i-th component of x, i.e., x = (x0, x1, . . . , xn). For any

chain x ∈ Xn+1, we define the length of x by
∑n−1

i=0 d(xi, xi+1) and denote it by ℓ(x). We

consider the following problem:

Given two points p, q ∈ X, a chain x ∈ Xn+1 with x0 = p and xn = q, and a

positive parameter ǫ > 0, find a chain y ∈ Xn+1 such that y0 = p, yn = q and

ℓ(y) ≤ d(p, q) + ǫ,

(1)

under the situation where we are given an oracle to perform the following operation for some

D > 0:

Given two points p, q ∈ X with d(p, q) ≤ D, compute the geodesic joining p

and q in arbitrary precision.
(2)

To explain our algorithm to solve this problem, we need some definitions. Since X

is uniquely geodesic, every pair of points p, q ∈ X has a unique midpoint w satisfying

2d(w, p) = 2d(q, w) = d(p, q). For a nonnegative real number δ ≥ 0, a δ-midpoint of p and q

is a point w′ ∈ X satisfying d(w′, w) ≤ δ, where w is the midpoint of p and q.

◮ Definition 2.3 (δ-halved chain). Let δ be a nonnegative real number. For any chain

x ∈ Xn+1, a chain z ∈ Xn+1 is called a δ-halved chain of x if it satisfies the following:

z0 = xn, zn = x0 and zi is a δ-midpoint of zi+1 and xn−i for i = 1, 2, . . . , n − 1.

For an integer k ≥ 0, we say that x(k) is a k-th δ-halved chain of x if there exists a sequence

{x(j)}k
j=0 of chains in Xn+1 such that x(0) = x and x(j) is a δ-halved chain of x(j−1) for

j = 1, 2, . . . , k.
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Figure 2 An illustration of Algorithm 1.

Our algorithm can be described as follows. To put it briefly, the algorithm just finds

a k-th δ-halved chain of a given chain x for some large k and small δ; see Figure 2 for an

illustration. In the algorithm the local optimization is done alternatively “from left to right”

and “from right to left” so that the analysis will be easier.

Algorithm 1

Input. Two points p, q ∈ X, a chain x ∈ Xn+1 with x0 = p and xn = q, and parameters

ǫ > 0, δ ≥ 0.

〈1〉 Set x(0) := x.

〈2〉 For j = 0, 1, 2, . . . , do the following:

〈2-1〉 Set z0 := x
(j)
n and zn := x

(j)
0 .

〈2-2〉 For i = 1, 2, . . . , n − 1, do the following:

Compute a δ-midpoint w of zn−i+1 and x
(j)
i , and set zn−i := w. (3)

〈2-3〉 Set x(j+1) := (z0, z1, . . . , zn).

For any chain x ∈ Xn+1, define the gap of x by max{d(x0, x1), max1≤i≤n−1 2d(xi, xi+1)}

and denote it by gap(x). The following theorem states that Algorithm 1 solves problem (1).

◮ Theorem 2.4. Let p, q ∈ X be given two points, x ∈ Xn+1 be a given chain with x0 = p

and xn = q, and ǫ > 0, 0 ≤ δ ≤ ǫ/(16n3) be parameters.

(i) For j ≥ n2 log(4n · ℓ(x)/ǫ), one has ℓ(x(j)) ≤ d(p, q) + ǫ.

(ii) If gap(x) ≤ D/2 − ǫ for some D > 0, then for all j ≥ 0 and for i = 1, 2, . . . , n − 1, one

has d(zn−i+1, x
(j)
i ) ≤ D in (3).

In particular, for gap(x) ≤ D/2 − ǫ, one can find a chain y ∈ Xn+1 such that y0 = p, yn = q

and ℓ(y) ≤ d(p, q) + ǫ, with O(n3 log(nD/ǫ)) calls of an oracle to perform (2).

◮ Example 2.5. We give an example of CAT(0) spaces to which our algorithm is applicable.

A B2-complex is a two dimensional piecewise Euclidean complex in which each 2-cell is

isomorphic to an isosceles right triangle with short side of length one [11]. A CAT(0) B2-

complex is called a folder complex [9]; see Figure 3 for an example. One can show that for a

ICALP 2018
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Figure 3 A folder complex.

folder complex F , computing the geodesic between two points p, q ∈ F with d(p, q) ≤ 1 can

be reduced to an easy calculation on a subcomplex of F having a few cells. This implies that

our algorithm enables us to find geodesics between two points in a folder complex F in time

bounded by a polynomial in the size of F .

