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Abstract. Measuring the similarity or distance between two sets of
points in a metric space is an important problem in machine learning
and has also applications in other disciplines e.g. in computational
geometry, philosophy of science, methods for updating or changing
theories, . ... Recently Eiter and Mannila have proposed a new meas-
ure which is computable in polynomial time. However, it is not a
distance function in the mathematical sense because it does not sat-
isfy the triangle inequality.

We introduce a new measure which is a metric while being comput-
able in polynomial time. We also present a variant which computes a
normalised metric and a variant which can associate different weights
with the points in the set.

1 Introduction

In many applications it is desirable to measure the similarity or dif-
ference between objects i.e. to express it by a single numeral. Ideally
such a measure has the properties of a metric:

Definition 1 (metric). Given a nonempty set of objects O, a metric
d is a mapping O x O = R™ such that for all z, y, z € O:

1. d(z,y) =0z =y,
2. d(z,y) = d(y,z) (symmetry),
3. d(z,z) < d(z,y) +d(y, z) (triangle inequality).
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In the sequel, measures which satisfy only the first two properties are
called similarity measures.

The problem we study is the following: given some set X and a
metric d on X, how can we extend d into a metric on the set of all
(finite) subsets of X.

Distances between composed objects and between sets of objects
have applications in many domains such as cluster analysis (e.g. TIC
2], KBG [1]), computational geometry [8], machine learning (e.g. [9,
ch.4], RIBL [6]), ....

Existing proposals for measures between point sets all have some
problems: some are trivial and not very well suited for applications
(e.g. the Hausdorff metric), others do not satisfy all the properties of
metrics (e.g. the similarity measures in [5]).

In this paper we present a measure between point sets which is
a metric while avoiding the drawbacks of the Hausdorff metric. We
show that it is computable in polynomial time.

Some elementary notions about binary relations and basic defin-
itions about flow networks are recalled in section 2. The latter will
be used to prove that our metric is computable in polynomial time.
The Hausdorff metric and the similarity measures discussed by Either
and Mannila [5] are reviewed in section 3. Some of the latter are con-
cisely presented as instances of a novel general schema. In section
4, we introduce another instance of this general schema and prove
that it is a metric (satisfying the triangle inequality) and computable
in polynomial time. We develop a normalised metric in section 5. A
generalisation of the metric which associates weights with the points
in the set and which is better suited to measure the distance between
sets of very different sizes is developed in section 6. In section 7 some
applications from the machine learning area are discussed. We end
with a brief summary in section 8.

This paper is an extension of some of the material in [11].

2 Preliminaries

Let #S denote the cardinality of a set S; |n| denotes the absolute
value of a number n; for a relation f C A x B, f(x) denotes the set

{yl(z,y) € f}, f(S) denotes the set {y|lz € SA(z,y) € [}, #[(A) is
abbreviated as #f and f ! denotes the relation {(y,z)|(z,y) € f}.

Definition 2. A relation f C A x B between two finite sets A and B
is a surjection from A onto B if ¥(a,b),(c,d) € f:(a=c=b=d)
and Vb € B,3a € A : (a,b) € f. A surjection f from A onto B
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is fair if Va,y € B : [#(f"Ha}) — #(f " HyD| < 1, so | maps
the elements of A on elements of B as evenly as possible. A linking
f € A x B is a relation such that Ya € A,3b € B : (a,b) € f and
Vb € B,3a € A: (a,b) € f, so all elements of A are associated with
at least one of B and vice versa. A matching f between A and B is
a relation such that ¥(a,b),(c,d) € f : (a = ¢ & b = d), so each
element of A is associated with at most one element of B and vice
versa. A maitching f between A and B is maximal if there is no
(a,b) € Ax B\ f such that f U{(a,b)} is a matching between A and
B. A perfect matching is a mazimal matching between two sets of
equal cardinality.

Finally, we recall some definitions on transport networks from [13].

Definition 3 (indegree and outdegree). If (V, E) is a directed
graph andv € V, then degin (v) = #{z € V|(z,v) € E} and degou(v) =
#{zx € V|(v,z) € E}.

