
A Polynomial-Time Approximation Scheme for
Weighted Planar Graph TSP

Sanjeev Arora*
Princeton U.

Michelangelo Grignit David Kargert
Emory U.

Andrzej Woloszyn
Emory U.

Philip Kleins
Brown U.

Abstract
Given a planar Rraph on n nodes with costs (weights) on
its edges,- define ;he distance between nodes i &d 2 as’ the
length of the shortest path between i and i. Consider this
as &I instance of me& TSP. For any E > 6, our algorithm
finds a salesman tour of total cost at most (1 + E) times

optimal in time n”(llea).

We also present a quasi-polynomial time algorithm for

the Steiner version of this problem.

1 Introduction

The TSP has been a testbed for virtually every algorith-
mic idea in the past few decades [7]. Most interesting
sub-cases of the problem are NP-hard, so attention has
turned to other notions of a “good solution.” An early
approximation algorithm by Christofides achieves an ap-
proximation ratio 1.5 on every instance of metric TSP
(namely, one in which the internode distances form a
metric). This algorithm has not been improved upon,
and a general approximation scheme is unlikely since
metric TSP is MAXSNP-hard [13]. Nevertheless, there
has been recent progress for certain special classes of
metrics.

Grigni, Koutsoupias, and Papadimitriou [6] showed
that if the metric is the shortest-path metric of an
unweighted planar graph (that is, all edge costs are
one), then a polynomial time approximation scheme (or
PTAS) exists. It achieves an approximation ratio (1 +E)
in n’(‘/‘) time, where E > 0 is any constant. Then

‘aroraPcs .princaton. edu Supported by NSF CAREER

Award, Alfred Sloan Fellowship, and Packard Fellowship.

‘Emory Dept. of Math. & Computer Sci., Atlanta GA 30322.

E-mail : mic@mathcs.emory.edu.

*MIT Laboratory for Computer Science, Cambridge, MA
02138. Supported by NSF contract CCR-9624239 and an Alfred

P. Sloane Foundation Fellowship.
E-mail: kargarlcs .mit . edu.
URL:http://theory.lcs.mit.edu/~/karger

SkleinPcs.broan.edu Supported by NSF grant CCR-
97000146

Arora [2] (and soon after, Mitchell [ll]) showed that a
PTAS also exists for Euclidean TSP (i.e., the sub-case
in which the points lie in !I?22 and distance is measured
using the Euclidean metric). This PTAS also achieves
an approximation ratio (1 + &) in n”(l/‘) time. More
recently, Arora [3] improved the running time of his
algorithm to O(n . (log n) 0(1/E)), using randomization.

The PTAS’s for Euclidean TSP and planar-graph
TSP, though discovered within a year of each other, are
quite different. Interestingly enough, Grigni et al. had
conjectured the existence of a PTAS for Euclidean TSP,
and suggested one line of attack: to design a PTAS for
the case of a shortest-path metric of a weighted planar
graph. (We note later in the paper that Euclidean TSP
can be viewed as a Steiner sub-case of weighted planar
graph TSP.)

In this paper we present an n”(‘lE’) time PTAS
scheme for weighted-planar-graph TSP. Our approxima-
tion scheme starts by extracting a spanner of the input
graph; the spanner preserves distances between vertices
but has a lower sum of edge-costs. Then, like some pre-
vious results about approximation schemes on planar
(unweighted) graphs [8, 61, our approximation scheme
employs a technique for obtaining a hierarchical decom-
position of the input graph. By “hierarchical” we mean
that the decomposition is done in steps. A step parti-
tions every current component into two or more pieces,
each of which contains at most a constant fraction of
the vertices of its parent. Hence the decomposition tree
has O(logn) levels, where n is the number of vertices.
The useful aspect of our decomposition is that we show
the existence of a (1 + &)-approximate salesman tour
that crosses the boundary of each region in the decom-
position O(logn/E2) times. This is reminiscent of the
approximation scheme for the unweighted case [6]. In
particular, we ensure that after contracting the edges
that lie on the boundaries of the regions, we obtain a
graph where each region is bounded by O(logn/c2) ver-
tices. Dynamic programming can be used to find the

33

34

optimal tour in this contracted graph. We show how to
lift this tour to a tour in the uncontracted graph without
increasing the cost by much.

In Section 6, we also present a quasi-polynomial
time algorithm for the Steiner version of this problem;
that is, when we want a near-optimal tour on some given
subset S of the vertices.