2.3 Analysis

For any chain x ∈ Xn+1, we define the reference chain x̂ ∈ Xn+1 of x as follows: x̂0 := x0

and x̂i := γ((i + 1)/(n + 1)) for i = 1, 2, . . . , n, where γ : [0, 1] → X is the geodesic with

γ(0) = x0 and γ(1) = xn. Reference chains are designed not to be equally spaced but to have

a double gap in the beginning so that the analysis of the algorithm will be easier. Note that

the reference chain x̂ of x is determined just by its end components x0, xn, and therefore for

any chain x and any even δ-halved chain x(2k) of x their reference chains coincide: x̂(2k) = x̂.

A key observation that leads to Theorem 2.4 is that: For any chain x ∈ Xn+1 and any k-th

δ-halved chain x(k) of x with k sufficiently large and δ sufficiently small, the distance between

x(k) and its reference chain x̂(k) is small enough for its length ℓ(x(k)) to approximate well

d(x0, xn); moreover, the value of such a k can be bounded by a polynomial in n. The next

lemma states this fact.

◮ Lemma 2.6. Let x ∈ Xn+1. Any k-th δ-halved chain x(k) of x satisfies

d(x
(k)
i , x̂

(k)
i ) ≤ (5/4)ℓ(x)e−k/n2

+ 3n2δ

for i = 1, 2, . . . , n − 1, where e is the base of the natural logarithm.

Proof. Let {x(j)}j≥0 be a sequence of chains in Xn+1 such that x(0) = x and x(j) is a

δ-halved chain of x(j−1) for j ≥ 1. Fix an integer 1 ≤ i ≤ n − 1 and an integer k ≥ 0. Note

that by definition x
(k+1)
i is a δ-midpoint of x

(k+1)
i+1 and x

(k)
n−i and that x̂

(k+1)
i is the midpoint

of x̂
(k+1)
i+1 and x̂

(k)
n−i. Hence, by Lemma 2.1 and the triangle inequality, we have

2d(x
(k+1)
i , x̂

(k+1)
i ) ≤ 2d(w, x̂

(k+1)
i ) + 2δ ≤ d(x

(k+1)
i+1 , x̂

(k+1)
i+1 ) + d(x

(k)
n−i, x̂

(k)
n−i) + 2δ, (4)

where w is the midpoint of x
(k+1)
i+1 and x

(k)
n−i.

Let v(k) be a column vector of dimension n − 1 whose i-th entry equals d(x
(k)
i , x̂

(k)
i ) for

i = 1, 2, . . . , n − 1. Let J be a square matrix of order n − 1 whose (i, j) entry equals 1 if

i + j = n and 0 otherwise. Let K be a square matrix of order n − 1 whose (i, j) entry equals

1 if j = i + 1 and 0 otherwise. Then, by (4) we have 2v(k+1) ≤ Kv(k+1) + Jv(k) + 2δ1 for

each k ≥ 0, where 1 is a column vector with all entries equal to 1. Let An−1 be a square

matrix of order n − 1 whose (i, j) entry equals (1/2)n+1−i−j if i + j ≤ n and 0 otherwise.

Then one can easily see that (2I − K)−1J = An−1. Hence we have

v(k+1) ≤ An−1v(k) + An−1J−1(2δ1) ≤ An−1v(k) + 2δ1 (5)
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for each k ≥ 0. We show that

v(k) ≤ ((5/4)ℓ(x)e−k/n2

+ 3n2δ)1 (6)

for any integer k ≥ 0. The inequality (5) inductively yields that v(k) ≤ (An−1)kv(0) +

2δ(I + An−1 + · · · + (An−1)k−1)1 ≤ ℓ(x)(An−1)k1 + 2δ(I − An−1)−11. Here, the inequality

v(0) ≤ ℓ(x)1 comes from the triangle inequality. Indeed, we have

d(xi, x̂i) ≤ min{d(x0, x̂i) +
∑i−1

j=0 d(xj , xj+1), d(x̂i, xn) +
∑n−1

j=i d(xj , xj+1)}

≤ (d(x0, xn) + ℓ(x))/2 ≤ ℓ(x)

for i = 1, 2, . . . , n − 1. In Lemma 2.7 below, we prove (I − An−1)−11 ≤ (5(n − 1)2/4)1 (for

n−1 ≥ 2). This yields that (I −An−1)−11 ≤ (3/2)n21 for n ≥ 2. Also, we prove (An−1)k1 ≤

