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ABSTRACT

Developing a polynomial time algorithm for the minimum cost flow problem has been a

long standing open problem. In this paper, we develop one such algorithm that runs in

O(min(n 2m log nC, n2m 2 log n)) time, where n is the number of nodes in the network, m is

the number of arcs, and C denotes the maximum absolute arc costs if arc costs are integer and

0 otherwise. We first introduce a pseudopolynomial variant of the network simplex

algorithm called the "premultiplier algorithm." A vector X of node potentials is called a

vector of premultipliers with respect to a rooted tree if each arc directed towards the root has

a non-positive reduced cost and each arc directed away from the root has a non-negative

reduced cost. We then develop a cost-scaling version of the premultiplier algorithm that

solves the minimum cost flow problem in O(min(nm log nC, nm2 log n)) pivots, With

certain simple data structures, the average time per pivot can be shown to be O(n). We also

show that the diameter of the network polytope is O(nm log n).

Key Words. Minimum cost flows, network simplex, polynomial time, simplex algorithm,

premultipliers.
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1. INTRODUCTION

A fundamental problem within the area of network optimization is the minimum cost

flow problem. The problem has applications to a remarkably wide range of fields, including

chemistry and physics, computer networking, most branches of engineering, manufacturing,

public policy and social systems, scheduling and routing, telecommunications, and

transportation (see, for example, Ahuja, Magnanti and Orlin [1993]). There are a number of

different polynomial-time algorithms for the minimum cost flow problem. Currently, the

fastest algorithms for the minimum cost flow problem are due to Ahuja, Goldberg, Orlin, and

Tarjan [1992], Goldberg and Tarjan [1990], and Orlin [1993]. However, the algorithm of

choice in practice is the network simplex algorithm due to its simplicity and speed. Although

the network simplex algorithm seems to be excellent in practice, several natural pivot rules

take an exponential number of pivots in the worst case, as proved by Zadeh [1973]. To this

date, there are no specializations of the primal network simplex algorithm that run in

polynomial time for the minimum cost flow problem. The current best bound on the number

of pivots for the primal network simplex algorithm is O(nlog n/2 + 0(1)), due to Tarjan [1991].

In this paper, we present the first polynomial time primal network simplex algorithm for the

minimum cost flow problem. The number of pivots performed by this algorithm is

O(nm log nC) or O(nm2 log n), whichever is smaller. This resolves a long-standing open

research question.

We note that there are other closely related algorithms. There are polynomial time

primal network simplex algorithms for (i) the assignment problem (see, for example, Ahuja

and Orlin [1992], Akgul [1993], Hung [1983], Orlin [1985], Roohy-Laleh [1980]), and

Sokkalingam, Sharma and Ahuja [1993]; (ii) the shortest path problem (see, for example,

Ahuja and Orlin [1992], Akgul [1985], Dial, Glover, Karney, and Klingman [1979],

Goldfarb, Hao, and Kai [1990], Orlin [1985]), and Sokkalingam, Sharma and Ahuja [1993];

and (iii) the maximum flow problem (see, for example, Goldberg, Grigoriadis, and Tarjan

[1991] and Goldfarb and Hao [1990 and 1991] ). There are also polynomial time dual

network simplex algorithms for the minimum cost flow problem (see, for example, Orlin

[1984], Orlin, Plotkin and Tardos [1993], and Plotkin and Tardos [1990],). Finally, Goldfarb

and Hao [1992] and Tarjan [1991] established that there are primal network simplex

algorithms that have a polynomial number of pivots if one permits the pivots that increase the

objective function value. The number of pivots for Tarjan's rule is O(nm min((log nC),

m log n)), which is the same as the number of pivots of the rule given in this paper. These

algorithms are not primal network simplex rules in the usual sense that the objective function

value is monotonically nonincreasing; however, they are useful from a theoretical
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perspective. For example, they help to establish strongly polynomial upper bounds on the

diameter of the network polytope.