2 Definitions and procedures

2.1 Spanner. Our approach requires that the sum
of the edge-costs of the graph be within a constant
factor of the cost of the minimum tour. We use the
following spanner result due to Althofer, Das, Dobkin,
Joseph, and Soares to obtain such a low-cost subgraph
of the input graph that also approximately preserves
distances.

THEOREM 2.1. ([l]) For every planar graph G with
edge-costs and every E > 0, there is a subgraph G’ with
the same vertex set such that for every pair of vertices
i and j in V, their distance in G’ is at most (1 + E)
times their distance in G. Furthermore, the sum of costs
of edges appearing in G’ is O(l/&) times the cost of a
minimum spanning tree in G. The subgraph G’ can be
found in polynomial time.

2.2 Separating the graph. Now we give our sepa-
rator theorem, which can be viewed as a generalization
of Miller’s simple-cycle-separator theorem. The proof of
the theorem appears in Section 5.

It is useful to ensure that our separator, while not
a cycle in the original graph, does trace out a Jordan
curve. To capture the resemblance to a cycle, we
use the notion of face edges. Face edges are artificial
edges added to the graph while preserving planarity; in
other words, the cycle may cross through the interior of
some faces. Our separator will be a cycle in the graph
obtained by adding some of these artificial edges. We
call it a cycle separator. Such a cycle traverses certain
vertices, edges, and faces of the graph; the rest of the
graph divides into an interior and an exterior.

The separator is supposed to achieve some sort of
balance. We specify what is to be balanced by assigning
weights to vertices and faces; the separator then has the
property that the sum of weights of vertices and faces
in the interior is only a constant fraction of the sum of
all the weights, and similarly for the exterior.

We measure the quality of the separator in two
ways: the number of face edges it uses, and the sum
of costs of the ordinary edges it uses.

weights, and face-weights, finds a Jordan curve C such
that

balance condition: the interior and exterior of C have
weight at most 213 of the total weight;

face-edge condition: C uses at most k face edges,

ordinary-edge condition: C uses ordinary edges of total
cost 0(1/k) t’ ames the total cost of all the ordinary
edges.

Remark: The separating cycle also has the property
that the ordinary edges comj>rise at most two paths, but
the algorithm does not use this property.

Given a planar embedded graph G and a separator
C satisfying the conditions of Theorem 2.2, we split
the graph into two or more derived subgraphs, called
children, as follows.

First, in G we contract the ordinary edges that are
in C, giving us a contracted planar embedded graph
G’ (the ordinary-edge condition ensures that we do not
contract much cost, so we do not dramatically perturb
the solution). Let C’ be the contracted version of the
separating cycle; it has no ordinary edges so the vertices
it contains, if removed, separate the graph (the number
of vertices is equal to the number of face edges in the
separator, so the face-edge condition ensures that there
are not too many). We call these vertices the boundary
vertices.

We define the interior piece to be the interior of
C’, together with the boundary vertices. The exterior
piece is similarly defined (it too contains the boundary
vertices). The interior piece and exterior piece each
satisfy the following property.

Boundary-vertices property: The bound-
ary vertices lie on the boundary of a single face

We call the single face a hole because it results from
the removal of some of the graph.

The connected components of the interior piece and
the exterior piece are the children of G. Because of the
balance condition on the separator, the interior of C’ has
vertex weight at most two-thirds of the vertex weight of
G. We obtain the following property.

Child-weight property: Each child has ver-
tex weight at most a constant fraction of that
of the parent graph.

THEOREM 2.2. (SEPARATOR THEOREM) There is an Because all ordinary edges on the boundary between
poly(n)-time algorithm that, given a parameter k and the interior and exterior were contracted, we obtain the
a planar embedded graph G with edge-costs, vertex- following property.