(5/4)e−k/(n−1)2

1 (for n − 1 ≥ 2) in Lemma 2.7. This implies that (An−1)k1 ≤ (5/4)e−k/n2

1

for n ≥ 2. This proves (6) and therefore completes the proof of the lemma. ◭

Let us now prove Theorem 2.4.

Proof of Theorem 2.4. We may assume that n ≥ 2. We first show (i). If δ ≤ ǫ/(16n3)

and j ≥ n2 log(4n · ℓ(x)/ǫ), then by Lemma 2.6, any j-th δ-halved chain x(j) of x satisfies

d(x
(j)
i , x̂

(j)
i ) ≤ 5ǫ/(16n) + 3ǫ/(16n) = ǫ/(2n) for i = 1, 2, . . . , n − 1. Hence one has

d(x
(j)
i , x

(j)
i+1) ≤ d(x

(j)
i , x̂

(j)
i ) + d(x̂

(j)
i , x̂

(j)
i+1) + d(x̂

(j)
i+1, x

(j)
i+1)

≤ d(x̂
(j)
i , x̂

(j)
i+1) + ǫ/n

(7)

for i = 0, 1, . . . , n − 1. This implies that ℓ(x(j)) =
∑n−1

i=0 d(x
(j)
i , x

(j)
i+1) ≤

∑n−1
i=0 (d(x̂

(j)
i , x̂

(j)
i+1) +

ǫ/n) = d(x0, xn) + ǫ = d(p, q) + ǫ, and therefore completes the proof of (i).

To prove (ii), we first show

d(zn−i+1, x
(j)
i ) ≤ gap(x(j)) + 2δ (i = 1, 2, . . . , n; j ≥ 0), (8)

by induction on i. The case i = 1 being trivial, suppose that i ≥ 2. Since zn−i+1 is a δ-

midpoint of zn−i+2 and x
(j)
i−1, the triangle inequality and the induction yield d(zn−i+1, x

(j)
i ) ≤

δ + d(zn−i+2, x
(j)
i−1)/2 + d(x

(j)
i−1, x

(j)
i ) ≤ δ + (gap(x(j))/2 + δ) + gap(x(j))/2 = gap(x(j)) + 2δ,

which completes the induction.

It follows from (8) that gap(x(j+1)) ≤ gap(x(j)) + 4δ for j ≥ 0. Indeed, the case i = n in

(8) implies that d(z1, z0) = d(z1, x
(j)
n ) ≤ gap(x(j)) + 2δ; on the other hand, by the triangle

inequality and (8), one has d(zn−i+1, zn−i) ≤ d(zn−i+1, x
(j)
i )/2 + δ ≤ gap(x(j))/2 + 2δ for

i = 1, 2, . . . , n − 1. Thus, one has gap(x(j+1)) ≤ max{gap(x(j)) + 2δ, 2(gap(x(j))/2 + 2δ)} =

gap(x(j)) + 4δ.

The inequality (8) implies that in order to prove (ii) it suffices to show that gap(x(j))+2δ ≤

D for all j ≥ 0. Suppose that δ ≤ ǫ/(16n3). We consider two cases.

Case 1: j ≤ n2 log(4n·ℓ(x)/ǫ). Note that ℓ(x) ≤ n·gap(x) and that gap(x(j)) ≤ gap(x)+4jδ.

However roughly one estimates an upper bound of 4jδ, one can get

4jδ ≤ 4 ·
ǫ

16n3
· n2 log

4n2 · gap(x)

ǫ
=

ǫ

4n

(

log
gap(x)

ǫ
+ 2 log 2n

)

≤
gap(x)

4ne
+

ǫ

e
,

where the last inequality comes from the fact that log t ≤ t/e for any t > 0. It is

easy to see that gap(x(j)) + 2δ ≤ gap(x) + gap(x)/(4ne) + ǫ/e + ǫ/(8n3) ≤ D, provided

gap(x) ≤ D/2 − ǫ.