Definition 4 (transport network). N(V,E, cap,s,t) is called a
transport network iff (V, E) is a loop-free connected finite directed
graph with s,t € V', degin(s) = 0, degout(t) = 0 and cap is a function
cap: E — R".

Definition 5 (weighted transport network). N(V, E, cap, s, t, w)
is a called a weighted transport network iff N(V, E, cap,s,t) is a
transport network and w is a function w: E — IR™.

Definition 6 (flow). If N(V, E, cap, s,t,w) is a weighted transport
network, then a function f from E to IR is a flow for N iff

—VYee E: f(e) < caple).

- Yo € V\{s,t} : Y,cvflv,u) = X,cv f(u,v) (if there is no
edge (v,u) € E, then f(v,u) = 0). This is called the continuity

property.

Definition 7 (value of a flow). If f is a flow for N(V, E, cap, s, t, w),
then val(f) = Y ,cv f(s,v) = X ,cv f(v,t) is called the value of f.

Definition 8 (weight of a flow). If f is a flow for N(V, E, cap, s, t, w),
then the weight of f is w(f) = > .cpw(e).f(e).

Definition 9 (maximal flow minimal weight flow). If f is a
flow for N(V, E,cap,s,t,w), then f is called a mazimal flow if for
all flows f' for N, val(f") < val(f) and f is called a mazimal flow
minimal weight flow iff for all mazimal flows f' for N, w(f') > w(f).
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Definition 10 (integer flow). If f is a flow for N(V, E, cap, s,t,w),
then f is called an integer flow iff for all edges (a,b) € E, f(a,b) is
an integer.

Definition 11 (integer flow network). If N(V, E, cap, s,t,w) is a
weighted transport network, then N is called an integer flow network
iff for all edges (a,b) € E, cap(a,b) is an integer.

In [10] the following theorem is proved:

Theorem 1. If N(V, E, cap, s,t,w) is an integer flow network then
there is a mazimal flow minimal weight flow f for N such that f is
an integer flow.

3 Distances between sets of points

In this section we discuss some existing distance measures between
sets of points.

The Hausdorff metric Well known is the Hausdorff metric. Given X,
a set of points, and d, a metric between points, dj, : 2% x 2X¥ - R is
defined as:

dn(A, B) = max <Igl€aj( (min{d(a, b)|b € B}) , max (min{d(a,b)|a € A}))

While this function has all the properties of a metric, it does not
take into account much information about the points in the sets (it is
determined by the distance of the most distant element of both sets
to the nearest neighbour in the other set). This makes this metric
unsuited for applications where one set has likely a point which is
very different from all points of the other set as e.g. in Inductive
Logic Programming [11].

Sum of minimal distance measure Eiter and Mannila [5] discuss the
sum of minimal distances similarity measure. It is defined as:

zeX yey

AXY) = (Z (mipd, ) + Z(gggd(x,y»)

However, this is in general not a metric.
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Distances based on optimal mappings. Eiter and Mannila [5] also
discuss a family of Manhattan measures between sets which we can
describe as instances of the following scheme:

d°(A,B) = min d(r, A,B)
remP(A,B)

where

d(r, A, B) = { ) d(:z:,y)} + HEATA) +#AN T (B)
(

z,Y)Er

M

In this formula, m? is a function that maps each pair (4, B) € 2% x2¥
to a relation between A and B (a subset of Ax B) and M is a constant
(representing a large or the maximal possible distance between 2
points).

This means that one sums the distances of the pairs of elements
which are in r and adds a penalty M/2 for each element that does
not match with an element from the other set.

The authors discuss three instantiations:

— mP = m* with m*(A, B) the set of all surjections from the larger
of A and B to the smaller of A and B (surjection-measure d*).

— mP = m/* with m/9(A, B) the set of all fair surjections from the
larger of A and B to the smaller of A and B (fair surjection-
measure d/*).

— mP = m! with m!(A, B) the set of all linkings between A and B
(linking-measure d').

They show that these similarity measures can be evaluated in polyno-
mial time. They are not metrics as the triangle inequality is violated.
Note that d® agrees with d on singletons: Vz,y € X : d?({a}, {b}) =
d(a,b).

