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Abstrat. Measuring the similarity or distane between two sets of

points in a metri spae is an important problem in mahine learning

and has also appliations in other disiplines e.g. in omputational

geometry, philosophy of siene, methods for updating or hanging

theories, . . . . Reently Eiter and Mannila have proposed a new meas-

ure whih is omputable in polynomial time. However, it is not a

distane funtion in the mathematial sense beause it does not sat-

isfy the triangle inequality.

We introdue a new measure whih is a metri while being omput-

able in polynomial time. We also present a variant whih omputes a

normalised metri and a variant whih an assoiate di�erent weights

with the points in the set.

1 Introdution

In many appliations it is desirable to measure the similarity or dif-

ferene between objets i.e. to express it by a single numeral. Ideally

suh a measure has the properties of a metri:

De�nition 1 (metri). Given a nonempty set of objets O, a metri

d is a mapping O �O ! IR

+

suh that for all x, y, z 2 O:

1. d(x; y) = 0, x = y,

2. d(x; y) = d(y; x) (symmetry),

3. d(x; z) � d(x; y) + d(y; z) (triangle inequality).
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In the sequel, measures whih satisfy only the �rst two properties are

alled similarity measures.

The problem we study is the following: given some set X and a

metri d on X, how an we extend d into a metri on the set of all

(�nite) subsets of X.

Distanes between omposed objets and between sets of objets

have appliations in many domains suh as luster analysis (e.g. TIC

[2℄, KBG [1℄), omputational geometry [8℄, mahine learning (e.g. [9,

h.4℄, RIBL [6℄), . . . .

Existing proposals for measures between point sets all have some

problems: some are trivial and not very well suited for appliations

(e.g. the Hausdor� metri), others do not satisfy all the properties of

metris (e.g. the similarity measures in [5℄).

In this paper we present a measure between point sets whih is

a metri while avoiding the drawbaks of the Hausdor� metri. We

show that it is omputable in polynomial time.

Some elementary notions about binary relations and basi de�n-

itions about ow networks are realled in setion 2. The latter will

be used to prove that our metri is omputable in polynomial time.

The Hausdor� metri and the similarity measures disussed by Either

and Mannila [5℄ are reviewed in setion 3. Some of the latter are on-

isely presented as instanes of a novel general shema. In setion

4, we introdue another instane of this general shema and prove

that it is a metri (satisfying the triangle inequality) and omputable

in polynomial time. We develop a normalised metri in setion 5. A

generalisation of the metri whih assoiates weights with the points

in the set and whih is better suited to measure the distane between

sets of very di�erent sizes is developed in setion 6. In setion 7 some

appliations from the mahine learning area are disussed. We end

with a brief summary in setion 8.

This paper is an extension of some of the material in [11℄.

2 Preliminaries

Let #S denote the ardinality of a set S; jnj denotes the absolute

value of a number n; for a relation f � A� B, f(x) denotes the set

fyj(x; y) 2 fg, f(S) denotes the set fyjx 2 S ^ (x; y) 2 fg, #f(A) is

abbreviated as #f and f

�1

denotes the relation f(y; x)j(x; y) 2 fg.

De�nition 2. A relation f � A�B between two �nite sets A and B

is a surjetion from A onto B if 8(a; b); (; d) 2 f : (a =  ) b = d)

and 8b 2 B;9a 2 A : (a; b) 2 f . A surjetion f from A onto B
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is fair if 8x; y 2 B : j#(f

�1

fxg) � #(f

�1

fyg)j � 1, so f maps

the elements of A on elements of B as evenly as possible. A linking

f � A � B is a relation suh that 8a 2 A;9b 2 B : (a; b) 2 f and

8b 2 B;9a 2 A : (a; b) 2 f , so all elements of A are assoiated with

at least one of B and vie versa. A mathing f between A and B is

a relation suh that 8(a; b); (; d) 2 f : (a =  , b = d), so eah

element of A is assoiated with at most one element of B and vie

versa. A mathing f between A and B is maximal if there is no

(a; b) 2 A�B n f suh that f [ f(a; b)g is a mathing between A and

B. A perfet mathing is a maximal mathing between two sets of

equal ardinality.

Finally, we reall some de�nitions on transport networks from [13℄.

