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ABSTRACT

We give a polynomial time classical algorithm for sampling from

the output distribution of a noisy random quantum circuit in the

regime of anti-concentration to within inverse polynomial total

variation distance. The algorithm is based on a quantum analog

of noise induced low degree approximations of Boolean functions,

which takes the form of the truncation of a Feynman path integral

in the Pauli basis.

CCS CONCEPTS

• Theory of computation → Quantum complexity theory;

Quantum information theory.
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1 INTRODUCTION

Quantum random circuit sampling (RCS) is a basic primitive at

the heart of recent “quantum supremacy” experiments [6, 31, 32].

The quantum circuits in question are typically de�ned over a �xed

architecture with gates chosen at random from some distribution

(Fig. 1); in this work we assume two qubit gates which are Haar

random1. There are three parameters associated with the circuit:

the number of qubits =, the circuit depth 3 , and the number of gates

< = Θ(=3). In the experiments a relatively small number of samples

1The requirement of Haar random 2-qubit gates can be relaxed; see De�nition 3 and
Remark 3.

STOC ’23, June 20–23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9913-5/23/06.
https://doi.org/10.1145/3564246.3585234

are collected from the experimental implementation of RCS (though

this number must necessarily scale exponentially in 3), followed by

a classical veri�cation of these samples, using a statistical measure

such as linear cross entropy (XEB), which requires classical post-

processing time that is much larger and scales exponentially in =.

Moreover in the experiments the depth 3 is su�ciently large that

the output distribution of the ideal random quantum circuit (Fig. 1

(a)) is anti-concentrated2, and indeed the output distribution tends

to the Porter-Thomas distribution.

Quantum supremacy is not only a milestone on the way to a

practical quantum computer, it is also a fundamental physics exper-

iment that tests quantum mechanics in the limit of high complexity

— it is “an experimental violation of the extended Church-Turing

thesis” [1, 8]. To demonstrate such a violation one must carry out a

quantum computation that cannot be simulated by a polynomial

time classical algorithm. This has been the main motivation for

showing the complexity-theoretic hardness of both ideal and noisy

random circuit sampling [2, 3, 10, 11, 13, 25–27] (see Section 1.2 for

a detailed discussion). However, recent work [17] cast doubt on the

conjecture of [3] that provided the hardness of noisy RCS based

on the XEB test. Yet, this work left unclear whether hardness of

the XEB test could be restored by formulating a new conjecture,

and whether e�cient classical algorithms exist for the other statis-

tical tests for RCS output distributions such as the Heavy Output

Generation (HOG) [2] and log XEB [9].

In this paper we study the classical complexity of RCS in the pres-

ence of a constant rate of noise per gate. Speci�cally we consider a

simple noise model shown in Fig. 1 (b) where a (arbitrarily small)

constant amount of depolarizing noise is applied to each qubit at

each time step, which is a theoretical model for the actual RCS

experiments. Our main result shows that sampling from the output

distribution of a noisy random circuit can be approximately simu-

lated by an e�cient classical algorithm within small total variation

distance.

2Anti-concentration is a property of random circuits which says that the output
distribution is su�ciently �at when circuit depth is large enough. It was proven that
anti-concentration holds for random circuits de�ned on 1D architecture [7, 14] as long
as circuit depth 3 = Ω (log=) , and it was conjectured that Ω (log=) depth su�ces for
anti-concentration for any reasonably connected architecture such as 2D lattice [14],
due to the fact that random circuits in 2D is expected to have faster mixing than 1D
(Remark 1).

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1: Random circuit sampling, each white box is an in-

dependent Haar random 2-qubit gate. (a) Ideal RCS generates

an output distribution ? (�) that satis�es anti-concentration
when 3 = Ω(log=). (b) Noisy RCS, where an arbitrarily small

constant amount of depolarizing noise is applied to each

qubit at each step, which generates a noisy output distribu-

tion ?̃ (�). Here the 1D architecture is for illustration; the

result applies to general architectures (De�nition 3).

Theorem 1 (Main result). Assuming anti-concentration, there

is a classical algorithm that, on input a random circuit� on any �xed

architecture, outputs a sample from a distribution that is Y-close to the

noisy output distribution ?̃ (�) in total variation distance with success
probability at least 1−X over the choice of� , in time poly(=, 1/Y, 1/X).

To put this in perspective, consider a RCS quantum supremacy

experiment that collects" samples. We claim that Theorem 1 im-

plies that there is a classical algorithm running in time bounded by

polynomial in" , that outputs" samples that are indistinguishable,

i.e. no statistical test can distinguish the output of the algorithm

from the output of the experiment with probability greater than

1/2+ `, for any constant ` > 0. This is because to achieve statistical

indistinguishability it su�ces to choose Y = `/" , which by the

main result above gives a running time poly(=,"/`). Thus the run-
ning time of our algorithm is at most a polynomial in the running

time of the experiment.

Corollary 1. Assuming anti-concentration, no statistical test

applied to" samples can distinguish between the output of a noisy

random circuit and the above classical algorithm with running time

poly(=,"). In particular, if" = poly(=), the classical algorithm runs

in poly(=) time.

We note that the implications of our result are complexity theo-

retic and do not directly address the soundness of �nite-size quan-

tum supremacy experiments.

Also note that anti-concentration is a central assumption for both

the RCS experiments and our algorithm, which is believed to hold

for general architectures above Ω(log=) depth [14]. At the same

time, the output distribution of noisy random circuits is 2−Θ(3 )

close to uniform in total variation distance [4, 15, 16]. This means

that any quantum supremacy experiment must collect" = 2Ω (3 )

samples. Thus 3 = Θ(log=) was recognized as the sweet spot for

scalable experimental demonstration of quantum computational

advantage [15], depth $ (log=) to guarantee polynomial number

of samples and Ω(log=) to guarantee anti-concentration. In this

regime both the sample complexity of the experiment and running

time of our classical algorithm scale polynomially in =.

Our approach builds upon the work of Gao and Duan in 2018 [16].

They developed the idea of performing a Fourier transform on quan-

tum circuits and an algorithm for simulating noisy random circuits

via a truncation in Fourier domain and calculating low-degree

Fourier coe�cients. They used the resulting algorithm to e�ciently

estimate local observables for random analogs of fault-tolerance

circuits, thus showing that structure is necessary for quantum fault-

tolerance. While not explicitly mentioned in [16], their approach in

fact produces a quasi-polynomial time algorithm for sampling from

the output distribution to within inverse polynomial total variation

distance3. This raises the challenge of giving a polynomial time

algorithm for the sampling problem.

We start by reformulating the Fourier transform de�ned by [16]

as Feynman path integral in the Pauli basis, and the simulation al-

gorithm as calculating those Feynman paths with lowest Hamming

weight. The Pauli basis framework was also used by [17] to give an

alternative argument for achieving a 2−$ (3 ) XEB (see Appendix A

of the online version [5] for a more formal treatment). The advan-

tage of using the Pauli basis for Feynman path integral is that most

low-Hamming-weight Feynman paths have 0 contribution to the

path integral. This view helps design an enumeration algorithm that

calculates the contributions of only non-trivial paths in polynomial

time. From the perspective of Fourier analysis, prior algorithms of

[12, 16] based on low-degree Fourier approximation mainly rely

on noise sensitivity and have running time =$ (log 1/Y ) where Y is
the desired approximation error which results in quasi-polynomial

running time for our purpose, but our algorithm has running time

2$ (log 1/Y ) = poly(1/Y) due to the additional property of Fourier

sparsity.

Our algorithm is not practical in its current form due to a large

exponent in the running time, and we leave as an interesting future

direction to develop practical implementations using our frame-

work. See Section 1.3 for discussions regarding �nite-size noisy

RCS experiments.

1.1 Description of Algorithm

Our main result suggests that random quantum circuits are “noise

sensitive” in the sense that any small constant amount of noise

makes the sampling problem classically simulable. Interestingly,

3This fact was unknown at the time, as it was believed that anti-concentration requires
large circuit depth. Recent developments [7, 14] suggest otherwise.
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the result has a natural analogywith the noise sensitivity of Boolean

functions which we review below.