4 A metric based on optimal matchings

Using matchings (m? = m™ with m™(A, B) the set of all matchings
between A and B) instead of surjections, fair surjections or linkings,
one obtains another instantiation of the schema presented in the pre-
vious section:
d™(A,B)= min d(r, A, B)
rem™(A,B)

Definition 12. A matching r is optimal for the distance between A
and B iff d"(A, B) = d(r, A, B).
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The following two theorems are a corollary of theorems 7 and 8 in
section 6.

Theorem 2. d™ is a metric for M > 0.

Theorem 3. If the time to compute the distance between two points
is bounded by T, then the time to compute d"™(A, B) is bounded by a
polynomial in #A, #B and T.

The interested reader can find a direct proof of these theorems in
[12].

5 Normalised matching metric.

In some applications (e.g. algorithms where the distance between
clusters shouldn’t depend on the size of the objects) it is desirable
to work with normalised distances i.e. distances in the interval [0, 1].
Instance based learning systems such as RIBL [7] and clustering al-
gorithms (e.g. agglomerative clustering algorithms using distances).
make use of normalised similarity measures. Also here, a normalised
metric is preferable above a normalised similarity which is not a met-
ric. In this section we show how a normalised metric between points
can be extended to a normalised metric between point sets.

With normalisation, the maximal distance between two points is
1, so M can be set to 1 and the general formula for distances between
sets can be simplified into:

#(B \ map(A)) + #(A\ myp(B))

d™(A,B)= Y dz,y)+

(xay)emAB B A 2 2
(zy)€Eman

where m 4p is an optimal matching for d™(A, B).
We define:

d™"(A,B) = if A=0and B =0 then 0
; 2.d™(A,B) (2)
CSC TTABHFATHB)2

Note that d"™™ is normalised. Indeed, 0 < d™(A,B) < (#A4 +
#B)/2, hence 2.d™(A, B) < d™(A, B) + (#A + #B)/2.

Before proving that d™" is a metric, we introduce size functions
for point sets.
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Definition 13 (size). Let U be a universe. A size is a function s :
2V 5 R such that VX € 2V : 5(X) > 0 and VX,Y €2V : (X NY =
0)=s(XUY)=s(X)+sY).

In the sequel we consider sets in some universe U and a size func-
tion s over U and use the notion of symmetric difference: AAB =

(A\ B)U(B\ A).
Lemma 1.
s(AUB) =[s(A) + s(B) + s(AAB)]/2

PROOF: Applying the definitions we get s(AU B) = s(A) + s(B'\
A) = s(B)+s(A\ B). Hence 2s(AUB) = s(A) + s(B\ A) + s(B) +
s(A\ B) = s(AAB) + s(A) + s(B). 2

Definition 14. A, (A, B) = if (AUB = 0) then 0 else 24520,

Theorem 4. A, is a normalised metric on 2V,

PROOF:

0 < s(AAB) < s(AU B) hence 0 < A, (A4, B) < 1. The other
properties are trivial except the triangle inequality in case that A, B
and C' are non-empty.

Asn(A,B) + As (B, C)
s(AAB)  s(BAC)

S(AUB) T 5(BUC)
s(ANC)\ B) +s((A\C)\ B) +s((BNC)\ A) +s((B\C)\ 4)

sS(A\NC)+s(BNC)+s((ANC)\B)+s((B\C)\ A)

s(ANC)\B) +s(C\A)\B) +s(BNA)\C) +s((B\C) \ 4)

sS(C\A) +s(BNA) +s(ANC)\ B) +s((B\C)\ A)

s(ANO)\B)+s((BNC)\A)  s((C\A)\B)+s((BNA)\C)
s(A\C)+s(BNQC) s(C\ A)+s(BNA)
S SANONB) +s((BNO)NA) | s((CNA)\B) +s((BNA)\ C)
= s(AUC) s(AUC)
s(AAQ)
> 2NV
~s(AUC
> Asn(A,C)
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Lemma 2. Let X and Y be point sets. If sets A and B and size s
exist such that s(A) = #X, s(B) = #Y and s(AAB) = 2d™(X,Y),

then d™"(X,Y) = 2550 = A, (4, B).