De�nition 3 (indegree and outdegree). If (V;E) is a direted

graph and v 2 V , then deg

in

(v) = #fx 2 V j(x; v) 2 Eg and deg

out

(v) =

#fx 2 V j(v; x) 2 Eg.

De�nition 4 (transport network). N(V;E; ap; s; t) is alled a

transport network i� (V;E) is a loop-free onneted �nite direted

graph with s; t 2 V , deg

in

(s) = 0, deg

out

(t) = 0 and ap is a funtion

ap : E ! IR

+

.

De�nition 5 (weighted transport network). N(V;E; ap; s; t; w)

is a alled a weighted transport network i� N(V;E; ap; s; t) is a

transport network and w is a funtion w : E ! IR

+

.

De�nition 6 (ow). If N(V;E; ap; s; t; w) is a weighted transport

network, then a funtion f from E to IR is a ow for N i�

{ 8e 2 E : f(e) � ap(e).

{ 8v 2 V n fs; tg :

P

u2V

f(v; u) =

P

u2V

f(u; v) (if there is no

edge (v; u) 2 E, then f(v; u) = 0). This is alled the ontinuity

property.

De�nition 7 (value of a ow). If f is a ow for N(V;E; ap; s; t; w),

then val(f) =

P

v2V

f(s; v) =

P

v2V

f(v; t) is alled the value of f .

De�nition 8 (weight of a ow). If f is a ow for N(V;E; ap; s; t; w),

then the weight of f is w(f) =

P

e2E

w(e):f(e).

De�nition 9 (maximal ow minimal weight ow). If f is a

ow for N(V;E; ap; s; t; w), then f is alled a maximal ow if for

all ows f

0

for N , val(f

0

) � val(f) and f is alled a maximal ow

minimal weight ow i� for all maximal ows f

0

for N , w(f

0

) � w(f).
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De�nition 10 (integer ow). If f is a ow for N(V;E; ap; s; t; w),

then f is alled an integer ow i� for all edges (a; b) 2 E, f(a; b) is

an integer.

De�nition 11 (integer ow network). If N(V;E; ap; s; t; w) is a

weighted transport network, then N is alled an integer ow network

i� for all edges (a; b) 2 E, ap(a; b) is an integer.

In [10℄ the following theorem is proved:

Theorem 1. If N(V;E; ap; s; t; w) is an integer ow network then

there is a maximal ow minimal weight ow f for N suh that f is

an integer ow.

3 Distanes between sets of points

In this setion we disuss some existing distane measures between

sets of points.

The Hausdor� metri Well known is the Hausdor� metri. Given X,

a set of points, and d, a metri between points, d

h

: 2

X

� 2

X

! IR is

de�ned as:

d

h

(A;B) = max

�

max

a2A

(minfd(a; b)jb 2 Bg) ;max

b2B

(minfd(a; b)ja 2 Ag)

�

While this funtion has all the properties of a metri, it does not

take into aount muh information about the points in the sets (it is

determined by the distane of the most distant element of both sets

to the nearest neighbour in the other set). This makes this metri

unsuited for appliations where one set has likely a point whih is

very di�erent from all points of the other set as e.g. in Indutive

Logi Programming [11℄.

Sum of minimal distane measure Eiter and Mannila [5℄ disuss the

sum of minimal distanes similarity measure. It is de�ned as:

d(X;Y ) =

1

2

0

�

X

x2X

(min

y2Y

d(x; y)) +

X

y2Y

(min

x2X

d(x; y))

1

A

However, this is in general not a metri.
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Distanes based on optimal mappings. Eiter and Mannila [5℄ also

disuss a family of Manhattan measures between sets whih we an

desribe as instanes of the following sheme:

d

�

(A;B) = min

r2m

�

(A;B)

d(r;A;B)

where

d(r;A;B) =

2

4

X

(x;y)2r

d(x; y)

3

5

+

#(B n r(A)) + #(A n r

�1

(B))

2

:M

In this formula,m

�

is a funtion that maps eah pair (A;B) 2 2

X

�2

X

to a relation between A and B (a subset of A�B) andM is a onstant

(representing a large or the maximal possible distane between 2

points).

This means that one sums the distanes of the pairs of elements

whih are in r and adds a penalty M=2 for eah element that does

not math with an element from the other set.