Let ? : {0, 1}= → [0, 1] be a probability distribution viewed as a

Boolean function that is anti-concentrated, i.e.
∑
G∈{0,1}= ? (G)2 =

$ (1) · 2−= . Consider noise being applied to ? in the following way:

�rst sample G ∼ ? , then replace each bit in G by a random bit with

probability W . The resulting noisy distribution ?̃ has an exponential

decay in the Fourier domain,

?̃ (G) =
∑

B∈{0,1}=
(1 − W) |B | ?̂ (B) (−1)B ·G , (1)

where ?̂ (B) = 1
2=

∑
G∈{0,1}= ? (G) (−1)B ·G is the Fourier transform of

? and | · | denotes Hamming weight. The exponential decay allows

?̃ to have a low-degree approximation @(G) = ∑
B∈{0,1}= : |B | ≤ℓ (1 −

W) |B | ?̂ (B) (−1)B ·G . The approximation error can be bounded as fol-

lows:(∑
G

|?̃ (G) − @(G) |
)2
≤ 2=

∑
G

©«
∑

B : |B |>ℓ
(1 − W) |B | ?̂ (B) (−1)B ·Gª®¬

2

= 2=
∑
G

∑
B : |B |>ℓ

(1 − W)2 |B | ?̂ (B)2

≤ 22= (1 − W)2ℓ
∑
B

?̂ (B)2

= (1 − W)2ℓ2=
∑
G

? (G)2

= $ (1) · (1 − W)2ℓ .

(2)

Here, the �rst line is by Cauchy–Schwarz; the second line follows

from the orthogonality of the Fourier basis (
∑
G (−1)B ·G ·(−1)B

′ ·G
= 0

when B ≠ B′), which allows us to replace the square of the sum with

the sum-of-square. Finally, the last line uses anti-concentration.

Below we show that random quantum circuits have a similar noise

sensitive property where noise induces a low-degree approximation,

which provides the basis for our simulation algorithm.

Let d be an = qubit density matrix. We can write d =
∑
B∈P= UB ·B

where P= are the normalized =-qubit Pauli operators, and UB =

Tr(Bd) is real. We keep track of the coe�cients in the Pauli basis

after unitary evolution d ↦→ *d* †, which evolve according to the

rule Tr
(
B* d* †

)
=

∑
C ∈P= Tr

(
B* C* †

)
Tr(Cd). Comparing with the

transition rule ⟨G |* |k ⟩ = ∑
~ ⟨G |* |~⟩ ⟨~ |k ⟩ we can see that while

⟨G |* |~⟩ is the transition amplitude from |~⟩ to |G⟩, Tr
(
B* C* †

)
plays the role of transition amplitude from C to B .

Consider a quantum circuit � = *3*3−1 · · ·*1 where *8 is a

layer of 2-qubit gates and 3 is circuit depth. A Pauli path is a

sequence B = (B0, . . . , B3 ) ∈ P3+1= . The Feynman path integral in

the Pauli basis (in short, Pauli path integral) is written as sum of

product of transition amplitudes,

? (�, G) =
∑

B0,...,B3 ∈P=
Tr( |G⟩⟨G | B3 ) Tr

(
B3*3B3−1*

†
3

)
· · ·

Tr
(
B1*1B0*

†
1

)
Tr

(
B0

��0=〉〈0= ��) .
(3)

Note that LHS is the probability ? (�, G) = | ⟨G |� |0=⟩|2 instead of

amplitude. Denote the contribution of a Pauli path B = (B0, . . . , B3 ) ∈

P3+1= to the path integral as 5 (�, B, G), which gives

? (�, G) = ∑
B∈P3+1=

5 (�, B, G).
Our algorithm for simulating noisy random circuits is based on a

simple but powerful fact, used in [16, 24]. Consider the single-qubit

depolarizing noise with strength W , E(d) := (1 − W)d + W �
2 Tr(d).

This noise channel has a special property of being diagonalized by

Pauli operators as

E(� ) = � , E(%) = (1 − W)%,∀% ∈ {-,., / }. (4)

Therefore the contribution of a Pauli path of a noisy quantum

circuit subject to this noise, decays exponentially with theHamming

weight of the Pauli path:

?̃ (�, G) =
∑

B∈P3+1=

(1 − W) |B | 5 (�, B, G), (5)

where ?̃ (�, G) is the output probability of the noisy circuit and |B |
is the Hamming weight of B (the number of non-identity Pauli

in B). We would like to approximate the value ?̃ (�, G) by summing

only over the low-weight Pauli paths,

?̃ (�, G) ≈
∑

B∈P3+1= : |B | ≤ℓ
(1 − W) |B | 5 (�, B, G), (6)

and claim that the total variation distance achieved by the ap-

proximation is 2−Ω (ℓ ) on average. This is not immediate since the

5 (�, B, G) can be both positive and negative. We invoke two proper-

ties of random circuits: the �rst is orthogonality, which says that

on average over random circuits the product of the contributions

from two di�erent Pauli paths equals 0, i.e.

E
�
[5 (�, B, G) 5 (�, B′, G)] = 0 when B ≠ B′; (7)

the second is anti-concentration, which says that the sum of

squares of the output probability of a random circuit is small, i.e.

E
�

∑
G

? (�, G)2 = $ (1) · 2−= . (8)

Interestingly, the proof that this low-degree approximation has

small error follows a similar structure as Eq. (2), where orthogo-

nality allows us to upper bound the total variation distance by a

sum of squares quantity, which is then upper bounded using anti-

concentration (see Eq. (33)). Here the main di�erence is that the

low-degree approximation of Eq. (2) holds for individual Boolean

functions, while randomness is fundamental in our argument (note

that both orthogonality and anti-concentration properties have an

averaging over random circuits). An interesting open question is

to study for which speci�c quantum circuits does the low-degree

approximation of Eq. (6) hold.

The next step is to develop an algorithm to calculate the RHS of

Eq. (6). Note that a straightforward sum over all paths up to weight

ℓ gives a running time of $ (=3)$ (ℓ ) leading to a quasi-polynomial

time algorithm as in [16]. Here we develop a counting argument

and e�cient enumeration method for all Pauli paths of weight at

most ℓ which takes only 2$ (ℓ ) time. The idea is sparsity of the

low-weight paths, meaning that for most Pauli paths in P3+1= , its

contribution 5 (�, B, G) is 0; therefore we design a combinatorial

algorithm that only enumerates those paths that have non-zero

contributions. Finally, the sampling algorithm follows from a gen-

eral sampling-to-computing reduction of [12].

947



STOC ’23, June 20–23, 2023, Orlando, FL, USA Dorit Aharonov, Xun Gao, Zeph Landau, Yunchao Liu, and Umesh Vazirani

At a high level, the hardness assumptions in [2, 3] may be in-

tuitively viewed as asserting that Feynman path integral in the

computational basis is essentially the best classical algorithm for

RCS, and achieving non-trivial correlation requires following ex-

ponentially many paths. Instead, the Pauli path integral approach

has the virtue that low weight paths have the most signi�cant

contribution.

1.2 Prior Work Regarding the Computational
Complexity of RCS

To put the above results in context, let us recall the background

regarding complexity theoretic evidence that classical computers

cannot e�ciently sample from the output of a random quantum

circuit (this section focuses on asymptotic hardness; see next section

for discussions regarding �nite-size experiments). There are two

main genres of results along those lines, which we review below

(see [19] for a more comprehensive survey).

The �rst is in the form of a worst-case to average-case reduction,

showing that if an e�cient classical algorithm can sample from

the output distribution of ideal RCS within small total variation

distance, then the Polynomial Hierarchy collapses [10, 11, 25–27].

The eventual goal of this program was to show classical hardness

for sampling within constant total variation distance, which would

require showing average-case hardness of computing the output

probability of ideal RCS within additive error $ (2−=). While the

earliest average-case hardness results could only tolerate very small

additive error, it was hoped that over time the reductions could be

made more robust. This has indeed been the case, with an improve-

ment from a large polynomial in the exponent [11] to 2−$ (<) [26],
but this line of work has hit an obstacle that may prove di�cult to

overcome (see e.g. [10, Section 3] and [15, Section II A]). Moreover,

these results do not address the actual RCS experiments which are

highly noisy. Note that the related work of [13] argued that the

hardness of approximate sampling for noisy RCS can be reduced

to ideal RCS, but the argument required a local noise model that

decreases as $̃ (1/=), which is not scalable.

