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Abstra
t. Measuring the similarity or distan
e between two sets of

points in a metri
 spa
e is an important problem in ma
hine learning

and has also appli
ations in other dis
iplines e.g. in 
omputational

geometry, philosophy of s
ien
e, methods for updating or 
hanging

theories, . . . . Re
ently Eiter and Mannila have proposed a new meas-

ure whi
h is 
omputable in polynomial time. However, it is not a

distan
e fun
tion in the mathemati
al sense be
ause it does not sat-

isfy the triangle inequality.

We introdu
e a new measure whi
h is a metri
 while being 
omput-

able in polynomial time. We also present a variant whi
h 
omputes a

normalised metri
 and a variant whi
h 
an asso
iate di�erent weights

with the points in the set.

1 Introdu
tion

In many appli
ations it is desirable to measure the similarity or dif-

feren
e between obje
ts i.e. to express it by a single numeral. Ideally

su
h a measure has the properties of a metri
:

De�nition 1 (metri
). Given a nonempty set of obje
ts O, a metri


d is a mapping O �O ! IR

+

su
h that for all x, y, z 2 O:

1. d(x; y) = 0, x = y,

2. d(x; y) = d(y; x) (symmetry),

3. d(x; z) � d(x; y) + d(y; z) (triangle inequality).
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In the sequel, measures whi
h satisfy only the �rst two properties are


alled similarity measures.

The problem we study is the following: given some set X and a

metri
 d on X, how 
an we extend d into a metri
 on the set of all

(�nite) subsets of X.

Distan
es between 
omposed obje
ts and between sets of obje
ts

have appli
ations in many domains su
h as 
luster analysis (e.g. TIC

[2℄, KBG [1℄), 
omputational geometry [8℄, ma
hine learning (e.g. [9,


h.4℄, RIBL [6℄), . . . .

Existing proposals for measures between point sets all have some

problems: some are trivial and not very well suited for appli
ations

(e.g. the Hausdor� metri
), others do not satisfy all the properties of

metri
s (e.g. the similarity measures in [5℄).

In this paper we present a measure between point sets whi
h is

a metri
 while avoiding the drawba
ks of the Hausdor� metri
. We

show that it is 
omputable in polynomial time.

Some elementary notions about binary relations and basi
 de�n-

itions about 
ow networks are re
alled in se
tion 2. The latter will

be used to prove that our metri
 is 
omputable in polynomial time.

The Hausdor� metri
 and the similarity measures dis
ussed by Either

and Mannila [5℄ are reviewed in se
tion 3. Some of the latter are 
on-


isely presented as instan
es of a novel general s
hema. In se
tion

4, we introdu
e another instan
e of this general s
hema and prove

that it is a metri
 (satisfying the triangle inequality) and 
omputable

in polynomial time. We develop a normalised metri
 in se
tion 5. A

generalisation of the metri
 whi
h asso
iates weights with the points

in the set and whi
h is better suited to measure the distan
e between

sets of very di�erent sizes is developed in se
tion 6. In se
tion 7 some

appli
ations from the ma
hine learning area are dis
ussed. We end

with a brief summary in se
tion 8.

This paper is an extension of some of the material in [11℄.

2 Preliminaries

Let #S denote the 
ardinality of a set S; jnj denotes the absolute

value of a number n; for a relation f � A� B, f(x) denotes the set

fyj(x; y) 2 fg, f(S) denotes the set fyjx 2 S ^ (x; y) 2 fg, #f(A) is

abbreviated as #f and f

�1

denotes the relation f(y; x)j(x; y) 2 fg.

De�nition 2. A relation f � A�B between two �nite sets A and B

is a surje
tion from A onto B if 8(a; b); (
; d) 2 f : (a = 
 ) b = d)

and 8b 2 B;9a 2 A : (a; b) 2 f . A surje
tion f from A onto B
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is fair if 8x; y 2 B : j#(f

�1

fxg) � #(f

�1

fyg)j � 1, so f maps

the elements of A on elements of B as evenly as possible. A linking

f � A � B is a relation su
h that 8a 2 A;9b 2 B : (a; b) 2 f and

8b 2 B;9a 2 A : (a; b) 2 f , so all elements of A are asso
iated with

at least one of B and vi
e versa. A mat
hing f between A and B is

a relation su
h that 8(a; b); (
; d) 2 f : (a = 
 , b = d), so ea
h

element of A is asso
iated with at most one element of B and vi
e

versa. A mat
hing f between A and B is maximal if there is no

(a; b) 2 A�B n f su
h that f [ f(a; b)g is a mat
hing between A and

B. A perfe
t mat
hing is a maximal mat
hing between two sets of

equal 
ardinality.