The authors disuss three instantiations:

{ m

�

= m

s

with m

s

(A;B) the set of all surjetions from the larger

of A and B to the smaller of A and B (surjetion-measure d

s

).

{ m

�

= m

fs

with m

fs

(A;B) the set of all fair surjetions from the

larger of A and B to the smaller of A and B (fair surjetion-

measure d

fs

).

{ m

�

= m

l

with m

l

(A;B) the set of all linkings between A and B

(linking-measure d

l

).

They show that these similarity measures an be evaluated in polyno-

mial time. They are not metris as the triangle inequality is violated.

Note that d

�

agrees with d on singletons: 8x; y 2 X : d

�

(fag; fbg) =

d(a; b).

4 A metri based on optimal mathings

Using mathings (m

�

= m

m

with m

m

(A;B) the set of all mathings

between A and B) instead of surjetions, fair surjetions or linkings,

one obtains another instantiation of the shema presented in the pre-

vious setion:

d

m

(A;B) = min

r2m

m

(A;B)

d(r;A;B)

De�nition 12. A mathing r is optimal for the distane between A

and B i� d

m

(A;B) = d(r;A;B).
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The following two theorems are a orollary of theorems 7 and 8 in

setion 6.

Theorem 2. d

m

is a metri for M > 0.

Theorem 3. If the time to ompute the distane between two points

is bounded by T , then the time to ompute d

m

(A;B) is bounded by a

polynomial in #A, #B and T .

The interested reader an �nd a diret proof of these theorems in

[12℄.

5 Normalised mathing metri.

In some appliations (e.g. algorithms where the distane between

lusters shouldn't depend on the size of the objets) it is desirable

to work with normalised distanes i.e. distanes in the interval [0; 1℄.

Instane based learning systems suh as RIBL [7℄ and lustering al-

gorithms (e.g. agglomerative lustering algorithms using distanes).

make use of normalised similarity measures. Also here, a normalised

metri is preferable above a normalised similarity whih is not a met-

ri. In this setion we show how a normalised metri between points

an be extended to a normalised metri between point sets.

With normalisation, the maximal distane between two points is

1, so M an be set to 1 and the general formula for distanes between

sets an be simpli�ed into:

d

m

(A;B) =

X

(x;y)2m

AB

d(x; y) +

#(B nm

AB

(A)) + #(A nm

�1

AB

(B))

2

=

X

(x;y)2m

AB

d(x; y) +

#B +#A� 2#m

AB

2

(1)

where m

AB

is an optimal mathing for d

m

(A;B).

We de�ne:

d

m;n

(A;B) = if A = ; and B = ; then 0

else

2:d

m

(A;B)

d

m

(A;B)+(#A+#B)=2

(2)

Note that d

m;n

is normalised. Indeed, 0 � d

m

(A;B) � (#A +

#B)=2, hene 2:d

m

(A;B) � d

m

(A;B) + (#A+#B)=2.

Before proving that d

m;n

is a metri, we introdue size funtions

for point sets.
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De�nition 13 (size). Let U be a universe. A size is a funtion s :

2

U

! IR suh that 8X 2 2

U

: s(X) � 0 and 8X;Y 2 2

U

: (X \ Y =

;)) s(X [ Y ) = s(X) + s(Y ).

In the sequel we onsider sets in some universe U and a size fun-

tion s over U and use the notion of symmetri di�erene: A�B =

(A nB) [ (B n A).

Lemma 1.

s(A [B) = [s(A) + s(B) + s(A�B)℄=2

Proof: Applying the de�nitions we get s(A[B) = s(A) + s(B n

A) = s(B) + s(A nB). Hene 2s(A [B) = s(A) + s(B nA) + s(B) +

s(A n B) = s(A�B) + s(A) + s(B). 2

De�nition 14. �

s;n

(A;B) = if (A [B = ;) then 0 else

s(A�B)

s(A[B)

.

Theorem 4. �

s;n

is a normalised metri on 2

U

.

Proof:

0 � s(A�B) � s(A [ B) hene 0 � �

;n

(A;B) � 1. The other

properties are trivial exept the triangle inequality in ase that A, B

and C are non-empty.