The second genre is based on complexity theoretic assumptions

about the di�culty of distinguishing heavy and light outputs of

the random circuit [2, 3]. These assumptions essentially say that

even a tiny correlation (order 2−=) with the output distribution of

ideal RCS is hard to achieve classically. While these assumptions

are quite strong, they have the virtue of yielding robust bounds.

Indeed a speci�c conjecture in this genre called XQUATH [3] has

provided robust complexity theoretic foundation of the linear cross

entropy benchmark (XEB) used in recent experiments [6, 31, 32].

This provided a way to heuristically argue that even the very small

XEB achieved in actual 50-70 qubit experiments was a classically

di�cult computational task. However, the strong parameters in

the assumption (correlation of order 2−=) was called into question

by the result of [17], although it remained unclear if the hardness

of the XEB test can be restored by changing the parameters in

XQUATH. In addition, it was unclear whether the hardness of the

other statistical tests such as HOG or log XEB was impacted. Our

results address these questions by showing that no statistical tests,

like the XEB, HOG and log XEB, can distinguish between noisy

RCS and our classical algorithm.

1.3 Concluding Remarks: What Our Results Do
Not Address

We importantly note several points left unaddressed by our results.

• Practical speed-ups. We note that our results do not ad-

dress RCS based quantum supremacy in its non-asymptotic,

practical form. In particular, much progress has been made in

developing practical spoo�ng algorithms for achieving a sim-

ilar numerical value as the XEB in current 53-60 qubit RCS

experiments. Practical tensor network algorithms [18, 21–

23, 29, 30] can achieve this goal using hundreds of GPUs in

a few hours, but these algorithms have exponential scaling

and become impractical if the system size increases by a few

qubits. A numerical implementation of the algorithm in [17]

achieved roughly 10% of Google’s XEB using 1 GPU in 1

second, though it remains unclear whether this algorithm

can achieve Google’s XEB (using much less than hundreds

of GPUs). Our algorithm is not practical in its current form,

as there is a large constant (of order 1/W where W is the error

per gate) in the degree of the polynomial of the running

time. An interesting future direction is to develop practical

implementations using our framework and ideas from [17]

that achieves similar XEB as in the experiments [6, 31, 32]

using a small amount of resource.

• Sublogarithmic depth. Our algorithm assumes

anti-concentration and therefore works for random circuits

with depth at least Ω(log=).4 The issue with sub-logarithmic

depth random circuits (with Haar random 2-qubit gates) is

that there is no evidence for hardness of sampling even for

ideal RCS, as all existing results for average-case hardness

(the �rst genre discussed above) are only relevant for sam-

pling when anti-concentration holds. In addition, [28] gives

evidence that 2D ideal RCS can be e�ciently simulated when

depth is smaller than some �xed constant. The complexity of

ideal and noisy RCS remains unclear at depth between con-

stant and > (log=). Separately, existing quantum supremacy

experiments rely on the assumption that the ideal circuit

is close to Porter-Thomas for benchmarking; closeness to

Porter-Thomas is even stronger than anti-concentration.

Notwithstanding the above discussion, it remains possible

that a di�erent approach based on RCS of sublogarithmic

depth circuits, which does not rely on anti-concentration,

could lead to a scalable experimental violation of the ex-

tended Church-Turing thesis.

• Less random gate sets. Besides anti-concentration, our

algorithm also requires randomness in the gate set. The

simplest distribution over the gate set to think of is that of

Haar random 2-qubit gates. However, the gate sets used in

actual experiments [6, 31, 32] are not Haar random 2-qubit

gates, but gates with more limited randomness. While we

do not know if our results hold for the exact gate sets used

in those recent experiments, we show in Section 4 that our

algorithm works for a gate set which is closely related to

the gate sets used in those experiments; more generally, the

4It was shown [14, 15] that anti-concentration requires at least Ω (log=) depth for
random circuits with Haar random 2-qubit gates.
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required condition for our results is in fact much weaker

than Haar random 2-qubit gates (see De�nition 3).

Overview of remainder of paper. In Section 2 we give formal

de�nitions of the Pauli path integral and derive useful properties of

this framework. In Section 3 we give the proof of our main result,

and discuss Google and USTC’s gate set in Section 4. Appendix

A of the online version [5] contains a formal proof for refuting

XQUATH using the Pauli basis framework. As an application of the

Pauli basis framework, we provide simple proofs for existing results

about random circuits, including a lower bound on the depth for

anti-concentration previously shown by [14] (Corollary 2), and an

improved lower bound on the convergence to uniform for noisy

random circuits previously shown by [15] (see Appendix B of the

online version [5]).

2 THE PAULI BASIS FRAMEWORK

We �rst give formal de�nitions of the Pauli path integral discussed

in Section 1.1 and then derive useful properties of this framework.

Let � = *3*3−1 · · ·*1 be a quantum circuit acting on = qubits,

where *8 is a layer of 2-qubit gates and 3 is circuit depth. The

Feynman path integral in the computational basis is written as〈
0=

��� ��0=〉 = ∑
G1,...,G3−1∈{0,1}=

〈
0=

��*3 ��G3−1〉 ⟨G3−1 |*3−1 |G3−2⟩
· · ·

〈
G1

��*1

��0=〉 .
(9)

The main di�erence when switching to the Pauli basis is that

instead of thinking about a quantum circuit as applying unitary

matrices to vectors, we think of it as unitary channels applied to den-

sity matrices, C = U3U3−1 · · · U1 where each U8 (·) := *8 (·)* †8
is a unitary channel. Similar to decomposing a pure state vector

into a superposition of computational basis states, we consider the

normalized Pauli operators

P= :=
{
�/
√
2, -/
√
2, ./
√
2, //
√
2
}⊗=

(10)

as an operator basis and decompose a density matrix into a linear

combination of Pauli operators (Table 1). In Table 1 we present the

operator basis as a direct analogy of vector basis by switching to

the operator ket notation (Table 1 (c)).

Definition 1 (Pauli path integral). Let� = *3*3−1 · · ·*1 be

a quantum circuit acting on = qubits, where*8 is a layer of 2-qubit

gates and 3 is circuit depth, and let ? (�, G) := | ⟨G |� |0=⟩|2 be the

output probability distribution. The Pauli path integral is written as

? (�, G) =
∑

B0,...,B3 ∈P=
Tr( |G⟩⟨G | B3 ) Tr

(
B3*3B3−1*

†
3

)

· · ·Tr
(
B1*1B0*

†
1

)
Tr

(
B0

��0=〉〈0= ��)
=

∑
B0,...,B3 ∈P=

⟨⟨G |B3 ⟩⟩⟨⟨B3 |U3 |B3−1⟩⟩ · · · ⟨⟨B1 |U1 |B0⟩⟩⟨⟨B0 |0=⟩⟩.