We present a cost-scaling variant of a novel network simplex pivot rule, called the

premultiplier algorithm. Normally for the network simplex algorithm, one maintains a

vector of simplex multipliers so that the reduced cost is 0 for each arc (ij) of the spanning

tree. Here we relax this condition and maintain a vector of "premultipliers" so that the

reduced cost is non-positive for each arc that is directed towards the root in the spanning tree

and the reduced cost is non-negative for each arc directed away from the root. An unusual

feature of this implementation is that the root of the spanning tree is permitted to change at

each pivot; indeed, it is often required to change. This feature is also shared by one of

Tarjan's algorithms [1991].

Notations and Definitions

Let G = (N, A) be a directed network with n nodes and m arcs. Each arc (i,j) E A

has a cost cij, a capacity u... and a lower bound 1i. on the flow in the arc. If costs are integral,

we let C denote max(Icijl: (ij) E A). If costs are not integral, then C = oo. We associate with

each node i E N a number b(i) which indicates its supply or demand depending upon whether

b(i) > 0 or b(i) < 0, respectively.

The minimum cost flow problem can be stated as follows:

Minimize z(x)= = cij x.i (la)

(i,j) A

subject to

xij x - xji = b(i), for allie N, (lb)
{j: (i,j) A} {j:t(j,i) E A}

1.. < x <uij, for all (i, j) E A. (lc)

For convenience here, we modify the network flow problem by adding artificial arcs

(1, j) and (j,1) for each node j 1. The capacity of each of these artificial arcs is , the lower

bound on flow is 0, and the cost is 1 + max(n Icijl : (i, j) E A). These arcs may be used in the

initial feasible basic feasible solution, but no artificial arc will have a strictly positive flow in

an optimal solution unless the original minimum cost flow problem is infeasible.
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For each feasible flow x, we associate residual capacities of the arcs as follows: If

(i,j) E A, then the residual capacity of (ij) is r.. = u.. - xi, and the cost of (ij) is c... If (j,i) E

A, then the residual capacity of (ij) is r.. = xji- 1ji and the cost of (ij) is cj = - cji. The

residual network, denoted by G(x), consists of all arcs whose residual capacity is strictly

greater than 0. Thus, for any arc (ij) E A, the residual network may contain arc (ij) or (j,i)

or both.

We will use the notation "(i,j)" as though there is at most one arc directed from i to j in

the residual network. The algorithm readily accomodates multiple arcs from i to j, but

representing them as different arcs can be cumbersome. In general, this should cause no

confusion in describing and analyzing the algorithm. (The reader may prefer to assume that

there is at most one arc from i to j in the residual network.) In this paper, we define walks,

directed walks, paths, directed paths, cycles, directed cycles, and cuts as in Ahuja et al. [1993].

A vector of node potentials for the network G is a vector n with n components. For

each vector x of node potentials, the reduced costs c" are defined as follows: cn = c.. - +

j. It is well known that minimizing the objective function cUx for a network flow problem is

equivalent to minimizing the objective function cx. Let W be any directed cycle, and let

c(W) denote the sum of the costs of arcs of W. It is also well known that c(W) = cK(W). A

flow x is said to be e-optimal with respect to the node potentials n if c" > - £ for all arcs (ij)
ii

in the residual network G(x). A flow x that is 0-optimal is also optimal.

Overview of the Paper

In Section 2, we describe the network simplex algorithm in a general form. We

describe the pseudopolynomial version of the premultiplier algorithm in Section 3 and show

that this algorithm is a special case of the network simplex algorithm. In Section 4 of this

paper, we give the details of the cost scaling variant of the premultiplier algorithm and show

that the number of pivots per scaling phase is O(nm). We also show that the number of

scaling phases is O(min (log nC, m log n)), and the amortized time per pivot is O(n). In

Section 5, we apply a construction of Goldfarb and Hao [1992] to the cost scaling

premultiplier algorithm, and show that the diameter of the network polytope is O(nm log n).