�

s;n

(A;B) +�

s;n

(B;C)

=

s(A�B)

s(A [B)

+

s(B�C)

s(B [ C)

=

s((A \ C) n B) + s((A n C) n B) + s((B \ C) nA) + s((B n C) nA)

s(A n C) + s(B \C) + s((A \ C) nB) + s((B n C) n A)

+

s((A \ C) nB) + s((C n A) nB) + s((B \A) n C) + s((B n C) n A)

s(C n A) + s(B \A) + s((A \ C) n B) + s((B n C) n A)

�

s((A n C) n B) + s((B \C) n A)

s(A n C) + s(B \C)

+

s((C nA) n B) + s((B \A) n C)

s(C n A) + s(B \A)

�

s((A n C) n B) + s((B \C) n A)

s(A [ C)

+

s((C nA) n B) + s((B \A) n C)

s(A [ C)

�

s(A�C)

s(A [ C)

� �

s;n

(A;C)

2
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Lemma 2. Let X and Y be point sets. If sets A and B and size s

exist suh that s(A) = #X, s(B) = #Y and s(A�B) = 2d

m

(X;Y ),

then d

m;n

(X;Y ) =

s(A�B)

s(A[B)

= �

s;n

(A;B).

Proof:

We have d

m;n

(X;Y ) =

2d

m

(X;Y )

(#X+#Y )=2+d

m

(X;Y )

=

s(A�B)

[s(A)+s(B)+s(A�B)℄=2

.

From lemma 1, there follows d

m;n

(X;Y ) =

s(A�B)

s(A[B)

= �

s;n

(A;B). 2

Note that there does not exist a size suh that s(X) = #X, s(Y ) =

#Y and s(X�Y ) = 2d

m

(X;Y ), sine it is possible that X \ Y = ;,

hene s(X�Y ) = #X + #Y and at the same time 2d

m

(X;Y ) <

#X +#Y . This is the motivation for introduing sets A and B. The

following lemma shows that sets with the desired sizes exist.

Lemma 3. Let X

i

(i = 0; 1; 2 indies modulo 3) be point sets. There

exists a universe U , a size s : 2

U

! IR

+

and sets A

i

� U suh that

for all i; j, s(A

i

) = #X

i

and s(A

i

�A

j

) = 2d

m

(X

i

;X

j

).

Proof: It suÆes to show that s an assign non-negative values

to the elementary sets A

i

\A

i+1

\A

i+2

, (A

i

\A

i+1

) nA

i+2

and (A

i

n

A

i+1

)nA

i+2

, from whih the sets A

i

are omposed suh that the sizes

given in the lemma are satis�ed.

Let x

i

= #X

i

and d

i;j

= 2d

m

(X

i

;X

j

). Then, from equation 1 at

the beginning of this setion it follows that

jx

i

� x

j

j � d

i;j

� x

i

+ x

j

: (3)

Let y

i

=

1

2

(x

i

+x

i+1

�d

i;i+1

). These y

i

are nonnegative by equation

(3). Without loss of generality we an assume that the indies are

assigned suh that y

0

= minfy

0

; y

1

; y

2

g. Assign

s(A

i

\A

i+1

\A

i+2

) = y

0

s((A

i

\A

i+1

) n A

i+2

) = y

i

� y

0

These values are all nonnegative. It follows that s(A

i

\A

i+1

) = s(A

i

\

A

i+1

\A

i+2

) + s((A

i

\A

i+1

) nA

i+2

) = y

i

. To ensure that s(A

i

) = x

i

we assign

s((A

i

n A

i+1

) nA

i+2

) = x

i

� s(A

i

\A

i+1

)� s((A

i+2

\A

i

) n A

i+1

)

= x

i

� y

i

� (y

i+2

� y

0

)

=

1

2

(x

0

+ x

1

� d

0;1

� x

i+1

+ d

i;i+1

� x

i+2

+ d

i+2;i

)

These values should be nonnegative for i = 0; 1; 2.

i = 0 : s((A

0

nA

1

) nA

2

) =

1

2

(x

0

� x

2

+ d

2;0

) (by (3))

i = 1 : s((A

1

nA

2

) nA

0

) =

1

2

(x

1

� x

2

+ d

1;2

) (by (3))

i = 2 : s((A

2

nA

0

) nA

1

) =

1

2

(�d

0;1

+ d

2;0

+ d

1;2

) (d

m

is a metri)
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Finally, we know that s(A

i

�A

i+1

) = s(A

i

)+s(A

i+1

)�2s(A

i

\A

i+1

) =

x

i

+ x

i+1

� 2y

i

= d

i;i+1

). This ompletes the proof. 2

Theorem 5. d

m;n

is a normalised metri.