(11)

Here each term on RHS corresponds to a Pauli path B = (B0, . . . , B3 ) ∈
P3+1= . We also de�ne the Fourier coe�cient of a quantum circuit �

with output G and Pauli path B as

5 (�, B, G) := ⟨⟨G |B3 ⟩⟩⟨⟨B3 |U3 |B3−1⟩⟩ · · · ⟨⟨B1 |U1 |B0⟩⟩⟨⟨B0 |0=⟩⟩ (12)

Algorithm 1 Simulating noisy random circuits by low-degree

Fourier approximation

Input: quantum circuit � , truncation parameter ℓ , G ∈ {0, 1}=
Output: an approximation of ?̃ (�, G)
1: @ ← 0

2: for all legal Pauli path B with |B | ≤ ℓ do

3: calculate 5 (�, B, G)
4: @ ← @ + (1 − W) |B | 5 (�, B, G)
5: end for

6: Return @

and the output probability is written as

? (�, G) =
∑

B∈P3+1=

5 (�, B, G). (13)

Eq. (11) follows from repeatedly applying the rules shown in

Table 1. The above de�nition can also be extended to noisy quan-

tum circuits. Let E(d) := (1 − W)d + W �
2 Tr(d) be the single-qubit

depolarizing noise with strength W . It has the property that E(� ) = �

and E(%) = (1 − W)% when % ∈ {-,., / }.
Definition 2 (Pauli path integral for noisy qantum cir-

cuits). For a quantum circuit � = *3*3−1 · · ·*1, let �̃ be a noisy

quantum circuit where each qubit in � is subject to W depolarizing

noise in each layer (Fig. 1 (b)). Let

?̃ (�, G) := ⟨⟨G |E⊗=U3E⊗= · · · U1E⊗= |0=⟩⟩ (14)

be the output probability distribution of the noisy circuit �̃ . The Pauli

path integral for �̃ is de�ned as

?̃ (�, G) =
∑

B∈P3+1=

5̃ (�, B, G) (15)

where
5̃ (�, B, G) :=⟨⟨G |E⊗= |B3 ⟩⟩⟨⟨B3 |U3E⊗= |B3−1⟩⟩

· · · ⟨⟨B1 |U1E⊗= |B0⟩⟩⟨⟨B0 |0=⟩⟩.
(16)

Let |B | be the Hamming weight of B (the number of non-identity

Pauli in B). The de�nition of depolarizing noise implies that

5̃ (�, B, G) = (1 − W) |B | 5 (�, B, G) . (17)

Our algorithm described in Section 1.1 is summarized in Al-

gorithm 1 (“legal” Pauli path is de�ned in De�nition 6). Next we

develop properties of the Pauli basis that are useful later.

First, note that the Fourier coe�cients 5 (�, B, G) can be further

decomposed into products of transition amplitudes of 2-qubit gates

⟨⟨@ |U|?⟩⟩ = Tr
(
@*?* †

)
where* ∈ U(4), ?, @ ∈ P2, so any Fourier

coe�cient can be computed in time$ (=3). The Fourier coe�cients

satisfy 5 (�, B, G) ∈ R and |5 (�, B, G) | ≤ 1
2= . This is because for any

G ∈ {0, 1}= and B ∈ P= we have

⟨⟨G |B⟩⟩ = Tr( |G⟩⟨G | B) ∈
{
0,− 1
√
2=

,
1
√
2=

}
. (18)

In addition, the output G only a�ects the sign of the Fourier coe�-

cient, as

5 (�, B, G)2 = 5 (�, B, 0=)2, ∀G ∈ {0, 1}= . (19)
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Table 1: The Feynman path integral can be viewed as decomposing the state into basis states at each step of time evolution. (a)

The standard decomposition with computational basis states. (b) Decomposition using the Pauli operator basis, where states

are represented as density matrices and time evolution is represented as unitary channels. (c) The same decomposition using

the Pauli operator basis, presented with operator ket notation.

(a) Vector basis (b) Operator basis (c) Operator basis

State |k ⟩ =
∑

G∈{0,1}=
⟨G |k ⟩ |G⟩ d =

∑
B∈P=

Tr(Bd)B |d⟩⟩ =
∑
B∈P=
⟨⟨B |d⟩⟩|B⟩⟩

Evolution |k ⟩ ↦→ * |k ⟩ d ↦→ *d* † |d⟩⟩ ↦→ U|d⟩⟩
Path integral ⟨G |* |k ⟩ = ∑

~ ⟨G |* |~⟩ ⟨~ |k ⟩ Tr
(
B* d* †

)
=

∑
C Tr

(
B* C* †

)
Tr(Cd) ⟨⟨B |U|d⟩⟩ = ∑

C ⟨⟨B |U|C⟩⟩⟨⟨C |d⟩⟩

The rest of the properties we develop in this section crucially

rely on the randomness of the gate set. We �rst recall the properties

of Haar random 2-qubit gates.

Lemma 1 (Properties of Haar random 2-qbit gates [20]).

Let* ∈ U(4) be a Haar random 2-qubit gate, and ?, @, A, B ∈ P2. Then

E
*∼U(4)

⟨⟨? |U|@⟩⟩⟨⟨A |U|B⟩⟩ = 0 if ? ≠ A or @ ≠ B . (20)

We also have

E
*∼U(4)

⟨⟨? |U|@⟩⟩2 =




1, ? = @ = �⊗2/2,
0, ? = �⊗2/2, @ ≠ �⊗2/2,
0, ? ≠ �⊗2/2, @ = �⊗2/2,
1
15 , else.

(21)

Eq. (20) is a key property which we refer to as gate-set orthog-

onality. It says that if we consider the Pauli basis decomposition

and average over two copies of a random unitary, then the random-

ness forces the input and output Paulis to be the same across the

two copies. Next we show that this property does not require full

randomness over U(4); randomness over Pauli operators already

su�ces.

Lemma 2 (Gate-set orthogonality). LetD be any distribution

over U(4) that is invariant under right-multiplication of random

Pauli, i.e. for any measurable function � ,

E
*∼D

[� (* )] = E
*∼D

E
+∼{� ,-,.,/ }2

[� (*+ )] . (22)

Then for any %,& ∈ {� , -,. , / }2 such that % ≠ & , we have

E
*∼D

[
*%* † ⊗ *&* †

]
= 0. (23)

Proof. Due to invariance under right-multiplication of random

Pauli and linearity, it su�ces to prove that

E
+∼{� ,-,.,/ }2

[
+%+ † ⊗ +&+ †

]
= 0 if % ≠ &. (24)

Let ⟨%,&⟩ := 1[%,& anticommute]. Then

E
+∼{� ,-,.,/ }2

[
+%+ † ⊗ +&+ †

]

=
1

16

∑
+ ∈{� ,-,.,/ }2

+%+ † ⊗ +&+ †

=
1

16

∑
+ ∈{� ,-,.,/ }2

(−1) ⟨+ ,% ⟩+⟨+ ,& ⟩% ⊗ &

=
1

16

∑
+ ∈{� ,-,.,/ }2

(−1) ⟨+ ,%& ⟩% ⊗ &

= 0,

(25)

where the last line follows from the fact that %& is not identity, and

therefore commutes with half Paulis and anticommutes with the

other half. □

Our main result holds for any gate set and architecture that

satis�es gate-set orthogonality and anti-concentration. We discuss

these two properties separately and start with orthogonality.

Definition 3 (Gate set and architecture of random cir-

cuits). We consider random quantum circuits de�ned over a �xed

architecture described as follows. In each layer, each qubit experi-

ences a 2-qubit gate (so the number of qubits = is even, and there

are =/2 2-qubit gates per layer). The 2-qubit gates can be applied to

any pair of qubits, without geometric locality. Each 2-qubit gate is

independently drawn from some distribution that is invariant under

right-multiplication of random Pauli. The �nal layer is drawn from a

distribution that is invariant under both left- and right-multiplication

of random Pauli.

Note that the requirement that each qubit experiences a 2-qubit

gate in each layer is for convenience; more general architectures

can be handled by a suitable rede�nition of circuit depth (this was

also noted in [15]).

Examples of gate sets that satisfy De�nition 3 include Haar

random 2-qubit gates as well as a �xed 2-qubit gate surrounded by

Haar random single qubit gates. A �xed 2-qubit gate surrounded by

random Pauli gates also satis�es De�nition 3 but may violate anti-

concentration (see Remark 2). Any ensemble of random circuits

that satis�es De�nition 3 has the following crucial property that

we frequently use.