PROOF:

m,n _ 2d™ (XY _ AAB
We have d™"(X,Y) = (#X+#Y)52+d7)”(X,Y) = [s(A)+st(3)+s(3mB)}/2-

From lemma 1, there follows d™"(X,Y) = % = A;n(A,B). 2

Note that there does not exist a size such that s(X) = #X, s(Y) =
#Y and s(XAY) = 2d™(X,Y), since it is possible that X NY = (),
hence s(XAY) = #X + #Y and at the same time 2d™(X,Y) <
#X + #Y. This is the motivation for introducing sets A and B. The

following lemma shows that sets with the desired sizes exist.

Lemma 3. Let X; (i =0,1,2 indices modulo 3) be point sets. There
ezists a universe U, a size s : 2V — IR and sets A; C U such that
for all i, j, s(A;) = #X; and s(A;AA;) = 2d™(X;, X;).

ProOOF: Tt suffices to show that s can assign non-negative values
to the elementary sets A; N A; 11 NAjre, (A;NAi11)\ Ajp2 and (A4; )\
Ait1)\ Ajt2, from which the sets A; are composed such that the sizes
given in the lemma are satisfied.

Let z; = #X; and d; ; = 2d™(X;, X;). Then, from equation 1 at
the beginning of this section it follows that

|:l?¢ — Ij| < di’j <z + xj. (3)

Let y; = %($i+$i+1 —d;;t1). These y; are nonnegative by equation
(3). Without loss of generality we can assume that the indices are
assigned such that yo = min{yo,y1,y2}. Assign

S(AZ N Ai+1 N Ai+2) = Yo
s((Ai N Ai1) \ Ait2) = yi — Yo

These values are all nonnegative. It follows that s(A;NA; 1) = s(4;N
AN Ai+2) + S((AZ N Ai+1) \Ai+2) = y;. To ensure that S(AZ) =x;
we assign
s((Ai \ Aip1) \ Aige) = 27 — s(Ai N Aigr) — s((Aiva N Ag) \ Aigr)

=z — Yi — (Yit2 — Yo)

1
= 5(5170 + 21 —doi — Zig1 + diip1 — Tipo + digo;)

These values should be nonnegative for = 0, 1, 2.

i=0:5((Ag\ A1)\ A2) = L(z0 — z2 + day) (by (3))
i=1:5((A1\ A2) \ Ao) = 2(z1 — 29 + d19) (by (3))
i=2:5((A2\ Ag) \ A1) = 5(—do,1 + dap + di12) (d™ is a metric)
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Finally, we know that s(A4; AA; 1) = s(A4;)+s(Air1)—2s(AiNAi41) =
zi + Tiy1 — 2y; = d;;y1). This completes the proof. 2

Theorem 5. d™" is a normalised metric.

PROOF:

Let X; (i = 0,1,2) be sets. By lemma 3, there exists a size s
and sets A; (i = 0,1,2) such that s(4;) = #X; and s(4;A4;) =
2.d™(X;, X;) for 4,5 € {0,1,2}. Hence lemma 2 is applicable, i.e.
d™™(X;, X;) = Asn(Ai, Aj). By theorem 4, Ay, is a normalised
metric, hence also d™"™ is a normalised metric. 2

Theorem 6. Ifd(a,b) is computable in polynomial time, then d™" (A, B)
1s computable in polynomial time.

PROOF:

This follows from the fact that d™(A, B) is computable in poly-
nomial time and that d™"(A, B) can be computed in constant time
from d™(A, B).

6 Generalisation

A weakness of the measures presented so far is that the distance
between a large and a small set is largely determined by their differ-
ence in cardinality (if #A > #B, then d(A, B) =~ (#A—#B).M/2).
By associating appropriate weights with the elements in the sets, it is
possible to generalize the notion of cardinality in a way such that sets
of vastly different cardinality can be scaled appropriately. Weights
could also be used to give different importance to the members of a
set.

Definition 15 (Weighting function). A function W : 2% — (X —
IR™) is a weighting function for X.