The primary focus of this paper is on the worst case analysis and on developing

polynomial time primal network simplex pivot rules. Although we conjecture that the

premultiplier algorithms introduced here can be implemented in a manner that is efficient in

practice, we will not investigate practical implementations in this paper.



2. THE NETWORK SIMPLEX ALGORITHM

The network simplex algorithm maintains a basic feasible solution at each stage. A

basic solution of the minimum cost flow problem is denoted by a triple (T, L, U); T, L, and U

partition the arc set A. The set T denotes the set of basic arcs, that is, arcs of the spanning

tree. L and U respectively denote the sets of nonbasic arcs at their lower and upper bounds.

We refer to the triple (T, L, U) as a basis structure. The flow x associated with the basis

structure is the flow obtained as follows:

for each arc (i,j) E U, set x.. = u ..
iJ i

for each arc (ij) E L, set x.. = i.j;

obtain x.. for each arc (i, j) E T so that constraints in (lb) are satisfied.

We say that the basis structure (T, L, U) is feasible if i.. < x.. < u.. for each arc (i,j) E T.
lJ 1 1J

Non-degeneracy Assumption. We will assume that every basic feasible solution is non-

degenerate; that is, no tree arc is either at its lower bound or at its upper bound.

The non-degeneracy assumption may sound like a severe restriction, but it is easily

satisfied without loss of generality using a perturbation technique (see, for example, Orlin

[1985], and Ahuja et al. [1989]). One can increase b(l) by £ for some strictly positive but

small value of c, and decrease b(i) for every other node i by £/(n-1). Under the assumption

that £ is sufficiently small, it can be shown that any optimal basic feasible solution for the

perturbed problem is also optimal for the original problem, and that every basic feasible flow

is non-degenerate. Under the assumption that all supplies, demands and capacities are

integral, one can choose E = (n-l)/n. In the case that the data are non-integral, one can choose

Cunningham's [1976] combinatorial rule to carry out the pivots. This rule maintains a class a

basic feasible solutions, called strongly basic feasible solutions. Cunningham developed this

combinatorial rule and showed that it is equivalent to the perturbation technique described

above.

The non-degeneracy assumption implies that if x is the solution associated with the

basis structure (T, L, U), then G(x) contains all arcs of T as well as reversals of all arcs of T;

that is, if (i, j) E T, then both (ij) and (j,i) will be in G(x). Our algorithms use two additional

concepts.
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Definition 1. We denote by G*(x) the subgraph of G(x) in which all arcs of T and their

reversals have been deleted. (By the non-degeneracy assumption, G*(x) consists of those

arcs (i,j) e G(x) such that (j,i) e G(x). Therefore, G*(x) is fully determined by the flow x.)

Definition 2. For any tree T and a root node v, we denote by T(v) a subgraph of G(x) which

is a directed spanning in-tree and in which all arcs are directed towards node v. Costs and

capacities of arcs in T(v) are defined as in G(x).

We illustrate T(v) in Figure 1. Figure 1(a) is a tree rooted at node 1 whereas Figure

l(b) is the same tree rerooted at node 4. The arcs of T(1) have the same orientation as the

arcs of T(4) except for the arcs on the path from 4 to 1 in T(1). The arcs on this path are

reoriented in T(4).

C.,

(a) (b)

Figure 1. (a) An in-tree rooted at node. 1. The arc values are costs.
(b) The same in-tree as in (a) but rooted at node 4.