35

edge-disjointness property: No edge of G obtain the following lemma.
appears in more than one child. LEMMA 3.1. The edges of G that do not appear in G’

Moreover, the boundary-vertices property still
have total cost at most &OPT/4.

holds for each child: the boundary vertices that sep- Clearly the optimal tour in G’ has length at most

arate the child from its siblings all lie on the boundary OPT. Below we show how to use dynamic programming

of a single face, a hole. to compute the optimal tour for G’. We then extend
this tour back to the original graph as follows. We

3 A simpler algorithm uncontract the contracted paths and use the classical

To introduce our techniques, we begin with a simpler
double-MST heuristic on each path to get a tour for

algorithm that runs in quasipolynomial time. In the
those vertices of cost at most 2 . path length. We then

following section, we will show how to modify it to
“splice” the path tour into the global tour. Doing this

achieve a polynomial running time.
for all contracted paths raises the tour cost by at most

Our goal is to find a tour in the input graph that has
~12 . OPT, so the the cost of the final tour is at most

cost at most 1 + E times that of the optimal tour. Let
(1 f c/2) . OPT (the other c/2 is taken by the spanner

OPT denote the cost of the optimal tour in the input
subgraph ,approximation) .

graph. The first step of our algorithm is to let G be a
spanner of the input graph that preserves distances up
to a factor of 1 + ~/2, using Theorem 2.1. The sum of
edge-costs of G is O(~/E) times the cost of a minimum
spanning tree in the input graph, which is in turn at
most OPT. The cost of an optimal tour in G is at most
1 + c/2 times OPT. Our goal is now to find a tour in G
whose cost is at most &OPT/2 more than the optimal
tour.

Next, we fix the parameter Ic = clog n/?, where
n is the number of vertices in the given graph and c is
a constant to be determined. We assign weight one to
every vertex in G.

Next, we find a recursive decomposition of G using
the separator algorithm of Theorem 2.2: we find a
separator in G, determine the children of G, find a
separator in each child and determine its children, and
so on, until each remaining graph has a small number
of vertices. By the child-weight property, the depth of
the recursion is O(log n).

Consider the graphs occuring at a particular level
of the recursive decomposition. By the edge-disjointness
property, these graphs are edge-disjoint. Hence the sum
of edge-costs over all these graphs is at most the sum
of edge-costs in G. For each graph, the (contracted)
edges of the separating cycle used to divide the graph
have total cost 0(1//c) times the sum of edge-costs in
that graph. Summing over all these graphs, the costs
of edges appearing in all these separators is 0(1/L)
times the total cost in G, i.e. O(OPT/ks). Summing
over all levels of the decomposition, we obtain a bound
of O(OPT logn/k&) on the sum of costs of all edges
contracted. By appropriate choice of the constant c in
the definition of k, we ensure that this bound is at most
&OPT/4.

3.1 Finding the optimal tour in G’ in quasipoly-
nomial time. Now we describe how to compute the
optimum salesman tour on the contracted graph. We
show that the running time is nO((‘“gnloglogn)/Ea). In
the next section, we use a more careful analysis to show
that polynomial running time can be achieved.

The recursive decomposition of G using the cy-
cle separators induces a recursive decomposition of G’;
namely, the decomposition obtained by using the con-
tracted versions C’ of the separators. After the con-
tractions, the number of vertices in a separator is equal
to the number of face edges in the separator. So (by
the face-edge condition) each separator consists of at
most k vertices. Consider a subgraph H of G’ that
appears at level d of the recursive decomposition. It
contains at most dk boundary vertices, and they col-
lectively separate H from the rest of G’. Note that
dk = O(log2 n/e2) b ecause the depth of the decomposi-
tion is O(logn) . The optimal tour in G’ winds in and
out of H via the boundary vertices. The next lemma
guarantees that there is an optimal tour that passes
through each boundary vertex at most most twice.

LEMMA 3.2. (PATCHING LEMMA) Let J be a Jordan
curve in the plane. Let ?r be a closed curve in the plane.
Then we can modify ?r into another closed curve ?r’ that
traverses the same points as r but such that at every
point p where K’ intersects J, R’ crosses J at most twice.

Proof. First by eliminating crossings, we may assume
that ?r does not self-intersect. Then at a point of
intersection with J, the curve A alternates going in and
out of J. We may then reconnect the segments of the
curve so that at most two crossings are necessary. See
Figure 1.

Let G’ be the graph obtained from G by contracting Thus the contracted graph G’ has a simple struc-
all the primal separator edges in all the separators. We ture: it possesses a hierarchical decomposition such that

36

T0.K

Figure 1: If a planar salesman tour crosses a Jordan
curve more than two times at a boundary vertex, then
we can clearly reconnect the edges incident to the
boundary vertex so that the tour crosses at most twice.

each subgraph H arising in the decomposition is delim-
ited by p = O(log2 n/~~) b oundary vertices, and the op-
timum salesman tour enters or leaves H at most twice
via each boundary vertex.