Definition 16 (Size under weighting function). Let W be a
weighting function for X. Then the function sizey : 2X — IRT is
defined as sizew (A) = > ,ca W[A](a).

Ezample 1. The function W; with Wi[4] = {(a,1)la € A} is a
weighting function such that for all objects A € 2%, sizey (A) = #A.

Definition 17. Let X be a set and let W be a weighting function for
X. We define Q¥ = max 4cox sizew (A).
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Fig. 1 A distance network

Definition 18 (distance network). Let X be a set, and d a met-
ric on X. Let M be a constant and let W be a weighting function
for X. Then for all finite A,B € 2% with A = {a1,...,an,} and
B = {by,...,b,}, we define a distance network between A and B for
d, M and W in X to be N[X,d,M,W,A,B] = N(V,E,cap,s,t,w)
with V. = AUBU{s,t,a_,b_}, E = ({s} x (AU{a-}))U((BU{b_}) x
{tHUu((Au{a_}) x (BU{b_})), Va € A,¥b € B : w(s,a) = w(b,t) =
w(s,a—) = w(b_,t) = w(a—,b—) = 0 Aw(a,b) = d(a,b) N w(a_,b)
w(a,b_) = M/2 and Ya € ANb € B : cap(s,a) = W[A](a)
cap(b,t) = W[B](b) A cap(s,a_) = Q%W — sizew (A) A cap(b_, 1)
QY —sizew (B) Acap(a,b) = cap(a_,b) = cap(a,b_) = cap(a—,b_)
00.

> 1

Note that the definition of Q% ensures cap(s,a_) > 0 and cap(b_,t) >
0. Moreover, cap(s,a_)+Y iz, cap(s,a;) = cap(b_, t)+> i, cap(b;,t) =
QY. Hence:

Proposition 1. The flow of a mazimal flow minimal weight flow of
a distance network is QY .

Definition 19 (netflow distance). Let X be a set, d a metric on
X, M a constant, and W a weighting function for X. For all A, B €
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2X | the netflow distance from A to B under d, M and W in X,
denoted d%’d’M’W(A, B), is the weight of the minimal weight mazimal
flow from s to t in N[X,d, M,W, A, B].

Proposition 2. With all the weights set to 1, the netflow distance
d%’d’M’W(A,B) from A to B is equal to the distance from A to B
under the optimal matching d™ (A, B).

PrOOF:
We have Va € A : W[A](a) =1 and Vb € B : W[B](b) = 1.
Given a matching r, one can define a flow f as follows:

f(ai,b=) = if 3b; € B : (a;,b;) € r then 0 else 1
fla—,b;) = if Ja; € A: (a;,bj) € r then 0 else 1
f(ai,b;) = if (a;,b;) € r then 1 else 0

One can easily verify that f is a maximal flow and that its weight is
equal to d(r, A, B) = d™(A, B). Hence d™(A, B) < d¥ ; 1, w(A, B)
Conversely, since we have an integer flow network, there exists an
integer flow f which is maximal and has minimal weight by theorem 1.
It can be easily verified that there is a corresponding matching r such
that d(r, A, B) is equal to the weight of this flow. Hence d™ (A, B) >
d% g a1 (4, B). 2

m
Notation 1 We use Z expr; as abbreviation of Zeﬁvpri +
ie{l.m,—} i=1
expr— and dN as abbreviation of d%,d,M,W'

Theorem 7. The netflow distance is a metric.

ProOF: Using the notations of definition 18, we prove:

— dV(A,A) =0.
If B = A then a; = b; and d(a;, b;) = 0. With 0-weight flows from
s to a; to b; to t and from s to a_ to b_ to t , a 0-weight solution
is obtained so d" (4, A) = 0.

— dN(A,B) = dV (B, A).
This follows from the fact that the solution of a minimal weight
maximal flow problem has the same weight as the solution ob-
tained when the source and sink are reversed.

— dN(A,B) +dN(B,C) > dV(A4,0)
Figure 2 is the distance network between A and B followed by the
distance network between B and C. For the latter, the nodes have
been renamed into b}, ...,b.". dV (A, B) + d™ (B, C) is the weight
of the solution of the minimal weight maximal flow problem in
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this figure. Similarly, d™ (A, C) is the weight of the solution of the

minimal weight maximal flow problem in figure 3.