Suppose that x is a basic feasible flow, and let T be the associated spanning tree. If

(k, ) E G*(x), then the basic cycle W created by adding (k, ) to T is (k, ) together with the

directed path from node to node k in T(k). To send flow around W is to decrease the

residual capacity of each arc of W by 6 = min(rij : (ij) W), and correspondingly increase

the residual capacity of all the reverse arcs of W by 6. By sending 8 units of flow around W,

one of the arcs of W has its residual capacity reduced to 0. By the non-degeneracy

assumption, 6 > 0, and prior to sending flow around W there is a unique arc of W with

residual capacity of 6. A simplex pivot consists of adding arc (k,l) to the tree, sending 6 units

of flow around W, and pivoting out the arc whose residual capacity is reduced to 0. In the
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case that the cost of the cycle is negative and 6 > 0, the solution obtained by the simplex

pivot has a strictly lower objective function than the solution prior to the pivot. The network

simplex algorithm uses the following well-known fact:

Optimality Conditions. A basis structure (T, L, U) is optimal if the cost of each basic cycle

is non-negative.

We now describe the network simplex algorithm in a very general form.

algorithm network-simplex;
begin

find a feasible basis structure (T, L, U);
let x be the basic feasible flow;
while x is not optimum do
begin

find an arc (k, ) E G*(x) for which the corresponding basic cycle W has a
negative cost;

perform a simplex pivot by sending 6 = min (rij : (ij) E W) units of flow

around W;
update x and (T, L, U);

end
end;

Under the non-degeneracy assumption, the network simplex algorithm is finite since

there are a finite number of basis structures, and the sequence of basis structures obtained by

the algorithm have strictly decreasing objective function values.

A vector t of node potentials is called a vector of simplex multipliers for tree T if cn
ii

= 0 for all (ij) E T. In standard implementations of the network simplex algorithm, one

maintains a vector of simplex multipliers for each basic feasible solution. Simplex

multipliers have the following computational advantage: if simplex multipliers are

maintained, then the cost of the basic cycle induced by the arc (k,l) E G*(x) is ck, and
k1

therefore one can test whether a basic cycle has negative cost by simply evaluating c" = c -

xk + il and checking whether ck < 0. This computational advantage comes at the cost of

maintaining the simplex multipliers at each stage. The time to maintain the simplex

multipliers is O(n) steps per pivot in the worst case, although computational experience

suggests that it is far less in practice (see, for example, Lee [1993]).

3. THE PREMULTIPLIER ALGORITHM

In our implementation of the simplex algorithm, we will be maintaining a set of node

potentials that we refer to as "premultipliers." In this section, we define premultipliers and
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also describe a simple way of implementing the simplex algorithm using premultipliers,

which we call the premultiplier algorithm.

Definition 3. A vector zr of node potentials is a set of premultipliers with respect to the

rooted in-tree T(v) if c7 •0 o for every arc (ij) E T(v). A vector 7 of node potentials is a
i

vector of premultipliers for tree T if it is a vector of premultipliers with respect to T(v) for

some node v. (Notice that simplex multipliers are a special case of premultipliers in which

c.- = Ofor every arc (i, j) in T(v).)

n 3

2

-5

6

(a) (b) (c)

Figure 2. (a) A spanning in-tree T(1) with arc costs.
(b) The simplex multipliers. The reduced cost of each tree arc is 0.
(c) Simplex premultipliers. Each arc of T(1) has a non-negative reduced cost.

Figure 2(a) illustrates a spanning tree T(1), and Figure 2(b) gives a set of simplex

multipliers for the in-tree. Figure 2(c) illustrates a set of premultipliers with respect to T(1).

Each arc of the rooted in-tree has a non-positive reduced cost. If (i,j) E T(1) and (i,j) A,

then (j,i) E A, and its reduced cost is non-negative.

Lemma 1. Suppose that T is a tree, and Ur is a set of premultipliers with respect to T(v).

Then iz is also a set ofpremultipliers with respect to T(i) if and only if each arc of T on the

path from node v to node i has a reduced cost of O.