Finally, we re
all some de�nitions on transport networks from [13℄.

De�nition 3 (indegree and outdegree). If (V;E) is a dire
ted

graph and v 2 V , then deg

in

(v) = #fx 2 V j(x; v) 2 Eg and deg

out

(v) =

#fx 2 V j(v; x) 2 Eg.

De�nition 4 (transport network). N(V;E; 
ap; s; t) is 
alled a

transport network i� (V;E) is a loop-free 
onne
ted �nite dire
ted

graph with s; t 2 V , deg

in

(s) = 0, deg

out

(t) = 0 and 
ap is a fun
tion


ap : E ! IR

+

.

De�nition 5 (weighted transport network). N(V;E; 
ap; s; t; w)

is a 
alled a weighted transport network i� N(V;E; 
ap; s; t) is a

transport network and w is a fun
tion w : E ! IR

+

.

De�nition 6 (
ow). If N(V;E; 
ap; s; t; w) is a weighted transport

network, then a fun
tion f from E to IR is a 
ow for N i�

{ 8e 2 E : f(e) � 
ap(e).

{ 8v 2 V n fs; tg :

P

u2V

f(v; u) =

P

u2V

f(u; v) (if there is no

edge (v; u) 2 E, then f(v; u) = 0). This is 
alled the 
ontinuity

property.

De�nition 7 (value of a 
ow). If f is a 
ow for N(V;E; 
ap; s; t; w),

then val(f) =

P

v2V

f(s; v) =

P

v2V

f(v; t) is 
alled the value of f .

De�nition 8 (weight of a 
ow). If f is a 
ow for N(V;E; 
ap; s; t; w),

then the weight of f is w(f) =

P

e2E

w(e):f(e).

De�nition 9 (maximal 
ow minimal weight 
ow). If f is a


ow for N(V;E; 
ap; s; t; w), then f is 
alled a maximal 
ow if for

all 
ows f

0

for N , val(f

0

) � val(f) and f is 
alled a maximal 
ow

minimal weight 
ow i� for all maximal 
ows f

0

for N , w(f

0

) � w(f).
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De�nition 10 (integer 
ow). If f is a 
ow for N(V;E; 
ap; s; t; w),

then f is 
alled an integer 
ow i� for all edges (a; b) 2 E, f(a; b) is

an integer.

De�nition 11 (integer 
ow network). If N(V;E; 
ap; s; t; w) is a

weighted transport network, then N is 
alled an integer 
ow network

i� for all edges (a; b) 2 E, 
ap(a; b) is an integer.

In [10℄ the following theorem is proved:

Theorem 1. If N(V;E; 
ap; s; t; w) is an integer 
ow network then

there is a maximal 
ow minimal weight 
ow f for N su
h that f is

an integer 
ow.

3 Distan
es between sets of points

In this se
tion we dis
uss some existing distan
e measures between

sets of points.

The Hausdor� metri
 Well known is the Hausdor� metri
. Given X,

a set of points, and d, a metri
 between points, d

h

: 2

X

� 2

X

! IR is

de�ned as:

d

h

(A;B) = max

�

max

a2A

(minfd(a; b)jb 2 Bg) ;max

b2B

(minfd(a; b)ja 2 Ag)

�

While this fun
tion has all the properties of a metri
, it does not

take into a

ount mu
h information about the points in the sets (it is

determined by the distan
e of the most distant element of both sets

to the nearest neighbour in the other set). This makes this metri


unsuited for appli
ations where one set has likely a point whi
h is

very di�erent from all points of the other set as e.g. in Indu
tive

Logi
 Programming [11℄.

Sum of minimal distan
e measure Eiter and Mannila [5℄ dis
uss the

sum of minimal distan
es similarity measure. It is de�ned as:

d(X;Y ) =

1

2

0

�

X

x2X

(min

y2Y

d(x; y)) +

X

y2Y

(min

x2X

d(x; y))

1

A

However, this is in general not a metri
.
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Distan
es based on optimal mappings. Eiter and Mannila [5℄ also

dis
uss a family of Manhattan measures between sets whi
h we 
an

des
ribe as instan
es of the following s
heme:

d

�

(A;B) = min

r2m

�

(A;B)

d(r;A;B)

where

d(r;A;B) =

2

4

X

(x;y)2r

d(x; y)

3

5

+

#(B n r(A)) + #(A n r

�1

(B))

2

:M

In this formula,m

�

is a fun
tion that maps ea
h pair (A;B) 2 2

X

�2

X

to a relation between A and B (a subset of A�B) andM is a 
onstant

(representing a large or the maximal possible distan
e between 2

points).