Lemma 3 (Orthogonality of Fourier coefficients). Let �

be a random circuit drawn from some distribution D that satis�es
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De�nition 3. Then for any Pauli paths B ≠ B′ ∈ P3+1= and for any

G ∈ {0, 1}= we have

E
�∼D

[
5 (�, B, G) 5 (�, B′, G)

]
= 0. (26)

Proof. As B ≠ B′, there exists a 2-qubit gate* that contributes

transition amplitude ⟨⟨@1 |U|?1⟩⟩ to 5 (�, B, G) and contributes

⟨⟨@2 |U|?2⟩⟩ to 5 (�, B′, G), such that ?1 ≠ ?2 ∈ P2. Lemma 2 implies

that

E
*
[⟨⟨@1 |U|?1⟩⟩⟨⟨@2 |U|?2⟩⟩] = 0. (27)

Due to the independence between di�erent gates, we can separately

calculate the expectation over each gate in Eq. (26). Therefore the

above equation implies that the overall expectation in Eq. (26) equals

0. One special case is that the di�erence between B and B′ happens
at the last step B3 . For this case we use the left-invariance under

random Pauli of the �nal layer of gates. □

Next we discuss anti-concentration, which is formally de�ned

as follows.

Definition 4 (Anti-concentration). A distribution over quan-

tum circuits D satis�es anti-concentration if

E
�∼D

2=
∑

G∈{0,1}=
? (�, G)2 = $ (1) . (28)

Remark 1. The following is known about anti-concentration:

• [7, 14] showed that anti-concentration is satis�ed for 1D ran-

dom circuits with Haar random 2-qubit gates as long as circuit

depth is above some constant times log=.

• [14] also showed that Θ(= log=) 2-qubit gates are necessary
and su�cient for anti-concentration for a stochastic all-to-all

connected architecture with Haar random 2-qubit gates.

• [14, 15] showed that at least Ω(log=) depth is necessary for

anti-concentration, for any architecture with Haar random

2-qubit gates. We also give a simple proof of this fact using the

Pauli basis framework in Corollary 2.

• [14] remarked that, as anti-concentration is proven for two

architectures which are two opposite extremes of geometric lo-

cality, they conjecture Θ(= log=) size (which is Θ(log=) depth
in our case) to be necessary and su�cient for anti-concentration

for any reasonably well-connected architecture.

Remark 2. The results discussed in Remark 1 only concern Haar

random 2-qubit gates. We expect the same results to hold for a �xed

2-qubit gate surrounded by Haar random single qubit gates. It is worth

mentioning that while a �xed 2-qubit gate surrounded by random

Pauli gates satis�es De�nition 3, we do not expect it to satisfy anti-

concentration, due to the fact that it does not generate the entire

Cli�ord group when, for example, the 2-qubit gate is a CNOT gate.

The reason for requiring anti-concentration for our results is be-

cause it is closely related to the Fourier weights of random circuits,

which is then related to the error of the simulation algorithm.

Definition 5 (Fourier weight). The Fourier weight of a ran-

dom circuit � at degree : is de�ned as

,: = 22= E
�

∑
B∈P3+1= : |B |=:

5 (�, B, 0=)2 . (29)

Here the 22= factor is a normalization factor that comes from

Eq. (18). A crucial property for our arguments is that

anti-concentration implies that the total Fourier weight is upper

bounded by a constant.

Lemma 4 (Total Fourier weight). Let D be a distribution over

quantum circuits that satis�es anti-concentration and De�nition 3.

The Fourier weights {,: } satisfy

(1) ,0 = 1,

(2) ,: = 0, ∀0 < : ≤ 3 ,

(3)
∑
:≥3+1,: = $ (1).

Proof. ,0 = 1 corresponds to the unique all-identity path. Let

B be a Pauli path of Hamming weight : = |B | ∈ (0, 3]. Then there

exists a 2-qubit gate * that contributes a transition amplitude

⟨⟨@ |U|?⟩⟩ to 5 (�, B, 0=), where either ? is identity and @ is non-

identity, or vice versa. In either case we have ⟨⟨@ |U|?⟩⟩ = 0. This

implies that,: = 0.

To bound the total weight, we start with anti-concentration.

$ (1) = E
�∼D

2=
∑

G∈{0,1}=
? (�, G)2

= E
�∼D

2=
∑

G∈{0,1}=

©
«

∑
B∈P3+1=

5 (�, B, G)ª®
¬
2

= E
�∼D

2=
∑

G∈{0,1}=

∑
B,B′∈P3+1=

5 (�, B, G) 5 (�, B′, G)

= E
�∼D

2=
∑

G∈{0,1}=

∑
B∈P3+1=

5 (�, B, G)2

= 22= E
�∼D

∑
B∈P3+1=

5 (�, B, 0=)2

= 22= E
�∼D

∑
:≥0

∑
B∈P3+1= : |B |=:

5 (�, B, 0=)2

= 1 +
∑

:≥3+1
,: .

(30)

Here, the �rst line follows from anti-concentration; the second line

follows from the Pauli path integral; the fourth line follows from

orthogonality (Lemma 3); the �fth line follows from Eq. (19). □

Finally we give a detailed clari�cation regarding the assumptions

we make about the architecture and gate set for our main result.

Remark 3. For our main result Theorem 1, we assume De�nition 3

and anti-concentration as de�ned in De�nition 4.

• If the gate set is Haar random 2-qubit gates, no further as-

sumption is needed.

• If not, then we further assume that the circuit depth is at

least Ω(log=). This is because our algorithm requires Ω(log=)
depth to be e�cient, and we cannot rule out the possibility that

there is an ensemble of random circuits below log depth that

satis�es both De�nition 3 and 4.
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3 SIMULATING NOISY RANDOM CIRCUIT
SAMPLING

Given a random circuit� and an output G , let ? (�, G) = | ⟨G |� |0=⟩|2
be the ideal output distribution and let ?̃ (�, G) be the output distri-
bution of the noisy circuit where � is subject to local depolarizing

noise of rate W . This section shows the following:

Theorem 2 (Restatement of Theorem 1). Let D be a distri-

bution over quantum circuits that satis�es anti-concentration and

De�nition 3 (also see Remark 3). There is a classical algorithm that,

on input � ∼ D, outputs a sample from a distribution that is Y-close

to ?̃ (�, G) in total variation distance with success probability at least

1 − X over the choice of � , in time poly(=, 1/Y, 1/X).

Our goal is to compute a function @̄(�, G) that achieves small !1
distance

Δ := ∥?̃ − @̄∥1 :=
∑

G∈{0,1}=
|?̃ (�, G) − @̄(�, G) | (31)

with high probability. Here {@̄(�, G)}G is not necessarily a distri-

bution, and @̄(�, G) is not necessarily positive (the bar notation

indicates that @̄ is a quasi-probability distribution). The main result

is derived in three steps:

(1) We use a general sampling-to-computing reduction shown

by [12] which says that given the ability to compute @̄(�, G)
as well as its marginals, we can sample from a distribution

that is $ (Δ)-close to ?̃ (�, G) with a polynomial overhead.

This is discussed in Section 3.3. It remains to develop an

e�cient algorithm to compute @̄(�, G) and its marginals.

(2) The algorithm is to approximate ?̃ (�, G) by summing its

low-degree Fourier coe�cients, de�ned as

@̄(�, G) :=
∑

B : |B | ≤ℓ
5̃ (�, B, G) =

∑
B : |B | ≤ℓ

(1 − W) |B | 5 (�, B, G), (32)

where ℓ is to be determined. In Section 3.1 we upper bound

the total variation distance Δ achieved by this approximation.

It shows that choosing ℓ = $ (log 1/Y) su�ces to achieve Y

total variation distance.

(3) It remains to bound the running time of the algorithm. In

Section 3.2 which is the main technical part, we show that

each @̄(�, G) can be computed in time 2$ (ℓ ) . This completes

the argument.

3.1 Bounds for the Total Variation Distance

We show that the expected total variation distance square is upper

bounded by an exponential decay of the Fourier weights.

E
�

[
Δ
2
]
≤ 2= E

�

∑
G∈{0,1}=

(?̃ (�, G) − @̄(�, G))2

= 2= E
�

∑
G∈{0,1}=

©«
∑

B : |B |>ℓ
(1 − W) |B | 5 (�, B, G)ª®¬

2

= 2= E
�

∑
G∈{0,1}=

∑
B : |B |>ℓ

(1 − W)2 |B | 5 (�, B, G)2

= 22= E
�

∑
B : |B |>ℓ

(1 − W)2 |B | 5 (�, B, 0=)2

=

∑
:>ℓ

(1 − W)2:,: .