We now prove that for each flow f; in the network of figure 2,

there exists a flow fo in the network of figure 3 that has the same

total flow and has a smaller or equal weight.

Consider a flow f; in figure 2. Then, let

= fals™.a)) = fi(s,ai), f2(s*,a2) = fi(s,a-), fa(c], t7) = fi(cist)
and f2(8*—7t*) = fl(c—at)'

x % fi(aisbj)-f1(b}.cx)
= falaf, k) = Xjcin-y W where

TBJ = ZiE{l..m,f} fl(a’ia b])
First we prove a property of T'B;:

TBj = Yief1..m,—} f1(ai, bj)

= fi(bj,7) (continuity in b;)
= cap(b;,r) (saturated to reach flow QYY)
= cap(r, b;) (by construction)
= fi(r,b}) (saturated to reach flow QW)
= Zke{l..r,—} fl(b;-,ck) (continuity in b;)

Next we verify that fo is a flow for the network in figure 3. The
non-trivial part is the continuity in o and cj. In a;:

> Falusaf) =3 fola, u)
= fo(s*,a)) = D falaf,cp)
ke{l..r,—}

= fi(s,a;) — fl(ai’bézg%(bj,%)
ke{l.r,—} je{l.m,~} j

= fils,ai) = Y filai,by)- Zk;{l;-:r,} f1(85, k)
je{l..n,—} J

= fi(s,ai) — Z f1(ai,bj)

je{l.n,—}

=0

The continuity in ¢j can be verified similarly.

The value of fo is QY , hence f2 is a maximal flow. Finally we
show that fy has a weight smaller or equal to the weight of f;. We
have

wif) = ) Y. fla],wai,cp)

ie{l.m,~} ke{l.r,—}
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a1 b1 bll C1
’
s r by, Cr
~
U, b
’
a._ b b— C_

Fig. 2 Network for d” (A, B) +d" (B, C)

ai,b;).f1(b;, ¢
-y oy oy Ml Al

ie{l.m,—} ke{l.r,—}je{l.n,—}
(Since w(a');a C);;) = d(a');v Clt:) < d(aia b]) + d(b;, Ck)
= ’UJ(GZ', b) + ’UJ(b;, Ck))
fl a; 7 fl (b 7Ck)
< Z Z Z . ! [w(azabj) + w(bg'ack)]

i€...kE... JE..

ai,b;).f1(b, ¢
S SR SR AL JT);;(J D (as )

ie{l.m,—} ke{l.r,—}je{l.n,—}

ai,b;).f1(b;, ¢
+ Y > > fil JJZB{;(] k)w(},ag)

ie{l.m,—} ke{l.r,—} je{l.n,—}

= Z Z fiai,b ) (ai,b )

ie{l.m,—} je{l.n,—}

+ o> A a)w(be)

ke{l.r,—}je{l.n,—}

= w(/f1)
This proves the theorem. 2

Theorem 8. If W has integer values, then dXdMW(A B) can be
computed in polynomial time in szzeW(A) and sizeyw (B).

PrOOF: The weights and capacities of the graph of the minimal
weight maximal flow problem associated with this metric can be com-
puted in #A.#B time. These numbers are all integers. The minimal
weight maximal flow problem can be solved in polyniomial time in
sizew (A) and sizew (B) [10]. This proves the theorem. 2
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ay X
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K
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*
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*
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Fig. 3 Network for d¥ (A, C)

Ezample 2. Assume one has to choose among a number of 7 element
sets the one most representative for a 100 element set B. Without
weights, only the best 7 elements of B will determine the outcome.
Using a weight 14 (or 15) for the elements in the 7-element sets, an
element of the small set can match up to 14 (or 15) elements in B and
98 (or all) elements of B will influence the distance to a particular
7-element set. So one can expect a much better representative.

Corollary 1. d™ is a metric (theorem 2) and computable in polyno-
mial time (theorem 3).