We use a simple dynamic program to find the
optimum tour as follows. We build a lookup table for
each subgraph arising in the decomposition, starting
from the leaf subgraphs of the decomposition, and
working up to larger subgraphs. For a subgraph H, the
corresponding table contains an entry for every possible
way the tour can pass through H, which can be specified
by an ordered list of boundary vertices through which
the tour enters and exits H. Each boundary vertex
can appear at most twice, so the number of entries is
bounded by the number of ways of ordering at most 2p
items, which is PO(P).

The value of an entry is the minimum cost of
a set of paths that realize the corresponding pairing
while visiting all vertices inside H. This value can
be calculated from similar tables for the children of
H: Given the contracted cycle separator C’ used to
separate H, we enumerate the ways the set of paths
could cross C’. For each, we look up the.minimum-cost
realization within each child, and then add these costs.
The minimum over all the ways the paths could cross
C’ is the desired value.

To calculate each entry in H’s table thus requires
PO(P) time, and there are p O(P) entries to fill, for a
total of PO(P) time. We have to build a table for each
subgraph in the decomposition. The total time (and
space) required is n O(l) . p(P) = nO((loKnloglogn)/Ea).

4 A polynomial algorithm

We now improve the preceding algorithm to achieve a
polynomial running time. We modify the assignment of
weights used in finding the cycle separators in order
to ensure that, for every subgraph H arising in the
decomposition, the number of boundary vertices in
q separating it from the rest of the graph is small,

and that these boundary vertices lie on the boundaries
of only a constant number of holes. This last fact,
together with the planarity of an optimal tour, allows
us to prove a Catalan-like 20tk) upper bound on the
number of subproblems that we must actually consider
at H. Putting this together, we will have running time
no(l)2O(k) = nO(llc’) m claimed.

The new assignment of weights is actually done dy-
namically as we construct the recursive decomposition.
Suppose we are separating a graph H with total weight
w. When we find a separator in H, contract its edges,
and construct its children, we create some new bound-
ary vertices for the children. We assign weight w/12k to
each new boundary vertex in a child. Since each child
has only k boundary vertices, this adds no more than
w/12 to a child’s total weight. We also assign weight
w/12 to the hole in each child on which the boundary
vertices lie.

Before additional weight was assigned to boundary
vertices, each child’s total weight was at most fw. The
additional weight increases the child’s weight by at most
$w, so the child’s weight is now at most Ew. Thus the
child-weight property still holds: each child’s weight is
still a constant fraction of its parent’s.

Now consider the hierarchical decomposition of the
graph G’ obtained by the contractions. Let H be a
subgraph arising in the decomposition. First we bound
the number of boundary vertices in H. The weight of
every boundary vertex in H is at least 1/12k times the
weight of H’s parent. Since H has weight at most five-
sixths that of its parent, it must contain at most 10k
boundary vertices.

Next we show that the boundary vertices lie on a
constant number of holes. As the recursive decomposi-
tion takes place (a cycle separator is found for a sub-
graph, and its children are constructed), each existing
hole is either preserved (if the cycle separator does not
pass through the face) or destroyed (if the cycle passes
through the face). In the former case, the hole retains
the weight originally assigned to it when it was formed,
and it appears in one of the children of the subgraph. In
the latter case, the boundary of the hole is broken into
two pieces, and each piece makes up part of the bound-
ary of the new hole being formed in the children. Thus
in this case the old boundary vertices (which lined the
boundary of the old hole) now lie on the boundaries of
the new holes appearing in the children (one new hole
per child). We preserve the property that all boundary
vertices lie on the boundaries of holes.

We can now use an argument like that used above
in bounding the number of boundary vertices. Let H
be a subgraph arising in the hierarchical decomposition
of the contracted graph. Each hole has weight at least

(A) (B)

Figure 2: The order in which a planar tour traverses m
vertices on the boundary of a Jordan curve corresponds
to to balanced arrangements of m pairs of parenthesis.
Each boundary vertex can contribute two parentheses.
(A) shows an invalid pairing and (B) shows a valid
pairing.

l/12 times the weight of H’s parent, and H’s weight is
at most five-sixths that of its parent, so H contains at
most 10 holes.

(Better constants can be obtained by slightly more
complicated ways of breaking up the graph and assign-
ing weights.)

