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Abstract

We present a framework for computing optimal transfor-
mations, aligning one point set to another, in the presence of
outliers. Example applications include shape matching and
registration (using, for example, similarity, affine or pro-
jective transformations) as well as multiview reconstruction
problems (triangulation, camera pose etc.).

While standard methods like RANSAC essentially use
heuristics to cope with outliers, we seek to find the largest
possible subset of consistent correspondences and the glob-
ally optimal transformation aligning the point sets. Based
on theory from computational geometry, we show that this
is indeed possible to accomplish in polynomial-time. We de-
velop several algorithms which make efficient use of convex
programming. The scheme has been tested and evaluated
on both synthetic and real data for several applications. 1

1. Introduction
The alignment of point sets is a core problem in com-

puter vision. It appears as a subroutine in many applica-
tion problems, such as shape matching [3], location match-
ing [21], matching widely separated views [23], shape reg-
istration [4] and image registration, see [24] and the refer-
ences therein. Another, perhaps less obvious, set of prob-
lems that can be cast as aligning point sets comes from
multiple view reconstruction problems [8]. Applications
include triangulation, camera resectioning (pose) and ho-
mography estimation to name a few. In this paper, all these
matching, registration and reconstruction problems are ad-
dressed as alignment problems in a common framework.

In particular, we focus on obtaining globally optimal
transformations in the presence of outliers. The problem
is posed as finding the largest, consistent subset of all hy-
pothetical correspondences and define the remaining set of
correspondences as outliers. A naive way of solving this
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Framework Programme (SMErobot grant no. 011838), by the European
Research Council (GlobalVision grant no. 209480) and by the Swedish Re-
search Council (grants no. 2004-4579, no. 2005-3230 and no. 2007-6476).

problem would be to examine all possible subsets of the
correspondence set. This is intractable due to the combi-
natorial explosion of subsets. Our main theorem gives a
polynomial upper bound on the number of subsets that need
to be examined, expressed as a function of the size of the
correspondence set. Unfortunately, this bound is not very
useful in practice since there are still far too many subsets
to examine for most real world applications. However, the
result gives valuable theoretical insights. It helps us to un-
derstand why RANSAC is so successful for many applica-
tions. Also, it has given us guidelines for designing an alter-
native approach. By a slight modification of the RANSAC
procedure - inspired by the main theorem - we are able to
generate high-quality candidates. In turn, given a candidate
solution, we present a procedure to verify whether this so-
lution is optimal or not. This verification procedure can be
seen as a guided search; either the candidate is verified or a
better solution can be found.

In summary, our main contribution is that many match-
ing, registration and reconstruction problems can be solved
in polynomial-time with a guarantee of global optimality.
We derive practical algorithms for simultaneously (i) com-
puting the optimal transformation and (ii) separating inliers
from outliers. There are some limitations to our current
framework. We require that the residual errors as functions
of the unknown transformation variables are pseudocon-
vex [2]. This is a weaker condition than convexity (hence
convex functions work fine), but it excludes, e.g., 3D-3D
registration of point sets with a rigid transformation. An-
other weakness is that it becomes computationally expen-
sive to obtain global solutions when there is a large portion
of outliers, say more than 80%. Typically, solutions with
more than 50% inliers are sought for, and if there are no
such solutions, then the method is able to report this.

1.1. Related Work

There is a large body of work for solving matching and
registration problems [4, 3, 21, 23, 24]. For example, in
[3, 12], the matching problem is formulated as an integer
program and then solved by non-optimal methods. In [16],
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the correspondence problem is cast as an assignment prob-
lem and can thus be solved optimally. Matching problems
have also been solved using ideas based on the Hough trans-
form and Branch-and-bound [18, 5, 9]. Perhaps the most
popular paradigm is to use RANSAC [6] which has proven
to be successful in many practical situations. Our approach
leverages on this idea to generate good candidates for global
solutions. However, there are important differences. First of
all, RANSAC gives no guarantee of optimality. Then, an-
other problem is that if RANSAC returns an unsatisfactory
result, then it is unclear whether there is no better solution or
whether RANSAC was unable to find it. With our scheme,
we can provide a certificate that there is no subset with, say,
more than 50% inliers.

Recently, there has been a renewed interest in multiple
view geometry problems aimed at optimal algorithms, e.g.,
[7, 10, 11]. Using the max-norm, it has been shown that
many such problems can be efficiently solved using second
order cone programming. The problem of outliers has also
been addressed in this context. In [11], a heuristic, non-
optimal method is used to remove outliers. In [22] it is
shown how to detect potential outliers in the optimization
process.

