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Abstract. We show that the position of an input point in the Euclidean d- 
dimensional space with respect to a given set of hyperplanes can be determined 
efficiently by linear decision trees. As an application, we prove that many concrete 
problems whose recognition versions are NP-complete, like the traveling salesman 
problem, many other shortest path problems, and integer programming, have poly- 
nomial-time upper bounds in the linear decision tree model of computation. 

1. Introduction 

In this paper  we present a theorem providing an upper  bound on computational 
complexity of  a class of  problems in the linear decision tree model o f  computation. 
The class consists of  problems to decide the position of  an input point in R a 
with respect to a given set o f  hyperplanes H i , .  • •, Hk in R d, where the hyperplanes 
have equations with integer coefficients in Cartesian coordinates of  R a. The 
theorem extends a similar result obtained by Meyer auf  der Heide in [5]. 

In the proof  of  the theorem, a linear decision tree is constructed in three steps. 
In the first step, we bring the input point into a cube near  the origin of  R a via 
a projective transformation.  In the second step, we perform a sequence of  binary 
searches inside that cube. After the searches, we have only to decide the position 
of the t ransformed input point with respect to a set o f  hyperplanes having a 
nonempty intersection. In the third step, we reduce this problem into a problem 
one dimension lower, which is solved by a recursive call. 

A projective geometry approachmthe  use of  homogeneous coordinates-- is  
employed. However,  we could not use the analytic projective space PR a as the 
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underlying space for our discussions, because a hyperplane in PR d does not 
divide PR d into two regions. The advantage of homogeneous coordinates over 
nonhomogeneous (i.e., Cartesian) coordinates is that we do not need to pay 
attention to technical problems such as that two hyperplanes may be either 
parallel or intersecting, which arise when nonhomogeneous coordinates are used. 

The theorem immediately yields polynomial-time linear decision trees for 
optimization versions of some combinatorial problems whose recognition versions 
are NP-complete, e.g., the traveling salesman problem (TSP), various shortest 
paths problems, the knapsack problem with real (positive or negative) weights, 
and integer linear programming. 

The computational complexity of TSP in the decision tree model was con- 
sidered by Rabin in [7]. There, he considers three levels of computations: finding 
a solution, checking a solution, and proof of a solution. The "finding" level, 
computationally the most difficult, means to actually find the right solution out 
of a set of many potential solutions. The "checking" level means to check whether 
a proposed solution is actually the right solution, e.g., given a simple cycle through 
all vertices of a weighted graph, check whether this cycle is the solution of TSP. 
The third level, computationally easiest, means to prove that a proposed solution 
is actually the right solution; the effort related to the discovery of the proof is 
not part of the proof. In that paper, Rabin established that proof of a solution 
of TSP can be done in polynomial time. In contrast, our linear decision tree finds 
a solution of TSP in polynomial time and thus we improve this result of Rabin. 

This paper is a generalization of Meyer auf der Heide's paper [5], where the 
nonnegative knapsack problem is considered. Meanwhile, Meyer auf der Heide 
has also (independently) generalized [5], see [6]. 

Here, our goal is achieved by generalizing Theorem 2 of [5] in two ways. First, 
we remove the restriction limiting the input vectors to a cube. Second, we replace 
the recognition of whether or not the input £ is member of a union of some 
hyperplanes in space by deciding the position of the input ~ with respect to each 
of the hyperplanes. The second generalization is fairly easy to accomplish, since 
the method of proof of Theorem 2 in [5] is well suited not only for the above- 
mentioned recognition but also for the decision of position with respect to the 
hyperplanes. We note that the implementation of our two generalizations is 
facilitated if we use homogeneous coordinates. 

2. Definitions and Notation 

Let R d be the d-dimensional Euclidean space. If xl,..., ., Xd are Cartesian coordin- 
ates in R d, then the hyperplanes xj = O,j = 1 , . . . ,  d, are called the hyperplanes of  
coordinates. The closed cube bounded by the hyperplanes x~ = ± l , j  = 1 , . . . ,  d, is 
called the standard cube of R d. 