ICALP 2018
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Case 2: j ≥ n2 log(4n · ℓ(x)/ǫ). Recall (7). Since d(x0, xn)/(n + 1) ≤ gap(x)/2, we have

gap(x(j)) ≤ max{gap(x) + ǫ/n, 2(gap(x)/2 + ǫ/n)} = gap(x) + 2ǫ/n.

It is easy to see that gap(x(j)) + 2δ ≤ gap(x) + 2ǫ/n + ǫ/(8n3) ≤ D, provided gap(x) ≤

D/2 − ǫ.

From (i) and (ii), we can show the last part of the theorem. Indeed, for k := ⌈n2 log(4n ·

ℓ(x)/ǫ)⌉, one can find a k-th δ-halved chain x(k) of x with O(nk) = O(n3 log(nD/ǫ)) oracle

calls, from (ii); its length ℓ(x(k)) is at most d(p, q) + ǫ, from (i). ◭

We end this section by showing the lemma used in the proof of Lemma 2.6. Let An be

an n × n matrix whose (i, j) entry is defined by

(An)ij :=

{

(1/2)n+2−i−j (i + j ≤ n + 1),

0 (otherwise)
(9)

for i, j = 1, 2, . . . , n. Since An is a nonnegative matrix, its spectral radius ρ(An) is at most

the maximum row sum of An, which immediately yields that ρ(An) ≤ 1 − (1/2)n. This

inequality, however, is not tight unless n = 1. In fact, one can obtain a more useful upper

bound of ρ(An).

◮ Lemma 2.7. Let n > 1 be an integer, and let An be an n × n matrix defined by (9). Then

its spectral radius ρ(An) is at most 1 − 1/n2. In addition, one has (I − An)−11 ≤ (5n2/4)1

and (An)k1 ≤ (5/4)e−k/n2

1 for any integer k ≥ 0.

Proof. Let A := An for simplicity. Let u be a positive column vector of dimension n whose

k-th entry is defined by uk := k(n − k) + n2 for k = 1, 2, . . . , n. By the Collatz–Wielandt

inequality, in order to show ρ(A) ≤ 1 − 1/n2 it suffices to show that Au ≤ (1 − 1/n2)u. The

k-th entry of the vector Au is

(Au)k =

n+1−k
∑

j=1

uj

2n+2−k−j
=

1

2n+2−k

n+1−k
∑

j=1

2j(−j2 + nj + n2).

Hence, using the general formulas

m
∑

j=1

j · 2j = 2 + 2m+1(m − 1) and

m
∑

j=1

j2 · 2j = −6 + 2m+1((m − 1)2 + 2),

we have

(Au)k = uk − 2 −
n2 − n − 3

2n+1−k
.

It is easy to see that for n ≥ 2 and 1 ≤ k ≤ n one has

uk

n2
= 1 +

k(n − k)

n2
≤

5

4
≤

(

2 −
1

2n+1−k

)

+
(n − 2)(n + 1)

2n+1−k
,

which implies that

uk

n2
≤ 2 +

n2 − n − 3

2n+1−k
(k = 1, 2, . . . , n).

This completes the proof of the inequality Au ≤ (1 − 1/n2)u.
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Let us show the latter part of the lemma. Note that 1 ≤ (1/n2)u ≤ (5/4)1. Since

(1/n2)u ≤ (I−A)u and (I−A)−1 is a nonnegative matrix (as ρ(A) < 1), we have (I−A)−11 ≤

(1/n2)(I − A)−1u ≤ u ≤ (5n2/4)1.

Since Au ≤ (1 − 1/n2)u ≤ e−1/n2

u, we have Aku ≤ e−k/n2

u for any integer k ≥ 0. Hence,

Ak1 ≤ (1/n2)Aku ≤ (1/n2)e−k/n2

u ≤ (5/4)e−k/n2

1. ◭

◮ Remark. In proving Theorem 2.4, we utilized only the convexity of the metric of X. Hence

our algorithm works even when X is a Busemann convex space.

3 Computing geodesics in CAT(0) cubical complexes

In this section we give an algorithm to compute geodesics in CAT(0) cubical complexes,

with an aid of the result of the preceding section. In Section 3.1 to 3.4, we recall CAT(0)

cubical complexes, median graphs, PIPs and CAT(0) orthant spaces. Section 3.5 is devoted

to proving our main theorem.

