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ABSTRACT 

Define the length of a basis of a cycle space to be the sum of the 

lengths of all circuits in the basis. An algorithm is given that finds 
3 

a basis with the shortest length in 0(e v) operations. Edges may be 

weighted or unweighted. 



A POLYNOMIAL-TIME ALGORITHM TO FIND THE 

SHORTEST CYCLE BASIS OF A GRAPH 

1. Introduction 

Given a graph (V,E) with weights on the edges, how can one find the 

basis of the cycle space with minimum total weight? This question may 

have some uses in Surveying [6], [1], Algorithms that attempt to answer 

this question have been developed in [6] and [4]. Hubicka and Syslo [4] 

conjectured that their algorithm Β works, but Kolasinska has recently 

constructed a counterexample [5j. Steeves in [6] developed an algorithm 
2 

that takes 0(e ν ) operations, but counterexamples have also been found 

for it as well. 

A second use for minimum cycle bases may be to improve algorithms 

that list all simple circuits in a graph. One early reference and one 

recent reference for this type of algorithm are [8] and [7]. Dixon and 

Goodman use a similar technique to search for the longest cycle in a 

graph [2], 
The main result of this paper is to give an algorithm that solves 

3 
this problem 0(e v) operations. 

2. Definitions 

In this paper, graphs are finite, undirected, without loops or 

multiple edges. Although not strictly necessary, we can also assume 

graphs are always connected. An edge is denoted by the (unordered) pair 

of its endpoints. Each edge e of a graph is weighted with a real number 

w(e), which extends to a weight function on all sets of edges. The 
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unweighted case or equivalently the case in which all weights are 1, 

does not seem to lead to any simplification of the algorithm. Weights 

are allowed to be negative, but the weight of a simple circuit (a 

connected subgraph which is regular of degree 2) cannot be allowed to be 

negative, as in the shortest path problem. 

A cycle is any set of edges of a graph in which each vertex of the 

graph is incident with an even number of edges. Two cycles, C and D, 

can be added to form their sum, C+D, using the set symmetric difference 

operation, (CvD) - (CvD). Equivalently, one can identify a cycle with 

its incidence vector, and cycle-addition as vector addition over the 

integers modulo 2. The set of all cycles, which is closed under 

addition, is called the cycle space, and is generated by the set of 

cycles corresponding to the simple circuits. 

Let the number of vertices in the graph be v; let the number of 

edges in the graph be e. Also, let d=e-v+l be the dimension of the 

cycle space. 

3. Theoretical Results 

A cycle in the minimum cycle basis of a graph must have certain 

properties, which are developed in this section. Then only circuits 

that have these properties need to be considered by the algorithm. 

Lemma. If Β is a cycle basis for a graph, C ε Ii, and C = C^+C^, 

then B-{C}Y{C.} is a cycle basis for one of i=l or 2. 
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Proof. Both C^ and C 2 are generated by B_, and each in a unique way. 

Hence for both i=l and 2, C^ is the sum of a subset of the 

cycles in II, say and A^ is unique. Since (the sum of 

cycles in A^ = c l = = c + <ttie s u m o f cycles in k^) 5 

A^ and k^ differ only in that one of them includes C and the 

other does not. Assume CeA^ Then B-(C} generates C^, 

hence B1 = Bu{C 2MC} generates all cycles in JÏ» -and is a 

basis. 

Theorem 1. A minimum cycle basis always consists of simple circuits. 

Proof. Assume Β is a cycle basis, C is in J3, and C is not a simple 

circuit. Then C contains a simple circuit C^, and C = C^+C^ 

= C^uC^ where C 2 is a cycle. If all simple circuits have 

positive weight, 0 < w ^ ) < w(C), and 0 < w(C2) = 

w(C)-w(C1) < w(C). By the lemma, B'= Β - Ι Χ ^ ί Ο is a basis 

for one of i«l or 2. But Bf has less weight than B. 

Define P(x,y) to be the shortest (minimum weight) path from vertex 

χ to vertex y in G. 

Theorem 2. Let χ and y be two vertices in a circuit C of a minimum 

cycle basis 15. Then P(x,y) is contained in C. 

Proof. Let P^ and P 2 be the two paths joining χ and y in C. Assume 

P(x,y) φ P 1 and P(x,y) φ ? r Define C ± = P(x,y)+Pj, for i=l 

and 2. Then C and C_ are cycles, and C = C +C0. Note that 
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w(c±) £ w(P(x,y))+w(P ) < w(P )-Hi(P ) = w(C). By the lemma, B' = B-{C} 

for i=l or 2 is also a basis, and hence Β is not minimum. 

Theorem 3. Let χ be any vertex of any circuit C in a minimum cycle 

basis B. Then there is an edge (y,z) in C such that C = 

P(x,y)+P(x,z)+(y,z). 

Proof. Let C = (χΛ,χ ,.,.,χ ,x ) where χ = x_ = χ . Define PJ = 
U 1 n-1 η O n i 

(χ,χ^,... ,χ^ and = (χ,χ^^,.. .χ ). By theorem 2, 

Ρίχ,χ^ = Έ± or Q±. If = Ρ and 1 <j<i, then 

P(x,Xj) = Ρ because a subpath of any shortest path is also 

a shortest path. Similarly, if P(x,x ) = Q and n>j_>i, then 

P(x,x ) « Q . Let y=x where i is the largest index such 
«J «J ^ 

that Ρ (χ,χ^) = P ¿, and let ζ = * 1 + 1 · Then 

P(x,y)+(y,z)+P(x,z) = p i + ^ x 1 » x i + 1 ) + Q i + 1 = c· 

Theorem 3 gives a strong condition on the circuits in a minimum 

cycle basis. All basis circuits can be found by considering for each 

vertex, edge pair (x,(y,z)), the circuit C(x,y,z) = P(x,y)+P(x,z)+(y,z). 