Let S = {H1, . . . ,  Hk} be a nonempty set of hyperplanes in R d. If  (")/kffi~ H~ ~ 0 ,  
then we say that S is central Following [5], we say that a number r > 0  is a 
coarseness of S if, for every open ball B in R d with radius r, it holds that all 
hyperplanes of S, which intersect ball B, form a central set. 
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A trivial result is that if r > 0 is a coarseness of S, then any r', where 0 < r' < r, 
is also a coarseness of S. This result justifies using one value for coarseness 
throughout the construction of the decision tree in Section 3 of this paper. A 
value for coarseness is given in the following lemma, the proof of which can be 
found in [5]. 

Lemma (Meyer auf der Heide). Let S = { H t , . . . ,  Hk} be a set of hyperplanes 
in R a. Assume that H~ has equation y.ja=~ a~j+a(d+l)=0,  where the coe~cients 
a~, 1 <-j <- d + 1, are integers. Let 

M ( S )  = max{la~jl: 1 --< i --< k, 1 -<j--< d + 1}. 

Then (M(S) 2a2- d2a2) -1 is a coarseness o f  S. 

For our purposes, it seems advantageous to use the so-called homogeneous 
coordinates instead of ordinary Cartesian coordinates. For readers unfamiliar 
with homogeneous coordinates, the following example may be illustrative. 

In elementary analytic geometry, the (nonhomogeneous) equation 

Xl+2X2+3 =0 

describes a line in the plane. Thefioint P with Cartesian coordinates (-7,  2) is 
on that line. The vector V = - 2 i + f  (where T, f are unit vectors in positive 
directions of the coordinate axes) is parallel to the line or, in other words, can 
be placed on the line. In homogeneous coordinates, the same line has 
homogeneous equation 

x ~ + 2 ~ + 3 ~  =0. 

The point P has homogeneous coordinates (-7,  2, 1) or any nonzero multiple of 
this triple, e.g., (-21, 6, 3). Thus homogeneous coordinates of point P are not 
unique. Cartesian coordinates of P can be recovered from homogeneous coordin- 
ates of P by dividing the first and second homogeneous coordinate by the third 
one, which is nonzero. The vector V has homogeneous coordinates (-2,  1, 0). 
Clearly, thig triple satisfies the homogeneous equation of our line and we c a n  
say simply that V is on the line. The homogeneous coordinates of vector V are 
unique. In summary, let (x~, x~, x3) ~ R 3. I f  x3 = 0, then (xl, x2, x3) represents the 
vector xl i'+ x j  in the plane. If Xa # 0, then (x~, x2, x3) represents the point with 
Cartesian coordinates (XdXa, X2/x3) in the plane. All triples satisfying the 
homogeneous equation of our line then represent all points and all vectors, 
including the zero vector, on the line. The triple (1, 2, 3) is called the sequence 
of homogeneous coordinates of our line. In general, any nonzero triple 
(a~, a2, a3)e R 3 represents a line. If al = a2=0, then the triple represents the 
so-called line at infinity. The line at infinity contains all vectors of the plane, but 
no points. If a~ # 0 or a2 # 0, then the triple represents an ordinary line in plane. 
This example .generalizes in an obvious way to higher-dimensional spaces. 

For more on homogeneous coordinates and analytic projective geometry in 
d-space; see, for example, [8] and [9]. 
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For notational convenience we will use letters tl , /~,. . .  (resp. ~, f i , . . . )  to denote 
row (resp. column) vectors of  homogeneous coordinates. As mentioned in the 
introduction, our goal is to establish an upper  bound to the "decision problem" 
in the linear decision tree model of  computation.  The formal definitions of  the 
"decision p rob lem"  and the linear decision tree model follow. 