Proof. Note that T(i) may be obtained from T(v) by reversing the orientation of each arc on

the path P from i to v. Suppose first that each arc on the path P in T(v) has a reduced cost of

1

v
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0. Then the reduced costs of the reversals of these arcs are also 0, and every other arc of T(i)

has a non-negative reduced cost. Suppose now that some arc (j,k) on the path P in T(v) from

i to v has a reduced cost that is not 0. Then its reduced cost is negative, and in T(i) the

reduced cost of (k,j) is positive. Thus in this case, X is not a vector of premultipliers with

respect to T(i), leading to a contradiction.

In the premultiplier algorithm, we define eligible arcs differently than in the standard

network simplex algorithm. We also need the concept of eligible nodes.

Definition 4. Let T denote a tree and let r denote a vector of premultipliers with respect to

T(v) for some node v. We say that node i is eligible if r is a vector of premultipliers with

respect to T(i). We call an arc (i, j) E G*(x) eligible if node i is eligible and ct < 0.

We will show in Lemma 2 that the basic cycles induced by eligible arcs have a

negative cost. And in the premultiplier method that follows, each arc that is pivoted into a

spanning tree will be an eligible arc. In general, it is not the case that a negative reduce cost

arc in G*(x) induces a negative cost basic cycles. For instance, consider the example in

Figure 2(c) and suppose that c 2 = -1. Then the cost of the basic cycle 5-2-1-5 containing

(5,2) is 2.

Lemma 2. Let T be a tree, and suppose that r is a set of premultipliers with respect to the

rooted in-tree T(v). Then the basic cycle induced by each eligible arc has a negative cost.

Proof. Let W be a basic cycle in T(v) induced by the arc (k, I) and let w be the apex of cycle

W. Then, W = { (k, I)) u P u Q, where P is a directed path from node I to node w in T(v),

and Q is a path from node w to node k in T(v). Hence, c(W) = c(W) = c + Y"(i j)CP +

c~. S i n ~~~~~~~~~~~~~c (ij)EP i

"(ij)EQ cx. Since (i) ckl < 0 (by definition); (ii) c" < 0 for each arc (i, j) E P (because n is a

set of premultipliers for T(v)); and (iii) c" = 0 for each arc (i, j) E Q (by Lemma 1); it

follows that c(W) < 0.

In the premultiplier algorithm described below, the entering arc is always an eligible

arc.
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algorithm premultiplier;
begin

choose an initial basic feasible solution x and a
vector X of premultipliers with respect to T(v);

while x is not optimal do
if there is an eligible arc then
begin

select an eligible arc (k,l);
simplex-pivot(k,l);

end
else modify-premultipliers;

end;

procedure simplex-pivot(k,l);
begin

reset the root of the tree to be k;
let W denote the basic cycle containing(k,l);

{W is (k,l) plus the path from I to k in T(k)};

let = min (rij: (ij) W);

send 8 units of flow around W;
let (p,q) denote the arc of T(k) that is pivoted out;
reset the root of the tree to be p;

end;

procedure modify-premultipliers;
begin

let S denote the set of eligible nodes;

Q:= {(i,j)e T(v), i S, j E S};

A: = min(-c: (i,j) e Q); observe that A > 0 whenever S • N}

for each node j e S, increase rnj by A;

end;

The subroutine simplex-pivot pivots in the arc (k,l) and pivots out the arc (p,q) so as

to maintain primal feasibility. It also adjusts the root node of the tree. We now illustrate the

premultiplier algorithm using the example in Figure 3. Our presentation focuses on

differences between the usual simplex algorithm and the premultiplier algorithm, and so we

have focused on the choice of the entering variable and on changes in multipliers. We have

not included information relating to the flows or the changes in flows, which is the same for

the usual network simplex algorithm as well as for the premultiplier algorithm. The costs of

the arcs are given in the following table:

arc (1, 6) (3, 4) (4, 2) (5, 1) (2, 1) (6,4) (6,2)

cost -8 - 1 1 -3 2 2 -7
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Iteration 0. The initial spanning tree solution and the initial set of premultipliers are

illustrated in Figure 3(a). Arc (1,6) is eligible and it is drawn as a dashed line in Figure 3(a).