4.1 Enumerating the pairings. To finish the de-
scription of the algorithm, we need to bound the num-
ber of ways in which an optimum salesman tour could
link up the (at most) 1Olc boundary vertices in a sub-
graph. Note that we can assume that the optimal tour
does not cross itself (though it can overlap itself) and
passes through each boundary vertex at most twice.

If in fact all the boundary vertices were on a single
face, then we could finish with a Catalan bound. That
is, suppose we have a subgraph with a unique hole with
m boundary vertices. The portion of the tour on the
subgraph (that is, the exterior of the hole) consists
of a non-crossing set of paths which matches pairs of
boundary vertices (some more than once, but none more
than twice). The number of such matchings is 2O(“),
as may be proven by relating this quantity to Catalan
numbers (Figure 2).

However, instead of a disk, we have the subgraph
embedded on a sphere with h = O(1) holes in it. The
number of boundary vertices on the boundary of each
hole is O(lc). Ag ain, we want an upper bound on the
number of topologically distinct ways to embed a non-
crossing matching on this surface.

We claim an upper bound of (h)“(h)20(hk), which
is 20ck) in our case since h is constant. This is
seen as follows. Any embedded matching M is a
non-crossing multigraph with the holes as its vertices.
The multigraph is connected because it represents a
salesman tour. If we cut the surface along any spanning
subtree of this multigraph, then the h holes merge into

37

a single hole. This single hole has O(hk) boundary
vertices, and our earlier analysis bounds the number of
noncrossing matchings among them by 20thkl. In other
words, the number of choices for the matching M on
the original set of boundary vertices is at most

(number of nonself-crossing trees on h points) x 20thk),

which is at most h”ch) . 20thk).

5 The separator theorem

Now we prove Theorem 2.2. Our proof uses ideas
from Grigni, Koutsoupias, and Papadimitriou [6] as well
as Lipton and Tarjan’s planar separator theorem [8]
and Miller’s simple cycle separator theorem [lo]. The
performance criteria in our case are different from those
of Lipton and Tarjan and those of Miller, so we must
use these techniques differently.

By resealing, we can assume without loss of gener-
ality that all vertex and face weights sum to 1.

The next lemma is borrowed (with slight modifica-
tion) from Lipton and Tarjan.

LEMMA 5.1. (LIPTON AND TARJAN) Let T be a span-
ning tree of a planar triangulated graph G with weights
on vertices and faces totaling at most 1. Then there is
an edge not belonging to T such that the interior and
exterior of the simple cycle in T U e each contain weight
no more than 2/3.

Furthermore, the same result holds even if not every
face is triangular, as long as each non-triangular face F
satisfies the following two properties.

l F has weight less than 2/3.

l The boundary of F is the unique simple cycle in
T U e for some edge e.

The first step of the separator algorithm is to
find the shortest-path tree rooted at some vertex r.
In the second step, described below, we extract a
subgraph of the graph (and a corresponding subgraph
of the shortest-path tree); we also add some face edges.

,Finally, we apply the lemma of Lipton and Tarjan to
obtain a simple cycle separator.

5.1 Extracting a subgraph. Note that any positive
value c determines a partition of the vertices: those
whose distance from r is less than 2, and those whose
distance is at least x. For any subset S of the edges of
the graph, let fs(x) denote the number of edges in S
that cross this partition.

LEMMA 5.2. For any subset S of edges and any dis-
tances dl < dz, if fs(x) 2 k/2 for every dl < x 5 dz

38

then & - dl 5 2L/k, where L is the total cost of the
edges in S.

proof. An edge of length e can only contribute to fs(z)
for an interval of length e. The lemma follows by simple

averaging.

Let (Sd, 5) denote the partition induced by cutting
the shortest-path tree at distance d. The separator
algorithm will use the topology of these partitions. Note
that there are at most n such partitions, as we can

always take d to be the distance of some vertex from
the root.

The set of edges crossing the partition (Sd,z) is a
co-cycle, which means that in the planar dual graph the
duals of these edges form a collection of edge-disjoint
simple cycles. Moreover, we can view the embedding of
the planar graph in such a way that the interiorsof these
dual cycles contain the nodes at distance d or greater.
Let Cd denote this set of dual cycles. (Essentially, we
choose as our infinite region some face whose boundary
contains the root r.)