(33)

Here, the �rst line follows from Cauchy–Schwarz; the second line

is by de�nition of @̄; the third line follows from orthogonality

(Lemma 3); the fourth line follows from Eq. (19); the �fth line is by

de�nition of Fourier weight.

A simple upper bound can be derived assuming anti-concentration

(item 3 from Lemma 4),

E
�

[
Δ
2
]
≤

∑
:>ℓ

(1 − W)2:,: ≤
∑
:>ℓ

(1 − W)2ℓ,: ≤ $ (1) · 4−2Wℓ . (34)

By choosing ℓ = $ (log 1/Y) (roughly ℓ ≈ 1
W · log 1/Y) we can guar-

antee that Δ ≤ Y with high probability.

3.2 Counting and Enumerating Legal Pauli
Paths

For a given truncation parameter ℓ , the running time of the algo-

rithm depends on the number of Pauli paths with Hamming weight

at most ℓ , as well as the e�ciency for �nding and enumerating

these paths. A simple argument for bounding the number of paths

is as follows. There are =(3 + 1) locations in the circuit to insert

Pauli paths. The total number of ways to insert ℓ non-identity Pauli

into the Pauli path is at most
(= (3+1)

ℓ

)
, and the choice of -,., / for

each non-identity gives a 3ℓ factor. Therefore the total number of

paths with Hamming weight at most ℓ is at most

ℓ ·
(
=(3 + 1)

ℓ

)
· 3ℓ ≤ (=3)$ (ℓ ) . (35)

In this section we show that this bound is a signi�cant overestimate

and can be improved to 2$ (ℓ ) . The key point here is that only the

“legal” paths matters, and therefore we design an algorithm that

only counts and enumerates legal paths.

Definition 6 (Legal Pauli path). For a given circuit architecture,

a Pauli path B = (B0, B1, . . . , B3 ) is legal if the following two conditions
are satis�ed:

(1) For all 2-qubit gates in the circuit, its input and output Paulis

are either both II, or both not II.

(2) B0 and B3 contains only I and Z.

The reason for considering legal Pauli paths is that the illegal

ones are irrelevant, as they contribute 0 to the Pauli path integral.

Lemma 5. Any illegal Pauli path B gives 5 (�, B, G) = 0 for any �

and G .
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Proof. Let B be an illegal Pauli path. Then there are two cases:

either the �rst or the second condition of De�nition 6 is violated.

If the second condition is violated, then 5 (�, B, G) = 0 because the

inner product between computational basis states with B0 or B3
equals 0, due to the fact that

⟨⟨G |B⟩⟩ = Tr( |G⟩⟨G | · B) = 0, ∀G ∈ {0, 1}=, B ∉ {�/
√
2, //
√
2}⊗= .

(36)

If the �rst condition is violated, then there is a 2-qubit gate *

whose input Pauli is II and the output is not II, or vice versa. Then

5 (�, B, G) = 0 because the transition amplitude contributed by *

equals 0 due to the fact that unitary channel is trace preserving, i.e.

⟨⟨? |U|@⟩⟩ = Tr
(
?*@* †

)
= 0 if ? = � ⊗ �/2, @ ≠ � ⊗ �/2,

or ? ≠ � ⊗ �/2, @ = � ⊗ �/2.
(37)

□

Next we develop arguments to count legal paths. The number of

legal Pauli paths up to a given Hamming weight is a combinatorial

property that only depends on the circuit architecture, independent

of the gate set.

We �rst give a simple example that counts the number of legal

paths with weight 3 + 1. Lemma 4 says that 3 + 1 is the smallest

non-zero Hamming weight with legal paths. The result below is

interesting by itself, as we will show later that this result gives a

simple lower bound on the depth for anti-concentration (Corol-

lary 2).

Lemma 6. The number of legal Pauli paths with Hamming weight

3 + 1 equals = · 23 · 33−1.

Proof. As the Pauli path B = (B0, B1, . . . , B3 ) hasHammingweight

3 + 1, it has to be the case that |B8 | = 1 for 8 = 0, . . . , 3 . We �rst

choose the location of the non-identity in the �rst layer B0, which

has = choices. Suppose this non-identity Pauli is at the input of

some 2-qubit gate* . Then the output of * can be either IR or RI

(We use R to represent a non-identity), which gives two choices.

Repeating this argument for each layer, we know that the number

of con�gurations of locations of non-identities is = · 23 . Finally, the
33−1 factor comes from the fact that the non-identity Pauli at the

�rst and last layer has to be / , while each of the other 3 − 1 layers
has three choices among -,., / . □

Next we show that anti-concentration implies the desired 2$ (ℓ )

upper bound for the number of legal paths. This bound is clearly

tight up to the constant in the exponent, as even the choice of

-,., / for a single path of weight ℓ gives a 3ℓ factor. The problem

with the result below is that it does not give an algorithm to �nd

and enumerate the legal paths. This is addressed later.

Lemma 7. Consider any circuit architecture which satis�es anti-

concentration with Haar random 2-qubit gates. For any ℓ ≥ 3 + 1, the
total number of legal Pauli paths with Hamming weight at most ℓ is

upper bounded by 2$ (ℓ ) .

Proof. We have shown in Lemma 4 that anti-concentration

implies that
∑
:≥3+1,: = $ (1). Below we give a lower bound on

the Fourier weight up to degree ℓ . Consider any legal Pauli path B

with Hamming weight at most ℓ . We will calculate its contribution

to the Fourier weight 22= E� 5 (�, B, 0=)2 as follows.
22= E

�

[
5 (�, B, 0=)2

]
= 22= E

�

[ (
⟨⟨G |B3 ⟩⟩⟨⟨B3 |U3 |B3−1⟩⟩ · · · ⟨⟨B1 |U1 |B0⟩⟩⟨⟨B0 |0=⟩⟩

)2]
= E

�

[
⟨⟨B3 |U3 |B3−1⟩⟩2 · · · ⟨⟨B1 |U1 |B0⟩⟩2

]
= E
U3

[
⟨⟨B3 |U3 |B3−1⟩⟩2

]
· · · E
U1

[
⟨⟨B1 |U1 |B0⟩⟩2

]

=

(
1

15

)� (B )
(38)

Here the second line follows from the fact that

|⟨⟨G |B3 ⟩⟩| = |⟨⟨B0 |0=⟩⟩| = 1√
2=
, the third line is due to the indepen-

dence between di�erent random gates, and the fourth line is due to

Lemma 1, where we de�ne

� (B) := the number of 2-qubit gates whose input

and output are not II in B .
(39)

The above calculation says that any 2-qubit gate whose input and

output are not II contributes a 1
15 factor to the Fourier weight. A

simple bound on � (B) is
|B |
4
≤ � (B) ≤ |B |, (40)

where LHS is because each gate corresponds to at most 4 non-

identity Paulis, and RHS is because each gate has at least 1 input

non-identity Pauli. This implies that

22= E
�

[
5 (�, B, 0=)2

]
≥

(
1

15

) |B |
. (41)

Using this we have

$ (1) =
ℓ∑

:=3+1
,:

=

ℓ∑
:=3+1

22= E
�

∑
B∈P3+1= : |B |=:

5 (�, B, 0=)2

≥
ℓ∑

:=3+1

∑
B∈P3+1= : |B |=:

(
1

15

) |B |
1[B is legal]

≥
(
1

15

)ℓ
(Number of legal paths of weight at most ℓ) ,

(42)

which means that the number of legal paths of weight at most ℓ is

at most $ (1) · 15ℓ . □

We have remarked earlier that the number of legal paths is a com-

binatorial property that only depends on the circuit architecture,

independent of the gate set. We introduce Haar random 2-qubit

gates in Lemma 7 as a proof technique for bounding the Fourier

weights. We further show that the above results imply a lower

bound on the depth for anti-concentration, which has been shown

by [14, 15] using di�erent techniques.