This means that one sums the distan
es of the pairs of elements

whi
h are in r and adds a penalty M=2 for ea
h element that does

not mat
h with an element from the other set.

The authors dis
uss three instantiations:

{ m

�

= m

s

with m

s

(A;B) the set of all surje
tions from the larger

of A and B to the smaller of A and B (surje
tion-measure d

s

).

{ m

�

= m

fs

with m

fs

(A;B) the set of all fair surje
tions from the

larger of A and B to the smaller of A and B (fair surje
tion-

measure d

fs

).

{ m

�

= m

l

with m

l

(A;B) the set of all linkings between A and B

(linking-measure d

l

).

They show that these similarity measures 
an be evaluated in polyno-

mial time. They are not metri
s as the triangle inequality is violated.

Note that d

�

agrees with d on singletons: 8x; y 2 X : d

�

(fag; fbg) =

d(a; b).

4 A metri
 based on optimal mat
hings

Using mat
hings (m

�

= m

m

with m

m

(A;B) the set of all mat
hings

between A and B) instead of surje
tions, fair surje
tions or linkings,

one obtains another instantiation of the s
hema presented in the pre-

vious se
tion:

d

m

(A;B) = min

r2m

m

(A;B)

d(r;A;B)

De�nition 12. A mat
hing r is optimal for the distan
e between A

and B i� d

m

(A;B) = d(r;A;B).
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The following two theorems are a 
orollary of theorems 7 and 8 in

se
tion 6.

Theorem 2. d

m

is a metri
 for M > 0.

Theorem 3. If the time to 
ompute the distan
e between two points

is bounded by T , then the time to 
ompute d

m

(A;B) is bounded by a

polynomial in #A, #B and T .

The interested reader 
an �nd a dire
t proof of these theorems in

[12℄.

5 Normalised mat
hing metri
.

In some appli
ations (e.g. algorithms where the distan
e between


lusters shouldn't depend on the size of the obje
ts) it is desirable

to work with normalised distan
es i.e. distan
es in the interval [0; 1℄.

Instan
e based learning systems su
h as RIBL [7℄ and 
lustering al-

gorithms (e.g. agglomerative 
lustering algorithms using distan
es).

make use of normalised similarity measures. Also here, a normalised

metri
 is preferable above a normalised similarity whi
h is not a met-

ri
. In this se
tion we show how a normalised metri
 between points


an be extended to a normalised metri
 between point sets.

With normalisation, the maximal distan
e between two points is

1, so M 
an be set to 1 and the general formula for distan
es between

sets 
an be simpli�ed into:

d

m

(A;B) =

X

(x;y)2m

AB

d(x; y) +

#(B nm

AB

(A)) + #(A nm

�1

AB

(B))

2

=

X

(x;y)2m

AB

d(x; y) +

#B +#A� 2#m

AB

2

(1)

where m

AB

is an optimal mat
hing for d

m

(A;B).

We de�ne:

d

m;n

(A;B) = if A = ; and B = ; then 0

else

2:d

m

(A;B)

d

m

(A;B)+(#A+#B)=2

(2)

Note that d

m;n

is normalised. Indeed, 0 � d

m

(A;B) � (#A +

#B)=2, hen
e 2:d

m

(A;B) � d

m

(A;B) + (#A+#B)=2.

Before proving that d

m;n

is a metri
, we introdu
e size fun
tions

for point sets.
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De�nition 13 (size). Let U be a universe. A size is a fun
tion s :

2

U

! IR su
h that 8X 2 2

U

: s(X) � 0 and 8X;Y 2 2

U

: (X \ Y =

;)) s(X [ Y ) = s(X) + s(Y ).

In the sequel we 
onsider sets in some universe U and a size fun
-

tion s over U and use the notion of symmetri
 di�eren
e: A�B =

(A nB) [ (B n A).

Lemma 1.

s(A [B) = [s(A) + s(B) + s(A�B)℄=2

Proof: Applying the de�nitions we get s(A[B) = s(A) + s(B n

A) = s(B) + s(A nB). Hen
e 2s(A [B) = s(A) + s(B nA) + s(B) +

s(A n B) = s(A�B) + s(A) + s(B). 2

De�nition 14. �

s;n

(A;B) = if (A [B = ;) then 0 else

s(A�B)

s(A[B)

.

Theorem 4. �

s;n

is a normalised metri
 on 2

U

.