As shown in Figure 3, the dual cycles are nested:
for dl < d2, each cycle of Cd2 lies in some cycle of Cd,.
The minimal nontrivial dual cycles each enclose a single
vertex of the primal graph.

Define the depth of a dual cycle in U&‘d to be the
maximum d for which the cycle belongs to Cd. Define
its edge-cardinality to be the number of dual edges
comprising it. For a collection of such cycles, the total
edge-cardinality is the sum of the edge-cardinalities of
the individual cycles, i.e. the total number of dual edges
appearing in all of them. Define the weight contained
by a dual cycle to be the sum of weights of vertices and
faces embedded in the interior of the cycle.

Let C denote a deepest dual cycle containing weight
more than l/2. Let B the the deepest ancestor of C
whose edge-cardinality is less than k/2. (See Figure 4.)
Let dB be the depth of e. Note that B contains weight
more than l/2. Define d as

Figure 4: C is the deepest dual cycle containing weight
more than l/2. Note that C may have high edge-
cardinality. B is C’s deepest ancestor having edge-
cardinality less than k/2. It contains weight more than
l/2. The dual cycles Ci, . . . , C, are at the first level
deeper than B such that they have edge-cardinality less
than k/2.

the dual cycle C, since more than half of the weight is
contained in C. Thus Ci is an ancestor of C. Since Ci
has edge-cardinality less than k/2, Ci is an ancestor of
B, the deepest ancestor of C having such a small edge-
cardinality. This contradicts the fact that Ci’s depth
exceeds that of B.

Obtain a graph G from G as follows. For each i,
consider the dual cycle Ci. Corresponding to this dual
cycle, place a circuit of face edges in G (just inside the
dual cycle), where each face edge connects the endpoints
of a primal edge. Then delete all other vertices enclosed
by this new circuit, thus turning the circuit into a face.
Assign the weight of the deleted nodes to this face. We
call the new face a leaf face. (This process is depicted
in Figure 5.)

Note that the circuits are vertex-disjoint because .
(i := min{d > dg : Cd has total edge-cardinality < k/2j each one connects vertices within a different dual cycle

and let Cl, . . ., C,. be the cycles in Cd that are in the
Ci, and the interiors of the C;‘s are disjoint. Moreover,

interior of B.
by Lemma 5.4, each leaf face has weight at most l/2.

The next lemma is a consequence of Lemma 5.2.
The dual cycle B is treated similarly; add a circuit

of face edges just outside this dual cycle, connecting

LEMMA 5.3. dB - d^ 2 2L/k, where L is the total cost together those endpoints of the primal edges lying

of edges in the graph. 0 outside the dual cycle. Then delete the other vertices in
the exterior of the dual cycle. These deletions cause the

LEMMA 5.4. For each i, Ci contains weight at most circuit to be the boundary of the infinite region, which

l/2. we call the root face. The weight assigned to the root
face is the total weight of the exterior vertices deleted.

Proof. Suppose some dual cycle Ci contained more than Note that since B contained more than weight l/2, the
half the weight. It would then contain in particular weight of the root face is at most l/2.

39

Cycles at depth d Cycles at depth d’ > d nest
lnslde the cycles at depth d.

Figure 3: This figure shows how cycles nest as distance increases.

A leaf dual cycle The
the 8

rimai edges crossing
ual cycle, and the prlmal

subgraph mslde it.

We create a circuit of artificial edges
by tracing along the dual edges.

We then delete the other
vertices inside, and assign
their weight to the new lam.

Figure 5: The construction applied to each dual cycle Ci to obtain a leaf face.

5.2 Extracting the spanning tree for the sub-
graph. Starting with the shortest-path tree T, we ob-
tain a spanning tree ? for the subgraph 6 we have ex-
tracted. For each vertex that lies inside B and outside
every Ci, the vertex’s parent edge in 9 is defined to be
the vertex’s parent edge in T. For each but one of the
vertices in the circuit outside B, we take its parent edge
to be the face edge connecting it to the next vertex in
counterclockwise order. The one exception is to be the
root of Y.

from at most one leaf face. To see this, note that the face
edges from each leaf face form a terminal path in T* : no
real edge has such an edge as an ancestor. Furthermore,
since the leaf faces correspond to edge-disjoint co-cycles,
no edge connects two vertices from different leaf faces.

We similarly treat the dual cycles Ci. For each, we
determine the interior vertex closest to the root, and we
assign that vertex’s parent edge to be its parent edge
in T. For each of the other interior vertices, we take
its parent edge to be the face edge connecting it to the
next vertex in clockwise order.