The most closely related work is [14] which can be seen
as a refinement of [22] as actual outliers are detected and
removed. This algorithm, originally introduced in [17], is
complementary to our approach and can also be used for
computing optimal solutions. Still, our work differs in sev-
erals aspects. First, the work of [14] is specialized to the
case of triangulation with outliers. Second, the problem
formulation is slightly different. While we seek the largest
subset of inliers given a preset tolerance, in [14], one has
to specify in advance the number of outliers to be removed.
This number is in general unknown. Finally, and most im-
portantly, the approach is only practical for problems with
a small number of outliers and a small number of unknown
variables, like triangulation (3 variables). In the experimen-
tal section, a comparison with our approach is given.

In computational geometry, there is a long tradition of
providing performance bounds for different types of geo-
metric optimization algorithms, see [1] for a survey. We
have been inspired by this in our work and some terminol-
ogy is borrowed from that research community.

2. Problem Formulation
Suppose we are given a set of source points in R

p and
a set of target points in R

q as well as hypothetical corre-
spondences (or pairings) between source and target points.
Let H denote the set of correspondences. By an appropri-
ate numbering, corresponding points are given by (xi, yi)
where xi ∈ R

p and yi ∈ R
q for i = 1, . . . , m, where

m is the number of pairings, m = |H|. A transforma-
tion T : R

p �→ R
q mapping source points xi to target

points T (xi) is said to be consistent with tolerance α if
d(T (xi), yi) ≤ α for all i ∈ I . Here d(·, ·) denotes a metric.

The goal is to find the largest possible subset I ⊆ H
under the constraint that there exists a consistent transfor-
mation T ∈ T for I with a preset tolerance α, where T
is some fixed set of transformations. See Figure 1 for an
example. Mathematically, we are interested in solving the
following problem,

max
I⊆H,T∈T

|I| (1)

s.t. d(T (xi), yi) ≤ α ∀i ∈ I.

In addition, for a fixed I ⊆ H , we require that the con-
straints d(T (xi), yi) ≤ α can be formulated as a convex
feasibility problem. (The exact technical assumptions are
given in Section 3.2). This allows us to determine whether
or not there exists a transformation T ∈ T which is consis-
tent with the subset I by convex programming. Using bisec-
tion search, one can also find the minimum possible toler-
ance for I by solving a series of convex feasibility problems,
hence computing

α∗(I) = min
T∈T

max
i∈I

d(T (xi), yi), (2)

where α∗(I) is the optimal tolerance value. This min-max
problem will play a key role in the analysis of the problem.
For the applications we consider, an optimal transformation
generally exists and is unique. Let T ∗

I denote the optimal
transformation for I .

At a first glance, the problem in (1) may seem intractable
since it is a mixed combinatorial problem - it involves both
a combinatorial decision (subset selection) and continuous
variables (for the transformation). Using the notation T ∗

I , a
simple reformulation of (1) is readily available,

max
I⊆H

|I|

s.t. d(T ∗
I (xi), yi) ≤ α ∀i ∈ I. (3)

This formulation gives a hint of a possible algorithm: Per-
form an exhaustive search over all subsets of H and for
each subset compute the optimal transformation and verify
whether it is consistent or not. However, the complexity of
the algorithm is exponential and whence not very useful.

Next we give a few examples that fit into our framework.

Example 2.1. 2D Similarity transformation. The source
points xi are mapped to the target points yi by a similar-
ity transformation Rxi + t. The rotation and scaling R can
be parameterized linearly as

R(a, b) =
(

a b
−b a

)
. (4)

As residual error we use the standard 2-norm d(Rxi +
t, yi) = ||Rxi + t − yi|| which is convex in the variables



(a, b, t). Figure 1 shows an instance of the problem without
any outliers (o-source points, *-target points). In the upper
left figure, the two point sets and their correspondences are
shown, and in the upper right the optimal registration. In
the lower left, the error residuals are shown. In this case
there are 5 residuals that attain the maximum error. To the
right is a histogram of the number of residuals obtaining the
maximum error when running 1000 repetitions of the prob-
lem. Note that we always have 5 or less residuals that attain
the maximum error. We shall see in Section 3 that this is no
coincident.
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Figure 1. 2D-similarity transformation. See Example 2.1 for de-
tails.