Proof:

0 � s(A�B) � s(A [ B) hen
e 0 � �


;n

(A;B) � 1. The other

properties are trivial ex
ept the triangle inequality in 
ase that A, B

and C are non-empty.

�

s;n

(A;B) +�

s;n

(B;C)

=

s(A�B)

s(A [B)

+

s(B�C)

s(B [ C)

=

s((A \ C) n B) + s((A n C) n B) + s((B \ C) nA) + s((B n C) nA)

s(A n C) + s(B \C) + s((A \ C) nB) + s((B n C) n A)

+

s((A \ C) nB) + s((C n A) nB) + s((B \A) n C) + s((B n C) n A)

s(C n A) + s(B \A) + s((A \ C) n B) + s((B n C) n A)

�

s((A n C) n B) + s((B \C) n A)

s(A n C) + s(B \C)

+

s((C nA) n B) + s((B \A) n C)

s(C n A) + s(B \A)

�

s((A n C) n B) + s((B \C) n A)

s(A [ C)

+

s((C nA) n B) + s((B \A) n C)

s(A [ C)

�

s(A�C)

s(A [ C)

� �

s;n

(A;C)

2
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Lemma 2. Let X and Y be point sets. If sets A and B and size s

exist su
h that s(A) = #X, s(B) = #Y and s(A�B) = 2d

m

(X;Y ),

then d

m;n

(X;Y ) =

s(A�B)

s(A[B)

= �

s;n

(A;B).

Proof:

We have d

m;n

(X;Y ) =

2d

m

(X;Y )

(#X+#Y )=2+d

m

(X;Y )

=

s(A�B)

[s(A)+s(B)+s(A�B)℄=2

.

From lemma 1, there follows d

m;n

(X;Y ) =

s(A�B)

s(A[B)

= �

s;n

(A;B). 2

Note that there does not exist a size su
h that s(X) = #X, s(Y ) =

#Y and s(X�Y ) = 2d

m

(X;Y ), sin
e it is possible that X \ Y = ;,

hen
e s(X�Y ) = #X + #Y and at the same time 2d

m

(X;Y ) <

#X +#Y . This is the motivation for introdu
ing sets A and B. The

following lemma shows that sets with the desired sizes exist.

Lemma 3. Let X

i

(i = 0; 1; 2 indi
es modulo 3) be point sets. There

exists a universe U , a size s : 2

U

! IR

+

and sets A

i

� U su
h that

for all i; j, s(A

i

) = #X

i

and s(A

i

�A

j

) = 2d

m

(X

i

;X

j

).

Proof: It suÆ
es to show that s 
an assign non-negative values

to the elementary sets A

i

\A

i+1

\A

i+2

, (A

i

\A

i+1

) nA

i+2

and (A

i

n

A

i+1

)nA

i+2

, from whi
h the sets A

i

are 
omposed su
h that the sizes

given in the lemma are satis�ed.

Let x

i

= #X

i

and d

i;j

= 2d

m

(X

i

;X

j

). Then, from equation 1 at

the beginning of this se
tion it follows that

jx

i

� x

j

j � d

i;j

� x

i

+ x

j

: (3)

Let y

i

=

1

2

(x

i

+x

i+1

�d

i;i+1

). These y

i

are nonnegative by equation

(3). Without loss of generality we 
an assume that the indi
es are

assigned su
h that y

0

= minfy

0

; y

1

; y

2

g. Assign

s(A

i

\A

i+1

\A

i+2

) = y

0

s((A

i

\A

i+1

) n A

i+2

) = y

i

� y

0

These values are all nonnegative. It follows that s(A

i

\A

i+1

) = s(A

i

\

A

i+1

\A

i+2

) + s((A

i

\A

i+1

) nA

i+2

) = y

i

. To ensure that s(A

i

) = x

i

we assign

s((A

i

n A

i+1

) nA

i+2

) = x

i

� s(A

i

\A

i+1

)� s((A

i+2

\A

i

) n A

i+1

)

= x

i

� y

i

� (y

i+2

� y

0

)

=

1

2

(x

0

+ x

1

� d

0;1

� x

i+1

+ d

i;i+1

� x

i+2

+ d

i+2;i

)

These values should be nonnegative for i = 0; 1; 2.

i = 0 : s((A

0

nA

1

) nA

2

) =

1

2

(x

0

� x

2

+ d

2;0

) (by (3))

i = 1 : s((A

1

nA

2

) nA

0

) =

1

2

(x

1

� x

2

+ d

1;2

) (by (3))

i = 2 : s((A

2

nA

0

) nA

1

) =

1

2

(�d

0;1

+ d

2;0

+ d

1;2

) (d

m

is a metri
)
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Finally, we know that s(A

i

�A

i+1

) = s(A

i

)+s(A

i+1

)�2s(A

i

\A

i+1

) =

x

i

+ x

i+1

� 2y

i

= d

i;i+1

). This 
ompletes the proof. 2

Theorem 5. d

m;n

is a normalised metri
.