Let S = { t i l , . . . ,  tlk}__q Z a+' be a nonempty set of  row ( d + l ) - v e c t o r s  with 
integer entries. Here Z denotes the set of  integers. Given an input ~ e R d+~, the 
integer linear decision problem (ILDP) is to find, for each i = 1 . . . .  , k, a relation 
Pie {<, = ,  >} such that ti.~ p~ 0. In other words, the problem is to find signatures 
of  ti-~ for i = 1  . . . .  ,k: 

A linear decision tree solving the ILDP is a ternary tree, whose internal nodes 
contain linear tests of  the form 52:0, where /~eR d+' and the colon means 
"compare  to".  Each test has three possible outcomes: < o r =  o r > .  Each leaf 
contains a solution of the ILDP,  i.e., a vector/3 e { < ,  = ,  > }k. An input ~ e R a+' 
starts at the root and traverses down the tree. At each internal node a branching 
is made according to the test at that node. When ) / reaches  a leaf, the vector 
at that leaf provides the correct solution. 

The running time cost(~) of  the input ~ is the number  of  tests performed until 
reaches a leaf. The running time of the tree is max~R~+, cost(£). 

3. The Main Theorem 

We are now ready to state and prove the main theorem. 

Theorem. Let S = { ~ 1 , . . . ,  Cik}~Z d+l be a nonempty set o f  row (d + l)-vectors 
with integer entries. Then there is a linear decision tree solving ILDPwhose  running 
time is at most 

2d 4 log2 d + 2d 4 logz M(S)  + O(d3), 

where M(S)  = max{Ia#l: 1 -< i < k, 1 < j  < d + 1}. 

Proof Let ~ = ( x , , . . . ,  Xd+l) tr ~ R d+l be the input vector. A linear decision tree 
solving I L D P  is constructed in the following three steps: 

Step 1. We find ! so that 

Ix, I = m a x { l x d , . . . ,  

We need d comparisons of  the form Ix,,[:[xo[ to find the maximum. This com- 
parison can be done by two linear tests xa : ±x~. Next, we perform test x~ : 0. I f  
xt = 0, then 2 is the zero vector and the problem has a trivial solution. 
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Hence assume x~ # O. Let A be the (d + 1) x (d + 1) nonsingular matrix 

lth ._> 

1 

1 "°° 
1 

0 

0 +1 

1 

1 °°° 
1 

0 (d+l)x(d+l)  

where in the bottom row we take +1 (resp. -1 )  if x t>  0 (resp. x~ <0) .  We define 
ff = A~ and/~i = ~iiA -~ for 1 -< i -< k. This is the "projective transformation" men- 
tioned in the introduction (see [2, p. 4]). We have 

Hence we need to find signatures of/~ti  for 1 <- i--< k. Also note that 

l~ = ( X l , . . .  , XI__I, X d + l ,  XI+ ! . . . .  , X d ,  IX/l) tr. 

Let C be the standard cube of  R a. By our choice of  l, ti provides the homogeneous 
coordinates of a point P in C, where P has Cartesian coordinates 

. . . . .  Ix, l '  lx, l ' lx, l ' " "  

Note that altogether 2d 4-1 linear tests are performed in Step 1. 

Step 2. The vectors/~i, 1 -~ i ~ k, can be divided into two groups. The first group 
consists o f  vectors/~i, whose first d entries bil , . . . ,  bid are all equal to zero. Hence 
for these vectors we have ~ = bi(d+DlXtl. But then we know the signatures of/~t~ 
for all vectors from the first group, because these signatures depend, at this stage 
of  the decision tree, on bi(d+l)'s only and not on the input £. The remaining 
vectors constitute the second group. We can assume without loss of generality 
(by renaming /~'s if necessary) that vectors /~t+l,. • -,/~k are the first group and 
that vectors 61, . . . , /~t  are the second gf0up. Notice that the second group is 
formed by exactly those vectors which represent an ordinary hyperplane in R d. 
We denote these hyperplanes by / - / i , .  " . ,  H,. 

Thus we need to find signatures of 6:i for 1 -< i -< t only. Let 

Then 

M(S)  = max{laijl: 1 -< i - k, 1 - j - <  d 4-1}. 