Example 2.2. Homography estimation. There are many vi-
sion applications involving homographies, for example, de-
tecting a planar configuration viewed in two images. The
problem is to determine the homography in the presence of
outliers. Let A be a the matrix representing the homogra-
phy, and Ai be the i’th row of A. We can normalize by
letting A33 = 1. If x = (x1, x2, 1)T and y = (y1, y2, 1)T

are two corresponding image points then the error constraint
can be written∣∣∣∣

∣∣∣∣
(
x1 −

A1y

A3y
, x2 −

A2y

A3y

)∣∣∣∣
∣∣∣∣ ≤ α. (5)

Multiplying the inequality with A3y (required to be posi-
tive), a convex cone constraint is obtained [10, 11].

This example can easily be generalized to projective
transformations and projections for source points in P

p and
target points in P

q. An important case is (p = 3, q = 2)
which is the problem of camera pose.

Example 2.3. Triangulation. In this case we have image
point measurements and want to reconstruct the 3D-points.
Strictly speaking we are not optimizing over a set of trans-
formations but rather the 3D-points. However in our frame-
work we view the image points as target points, the cameras

as source points and the 3D-points as transformations. If P
is the camera matrix, u = (u1, u2, 1)T the image measure-
ment and U = (U1, U2, U3, 1)T the corresponding 3D-point
then ∣∣∣∣

∣∣∣∣
(
u1 −

P1U

P3U
, u2 −

P2U

P3U

)∣∣∣∣
∣∣∣∣ ≤ α. (6)

is the reprojection error constraint, which becomes a convex
constraint when multiplied with the denominator P3U .

3. Theory
Before we continue to analyse the problem formulation

in (3), we will introduce some useful concepts from com-
putational geometry (see [1]).

3.1. Bases and Support Sets
If there exists a subset S ⊆ I having the same optimal

value α∗(S) = α∗(I), that is,

min
T∈T

max
i∈I

d(T (xi), yi) = min
T∈T

max
s∈S

d(T (xs), ys), (7)

then we say that S and I are equivalent, and write S ∼ I .
The elements in I for which d(T (xi), yi) = α∗(I) (the

active constraints) form the support set. By a basis B of
I we mean a set B that is equivalent to I but contains no
equivalent proper subset. Or formally

Definition 3.4. B is a basis set of I if B ∼ I and for all
S ⊆ B, S ∼ I we have S = B.

The maximum cardinality of any basis is called the com-
binatorial dimension of I .

3.2. Main Theorem
In this section we will show that the combinatorial di-

mension is always (relatively) small and independent of the
cardinality of the constraint set H . Let t ∈ R

n �→ Tt ∈ T
be a parameterization of our space of transformations, and
ri(t) = d(Tt(xi), yi) be the residual errors.

We will show that if t ∈ R
n then the size of the basis

sets is always less than or equal to n + 1. To do this we
will assume that the residuals ri(t) are pseudoconvex which
is a slightly less restrictive assumption than convexity [2].
It was shown in [19] that this is true for a large number
of multiview geometry problems. In particular, it is true
for all the examples given in Section 2. First, we need the
following classical theorem ([20]):

Theorem 3.5 Caratheodory. Let M be a set of points in R
n

and let C = conv(M). Then t ∈ C if and only if t can be
expressed as a convex combination of n + 1 points in M .

We also need the following theorem from [19], which
establishes necessary and sufficient conditions for a global
optimum for min-max problems.



Theorem 3.6. Let ri(t) be pseudoconvex functions for i =
1, . . . ,m. Then, t∗ solves µ∗ = mint maxj rj(t) if and only
if there exists λi such that

m∑
j=1

λj∇rj(t∗) = 0
∑m

j=1 λj = 1, (8)

where λi ≥ 0 if ri(t∗) = µ∗ and λi = 0 if ri(t∗) < µ∗ for
i = 1, . . . , m.

These conditions can be interpreted as follows. Consider
the point t∗ and the gradients ∇ri(t∗) for which ri(t∗) =
maxj rj(t∗). The point t∗ is a global minimum if the origin
is a positive linear combination of these gradients. Geomet-
rically this means that in each direction there is at least one
residual that grows. In general these conditions only ensure
a local minimum, but when ri(t) are pseudoconvex, they
give the global minimum.

We are now ready to prove our main theorem.