3.1 CAT(0) cubical complex

A cubical complex K is a polyhedral complex where each k-dimensional cell is isometric to

the unit cube [0, 1]k and the intersection of any two cells is empty or a single face. The

underlying graph of K is the graph G(K) = (V (K), E(K)), where V (K) denotes the set of

vertices (0-dimensional faces) of K and E(K) denotes the set of edges (1-dimensional faces) of

K. A cubical complex K has an intrinsic metric induced by the l2-metric on each cell. For two

points p, q ∈ K, a string in K from p to q is a sequence of points p = x0, x1, . . . , xm−1, xm = q

in K such that for each i = 0, 1, . . . , m − 1 there exists a cell Ci containing xi and xi+1, and

its length is defined to be
∑m−1

i=0 d(xi, xi+1), where d(xi, xi+1) is measured inside Ci by the

l2-metric. The distance between two points p, q ∈ K is defined to be the infimum of the

lengths of strings from p to q.

Gromov [14] gave a combinatorial criterion which allows us to easily decide whether

or not a cubical complex K is non-positively curved. The link of a vertex v of K is the

abstract simplicial complex whose vertices are the edges of K containing v and where k edges

e1, . . . , ek span a simplex if and only if they are contained in a common k-dimensional cell

of K. An abstract simplicial complex L is called flag if any set of vertices is a simplex of L

whenever each pair of its vertices spans a simplex.

◮ Theorem 3.1 (Gromov [14]). A cubical complex K is CAT(0) if and only if K is simply

connected and the link of each vertex is flag.

3.2 Median graph

Let G = (V, E) be a simple undirected graph. The distance dG(u, v) between two vertices u

and v is the length of a shortest path between u and v. The interval IG(u, v) between u and

v is the set of vertices w ∈ V with dG(u, v) = dG(u, w) + dG(w, v). A vertex subset U ⊆ V is

said to be convex if IG(u, v) is contained in U for all u, v ∈ U . A graph G is called a median

graph if for all u, v, w ∈ V the set IG(u, v) ∩ IG(v, w) ∩ IG(w, u) contains exactly one element,

called the median of u, v, w. Median graphs are connected and bipartite. A median complex

is a cubical complex derived from a median graph G by replacing all cube-subgraphs of G

by solid cubes. It has been shown independently by Chepoi [9] and Roller [22] that median

complexes and CAT(0) cubical complexes constitute the same objects:
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Figure 4 A poset with inconsistent pairs and the corresponding rooted CAT(0) cubical complex.

Dotted line represents minimal inconsistent pairs, where an inconsistent pair {a, b} is said to be

minimal if there is no other inconsistent pair {a′, b′} with a′ � a and b′ � b.

◮ Theorem 3.2 (Chepoi [9], Roller [22]). The underlying graph of every CAT(0) cubical

complex is a median graph, and conversely, every median complex is a CAT(0) cubical

complex.

3.3 Poset with inconsistent pairs (PIP)

Barthélemy and Constantin [4] established a Birkhoff-type representation theorem for median

graphs, by employing a poset with an additional relation. This structure was rediscovered

by Ardila et al. [2] in the context of CAT(0) cubical complexes. An antichain of a poset P

is a subset of P that contains no two comparable elements. A subset I of P is called an

order ideal of P if a ∈ I and b � a imply b ∈ I. A poset P is locally finite if every interval

[a, b] = {c ∈ P | a � c � b} is finite, and it has finite width if every antichain is finite.

◮ Definition 3.3. A poset with inconsistent pairs (or, briefly, a PIP) is a locally finite poset

P of finite width, endowed with a symmetric binary relation ` satisfying:

1) If a ` b, then a and b are incomparable.

2) If a ` b, a � a′ and b � b′, then a′
` b′.

A pair {a, b} with a ` b is called an inconsistent pair. An order ideal of P is called consistent

if it contains no inconsistent pairs.