Obviously there are at most ve such circuits. The set of cycles form a 

matroid so that the greedy algorithm can be used to find the minimum 

cycle basis. 

Another result that might be useful in a practical implementation 

is that the shortest circuit through an edge is always in the circuit 

basis. This fact is used in [4] and its predecessors. 
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Theorem 4. If e is an edge, then the shortest circuit C g through e is 

in the minimum cycle basis Ii. 

Proof. If C^ is not in B, then C^ is the sum of some cycles in B. 

Consider any cycle C in this sum such that e is in C. Then 

C = C +C', where C? is the sum of cycles in B-{C}. Hence B* 

= J5-{C}tf{C } is a basis by the lemma, and jî* has less weight 

than B. 

4. The Algorithm 

The outline of the algorithm can be given as follows: 

(1) Find minimum paths between all pairs of vertices. 

(2) For each vertex ν and edge (x,y) in the graph, create the 

circuit C(v,x,y) = Ρ(ν,χ)+P(v,y)+(χ,y). 

(3) Order the circuits by weight. 

(4) Use the greedy algorithm to find the minimum cycle basis 

from this set of circuits. 

A quick analysis indicates that step 4 is the critical step: 
3 

Step 1 takes 0(v ) operations [3]; 
2 

Step 2 takes 0(ev ) operations; 

Step 3 takes 0(n log(n)) operations; 

Step 4 takes 0(nk); 

where η is the number of circuits found in step 2, and k is the number 

of operations to decide whether a circuit is independent of another 

given set of circuits or not. A simple method to implement step 4 is to 

consider the cycles as rows of a 0-1 matrix. The columns correspond to 
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the edges of the graph; the rows are the incidence vectors of the 

circuits. Gaussian elimination using elementary row operation can be 

applied to the matrix. Instead of processing one column at a time, it 

is better to process each row in turn, in order of the weights of the 

circuits. Each row can be processed in 0(ed) operations, where e is the 

number of columns, and d is the maximum number of independent circuits. 

Since the total number of circuits that has to be processed is 0(ev), 
2 

step 4 takes 0(e dv) steps. 

The main point at which the algorithm can be improved is to de-

crease the set of circuits under consideration. The first observation 

is that edges in the shortest spanning tree grown from a vertex will 

never generate a circuit with that vertex, so the number of circuits 

generated is at most 0(dv). The second observation is that each cycle C 

in the minimum cycle basis will be generated | c | times, once for each 

vertex. The third observation is that not all circuits generated need 

to satisfy Theorem 3. 

The circuit can be tested to see whether Theorem 3 is satisfied in 

0(k) operations, where k is the number of edges in the circuit to be 

tested. Assume the circuit is ϋίχ^,χ^χ^^ίχ^,χ^ ... ,χ^,χ ) . For 

each vertex ν in a circuit, define r(v) to be the vertex in the circuit 

furthest from ν such that P(v,r(v)) follows the circuit to the right. 

Thus r(x^)=x^. Similarly, define l(v) to be the vertex in the circuit 

furthest from ν such that P(v,l(v)) follows the circuit to the left. 

Theorem 3 states that for any circuit in the minimum cycle basis r(v) 

and l(v) are neighbors in the circuit for all vertices in the circuit. 

The functions r and 1 can be calculated in linear time for all vertices. 
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For example, for x 2 we know P(x2»xi)=(x2»x3»··since a subpath of a 

shortest path is itself a shortest path. Consider p ( x i + 1 » x2)- the 

second vertex of the path is x ^ then ρ(χ 2»χ ± + 1) = (χ2»χ3»···íXi+i^» 

else r (x2)=xi+1· Perform the same test on x i + 2> x i +3»*" xj» until the 

test fails for + Then r(x2)«x . Now r(x3> can be calculated 

starting with + etc. The function l(v) can be calculated in the 

same way, with 1 (x ) =x 1 + 1 » then calculate in turn 

l(xk),l(xk_1),...,l(xi). 

It is not true that any circuit which satisfies the condition of 

theorem 3 is necessarily in the basis. A counterexample is given in 

Figure 1. The shortest cycle basis of this graph will be the set of 

inner faces. However, the outer face satisfies the condition of theorem 

3. Thus one cannot hope that this check will eliminate the check for 

linear independence of the cycles. It is possible that the set of 

cycles will often be significantly less but I have been unable to prove 

it. 

One problem that can arise is that the minimum weight cycles are 

not unique. In fact, the proof of theorem 2 assumed that the minimum 

length path between two vertices was unique. This can be guaranteed by 

perturbation or lexicographic methods. Let the minimum path be the path 

that contains the vertex of the lowest index. If the lowest vertices 

are tied, then the weight of the second lowest breaks the tie, etc. Two 

simple methods of handling the problem of ties are available. One is to 

calculate the paths whenever a tie occurs, the second is to keep track 

of the paths as they are created. Both methods require a factor of ν to 

be added to the worst-case analysis of step 1. But step 4 still 

dominates step 1, if d>v. 



Figure 1. Counterexample 
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