Theorem 3.7. Let (t∗, µ∗) be the optimal solution of µ∗ =
mint∈Rn maxi∈I ri(t) for some set I . Then, if B ∼ I and
B is a basis of I then |B| ≤ n + 1.

Proof. There are λi ≥ 0, i = 1, . . . , |I| such that the condi-
tions of Theorem 3.6 are fulfilled. We assume that λik

> 0,
k = 1, ..., l where l > n + 1, otherwise we are done.

Let M be the set {∇ri1(t
∗), ...,∇ril

(t∗)}. Since
λi ≥ 0, conditions (8) imply that 0 ∈ convhull(M). By
Caratheodory’s theorem, 0 can be written as a convex com-
bination of n + 1 points from M . Hence there exist λ̃i such
that conditions (8) are fulfilled with λ̃i 
= 0 for at most n+1
of λ̃i. Next, letting B = { i ; λ̃i > 0 } it is easy to see that
the conditions of Theorem 3.6 are fulfilled and thus B ∼ I .

��
Note that the combinatorial dimension is independent of

the cardinality of the constraint set H .

3.3. A Reformulation
According to Theorem 3.7, it is enough to consider basis

sets. We get the following equivalent reformulation of (3)
in the sense that the formulations have the same optimum.

max
I⊆H

|I|

s.t. d(T ∗
B(xi), yi) ≤ α ∀i ∈ I (9)

B is a basis for I.

This leads to the following algorithm.

Algorithm 3.8. For each basis B:

- Determine the transformation T ∗
B by solving

arg mint∈Rn maxi∈B ri(t).

- Determine the number of inliers for this transformation
by evaluating d(T ∗

B(xi), yi) ≤ α for all i ∈ H .

Assume that the number of residuals is m. Since the size
of the basis sets are bounded by n + 1 we know that it is
enough to test every possible subset of n + 1 residuals. The
number of such sets is O(mn+1). Since step 1 is O(f(n))
for some function f(n) and step 2 is O(m) the above search
scheme is polynomial in the problem size m. Although the
result is encouraging, the running time is still too large to be
practical in many cases. Consider for instance the camera
pose problem with outliers. Here the transformation (the
camera matrix) has 11 degrees of freedom and therefore we
obtain an algorithm that is O(m13).

A more practical way to capitalize on this knowledge is
to use basis sets in RANSAC. The standard approach is to
apply minimal sets, but as the following example shows,
there may be no minimal set that finds the global opti-
mum. Consider the problem of fitting two point sets with
known correspondences using a similarity transformation
(Figure 2). In the upper left figure, the two point sets
(red and blue) and their correspondences are shown. If we
choose α to be 0.05 it is possible to find two solutions with 3
inliers using a minimal solver. The two initial solutions are
shown in the upper right and lower left figures, respectively.
In both cases the 4 points to the left are selected as outliers.
However, the optimal solution has the 4 points to the left as
inliers, as shown in the bottom right figure. Hence when us-
ing minimal solvers there are cases where it is not possible
to find a starting point that can be improved into the global
maximum.
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Figure 2. An example where standard RANSAC will fail.

Since the combinatorial dimension of this problem is 5,
we know that by selecting 5 points instead of 2 and solving
the min-max problem it is always possible to find the cor-
rect transformation, in this case it suffices to pick 3 points
however. The price we pay for this improvement is that the
probability of picking only inliers decreases when we select
larger sets. Also the solvers for overdetermined systems are
in general slower than minimal solvers.



4. Algorithms
As mentioned in the previous section the optimal solu-

tion to (1) can be found by performing an exhaustive search
over all possible basis sets. Since this is seldom computa-
tionally feasible, we consider a dual approach to the prob-
lem. Rather than trying to solve a difficult general problem
globally, we start with a local optimum and try to verify that
it is in fact global.

We return to the much used RANSAC approach. Its wide
use in a variety of applications tells us that the method is
often effective in finding a good solution. The big draw-
back is that we never get any guarantee of global optimality.
Thus we suggest using a RANSAC-type algorithm to gen-
erate a candidate solution, and then a second step to verify
the global optimality of this solution or to find a better can-
didate solution. Another advantage is that in cases where
no satisfactory candidate solution is obtained, we can prove
that this must be the case, that is, we get a hard upper bound
on the number of inliers for any solution.