For a CAT(0) cubical complex K and a vertex v of K, the pair (K, v) is called a rooted

CAT(0) cubical complex. Given a poset with inconsistent pairs P , one can construct a cubical

complex KP as follows: The underlying graph G(KP ) is a graph GP whose vertices are

consistent order ideals of P and where two consistent order ideals I, J are adjacent if and

only if |I∆J | = 1; replace all cube-subgraphs (i.e., subgraphs isomorphic to cubes of some

dimensions) of GP by solid cubes. See Figure 4 for an example. In fact, the resulting cubical

complex KP is CAT(0), and moreover:

◮ Theorem 3.4 (Ardila et al. [2]). The map P 7→ KP is a bijection between posets with

inconsistent pairs and rooted CAT(0) cubical complexes.

This bijection can also be derived from Theorem 3.2 and the result of Barthélemy and

Constantin [4], who found a bijection between PIPs and pointed median graphs.

Given a poset with inconsistent pairs P , one can embed KP into a unit cube in the

Euclidean space as follows, which we call the standard embedding of P [2]:

KP = {(xi)i∈P ∈ [0, 1]P | i ≺ j and xi < 1 ⇒ xj = 0, and i ` j ⇒ xixj = 0}.
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For each pair (I, M) of a consistent order ideal I of P and a subset M ⊆ Imax, where Imax

is the set of maximal elements of I, the subspace

CI
M := {x ∈ KP | i ∈ I\M ⇒ xi = 1, and i /∈ I ⇒ xi = 0} = {1}I\M × [0, 1]M × {0}P \I

corresponds to a unique |M |-dimensional cell of KP .

3.4 CAT(0) orthant space

Let R+ denote the set of nonnegative real numbers. Let L be an abstract simplicial

complex on a finite set V . The orthant space O(L) for L is a subspace of |V |-dimensional

orthant R
V
+ constructed by taking a union of all subcones {OS | S ∈ L} associated with

simplices of L, where OS is defined by OS := R
S
+ × {0}V \S for each simplex S ∈ L; namely,

O(L) =
⋃

S∈L{x ∈ R
V
+ | xv = 0 for each v /∈ S}. The distance between two points x, y ∈ O(L)

is defined in a similar way as in the case of cubical complexes. An orthant space is a special

instance of cubical complexes.

◮ Theorem 3.5 (Gromov [14]). The orthant space O(L) for an abstract simplicial complex

L is a CAT(0) space if and only if L is a flag complex.

A typical example of CAT(0) orthant spaces is a tree space [6]. Owen and Provan [19, 20]

gave a polynomial time algorithm to compute geodesics in tree spaces, which was generalized

to CAT(0) orthant spaces by Miller et al. [15].

◮ Theorem 3.6 ([15, 19, 20]). Let L be a flag abstract simplicial complex on a finite set V

and O(L) be the CAT(0) orthant space for L. Let x, y ∈ O(L), and let S1 and S2 be the

inclusion-wise minimal simplices such that x ∈ OS1
and y ∈ OS2

. Then one can find the

explicit description of the geodesic joining x and y in O((|S1| + |S2|)4) time.

An interesting thing about their algorithm is that it solves as a subproblem a combinatorial

optimization problem: the Maximum Weight Stable Set problem on a bipartite graph whose

color classes have at most |S1|, |S2| vertices, respectively. We should note that the above

explicit descriptions of geodesics are radical expressions. Computationally, for a point p on a

geodesic, one can compute a rational point p′ ∈ O(L) such that d(p′, p) ≤ δ and the number

of bits required for each coordinate of p′ is bounded by O(log(|V |/δ)). For a real number

r > 0, the subspace O(L) ∩ [0, r]V of O(L), denoted by O(L)|[0,r], is called a truncated

CAT(0) orthant space. Actually, from the explicit descriptions of geodesics in O(L), one can

see that O(L)|[0,r] is convex in O(L), and thus:

◮ Theorem 3.7 ([15]). Given two points x, y in a truncated CAT(0) orthant space O(L)|[0,r],

one can find the explicit description of the geodesic joining x and y in O(|V |4) time.

3.5 Main theorem

Our main result is the following theorem. It should be remarked that as stated in [2] there

are no simple formulas for the breakpoints in geodesics in CAT(0) cubical complexes due to

their algebraic complexity, and hence one can only compute them approximately. Also note

that for the shortest path problem in a general CAT(0) cubical complex there has been no

algorithm that runs in time polynomial in the size of the complex, much less the size of the

compact representation PIP.
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◮ Problem 3.8. Given a poset with inconsistent pairs P , two points p, q in the standard

embedding KP of P , and a positive parameter ǫ > 0, find a sequence of points p =

x0, x1, . . . , xn−1, xn = q in KP with
∑n−1

i=0 d(xi, xi+1) ≤ d(p, q) + ǫ and compute the geodesic

joining xi and xi+1 for i = 0, 1, . . . , n − 1.