Proof:

Let X

i

(i = 0; 1; 2) be sets. By lemma 3, there exists a size s

and sets A

i

(i = 0; 1; 2) su
h that s(A

i

) = #X

i

and s(A

i

�A

j

) =

2:d

m

(X

i

;X

j

) for i; j 2 f0; 1; 2g. Hen
e lemma 2 is appli
able, i.e.

d

m;n

(X

i

;X

j

) = �

s;n

(A

i

; A

j

). By theorem 4, �

s;n

is a normalised

metri
, hen
e also d

m;n

is a normalised metri
. 2

Theorem 6. If d(a; b) is 
omputable in polynomial time, then d

m;n

(A;B)

is 
omputable in polynomial time.

Proof:

This follows from the fa
t that d

m

(A;B) is 
omputable in poly-

nomial time and that d

m;n

(A;B) 
an be 
omputed in 
onstant time

from d

m

(A;B).

6 Generalisation

A weakness of the measures presented so far is that the distan
e

between a large and a small set is largely determined by their di�er-

en
e in 
ardinality (if #A� #B, then d(A;B) � (#A�#B):M=2).

By asso
iating appropriate weights with the elements in the sets, it is

possible to generalize the notion of 
ardinality in a way su
h that sets

of vastly di�erent 
ardinality 
an be s
aled appropriately. Weights


ould also be used to give di�erent importan
e to the members of a

set.

De�nition 15 (Weighting fun
tion). A fun
tionW : 2

X

! (X !

IR

+

) is a weighting fun
tion for X.

De�nition 16 (Size under weighting fun
tion). Let W be a

weighting fun
tion for X. Then the fun
tion size

W

: 2

X

! IR

+

is

de�ned as size

W

(A) =

P

a2A

W [A℄(a).

Example 1. The fun
tion W

1

with W

1

[A℄ = f(a; 1)ja 2 Ag is a

weighting fun
tion su
h that for all obje
ts A 2 2

X

, size

W

(A) = #A.

De�nition 17. Let X be a set and let W be a weighting fun
tion for

X. We de�ne Q

W

X

= max

A22

X

size

W

(A).
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a- b-

a

1

a

2

a

3

a

4

a

5

W [A℄(a

1

); 0)

t

W [B℄(b

1

); 0)

Q

W

X

� size

W

(B); 0)

(1; 0)

s

(Q

W

X

� size

W

(A); 0)

b

4

b

3

b

2

b

1

(1;M=2)

(1;M=2)

(1; d(a

1

; b

1

))

Fig. 1 A distan
e network

De�nition 18 (distan
e network). Let X be a set, and d a met-

ri
 on X. Let M be a 
onstant and let W be a weighting fun
tion

for X. Then for all �nite A;B 2 2

X

with A = fa

1

; : : : ; a

m

g and

B = fb

1

; : : : ; b

n

g, we de�ne a distan
e network between A and B for

d, M and W in X to be N [X; d;M;W;A;B℄ = N(V;E; 
ap; s; t; w)

with V = A[B[fs; t; a

�

; b

�

g, E = (fsg�(A[fa

�

g))[((B[fb

�

g)�

ftg)[ ((A[fa

�

g)� (B[fb

�

g)), 8a 2 A;8b 2 B : w(s; a) = w(b; t) =

w(s; a

�

) = w(b

�

; t) = w(a

�

; b

�

) = 0 ^ w(a; b) = d(a; b) ^ w(a

�

; b) =

w(a; b

�

) = M=2 and 8a 2 A;8b 2 B : 
ap(s; a) = W [A℄(a) ^


ap(b; t) = W [B℄(b) ^ 
ap(s; a

�

) = Q

W

X

� size

W

(A) ^ 
ap(b

�

; t) =

Q

W

X

�size

W

(B)^
ap(a; b) = 
ap(a

�

; b) = 
ap(a; b

�

) = 
ap(a

�

; b

�

) =

1.

Note that the de�nition ofQ

W

X

ensures 
ap(s; a

�

) � 0 and 
ap(b

�

; t) �

0. Moreover, 
ap(s; a

�

)+

P

m

i=1


ap(s; a

i

) = 
ap(b

�

; t)+

P

n

i=1


ap(b

i

; t) =

Q

W

X

. Hen
e:

Proposition 1. The 
ow of a maximal 
ow minimal weight 
ow of

a distan
e network is Q

W

X

.