Proof:

Let X

i

(i = 0; 1; 2) be sets. By lemma 3, there exists a size s

and sets A

i

(i = 0; 1; 2) suh that s(A

i

) = #X

i

and s(A

i

�A

j

) =

2:d

m

(X

i

;X

j

) for i; j 2 f0; 1; 2g. Hene lemma 2 is appliable, i.e.

d

m;n

(X

i

;X

j

) = �

s;n

(A

i

; A

j

). By theorem 4, �

s;n

is a normalised

metri, hene also d

m;n

is a normalised metri. 2

Theorem 6. If d(a; b) is omputable in polynomial time, then d

m;n

(A;B)

is omputable in polynomial time.

Proof:

This follows from the fat that d

m

(A;B) is omputable in poly-

nomial time and that d

m;n

(A;B) an be omputed in onstant time

from d

m

(A;B).

6 Generalisation

A weakness of the measures presented so far is that the distane

between a large and a small set is largely determined by their di�er-

ene in ardinality (if #A� #B, then d(A;B) � (#A�#B):M=2).

By assoiating appropriate weights with the elements in the sets, it is

possible to generalize the notion of ardinality in a way suh that sets

of vastly di�erent ardinality an be saled appropriately. Weights

ould also be used to give di�erent importane to the members of a

set.

De�nition 15 (Weighting funtion). A funtionW : 2

X

! (X !

IR

+

) is a weighting funtion for X.

De�nition 16 (Size under weighting funtion). Let W be a

weighting funtion for X. Then the funtion size

W

: 2

X

! IR

+

is

de�ned as size

W

(A) =

P

a2A

W [A℄(a).

Example 1. The funtion W

1

with W

1

[A℄ = f(a; 1)ja 2 Ag is a

weighting funtion suh that for all objets A 2 2

X

, size

W

(A) = #A.

De�nition 17. Let X be a set and let W be a weighting funtion for

X. We de�ne Q

W

X

= max

A22

X

size

W

(A).
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a- b-

a

1

a

2

a

3

a

4

a

5

W [A℄(a

1

); 0)

t

W [B℄(b

1

); 0)

Q

W

X

� size

W

(B); 0)

(1; 0)

s

(Q

W

X

� size

W

(A); 0)

b

4

b

3

b

2

b

1

(1;M=2)

(1;M=2)

(1; d(a

1

; b

1

))

Fig. 1 A distane network

De�nition 18 (distane network). Let X be a set, and d a met-

ri on X. Let M be a onstant and let W be a weighting funtion

for X. Then for all �nite A;B 2 2

X

with A = fa

1

; : : : ; a

m

g and

B = fb

1

; : : : ; b

n

g, we de�ne a distane network between A and B for

d, M and W in X to be N [X; d;M;W;A;B℄ = N(V;E; ap; s; t; w)

with V = A[B[fs; t; a

�

; b

�

g, E = (fsg�(A[fa

�

g))[((B[fb

�

g)�

ftg)[ ((A[fa

�

g)� (B[fb

�

g)), 8a 2 A;8b 2 B : w(s; a) = w(b; t) =

w(s; a

�

) = w(b

�

; t) = w(a

�

; b

�

) = 0 ^ w(a; b) = d(a; b) ^ w(a

�

; b) =

w(a; b

�

) = M=2 and 8a 2 A;8b 2 B : ap(s; a) = W [A℄(a) ^

ap(b; t) = W [B℄(b) ^ ap(s; a

�

) = Q

W

X

� size

W

(A) ^ ap(b

�

; t) =

Q

W

X

�size

W

(B)^ap(a; b) = ap(a

�

; b) = ap(a; b

�

) = ap(a

�

; b

�

) =

1.