◮ Theorem 3.9. Problem 3.8 can be solved in O(|P |7 log(|P |/ǫ)) time. Moreover, the number

of bits required for each coordinate of points in KP occurring throughout the algorithm can be

bounded by O(log(|P |/ǫ)).

Let us show this theorem. Let m denote the number of elements of P and let D < 1 be a

positive constant close to 1 (e.g., set D := 0.9). Theorem 2.4 implies that in order to prove

Theorem 3.9 it suffices to show that:

(a) Given two points p, q ∈ KP , one can find a sequence of points p = x0, x1, . . . , xn−1, xn = q

in KP such that n = O(m) and d(xi, xi+1) ≤ D/4 − ǫ for i = 0, 1, . . . , n − 1.

(b) Given two points p, q ∈ KP with d(p, q) ≤ D, one can compute the geodesic joining p

and q in O(m4) time and find a δ-midpoint w of p and q with O(log(m/δ)) bits enough

for each coordinate of w.

It is relatively easy to show (a), by considering a curve c(p, q) issuing at p, going through an

edge geodesic (a shortest path in the underlying graph of KP ) between some vertices of cells

containing p, q, and ending at q. (Note that one can easily find an edge geodesic between

vertices u and v of KP . Reroot the complex KP at u. In other words, construct a poset P ′

for which KP ′
∼= KP and u is the root of KP ′ ; this construction is implicitly stated in [2].

Then the edge geodesic in KP ′ from the root u = ∅ to v = I, where I is a consistent order

ideal of P ′, can be found by considering a linear extension of the elements of I.) Since such

a curve c(p, q) has length at most O(m), dividing it into parts appropriately, one can get a

desired sequence of points. To show (b), we need the following two lemmas, whose detailed

proofs can be found in the full version of this work.

◮ Lemma 3.10. Let K be a CAT(0) cubical complex and v be a vertex of K. Then the star

St(v, K) of v in K, i.e., the subcomplex spanned by all cells containing v, is convex in K.

Sketch of Proof. The lemma follows from the well-known fact that the vertex set of a star

in K is convex in the underlying graph G(K) and the result of [10] that the subcomplex K(S)

of K induced by a convex vertex subset S of G(K) is convex in K in the ℓ2-metric. ◭

◮ Lemma 3.11. Let K be a CAT(0) cubical complex. Let p, q be two points in K with d(p, q) <

1 and R1, R2 be the minimal cells of K containing p, q, respectively. Then R1 ∩ R2 6= ∅.

Sketch of Proof. One can show that there exists a vertex ui of Ri for i = 1, 2, such that

d(u1, u2) = d(R1, R2) := infx∈R1,y∈R2
d(x, y). Since d(R1, R2) ≤ d(p, q) < 1, one has

d(u1, u2) < 1. Hence u1 and u2 should be the same vertex, and thus R1 ∩ R2 6= ∅. ◭

Using these lemmas, we show (b). Suppose that we are given two points p, q ∈ KP with

d(p, q) ≤ D. First notice that one can find in linear time the minimal cells R1 and R2 of

KP that contain p and q, respectively, just by checking their coordinates. (Indeed, one has

R1 = CI
M for I = {i ∈ P | pi > 0} and M = {i ∈ P | 0 < pi < 1}.) Since d(p, q) ≤ D < 1,

from Lemma 3.11 we know that R1 ∩ R2 6= ∅. Let v be a vertex of R1 ∩ R2. Then p and q

are contained in the star St(v, KP ) of v. Since St(v, KP ) is convex in KP by Lemma 3.10, we

only have to compute the geodesic in St(v, KP ). Obviously, St(v, KP ) is a truncated CAT(0)

orthant space, and hence one can compute the geodesic between p and q in St(v, KP ) in

O(m4) time, by Theorem 3.7. In addition, one can find a δ-midpoint w ∈ St(v, KP ) of p and

q such that the number of bits required for each coordinate of w is bounded by O(log(m/δ)).

This implies (b) and therefore completes the proof of Theorem 3.9.
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