De�nition 19 (net
ow distan
e). Let X be a set, d a metri
 on

X, M a 
onstant, and W a weighting fun
tion for X. For all A;B 2
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2

X

, the net
ow distan
e from A to B under d, M and W in X,

denoted d

N

X;d;M;W

(A;B), is the weight of the minimal weight maximal


ow from s to t in N [X; d;M;W;A;B℄.

Proposition 2. With all the weights set to 1, the net
ow distan
e

d

N

X;d;M;W

(A;B) from A to B is equal to the distan
e from A to B

under the optimal mat
hing d

m

(A;B).

Proof:

We have 8a 2 A :W [A℄(a) = 1 and 8b 2 B : W [B℄(b) = 1.

Given a mat
hing r, one 
an de�ne a 
ow f as follows:

f(a

i

; b

�

) = if 9b

j

2 B : (a

i

; b

j

) 2 r then 0 else 1

f(a

�

; b

i

) = if 9a

i

2 A : (a

i

; b

j

) 2 r then 0 else 1

f(a

i

; b

j

) = if (a

i

; b

j

) 2 r then 1 else 0

One 
an easily verify that f is a maximal 
ow and that its weight is

equal to d(r;A;B) = d

m

(A;B). Hen
e d

m

(A;B) � d

N

X;d;M;W

(A;B)

Conversely, sin
e we have an integer 
ow network, there exists an

integer 
ow f whi
h is maximal and has minimal weight by theorem 1.

It 
an be easily veri�ed that there is a 
orresponding mat
hing r su
h

that d(r;A;B) is equal to the weight of this 
ow. Hen
e d

m

(A;B) �

d

N

X;d;M;W

(A;B). 2

Notation 1 We use

X

i2f1::m;�g

expr

i

as abbreviation of

m

X

i=1

expr

i

+

expr

�

and d

N

as abbreviation of d

N

X;d;M;W

.

Theorem 7. The net
ow distan
e is a metri
.

Proof: Using the notations of de�nition 18, we prove:

{ d

N

(A;A) = 0.

If B = A then a

i

= b

i

and d(a

i

; b

i

) = 0. With 0-weight 
ows from

s to a

i

to b

i

to t and from s to a to b to t , a 0-weight solution

is obtained so d

N

(A;A) = 0.

{ d

N

(A;B) = d

N

(B;A).

This follows from the fa
t that the solution of a minimal weight

maximal 
ow problem has the same weight as the solution ob-

tained when the sour
e and sink are reversed.

{ d

N

(A;B) + d

N

(B;C) � d

N

(A;C)

Figure 2 is the distan
e network between A and B followed by the

distan
e network between B and C. For the latter, the nodes have

been renamed into b

0

1

; : : : ; b

0

. d

N

(A;B) + d

N

(B;C) is the weight

of the solution of the minimal weight maximal 
ow problem in
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this �gure. Similarly, d

N

(A;C) is the weight of the solution of the

minimal weight maximal 
ow problem in �gure 3.

We now prove that for ea
h 
ow f

1

in the network of �gure 2,

there exists a 
ow f

2

in the network of �gure 3 that has the same

total 
ow and has a smaller or equal weight.

Consider a 
ow f

1

in �gure 2. Then, let

{ f

2

(s

�

; a

�

i

) = f

1

(s; a

i

), f

2

(s

�

; a

�

�

) = f

1

(s; a

�

), f

2

(


�

i

; t

�

) = f

1

(


i

; t)

and f

2

(


�

�

; t

�

) = f

1

(


�

; t).

{ f

2

(a

�

i

; 


�

k

) =

P

j2f1::n;�g

f

1

(a

i

;b

j

):f

1

(b

0

j

;


k

)

TB

j

where

TB

j

=

P

i2f1::m;�g

f

1

(a

i

; b

j

)

First we prove a property of TB

j

:

TB

j

=

P

i2f1::m;�g

f

1

(a

i

; b

j

)

= f

1

(b

j

; r) (
ontinuity in b

j

)

= 
ap(b

j

; r) (saturated to rea
h flow Q

W

X

)

= 
ap(r; b

0

j

) (by 
onstru
tion)

= f

1

(r; b

0

j

) (saturated to rea
h flow Q

W

X

)

=

P

k2f1::r;�g

f

1

(b

0

j

; 


k

) (
ontinuity in b

0

j

)