Thus the cycle separator consists of two paths
of original edges, joined by at most k face edges:
fewer than k/2 from a leaf face, fewer than k/2 from
the root face, and possibly the non-tree edge e. By
Lemma 5.3, each of the paths of original edges has
length at most 2L/k. Thus the separator has all the
promised properties.

5.3 Applying Lipton and Tarjan’s lemma. We
have obtained a subgraph 6’ and a spanning tree ?.
We add more face edges to C to triangulate every face
except the root and leaf faces just created, and we apply
Lemma 5.1 to obtain a cycle separator in T* U e where
e is a non-tree edge.

6 The Steiner version of planar TSP

An obvious next problem to study is a “Steiner’‘-type
weighted-planar-graph TSP problem: given a weighted
planar graph and a set of terminals (which is a subset
of the set of vertices), find a minimum-cost circuit that
visits all the terminals. This problem is an obvious
generalization of the planar-graph TSP, and it also
generalizes the Euclidean TSP. To see the latter, note
that given n points in ?I?’ on which we desire a salesman
tour, we can draw all (z) 1 ine segments between them

We claim that the cvcle separator uses face edges and add a new node at each intersection. This gives a

40

weighted planar graph on O(n4) vertices (the costs on
the edges are the Euclidean lengths) in which it suffices
to find a minimum-cost circuit for the original set of n
vertices.

Most of our techniques generalize to the Steiner-
type problem, except for the spanner result (Theo-
rem 2.1). Thus the existence of a PTAS would follow if
the following conjecture is true.

CONJECTURE 1. There etists a function f(.) such that:
given E > 0, a weighted planar graph G, and a subset
S of vertices, there exists an edge-induced subgmph G’
which (1 +&)-approximates all internode distances in S,
and furthermore G’ has total edge weight at most f(E)
times the minimum Steiner tree weight for S.

Even in the absence of a spanner result, we can
give a quasipolynomial-time approximation scheme for
the Steiner variant by combining the techniques of this
paper with that of Arora’s original PTAS for Euclidean
TSP [2]. In each step the algorithm tries a small
(poly(n) size) family of separators, one of which is
guaranteed to work. The approximation scheme runs
in nPolY(logn,llc) time.

The approximation scheme uses a separator algo-
rithm that identifies not one but many separators; one
of them must be good in a sense to be described. First
we describe the algorithm for finding the set of separa-
tors for a given subgraph H of the input graph.

The separator algorithm first finds a shortest-path
tree of H rooted at an arbitrary vertex. For each vertex
v in H, let d(v) denote the distance of v from the root.
Letvi,vz,..., v, be the vertices of H in increasing order
of distance from the root. For each pair of vertices
vi, vj (i < j), define H(vi, vj) to be the graph obtained
by coalescing vi, . . . , vi to a single vertex, and deleting
Vj,...,V,. The coalescing can be done via edges of the
shortest-path tree, so planarity is preserved.

Apply Lemma 5.1 to this graph, with artificial
edges added temporarily to triangulate every face. The
result is a cycle separator consisting of two paths in
the shortest-path tree and a (possibly artificial) non-tree
edge. Let P(vi,vj) be the set of edges in these paths.
Let C(v;, vi) denote the vertex-partition ({VI, . . . , vi},
Interior, Exterior, { vj , . . . , v,}), where Interior and
Exterior denote the set of vertices of H(vi, vj) in the
interior and exterior of the cycle separator. Note we
have O(n2) such partitions.

The following lemma can be proved using
Lemma 5.2.

LEMMA 6.1. Let OPTH be the set of those edges of the
optimal tour that lie in H, and let k > 0. There exists
a pair vi, vj of vertices such that

the number of edges in OPTH having precisely one
endpoint in {VI,. . . , v;} is at most k/2,

the number of edges in OPTH having precisely one
endpoint in {uj, . . . , v,} is at most k/2,

the total cost of the edges in P(vi,vj) is at most
4/k times the cost of all edges in OPTH.

Each part of C(vi,Vj) has at most 213 of the
vertices of H.

Now we describe the approximation scheme. Let k
be clog n/E, where c is a constant to be determined
and n is the number of vertices in the input graph.
The approximation scheme makes use of a recursive
algorithm that takes two inputs: a subgraph H of the
input graph G, and an ordered set S of edges and
vertices that connect H to the remainder of G. The
output is an approximately min-cost routing of the tour
within H in such a way that it enters and leaves H via
the elements of S in the specified order.