M(S)  - max{Ib~l: 1 ~- i -~ t, 1 - < j -  d + 1}, 
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because tb~jt's are just permuted jaul's and t -</c By the lemma, a coarseness of  
/-/1 . . . .  , H~ in R d is r = (M(S)  2a'.  d2d2)-k We partition the standard cube C in 
R a uniformly into smaller cubes with edge-length 2-" ,  where 

by cutting C by hyperplanes parallel to the hyperplanes of  coordinates in R a. A 
short calculation below shows that the diagonal of  a d-dimensional cube of  
edge-length 2 -m, with m as above, is shorter than 2r: 

diagonal = ~/-d. edge-length 

= vr'd • 2- f,/d/,+l)l+l 

<- 24-d " 2 -l°g2('/a/r+l) 

= 2 ~ / - d  • 

< 2~/-d. 

=2r.  

v ~ / r +  1 

1 

,/'d / r 

Therefore our choice of  m guarantees that each smaller cube obtained by partition- 
ing is contained in an open ball with radius r. 

We find a smaller cube C',  obtained by partitioning, which contains the point 
P. Notice that C '  need not be unique since smaller cubes are closed and therefore 
have intersecting boundaries. We can find C '  by performing d binary searches 
(one search for each dimension of  the cube C). Each binary search takes m + 1 
tests, because we start with edge-length 2 and stop when the edge-length is 2-" .  
Each test of  the binary search is of  the form xa/txxl:const. However, we have 
performed the test x~:0 in Step 1 and thus we know if Ixtl = +x~ or -x t .  Hence 
just one linear test x# : const x~ is sufficient. Altogether we perform 

d ( m + l ) = d ' [ l o g 2 ( ~ d r  +1)1  

linear tests. 
We can assume without loss of  generality (by renaming Hi's and b:s if 

necessary) that 

and 

H ~ n C ' # O  for l<-i~s, 

H~nC'=O for s+l<--i<--t. 
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In the latter case, C' is entirely in one of  the two open halfspaces determined 
by Hi. Hence, for any homogeneous coordinates ~ R a+~ representing a point 
in C'  with zd+~>0, we have either always / ~ < 0  or always /~£>0. Thus the 
signatures of  biti, s + 1 - i - t, are known at this stage of the decision tree. 

Hence we need to find the signatures of 6ia for 1-< i-< s. By the definition 
of  coarseness, the hyperplanes H ~ , . . . ,  H~ are central, i.e., there is a point 
O~NT-, x,. Let 

)7= (Y l , ' - ' ,Yd ,  1) trERd+l 

be a vector of  homogeneous coordinates of  Q. Hence we have 503 = 0 for 1 -< i <- s. 

Step 3. Let/~ = a-[x~l)7 be a column vector. Let B be the d x (d + 1) matrix 

1 

0 0 

1 0 d×(d+l )  

The reader can check that 

1 

Btr B = 
1 

1 

1 

0 

, 

0 ( a + l ) × ( d + l )  

We define t3= B/~ and c i = ~ B  tr for l < - i ~ s .  We have for l ~ i < - s :  

6,a-- 6,(a-ix l)7) 

-~ ~gtr  gff  

=e,~, 

where the third equality follows from Pd+l = 0, which is true because by definition 
of  i~ we have 

pa+l= ua+,-Ix, tya+, 

--lx, l-lx, I" 1 
= 0 .  
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We have reduced the original problem into a new problem one dimension lower: 

Given ~ ~ R a, 1 -< i <- s, and input ~ E R d, find the signatures of ?i~3 for 1 <- i -< s. 

We can solve the new problem by a recursive call. Note that the coarseness r 
defined in Step 2 can be used without change in subsequent recursive calls, 
because ~ = d,a-lB t~ implies that maxtcvl <-maxlauI. Also observe that a linear 
test in ~ is actually a linear test in £, because ~ = B/3 = B(A:~ -Ixltfi). 

To end the proof, we estimate the running time of the constructed tree. Let 
T(d) be the running time of the tree for the d-dimensional input (i.e., ti~'s and 

are (d + l)-tuples of  homogeneous coordinates). 
If  d -> 2, we get a recursive relation: 

T(d)<-(2d+l)+d'[log2(~dr + l ) ] +  T(d-1) .  

When d = 1, we perform Steps 1 and 2 as described. However, a central set of  
hyperplanes in R t contains at most one hyperplane. Thus we can finish by at 
most one additional test. Hence 

T(1)-< 3+ [ log2(~+  1 ) ]  + I .  