Corollary 2. Consider any circuit architecture which satis�es

anti-concentration with Haar random 2-qubit gates, then the circuit

depth satis�es 3 = Ω(log=).
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Proof. Consider ℓ = 3 + 1, using Lemma 6 and Lemma 7 we

have

= · 23 · 33−1 ≤ $ (1) · 153+1, (43)

which implies that 3 = Ω(log=). □

Next we present the main result of this section, an algorithm for

e�ciently enumerating low-weight legal Pauli paths.

Lemma 8. For any ℓ ≥ 3 + 1, the number of legal Pauli paths

with Hamming weight at most ℓ is at most =ℓ/3 · 2$ (ℓ ) (the circuit
architecture does not need to satisfy anti-concentration). Furthermore

there is an e�cient algorithm to enumerate the legal paths in time

=ℓ/3 · 2$ (ℓ ) and memory $̃ (=3).

The proof of Lemma 8 is deferred to the end of this section. Next

we discuss its relationship with the above results.

First, it appears that Lemma 8 is not tight as it has an additional

=ℓ/3 factor compared with Lemma 7. In fact this is not the case,

due to the fact that Lemma 7 assumes anti-concentration, which

by Corollary 2 means that Lemma 7 only holds when 3 = Ω(log=).
Note that in this case

=ℓ/3 = 4
ℓ

3
·log=

= 2$ (ℓ ) , (44)

so in the anti-concentration regime Lemma 8 gives the same as-

ymptotic result as Lemma 7, which is tight up to the constant in

the exponent.

Second, when ℓ = $ (3), Lemma 8 gives poly(=) · 2$ (3 ) . There-
fore compared with Lemma 6 we conclude that Lemma 8 with

ℓ = $ (3) is tight up to the constant in the exponent, regardless of

whether anti-concentration holds.

Proof of Lemma 8. We prove Lemma 8 in the rest of this section.

We will enumerate legal Pauli paths B = (B0, B1, . . . , B3 ) using the

following method.

(1) For each 3 + 1 ≤ : ≤ ℓ , choose the Hamming weight

F0, . . . ,F3 for each layer, such thatF0 + · · · +F3 = : .

(2) Choose the con�guration (positions of identities and non-

identities) for each layer.

(3) Choose -/.// for each non-identity.

The following is a detailed counting argument and enumeration

method for the legal Pauli paths. Consider a �xed total Hamming

weight 3 + 1 ≤ : ≤ ℓ .

(1) Choose the Hamming weightF0, . . . ,F3 for each layer, such

that the total weight is : . The number of choices equals the

number of solutions to the equationF0 +F2 + · · · +F3 = :

(F8 ≥ 1), which equals to
(:−1
3

)
≤ 2:−1. The enumeration of

such solutions can be achieved using a combinations enu-

merator which e�ciently enumerates all combinations of

choosing 3 objects from : − 1 objects, with memory cost

$̃ (3). Note that not all solutions correspond to legal Pauli

paths; the illegal ones will be rejected later.

(2) For each Hamming weight con�guration F0, . . . ,F3 , let C

be the index of the layer with smallest Hamming weight

(if there are tiebreaks, choose the smallest C ). As the total

weight is : , we know thatFC ≤ :/3 . Next we enumerate the

con�guration (locations of non-identities) of this layer. The

number of choices is
( =
FC

)
≤ =:/3 and can be enumerated us-

ing a combinations enumerator. We can store a con�guration

of a layer using = bits.

(3) We choose the con�gurations for the other layers in a way

that evolves the C-th layer both forwards and backwards. For

example, consider choosing the con�guration for the C + 1-th
layer, conditioned on a given con�guration for the C-th layer.

Consider the layer of 2-qubit gates that connects the C-th

layer of the Pauli path with the C +1-th layer of the Pauli path.
Those 2-qubit gates that have input II have to have output

II. The number of 2-qubit gates whose input is not II is at

most FC . For each of these gates, its output can be IR, RI,

or RR (We use R to represent a non-identity). So there are at

most 3FC con�gurations for the C +1-th layer. Not all of these

con�gurations satisfy the constraint that the C + 1-th layer

has Hamming weight FC+1. So within these (at most) 3FC

con�gurations, we reject those that do not have weightFC+1.
Repeating this procedure for the next layer, we have that

the number of con�gurations for the C + 2-th layer is at most

3FC+1 , conditioned on a given con�guration for the C + 1-th
layer. Using the same argument but evolve backward from

the C-th layer, the number of con�gurations for the C − 1-th
layer is at most 3FC , and the number of con�gurations for

the C − 2-th layer is at most 3FC−1 and so on.

(4) Repeat the above argument for C + 1, C + 2, . . . , 3 as well

as C − 1, C − 2, . . . , 0. The total number of con�gurations

for the entire Pauli path (conditioned on a given partition

F0, . . . ,F3 and a given con�guration for the C-th layer) is

at most 3
∑

8 F8 = 3: . The memory cost for enumerating a

con�guration for the entire circuit is at most $̃ (=3).
(5) Replace each Rwith-,., / (except for the �rst and last layer,

where R is only replaced with / ), giving another 3: factor.

Taking into account all factors in the above steps, the total number

of legal paths of Hamming weight at most ℓ (and the total running

time of the enumeration algorithm) is at most

ℓ∑
:=3+1

2:−1 · =:/3 · 3: · 3: ≤ ℓ · =ℓ/3 · 18ℓ = =ℓ/3 · 2$ (ℓ ) . (45)

3.3 Putting Everything Together

Summarizing the main results of the previous section, we have the

following.

Lemma 9. Consider the same assumptions as our main result (Re-

mark 3) and �x a truncation parameter ℓ . There is an algorithm

that computes the function @̄(�, G) =
∑
B : |B | ≤ℓ (1 − W) |B | 5 (�, B, G)

and its marginals in time =3 · 2$ (ℓ ) . Here by marginal we mean∑
8∈)

∑
G8 ∈{0,1} @̄(�, G1, . . . , G=) for any ) ⊆ [=].

Proof. As circuit depth 3 = Ω(log=), Lemma 8 says that for

any G ∈ {0, 1}= , @̄(�, G) can be computed in time =3 · 2$ (ℓ ) us-
ing the enumeration algorithm, as there are 2$ (ℓ ) paths and each

path takes $ (=3) time to compute. To compute a certain marginal∑
8∈)

∑
G8 ∈{0,1} @̄(�, G1, . . . , G=), note that we cannot straightfor-

wardly compute each @̄(�, G1, . . . , G=) and sum them up because it

has an additional factor 2 |) | . However, the marginal can be easily
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computed by exchanging the summation order,∑
8∈)

∑
G8 ∈{0,1}

@̄(�, G1, . . . , G=)

=

∑
8∈)

∑
G8 ∈{0,1}

∑
B : |B | ≤ℓ

(1 − W) |B | 5 (�, B, G1, . . . , G=)

=

∑
B : |B | ≤ℓ

(1 − W) |B | ©
«
∑
8∈)

∑
G8 ∈{0,1}

5 (�, B, G1, . . . , G=)ª®¬
.

(46)

The statement follows from the fact that the summation in the

bracket can be computed in time $ (=3). This is because∑
8∈)

∑
G8 ∈{0,1}

5 (�, B, G1, . . . , G=)

=

∑
8∈)

∑
G8 ∈{0,1}

⟨⟨G |B3 ⟩⟩⟨⟨B3 |U3 |B3−1⟩⟩ · · · ⟨⟨B1 |U1 |B0⟩⟩⟨⟨B0 |0=⟩⟩

= ⟨⟨G ′ |B3 ⟩⟩⟨⟨B3 |U3 |B3−1⟩⟩ · · · ⟨⟨B1 |U1 |B0⟩⟩⟨⟨B0 |0=⟩⟩,

(47)

where

⟨⟨G ′ |B3 ⟩⟩ = Tr
©
«
B3 ·

⊗
9∉)

��G 9 〉〈G 9 ��⊗
8∈)

�8
ª®
¬
. (48)

□

Lemma 9 allows us to use the standard reduction of sampling

from a probability distribution via computing its marginals. An

issue here is that @̄(�, G) is not necessarily a distribution; it is only

guaranteed to be close to ?̃ (�, G) in !1 norm. We use the following

result of [12] which allows us to sample from a distribution that is

close to ?̃ (�, G).