ProOOF: This follows directly from proposition 2, theorem 7 and
theorem 8 2

7 Applications

As mentioned earlier, metrics between point sets have applications in
many areas. In this section we present some results from applications
in machine learning.

7.1 The Diterpenes dataset

The diterpenes database (see [4]) describes 1503 diterpenes, which are
organic compounds of low molecular weight with a skeleton of 20 car-
bon atoms. They are of significant chemical and commercial interest
because of their use as lead compounds in the search for new pharma-
ceutical effectors. A common problem is to determine the structure
of these diterpenes. Among other methods, one possibility is to get
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information from NMR (nuclear magnetic resonance) spectra. The
interpretation of these spectra normally requires specialists with de-
tailed knowledge on peak patterns and chemical structures. There-
fore, the use of machine learning methods to predict the structure of
diterpenes could save costs.

Here, instance based learning will be used, which is a machine
learning method that depends on the existence of a distance. The
method takes as input a set of training examples of diterpene NMR,
spectra and the corresponding skeleton types (in this database, there
are 23 different types). The type of new, unknown, diterpenes is pre-
dicted by comparing them to the set of known examples and predict-
ing the same class as the nearest (most similar) training example. The
nearest example is determined by measuring the distance between the
unknown example and the training examples and choosing the smal-
lest one.

The description of each diterpene consists of a set of peak frequen-
cies together with their multiplicities. So, we are considering sets of
points where each “point” is a tuple (frequency, multiplicity). For the
distance between the points we use the euclidean metric.

The table below shows the results of our experiments on this data-
set for some different instantiations of the schema given in section 3
and also the results obtained by other machine learning systems as
reported in [4]. For all systems, the accuracy is based on a tenfold
crossvalidation. This means the dataset is divided in ten parts. In
each of the ten runs of the algorithm one of these parts is the test set
and the other parts are the training set. The reported result is then
the average of the test accuracy for all runs.

System Accuracy
FOIL 78.3%
RIBL 91.2%
TILDE 90.4%
ICL 86.0 %
IBL - matchings 93.5%
IBL - linkings 85.0%
IBL - hausdorff 83.5%
IBL - surjections 84.4%
IBL - fair surjections 84.5%

As can be seen from the table, instance based learning using
matching distances not only performs better than instance based
learning with other distances but also better than other machine
learning methods.
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7.2 The Musk dataset

The musk dataset is described in [3]. This dataset describes a set
of 102 molecules which are judged by human experts to be musks
or non-musks. Each example is a set of 166-tuples. Each 166-tuple
corresponds to one of the possible conformations of the molecule. We
did a tenfold crossvalidation using different methods. We used an
euclidian metric between the points (166-tuples). The following table
summarizes the results. Also, the results of some other algorithms are
included (see [3]).

iterated-discrim APR | 92.4
all-positive APR, 80.4
backpropagation 75.0
C4.5 (pruned) 68.5
IBL - matchings 88%
IBL - hausdorff 82%
IBL - linkings 79%
IBL - surjections 85%
IBL - fair surjections | 49%

Again, our metric based on matchings gives the best results for
instance based learning. Only Iterated-Discrim APR gives better res-
ults. The latter is an algorithm that searches axis parallel rectangle
hypotheses, using the extra knowledge that an example is musk iff
the 166-tuple of one of its conformations is in an (unknown) hyper-
rectangle. C4.5, backpropagation and IBL did not make use of this
information.

8 Summary

This paper studies the problem of extending a metric between points
to a metric on the space of (finite) sets of points. A measure based
on optimal matchings was proposed and was proven to be a metric.
It was shown that this metric can be computed in polynomial time in
the size of its arguments. Next, a normalised version of this metric,
also computable in polynomial time, was proposed. Also, a variant
was developed which associates weights with the points in a set. It is
better suited to measure distances when the involved sets have very
different cardinalities.

Finally, we have reported on two experiments in the machine learn-
ing area. They show that our metric gives substantially better results
than the use of other similarity measures. Moreover, our results are
better than those obtained with several learning algorithms based on
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other principles. This shows that the proposed metric is not only of
theoretic interest and supports the intuition that a good metric is
preferable above a similarity measure.
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