Note that the de�nition ofQ

W

X

ensures ap(s; a

�

) � 0 and ap(b

�

; t) �

0. Moreover, ap(s; a

�

)+

P

m

i=1

ap(s; a

i

) = ap(b

�

; t)+

P

n

i=1

ap(b

i

; t) =

Q

W

X

. Hene:

Proposition 1. The ow of a maximal ow minimal weight ow of

a distane network is Q

W

X

.

De�nition 19 (netow distane). Let X be a set, d a metri on

X, M a onstant, and W a weighting funtion for X. For all A;B 2
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2

X

, the netow distane from A to B under d, M and W in X,

denoted d

N

X;d;M;W

(A;B), is the weight of the minimal weight maximal

ow from s to t in N [X; d;M;W;A;B℄.

Proposition 2. With all the weights set to 1, the netow distane

d

N

X;d;M;W

(A;B) from A to B is equal to the distane from A to B

under the optimal mathing d

m

(A;B).

Proof:

We have 8a 2 A :W [A℄(a) = 1 and 8b 2 B : W [B℄(b) = 1.

Given a mathing r, one an de�ne a ow f as follows:

f(a

i

; b

�

) = if 9b

j

2 B : (a

i

; b

j

) 2 r then 0 else 1

f(a

�

; b

i

) = if 9a

i

2 A : (a

i

; b

j

) 2 r then 0 else 1

f(a

i

; b

j

) = if (a

i

; b

j

) 2 r then 1 else 0

One an easily verify that f is a maximal ow and that its weight is

equal to d(r;A;B) = d

m

(A;B). Hene d

m

(A;B) � d

N

X;d;M;W

(A;B)

Conversely, sine we have an integer ow network, there exists an

integer ow f whih is maximal and has minimal weight by theorem 1.

It an be easily veri�ed that there is a orresponding mathing r suh

that d(r;A;B) is equal to the weight of this ow. Hene d

m

(A;B) �

d

N

X;d;M;W

(A;B). 2

Notation 1 We use

X

i2f1::m;�g

expr

i

as abbreviation of

m

X

i=1

expr

i

+

expr

�

and d

N

as abbreviation of d

N

X;d;M;W

.

Theorem 7. The netow distane is a metri.

Proof: Using the notations of de�nition 18, we prove:

{ d

N

(A;A) = 0.

If B = A then a

i

= b

i

and d(a

i

; b

i

) = 0. With 0-weight ows from

s to a

i

to b

i

to t and from s to a to b to t , a 0-weight solution

is obtained so d

N

(A;A) = 0.

{ d

N

(A;B) = d

N

(B;A).

This follows from the fat that the solution of a minimal weight

maximal ow problem has the same weight as the solution ob-

tained when the soure and sink are reversed.

{ d

N

(A;B) + d

N

(B;C) � d

N

(A;C)

Figure 2 is the distane network between A and B followed by the

distane network between B and C. For the latter, the nodes have

been renamed into b

0

1

; : : : ; b

0

. d

N

(A;B) + d

N

(B;C) is the weight

of the solution of the minimal weight maximal ow problem in
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this �gure. Similarly, d

N

(A;C) is the weight of the solution of the

minimal weight maximal ow problem in �gure 3.

We now prove that for eah ow f

1

in the network of �gure 2,

there exists a ow f

2

in the network of �gure 3 that has the same

total ow and has a smaller or equal weight.

Consider a ow f

1

in �gure 2. Then, let

{ f

2

(s

�

; a

�

i

) = f

1

(s; a

i

), f

2

(s

�

; a

�

�

) = f

1

(s; a

�

), f

2

(

�

i

; t

�

) = f

1

(

i

; t)

and f

2

(

�

�

; t

�

) = f

1

(

�

; t).

{ f

2

(a

�

i

; 

�

k

) =

P

j2f1::n;�g

f

1

(a

i

;b

j

):f

1

(b

0

j

;

k

)

TB

j

where

TB

j

=

P

i2f1::m;�g

f

1

(a

i

; b

j

)

First we prove a property of TB

j

:

TB

j

=

P

i2f1::m;�g

f

1

(a

i

; b

j

)

= f

1

(b

j

; r) (ontinuity in b

j

)

= ap(b

j

; r) (saturated to reah flow Q

W

X

)

= ap(r; b

0

j

) (by onstrution)

= f

1

(r; b

0

j

) (saturated to reah flow Q

W

X

)