4.1. Finding Local Maxima

We use the standard RANSAC algorithm to generate a
first candidate solution I consistent with some transforma-
tion T . Then we try adding more correspondences from
H \ I to this set. When no more correspondences can be
added without violating consistency, we say that we have
reached a local maximum. In order to verify that a solution
set I is indeed a local maximum, one needs to perform one
feasibility test of the set B ∪ {i} for each i ∈ H \ I where
B is a basis of I .

In most cases, we can use minimal subsets in the
RANSAC algorithm, or any local algorithm, to generate the
first candidate solution. For hard problems, it might be ad-
vantageous to use subset size equal to the combinatorial di-
mension as described in Section 3.3.

4.2. Finding Global Maxima

After termination of the local maximum search, we will
be in one of the following situations.

- The globally optimal solution has been found and it
has a high rate of inliers.

- There is no candidate solution with a satisfactorily
high rate of inliers.

- The global optimum has a high rate of inliers but it has
not been found yet.

In the next section we will describe an algorithm to ver-
ify that the solution we have found is in fact the global op-
timum, if this is true, and show how the same algorithm can
be used in the case where no satisfactory candidate solution
has been found.

4.2.1 Optimality Verification

Starting from our set of hypothetical correspondences, H ,
assume that we have found a local maximum, i.e., a set
Il ⊂ H consistent (within a given tolerance α) with a trans-
formation Tl. Since it is a local maximum, no more corre-
spondences can be added to Il. We wish to prove that Il is
optimal in the sense of (1) or find a better candidate set. To
verify that we have found the global optimum, we need to
reject the hypothesis that there exists a set I∗ 
= Il consis-
tent with some transformation T ∗ such that |I∗| > |Il|.

We call a correspondence i /∈ Il that can not be added to
Il without picking a larger α a l-outlier. We first make the
(trivial) observation that I∗ would have to contain at least
one l-outlier. Our strategy to prove optimality of Il is to
show, for each l-outlier, that it cannot lie in I∗.

Algorithm 4.9. Discarding one l-outlier from I∗.

- Pick an l-outlier i. Divide the set H \ {i} into disjoint
sets Hk of n or more elements each (where n + 1 is
the combinatorial dimension of the problem).

- For each set Hk ∪ {i}, perform a feasibility test with
tolerance α. If the test fails then we say that i is
inconsistent with Hk.

- If the total number of sets that are inconsistent with i
is larger than the number of l-outliers we can remove
i completely from the problem and continue our itera-
tion with one outlier less (i.e., set H := H \ {i}).

The last step can be motivated as follows. If a set Hk is
not consistent with i, then i ∈ I∗ implies that at least one
correspondence from Hk is not in I∗. Thus, if |H \ Il| + 1
of the sets Hk are inconsistent with i then i ∈ I∗ implies
|I∗| < |Il|. Hence we can conclude that i /∈ I∗.

It is easy to calculate the maximum rate of outliers that
we can handle with the algorithm described above. We get
|H|−1

n sets Hk in Algorithm 4.9, so we can verify Il with at

most |H|−1
n −1 outliers. If H is large the rate of outliers we

can handle is approximately 1
n .

Naturally we would like to improve this performance
without having to do an exhaustive search. This can be done
by choosing non disjoint sets. In this way it is possible to
generate more test sets. As the number of outliers grows the
problem becomes more difficult until eventually it requires
testing all sets of size n + 1, resulting in exhaustive basis
search.

A rather general method is the following modification of
the approach in Algorithm 4.9. Divide H into disjoint sets
Hk of size n + d (instead of n). For each such set form
all subsets of size n, denoted Hk,j . Now we check which
of the sets Hk,j that are consistent with i. The results tell
us something about how many elements of Hk must be ∗-
outliers provided that i ∈ I∗.



- If no subsets of Hk are consistent with i at least d + 1
elements of Hk must be ∗-outliers provided i ∈ I∗.

- If less than
(
n+f

f

)
of the sets are consistent at least

d+1-f of the elements of Hk must be ∗-outliers
provided i ∈ I∗.

- If all subsets of Hk are consistent with i we get no
information.

It should be added that the (smallest) subset size does not
have to equal the combinatorial dimension. Sometimes it is
preferable to choose a larger number to increase the chance
of inconsistency.

Remark. It is not necessary to have a candidate solution to
start off with. The same algorithm can still be applied to
prove a statement of the type |I∗| < γ|H| for some 0 <
γ < 1. In this case we pick points one by one and show that
they cannot be part of any I with |I| ≥ γ|H|.