Next we verify that f

2

is a 
ow for the network in �gure 3. The

non-trivial part is the 
ontinuity in a

�

i

and 


�

k

. In a

�

i

:

X

u

f

2

(u; a

�

i

)�

X

u

f

2

(a

�

i

; u)

= f

2

(s

�

; a

�

i

)�

X

k2f1::r;�g

f

2

(a

�

i

; 


�

k

)

= f

1

(s; a

i

)�

X

k2f1::r;�g

X

j2f1::n;�g

f

1

(a

i

; b

j

):f

1

(b

0

j

; 


k

)

TB

j

= f

1

(s; a

i

)�

X

j2f1::n;�g

f

1

(a

i

; b

j

):

P

k2f1::r;�g

f

1

(b

0

j

; 


k

)

TB

j

= f

1

(s; a

i

)�

X

j2f1::n;�g

f

1

(a

i

; b

j

)

= 0

The 
ontinuity in 


�

k


an be veri�ed similarly.

The value of f

2

is Q

W

X

, hen
e f

2

is a maximal 
ow. Finally we

show that f

2

has a weight smaller or equal to the weight of f

1

. We

have

w(f

2

) =

X

i2f1::m;�g

X

k2f1::r;�g

f

2

(a

�

i

; 


�

k

)w(a

�

i

; 


�

k

)
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r




1




�

b

1

b

n

b

�

b

0

�

t




r

s

a

1

b

0

1

b

0

n

a

�

a

m

Fig. 2 Network for d

N

(A;B) + d

N

(B;C)

=

X

i2f1::m;�g

X

k2f1::r;�g

X

j2f1::n;�g

f

1

(a

i

; b

j

):f

1

(b

0

j

; 


k

)

TB

j

w(a

�

i

; 


�

k

)

(sin
e w(a

�

i

; 


�

k

) = d(a

�

i

; 


�

k

) � d(a

i

; b

j

) + d(b

0

j

; 


k

)

= w(a

i

; b

j

) + w(b

0

j

; 


k

))

�

X

i2:::

X

k2:::

X

j2:::

f

1

(a

i

; b

j

):f

1

(b

0

j

; 


k

)

TB

j

[w(a

i

; b

j

) + w(b

0

j

; 


k

)℄

=

X

i2f1::m;�g

X

k2f1::r;�g

X

j2f1::n;�g

f

1

(a

i

; b

j

):f

1

(b

0

j

; 


k

)

TB

j

w(a

i

; b

j

)

+

X

i2f1::m;�g

X

k2f1::r;�g

X

j2f1::n;�g

f

1

(a

i

; b

j

):f

1

(b

0

j

; 


k

)

TB

j

w(b

0

j

; 


k

)

=

X

i2f1::m;�g

X

j2f1::n;�g

f

1

(a

i

; b

j

)w(a

i

; b

j

)

+

X

k2f1::r;�g

X

j2f1::n;�g

f

1

(b

0

j

; 


k

)w(b

0

j

; 


k

)

= w(f

1

)

This proves the theorem. 2

Theorem 8. If W has integer values, then d

N

X;d;M;W

(A;B) 
an be


omputed in polynomial time in size

W

(A) and size

W

(B).

Proof: The weights and 
apa
ities of the graph of the minimal

weight maximal 
ow problem asso
iated with this metri
 
an be 
om-

puted in #A:#B time. These numbers are all integers. The minimal

weight maximal 
ow problem 
an be solved in polyniomial time in

size

W

(A) and size

W

(B) [10℄. This proves the theorem. 2
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s

�

a

�

1

a

�

m

a

�

�




�

�

t

�




�

1




�

r

Fig. 3 Network for d

N

(A;C)

Example 2. Assume one has to 
hoose among a number of 7 element

sets the one most representative for a 100 element set B. Without

weights, only the best 7 elements of B will determine the out
ome.

Using a weight 14 (or 15) for the elements in the 7-element sets, an

element of the small set 
an mat
h up to 14 (or 15) elements in B and

98 (or all) elements of B will in
uen
e the distan
e to a parti
ular

7-element set. So one 
an expe
t a mu
h better representative.

Corollary 1. d

m

is a metri
 (theorem 2) and 
omputable in polyno-

mial time (theorem 3).

Proof: This follows dire
tly from proposition 2, theorem 7 and

theorem 8 2

7 Appli
ations

As mentioned earlier, metri
s between point sets have appli
ations in

many areas. In this se
tion we present some results from appli
ations

in ma
hine learning.