=

P

k2f1::r;�g

f

1

(b

0

j

; 

k

) (ontinuity in b

0

j

)

Next we verify that f

2

is a ow for the network in �gure 3. The

non-trivial part is the ontinuity in a

�

i

and 

�

k

. In a

�

i

:

X

u

f

2

(u; a

�

i

)�

X

u

f

2

(a

�

i

; u)

= f

2

(s

�

; a

�

i

)�

X

k2f1::r;�g

f

2

(a

�

i

; 

�

k

)

= f

1

(s; a

i

)�

X

k2f1::r;�g

X

j2f1::n;�g

f

1

(a

i

; b

j

):f

1

(b

0

j

; 

k

)

TB

j

= f

1

(s; a

i

)�

X

j2f1::n;�g

f

1

(a

i

; b

j

):

P

k2f1::r;�g

f

1

(b

0

j

; 

k

)

TB

j

= f

1

(s; a

i

)�

X

j2f1::n;�g

f

1

(a

i

; b

j

)

= 0

The ontinuity in 

�

k

an be veri�ed similarly.

The value of f

2

is Q

W

X

, hene f

2

is a maximal ow. Finally we

show that f

2

has a weight smaller or equal to the weight of f

1

. We

have

w(f

2

) =

X

i2f1::m;�g

X

k2f1::r;�g

f

2

(a

�

i

; 

�

k

)w(a

�

i

; 

�

k

)
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r



1



�

b

1

b

n

b

�

b

0

�

t



r

s

a

1

b

0

1

b

0

n

a

�

a

m

Fig. 2 Network for d

N

(A;B) + d

N

(B;C)

=

X

i2f1::m;�g

X

k2f1::r;�g

X

j2f1::n;�g

f

1

(a

i

; b

j

):f

1

(b

0

j

; 

k

)

TB

j

w(a

�

i

; 

�

k

)

(sine w(a

�

i

; 

�

k

) = d(a

�

i

; 

�

k

) � d(a

i

; b

j

) + d(b

0

j

; 

k

)

= w(a

i

; b

j

) + w(b

0

j

; 

k

))

�

X

i2:::

X

k2:::

X

j2:::

f

1

(a

i

; b

j

):f

1

(b

0

j

; 

k

)

TB

j

[w(a

i

; b

j

) + w(b

0

j

; 

k

)℄

=

X

i2f1::m;�g

X

k2f1::r;�g

X

j2f1::n;�g

f

1

(a

i

; b

j

):f

1

(b

0

j

; 

k

)

TB

j

w(a

i

; b

j

)

+

X

i2f1::m;�g

X

k2f1::r;�g

X

j2f1::n;�g

f

1

(a

i

; b

j

):f

1

(b

0

j

; 

k

)

TB

j

w(b

0

j

; 

k

)

=

X

i2f1::m;�g

X

j2f1::n;�g

f

1

(a

i

; b

j

)w(a

i

; b

j

)

+

X

k2f1::r;�g

X

j2f1::n;�g

f

1

(b

0

j

; 

k

)w(b

0

j

; 

k

)

= w(f

1

)

This proves the theorem. 2

Theorem 8. If W has integer values, then d

N

X;d;M;W

(A;B) an be

omputed in polynomial time in size

W

(A) and size

W

(B).

Proof: The weights and apaities of the graph of the minimal

weight maximal ow problem assoiated with this metri an be om-

puted in #A:#B time. These numbers are all integers. The minimal

weight maximal ow problem an be solved in polyniomial time in

size

W

(A) and size

W

(B) [10℄. This proves the theorem. 2
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s

�

a

�

1

a

�

m

a

�

�



�

�

t

�



�

1



�

r

Fig. 3 Network for d

N

(A;C)

Example 2. Assume one has to hoose among a number of 7 element

sets the one most representative for a 100 element set B. Without

weights, only the best 7 elements of B will determine the outome.

Using a weight 14 (or 15) for the elements in the 7-element sets, an

element of the small set an math up to 14 (or 15) elements in B and

98 (or all) elements of B will inuene the distane to a partiular

7-element set. So one an expet a muh better representative.

Corollary 1. d

m

is a metri (theorem 2) and omputable in polyno-

mial time (theorem 3).