Solving the recurrence we obtain 

T(d)<-d2" [log2(~dr + l ) ]  +O(d2). 

Substituting r = (M(S)  2a2. d2a2) -1, we obtain 

T(d) <- 2d 4 log2 d + 2d 4 log2 M(S)  + O(d3). [] 

The theorem can be readily recast into a Cartesian setting: 

Corollary. Let S = { H i , . . . ,  Ilk} be a nonempty set of hyperplanes in R a. Assume 
Hi has equation ~jd=~ a~jxj+ai(d+l)=O, where the ao's are integers and x/s  are 
Cartesian coordinates in R a. Then there is a finear decision tree, performing a~O~ne 
tests of the form ~.ja= 1 bjxj + ba+l : O, which determines the position of an input ~ ~ R d 
with respect to all hyperplanes in S in time at most 

2d 4 log2 d + 2d a log2 M(S)  + O(d3), 

where M(S)  = max{taot: 1 <- i--  < k, 1 -<j-< d + 1}. 

An important  feature of  the upper bound in the theorem or corollary is that 
k is not explicitly in the upper bound formula. Instead, log2 M(S)  does appear. 
In practical applications, log2 M(S)  is relatively small, whereas k is exponential 
in d. 
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4. Applications 

The linear decision tree is a good model of  computation for proving lower bounds 
for many concrete problems in which the input data are treated just as real 
numbers and various solutions of the problem correspond to a partitioning of 
the "space of  inputs" into regions bounded by hyperplanes. But among problems 
of such nice geometrical character are also variations of  finding shortest paths 
(e.g., the traveling salesman problem), the knapsack problem, and integer linear 
programming, which are believed to be hard combinatorial problems, especially 
when the input numbers are allowed to be positive or negative. We will show on 
a few examples how our theorem or its corollary easily yield polynomial-time 
upper bounds. In contrast, all known algorithms require exponential time in the 
worst case to solve these problems. 

Example 1 (The Traveling Salesman Problem). Given a complete directed graph 
on n cites with real weights x~j, 1 -< i , j <  n, i # j ,  on the edges; i.e., given an input 

E R d, where d = n (n - 1) is the number of edges. Find a shortest cycle visiting 
each city exactly once. 

If Yt and "Y2 are two cycles visiting each city exactly once, then the equation 

Y, x u = E x q  
(id)cvt (id)~ Y2 

defines a hyperplane in R e. The summations are over edges forming y~ (resp. Y2)- 
Let S be the set of  all such hyperplanes. Clearly M(S)  = 1. By the corollary, we 
can find the position of  input £ with respect to the hyperplanes in S in time 
4n s log2 n + O(n6) .  If  we know the position of  £ with respect to the hyperplanes 
in S, then we have actually sorted all cycles according to their lengths. Thus in 
particular we know, in that time, a shortest cycle which solves TSP. Moreover, 
we also know whether this ~solution is unique. 

Example 2 (Shortest Paths Problems). The method used in Example 1 clearly 
yields the upper bound 4n 8 log2 n + O ( n  6) to many other variations of shortest 
paths problems, e.g., f ind a shortest simple path from vertex v to vertex v' in a 
complete directed graph on n vertices with real weights on edges (both negative and 
positive edges are permitted). Here, a path is simple if it visits each vertex at 
most once. The recognition version of this particular variation is NP-complete 
(see [3, p. 213] or [1]). However, the same problem with "simple path" replaced 
by just "pa th"  admits a polynomial algorithm. 

Example 3 (The Knapsack Problem). Given real numbers ( x l , . . . , x n ) e R " ,  
decide if there exists a nonempty subset I _  { 1 , . . . ,  n} such that ~ xi = 1. 

The set S consists of 2" - 1 hyperplanes ~ i ~  xi = 1. Hence M(S)  = 1 and we 
get upper bound 2n 4 log2 n +O(n3),  which extends a similar result in [5] for  the 
nonnegative knapsack problem. 
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Example 4 (Integer Linear Programming). Let n, m, M be integers. The problem 
n is to maximize Y~j=~ a~xj subject to 

n (1) ~j= 1 ai~xj <-- ai~.+l) for l<-i<--m, 

(2) 2 = ( x l  . . . .  , x . ) e Z "  and txjl-<2 M for l<-j<-n. 