7.1 The Diterpenes dataset

The diterpenes database (see [4℄) des
ribes 1503 diterpenes, whi
h are

organi
 
ompounds of low mole
ular weight with a skeleton of 20 
ar-

bon atoms. They are of signi�
ant 
hemi
al and 
ommer
ial interest

be
ause of their use as lead 
ompounds in the sear
h for new pharma-


euti
al e�e
tors. A 
ommon problem is to determine the stru
ture

of these diterpenes. Among other methods, one possibility is to get
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information from NMR (nu
lear magneti
 resonan
e) spe
tra. The

interpretation of these spe
tra normally requires spe
ialists with de-

tailed knowledge on peak patterns and 
hemi
al stru
tures. There-

fore, the use of ma
hine learning methods to predi
t the stru
ture of

diterpenes 
ould save 
osts.

Here, instan
e based learning will be used, whi
h is a ma
hine

learning method that depends on the existen
e of a distan
e. The

method takes as input a set of training examples of diterpene NMR

spe
tra and the 
orresponding skeleton types (in this database, there

are 23 di�erent types). The type of new, unknown, diterpenes is pre-

di
ted by 
omparing them to the set of known examples and predi
t-

ing the same 
lass as the nearest (most similar) training example. The

nearest example is determined by measuring the distan
e between the

unknown example and the training examples and 
hoosing the smal-

lest one.

The des
ription of ea
h diterpene 
onsists of a set of peak frequen-


ies together with their multipli
ities. So, we are 
onsidering sets of

points where ea
h \point" is a tuple (frequen
y, multipli
ity). For the

distan
e between the points we use the eu
lidean metri
.

The table below shows the results of our experiments on this data-

set for some di�erent instantiations of the s
hema given in se
tion 3

and also the results obtained by other ma
hine learning systems as

reported in [4℄. For all systems, the a

ura
y is based on a tenfold


rossvalidation. This means the dataset is divided in ten parts. In

ea
h of the ten runs of the algorithm one of these parts is the test set

and the other parts are the training set. The reported result is then

the average of the test a

ura
y for all runs.

System A

ura
y

FOIL 78.3%

RIBL 91.2%

TILDE 90.4%

ICL 86.0 %

IBL - mat
hings 93.5%

IBL - linkings 85.0%

IBL - hausdor� 83.5%

IBL - surje
tions 84.4%

IBL - fair surje
tions 84.5%

As 
an be seen from the table, instan
e based learning using

mat
hing distan
es not only performs better than instan
e based

learning with other distan
es but also better than other ma
hine

learning methods.
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7.2 The Musk dataset

The musk dataset is des
ribed in [3℄. This dataset des
ribes a set

of 102 mole
ules whi
h are judged by human experts to be musks

or non-musks. Ea
h example is a set of 166-tuples. Ea
h 166-tuple


orresponds to one of the possible 
onformations of the mole
ule. We

did a tenfold 
rossvalidation using di�erent methods. We used an

eu
lidian metri
 between the points (166-tuples). The following table

summarizes the results. Also, the results of some other algorithms are

in
luded (see [3℄).

iterated-dis
rim APR 92.4

all-positive APR 80.4

ba
kpropagation 75.0

C4.5 (pruned) 68.5

IBL - mat
hings 88%

IBL - hausdor� 82%

IBL - linkings 79%

IBL - surje
tions 85%

IBL - fair surje
tions 49%

Again, our metri
 based on mat
hings gives the best results for

instan
e based learning. Only Iterated-Dis
rim APR gives better res-

ults. The latter is an algorithm that sear
hes axis parallel re
tangle

hypotheses, using the extra knowledge that an example is musk i�

the 166-tuple of one of its 
onformations is in an (unknown) hyper-

re
tangle. C4.5, ba
kpropagation and IBL did not make use of this

information.

8 Summary

This paper studies the problem of extending a metri
 between points

to a metri
 on the spa
e of (�nite) sets of points. A measure based

on optimal mat
hings was proposed and was proven to be a metri
.

It was shown that this metri
 
an be 
omputed in polynomial time in

the size of its arguments. Next, a normalised version of this metri
,

also 
omputable in polynomial time, was proposed. Also, a variant

was developed whi
h asso
iates weights with the points in a set. It is

better suited to measure distan
es when the involved sets have very

di�erent 
ardinalities.

Finally, we have reported on two experiments in the ma
hine learn-

ing area. They show that our metri
 gives substantially better results

than the use of other similarity measures. Moreover, our results are

better than those obtained with several learning algorithms based on
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other prin
iples. This shows that the proposed metri
 is not only of

theoreti
 interest and supports the intuition that a good metri
 is

preferable above a similarity measure.
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