Lemma 10 (Lemma 10 in [12]). Let ? be a probability distribution

on {0, 1}= . Assume there is an oracle that computes a function @̄ :

{0, 1}= → R as well as its marginals, such that ∥? − @̄∥1 ≤ X . Then

there is an algorithm that samples from a probability distribution @

using $ (=) calls to the oracle, such that ∥? − @∥1 ≤ 4X/(1 − X).

Proof ofMain result. In Section 3.1we have shown thatE�
[
Δ
2
]
≤

$ (1) · 4−2Wℓ . By Markov’s inequality,

Pr

[
Δ ≥ 1
√
X

√
E

[
Δ2

] ]
= Pr

[
Δ
2 ≥ 1

X
E

[
Δ
2
] ]
≤ X. (49)

Therefore, with probability at least 1 − X over random circuit� , we

have

Δ ≤ 1
√
X

√
E

[
Δ2

]
≤ $ (1)
√
X

4−Wℓ . (50)

Using Lemma 9 and Lemma 10, for those circuits that satisfy

Eq. (50) we can sample from a probability distribution that is$ (1)·Δ-
close to ?̃ (�, G) in total variation distance. Let Y be the desired total

variation distance, then

$ (1)
√
X

4−Wℓ ≤ Y is satis�ed when ℓ ≥ 1

W
log

$ (1)
Y ·
√
X
. (51)

Obtaining one sample requires $ (=) calls to the algorithm in

Lemma 9. Assuming circuit depth is 3 ≤ poly(=), the total run-

ning time for obtaining one sample is = · =3 · 2$ (ℓ ) = poly(=) ·(
$ (1)/(Y ·

√
X)

)$ (1/W )
= poly(=, 1/Y, 1/X).

3.4 Statistical Indistinguishability

Next we show that our main result implies statistical indistinguisha-

bility. We �rst recall the basic notions and then give a proof of

Corollary 1.

Given two known probability distributions ?, @ over the same

�nite alphabet ({0, 1}= in our case), and given" samples from either

? or @, we would like to tell which is the case with high success

probability. That is, two known distributions ? and@ are statistically

distinguishable if there is an algorithmA (with unbounded running

time) that, on input G1, . . . , G" ∼ D,

• if D = ? , A returns “D = ?” with probability at least 2
3 ;

• if D = @, A returns “D = @” with probability at least 2
3 .

Two known distributions ? and @ are statistically indistinguishable

with" samples if there is no algorithm A that satis�es the above

condition. We use the following well-known fact that closeness in

total variation distance implies statistical indistinguishability.

Lemma 11. Two known distributions ? and @ are statistically in-

distinguishable with" samples if

1

2
∥? − @∥1 <

1

3"
. (52)

In the context of random circuit sampling, statistical distinguisha-

bility is similarly de�ned with an additional averaging over the

random circuit.

Definition 7 (Statistical distinguishability). For a random

circuit � , let ?̃ (�, G) be the noisy RCS output distribution and let

@(�, G) be a classical mock-up distribution (the output distribution

of a classical simulation algorithm). ?̃ (�, G) is statistically distin-

guishable from @(�, G) with " samples if there is an algorithm A
with input � as well as G1, . . . , G" ∈ {0, 1}= and output one of

{noisy RCS,mock-up} (with unbounded running time) such that

• E� PrG1,...,G"∼?̃ (� ) [A(�, G1, . . . , G" ) = noisy RCS] ≥ 2
3 ,

• E� PrG1,...,G"∼@ (� ) [A(�, G1, . . . , G" ) = noisy RCS] ≤ 1
3 .

Proof of Corollary 1. In order to prove statistical indistinguisha-

bility it su�ces to show that

E
�

[?̃ (�)⊗" , @(�)⊗"

1

]
<

1

3
. (53)

Our main result says that ∥?̃ (�) − @(�)∥1 ≤ Y with probability at

least 1 − X over � . Call those � that satisfy ∥?̃ (�) − @(�)∥1 ≤ Y

good, and the rest bad. We have

E
�

[?̃ (�)⊗" , @(�)⊗"

1

]
≤ E

�

[?̃ (�)⊗" , @(�)⊗"

1
|� is good

]
+ Pr[� is bad]
≤ E

�

[
" · ∥?̃ (�), @(�)∥1 |� is good

]
+ X

≤ "Y + X,
(54)

where the �rst line follows from the law of total expectation and the

second line follows from subadditivity of total variation distance

with respect to tensor product. Therefore, statistical indistinguisha-

bility is guaranteed by choosing Y = 0.01/" and X = 0.01, which

gives running time poly(=,") in our algorithm.
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𝑉"
fSim

𝑅#(𝜃!)

𝑅#(𝜃")
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𝑅#(𝜃%)

𝑉!

𝑉"
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𝑅#(𝜃!)
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𝑅#(𝜃')
=

Figure 2: A gate set related to Google and USTC’s experi-

ments, for which our main result holds. LHS: the gate set

consists of a �xed fSim gate surrounded by random gates

from {
√
-,
√
.,
√
, } as well as random / rotations. RHS: this

is equivalent to LHS due to a special property of the fSim

gates.

4 GENERALIZING TO AN APPROXIMATION
OF GOOGLE AND USTC’S GATE SETS

In this section we discuss the role of gate sets in our main result.

Assuming anti-concentration holds and at least Ω(log=) depth,
then in fact the only place in the proof of our main result where the

gate set is relevant is in the third line of Eq. (33). It uses a property

of the Pauli paths called orthogonality (Lemma 3), which follows

from a property of the gate set which we call gate-set orthogonality

(Lemma 2). Gate-set orthogonality says that in the Pauli basis, if we

consider averaging over two copies of a random gate in the gate

set, then it e�ectively forces the input Pauli to be identical across

the two copies. Lemma 2 shows that this holds as long as the gate

set is closed under random Pauli.

However, in Google and USTC’s experiments [6, 31, 32] this

condition is violated. They considered random circuits with �xed

2-qubit gates and random single-qubit gates, where the 2-qubit

gates are called fSim and are roughly parameterized as follows,

fSim(l1, l2, l3) =



1 0 0 0

0 0 4−8l1 0

0 4−8l2 0 0

0 0 0 4−8l3


. (55)

These angles are site-dependent and are determined by benchmark-

ing experiments. The single-qubit gates are chosen randomly5 from

{
√
-,
√
.,
√
, }, where, = (- + . )/

√
2.

Here we consider a related gate set shown in LHS of Fig. 2 where

the main di�erence is that we insert random / rotations. The fSim

gates have a special property that allows us to borrow randomness

from '/ (\3), '/ (\4) and create additional random gates as '/ (\5),
'/ (\6), leading to the equivalent gate set in RHS of Fig. 2. This is

because of the following commutation property. By de�nition, we

can check that for any angles \1, \2, l = (l1, l2, l3),

'/ (\1) ⊗ '/ (\2) · fSim(l) = fSim(l) · '/ (\2) ⊗ '/ (\1) . (56)

Therefore we can consider the e�ective single qubit gate set

'/ (\1)+'/ (\2), + ∈ {
√
-,
√
.,
√
, }. By direct calculation, we can

verify that this single-qubit gate set is invariant under random Pauli

and thus satis�es gate-set orthogonality.

Lemma 12. Let D be a distribution over single-qubit unitary de-

�ned as '/ (\1)+'/ (\2) where \1, \2 ∼ [−c, c] and

5Google’s single qubit gates + are not independent across each layer; neighboring
layers does not repeat. This is still covered by Lemma 12 as it holds even for any �xed

+ ∈ {
√
-,
√
.,
√
, }.

+ ∼ {
√
-,
√
.,
√
, }. Then for any %,& ∈ {� , -,. , / } such that

% ≠ & , we have

E
*∼D

[
*%* † ⊗ *&* †

]
= 0. (57)

This implies the orthogonality condition in Lemma 3 which

implies that our main result holds. An interesting open question is

whether orthogonality is necessary for ourmain result, andwhether

our main result holds for the exact gate sets used in Google and

USTC’s experiments.
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