The input is a real vector t i eR a, formed by aj's and a0's, where d = 
n + m(n + 1). The -solution is either an integer vector Y e {--2M, . . . ,  + 2 M}" or 
"no" (if the constraints in (1) and (2) are inconsistent). What is the partitioning 
of the space of inputs Rd? If Y~{--2M,...,  +2M} ", then the polyhedron P(£) 
in R d defined by the halfspaces 

d d 
Y: xjaj >-" ~. yjai for any )7 e { - 2 ~ , . . . ,  + 2 M}", 

j = l  j = l  

d 

xja o <-- a~(,+l) 
j = l  

for l <--i<--m 

is the region of inputs for which ~ is a solution. The polyhedrons P(1), £ 
{--2M,..., + 2M} ", will not in general cover the input space R d. Hence the solution 
is "no" outside [..J P(£). Let S be the set of boundary hyperplanes of all polyhe- 
drons P(~). Then M ( S ) = 2  m+~, because the x/s and y/s are coefficients of 
equations of  hyperplanes in S. If we know the position of an input ~ ~ R d with 
respect to hyperplanes in S, then we know which P(£) contains ~i or whether 
is outside [..j P(~), and thus we know the solution of the problem. The corollary 
gives (after obvious simplifications) the upper bound O(n4m4M)+ 
O ( n 4 m  4 l o g  2 rim). 

5. Additional Remarks 

If H~, . . . ,  Hk are hyperplanes in R d, not  necessarily with integer coefficients, 
then the linear decision problem (LDP) is to decide the position of an input £ ~ R d 
with respect to all hyperplanes I l l , . . . ,  Hk. An important open problem in the 
theory of linear decision trees is to determine the complexity of LDP. Dobkin 
and Lipton [2] obtained the upper bound (2 d - 1) [log2 kJ + d. The essentially 
best known lower bound is a straightforward information theory lower bound 

(:)) log2 Y~,=o ~-d log k, which follows immediately from the fact that 

k hyperptanes may divide R d into up to ~ffio (nk) nonempty regions. Clearly 

the bounds are far apart in d. A lower bound method presented by Yao and 
Rivest in [10] for the polyhedron membership problem can be adapted for the 
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LDP, but it does not give any significant improvement  over d log k. It  would be 
interesting to prove an upper  bound polynomial in d and log k, if  it exists. 

The linear decision trees and comparison trees are useful tools for studying 
the computat ional  complexity of  various concrete problems. However, our results 
and the results o f  Meyer auf  der Heide [5], [6] show that many NP-complete 
problems can be solved in polynomial time by linear decision trees, whereas it 
is widely conjectured that they require exponential time on Turing machines. 

We note that the polynomial-t ime linear decision trees constructed here do 
not provide us with polynomial  algorithms for the concrete problems considered. 
We use TSP as an example to illustrate this fact. We have actually constructed 
one tree for each input size of  TSP (where the input size is the number  of  cities). 
The trees for various numbers of cities may vary widely. In contrast, an algorithm 
for TSP should work for any number of  cities. 

The power  of  the linear decision tree model stems, at least partially, f rom the 
following property. At a given node of the tree, any fact that is implied by the 
tests on the path from the root to the given node is assumed to be known. In 
this context, there is a difficulty related to transforming our linear decision tree 
into an algorithm. The algorithm would have to find which hyperplanes do not 
intersect the smaller cube and decide the position of the input with respect to 
these hyperplanes. In the linear decision tree this information is known, since 
binary searches tests imply that the input is in the smaller cube and this in turn 
implies the position of input with respect to any hyperplane missing the smaller 
cube. Another difficulty arises when the algorithm should determine and work 
with a common point Q of  the hyperplanes intersecting the smaller cube. In 
contrast, the knowledge of  Q is automatic in the linear decision tree model. 
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