The algorithm first applies the separator algorithm
to H, which yields O(n2) separators specified by a 4-way
vertex partition C(vi, uj) and a set P(vi, vj) of edges
forming two paths.

For each partition (A, Interior, Exterior, B), the
algorithm first contracts the edges in the corresponding
two paths, obtaining two vertices x and y. Let H’ be
the contracted graph. Next, the algorithm enumerates
orderings S’ of k-subsets of edges within H (together
with the vertices x and y). For each block of the 4-way
partition, the algorithm makes a recursive call to find a
subtour within the corresponding subgraph of H’ that
is consistent with the orderings S and S’. The subtours
of H’ are combined, and then lifted to get a subtour of
H, using the same patching scheme as was sketched in
the beginning of Section 3.

The best subtour of H obtained in this way is
returned. Lemma 6.1 guarantees that one of the choices
of 4-way partition and choices of S’ will lead to a good
subtour being returned.

The error analysis again comes down to bounding
the total cost of all edges contracted in the recursive
calls contributing to the best tour found. The choice of
k (including the constant c) ensures that the total error
is at most E OPT, where OPT is the cost of the optimal
tour.

The depth of our recursion is again O(log n), and we
generate no@) subproblems for every problem, so the
total running time is nO(klogn), or n”@‘ga n/c). Note
that dynamic programming won’t help us much with
this algorithm, since the size of S may reach O(k log n).
(A weighing scheme may help reduce IS], but it is not
enough for a polynomial time algorithm.)

41

Open problems

We suspect that there is a polynomial-time algorithm
for the Steiner version of the planar TSP.

Another open problem is to find a nearly linear time
approximation scheme for the planar-graph TSP. The
“charging” argument in [3] strongly uses the geometry
of the plane and does not seem to apply to the graph
metric case.

References

[l] I. Althofer, G. Das, D. Dobkin, D. Joseph, L. Soares.
On sparse spanners of weighted graphs. Disc. Compu-
tational Comp. Geo., 9:1, 1993.

[2] S. Arora. Polynomial-time approximation schemes for
Euclidean TSP and other geometric problems. Pro-
ceedings of 37th IEEE Symposium on Foundations of
Computer Science, pp. 2-12, 1996.

[3] S. Arora. Nearly linear time approximation schemes
for Euclidean TSP and other geometric problems. Pro-
ceedings of 38th IEEE Symposium on Foundations of
Computer Science, pp. 554-563, 1997.

[4] B. Baker. Approximation algorithms for NP-complete
problems on planar graphs. JACM, 41(l), 1994.
Preliminary version in IEEE FOCS 1983.

[5] N. Christofides. Worst-case analysis of a new heuristic
for the traveling salesman problem. In J.F. Traub,
editor, Symposium on new directions and recent results
in algorithms and complexity, page 441. Academic
Press, NY, 1976.

[6] M. Grigni, E. Koutsoupias, and C. H. Papadimitriou.
An approximation scheme for planar graph TSP. In
Proc. IEEE Symposium on Foundations of Computer
Science, pp 640-645, 1995.

[7] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan,
,D. B. Shmoys. The traveling salesman problem. John
Wiley, 1985.

[8] R. Lipton and R. Tarjan. A separator theorem for
planar graphs. SIAM J. Appl. Math, 36:177-189, 1979.

[9] R. Lipton and R. Tarjan. Applications of a planar
separator theorem. SIAM J. Comp., 9(3):615-627,
1980.

[lo] G. Miller. Finding small simple cycle separators for
2-connected planar graphs. JCSS, 32:265-279, 1986.

[ll] J. Mitchell. Guillotine subdivisions approximate polyg-
onal subdivisions: Part II- A simple PTAS for geomet-
ric k-MST, TSP, and related problems. Preliminary
manuscript, April 30,1996. To appear in SIAM .I. Com-
puting.

[12] C. Papadimitriou and M. Yam&al&. Optimization,
approximation and complexity classes. J. of Computer
and System Sciences 43, pp. 425-440, 1991.

[13] C. Papadimitriou and M. Yannakakis. The traveling
salesman problem with distances one and two. Math-
ematics of Operations Research 18, pp. l-11, 1993.