4.2.2 Finding a better transformation

As already commented there is a risk that the RANSAC-
type algorithm used to seek local maxima does not find the
globally optimal transformation. In this case the verifica-
tion will fail to discard all outliers, but it will still give us
valuable information. For each outlier that could not be dis-
carded, we will get a number of sets that are not consistent
with this outlier and a number of sets that are. This inspires
a reverse variant of the verification algorithm.

Algorithm 4.10. Pick an l-outlier that could not be dis-
carded and a set of points that were consistent with this
outlier. Use all these points to calculate a new candidate
solution. Iterate.

5. Experiments

We have tested our approach on a number of different
computer vision problems. In all cases, [15] was used to ex-
tract SIFT descriptors from the images and to compute the
hypothetical correspondence set H . Then RANSAC was
applied to generate candidate solutions. If possible these
were verified as global maxima using Algorithm 4.9, but
in many cases, the initial solution first had to be improved
using either local search (Section 4.1) or Algorithm 4.10.
Our implementation was done in Matlab using SeDuMi for
feasibility tests.

For each of the experiments, our results are compared
to the performance of a standard RANSAC procedure. In
the few cases where possible (within reasonable time) we
also compare with the algorithm given in [14]. When this
is not possible we give a worst case bound on the number
of bases from [17]. The results are summarized in Table 1.
The tolerance α was set to two pixels.

Homography. Given image correspondences of 3D
points lying in a plane, there is a homography between the
two image planes mapping corresponding points to each
other. Other correspondences can be regarded as outliers.

We tested our algorithm on two stereo image pairs with
different outlier rates (see Table 1). Figure 3 shows the com-
puted inliers (green) and outliers (red) for the first stereo
pair. In this case the number of inliers are 432 and the num-
ber of outliers are 81. The solution was verified to be opti-
mal (see Table 1).

Figure 3. The homography estimation problem with outliers. In-
liers (green points) and outliers (red points).

3D Pose. In this experiment we try to determine the cam-
era pose of a 3D object from image data (see Figure 4).
We used images from the publicly available database in-
troduced in [13]. The model, plotted in the left of Fig-
ure 4), was created from two stereo images of the front of
the Teddy bear. Using SIFT correspondences we then esti-
mated the pose in 10 test images where the Teddy is partly
visible. In all cases we where able to verify optimality of
our local solution (see Table 1).

2D Pose. In this experiment we took 6 images of books
on a table, and tried to find the optimal similarity transfor-
mation between a pair of images. In one case we matched a
model image with only one book to a more complex image
with the same book appearing several times. We also tried
matching the more complex images to each other. Interest-
ingly, we were able to verify the optimal solution in cases
where another strong solution existed, and in cases where
no strong solution existed, we were able to prove this (see
Figure 5 and Table 1).

Triangulation. We also tested our method on a triangu-
lation example. We took 25 images of a painted vase and
matched SIFT features from different views. The camera
positions were estimated using markers. Then we tried to
verify the solutions obtained by performing RANSAC on
the correspondence data. There were 269 points that had
been matched to at least seven images. Of these, we suc-
cessfully verified 190 solutions to be optimal that had at
least 50% inliers. In the remaining 79 cases we could verify
that there was no solution with 50% inliers or more.
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Figure 4. The 3D pose problem. Left: The model obtained from two images. Middle: Correspondences between the test image and one of
the stereo images (green - outliers, red - inliers). Right: The model points projected onto the test image under the optimal projection.

Figure 5. Images of books used for estimating similarity transformations. Green points are inliers of the globally optimal transformation
and red rings are outliers. The middle images show that we can verify the optimal transformation despite the presence of another strong
transformation, and to the right we have an example of a case where we can verify that there is no transformation with at least 50 % inliers.
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Figure 6. The triangulation problem. Two images (out of 25) with points used for calculating the reconstruction to the right. Green points
(inliers) are used for the triangulation while red points are detected as outliers because of miss matchings.

6. Conclusions
In contrast to most previous work dealing with outliers,

we have presented a framework for estimating globally op-
timal solutions. For a large number of applications, we have
shown both theoretically and experimentally that this is in-
deed a tractable problem. In all experiments we have been
able to either produce the optimal solution or prove that
there is no solution with more than 50% inliers.

Another conclusion of this paper is that RANSAC works
rather well. We have given both theoretical evidence and
practical experiments which show that it is a sound method.
The framework presented in this paper can also be used for
benchmarking other local methods dealing with outliers.
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