Proof: This follows diretly from proposition 2, theorem 7 and

theorem 8 2

7 Appliations

As mentioned earlier, metris between point sets have appliations in

many areas. In this setion we present some results from appliations

in mahine learning.

7.1 The Diterpenes dataset

The diterpenes database (see [4℄) desribes 1503 diterpenes, whih are

organi ompounds of low moleular weight with a skeleton of 20 ar-

bon atoms. They are of signi�ant hemial and ommerial interest

beause of their use as lead ompounds in the searh for new pharma-

eutial e�etors. A ommon problem is to determine the struture

of these diterpenes. Among other methods, one possibility is to get
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information from NMR (nulear magneti resonane) spetra. The

interpretation of these spetra normally requires speialists with de-

tailed knowledge on peak patterns and hemial strutures. There-

fore, the use of mahine learning methods to predit the struture of

diterpenes ould save osts.

Here, instane based learning will be used, whih is a mahine

learning method that depends on the existene of a distane. The

method takes as input a set of training examples of diterpene NMR

spetra and the orresponding skeleton types (in this database, there

are 23 di�erent types). The type of new, unknown, diterpenes is pre-

dited by omparing them to the set of known examples and predit-

ing the same lass as the nearest (most similar) training example. The

nearest example is determined by measuring the distane between the

unknown example and the training examples and hoosing the smal-

lest one.

The desription of eah diterpene onsists of a set of peak frequen-

ies together with their multipliities. So, we are onsidering sets of

points where eah \point" is a tuple (frequeny, multipliity). For the

distane between the points we use the eulidean metri.

The table below shows the results of our experiments on this data-

set for some di�erent instantiations of the shema given in setion 3

and also the results obtained by other mahine learning systems as

reported in [4℄. For all systems, the auray is based on a tenfold

rossvalidation. This means the dataset is divided in ten parts. In

eah of the ten runs of the algorithm one of these parts is the test set

and the other parts are the training set. The reported result is then

the average of the test auray for all runs.

System Auray

FOIL 78.3%

RIBL 91.2%

TILDE 90.4%

ICL 86.0 %

IBL - mathings 93.5%

IBL - linkings 85.0%

IBL - hausdor� 83.5%

IBL - surjetions 84.4%

IBL - fair surjetions 84.5%

As an be seen from the table, instane based learning using

mathing distanes not only performs better than instane based

learning with other distanes but also better than other mahine

learning methods.
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7.2 The Musk dataset

The musk dataset is desribed in [3℄. This dataset desribes a set

of 102 moleules whih are judged by human experts to be musks

or non-musks. Eah example is a set of 166-tuples. Eah 166-tuple

orresponds to one of the possible onformations of the moleule. We

did a tenfold rossvalidation using di�erent methods. We used an

eulidian metri between the points (166-tuples). The following table

summarizes the results. Also, the results of some other algorithms are

inluded (see [3℄).

iterated-disrim APR 92.4

all-positive APR 80.4

bakpropagation 75.0

C4.5 (pruned) 68.5

IBL - mathings 88%

IBL - hausdor� 82%

IBL - linkings 79%

IBL - surjetions 85%

IBL - fair surjetions 49%

Again, our metri based on mathings gives the best results for

instane based learning. Only Iterated-Disrim APR gives better res-

ults. The latter is an algorithm that searhes axis parallel retangle

hypotheses, using the extra knowledge that an example is musk i�

the 166-tuple of one of its onformations is in an (unknown) hyper-

retangle. C4.5, bakpropagation and IBL did not make use of this

information.

8 Summary

This paper studies the problem of extending a metri between points

to a metri on the spae of (�nite) sets of points. A measure based

on optimal mathings was proposed and was proven to be a metri.

It was shown that this metri an be omputed in polynomial time in

the size of its arguments. Next, a normalised version of this metri,

also omputable in polynomial time, was proposed. Also, a variant

was developed whih assoiates weights with the points in a set. It is

better suited to measure distanes when the involved sets have very

di�erent ardinalities.

Finally, we have reported on two experiments in the mahine learn-

ing area. They show that our metri gives substantially better results

than the use of other similarity measures. Moreover, our results are

better than those obtained with several learning algorithms based on
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other priniples. This shows that the proposed metri is not only of

theoreti interest and supports the intuition that a good metri is

preferable above a similarity measure.
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