Iteration 1. Arc (1,6) is pivoted in. The residual capacity in (4,2) is reduced to 0, and arc

(4,2) leaves the spanning tree. Node 4 becomes the new root. The new spanning tree is

portrayed in Figure 3(b).

Iteration 2. Node 4 is eligible, but there are no eligible arcs. i 4 is increased by one unit,

and node 3 becomes eligible. The resulting set of multipliers is portrayed in Figure 3(c).

Iteration 3. Nodes 3 and 4 are eligible, but no arc is eligible. 3 and n4 are both increased

by one unit and node 6 becomes eligible. In addition, arc (6,2) becomes eligible. The

resulting set of multipliers, reduced costs, plus arc (6,2) are portrayed in Figure 3(d).

Iteration 4. Arc (6,2) is pivoted in. The residual capacity of (2,1) goes to 0, and so arc (2,1)

is pivoted out. Node 2 becomes the new root of the tree. This tree is portrayed in Figure

3(e).

Iterations 5. Node 2 is eligible, but there is no eligible arc. 2 is increased by 2 units, and

node 6 becomes eligible.

Iteration 6. Nodes 2, 3, 4 and 6 are eligible, but there is no eligible arc. 2, sn3, T4 and ; 6

are increased by one unit. Node 1 becomes eligible.

Iteration 7. Nodes 1, 2, 3, 4 and 6 are eligible, but there is no eligible arc. 1, iT, 2, 3 , nt4

and /;6 are increased by one unit. Node 5 becomes eligible. The resulting set of

premultipliers are represented in Figure 3(f).

Iteration 8. Every node is eligible, but no arc is eligible. The algorithm terminates with an

optimum basic feasible flow.
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Illustrating the premultiplier algorithm.

(f)

We will now prove that the premultiplier algorithm solves the minimum cost flow

problem correctly in a finite number of iterations. Our proof consists of showing that at each

iteration the algorithm either increases the number of eligible arcs or performs a non-

degenerate pivot. As there can be at most n eligible nodes, the algorithm will perform a non-

degenerate pivot within n iterations. Each non-degenerate pivot obtains a new basis structure

with lesser objective function value. Since the minimum cost flow problem has a finite

number of basis structures, the premultiplier algorithm terminates finitely.

Lemma 3. The premultiplier algorithm maintains a vector of premultipliers at every step.
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Proof. We will prove the lemma by performing induction on the number of steps performed

by the algorithm. By assumption, the result is true for the initial basis structure. Let us first

study the effect of an execution of the procedure modify-premultipliers. Let n be the

premultipliers with respect to the rooted tree T(v), and let ' be the vector of premultipliers

subsequently. We need to show that cn' < 0 for each arc (i,j) in T(v). (Recall that the

procedure modify-premultipliers does not change the tree T(v), it only changes the

premultipliers.)

Let S denote the set of eligible nodes with respect to the vector n. The procedure

modify-premultipliers increases the premultiplier of each node in S by A units. Clearly, this

change does not affect the reduced costs of those arcs in T(v) which have either both of their

endpoints in S or neither of their endpoints in S. By definition, T(v) does not contain any arc

(i, j) with i E S and j e S. So we have only to consider those arcs in T(v) for which i X S and

j E S. Notice that the algorithm denotes this set of arcs by Q. Increasing the potentials of

nodes in S by A increases the reduced cost of every arc in Q by A units, but it is easy to see

that each one of these reduced costs remains non-negative and the reduced cost of at least one

of these arcs becomes zero.

We now consider the execution of the procedure simplex-pivot. Recall that arc (k, I)

is the entering arc. Since (k,l) is an eligible arc, node k is an eligible node. Therefore, is a

set of premultipliers with respect to T(k), and c_ < 0 for each arc in T(k). The basic cycle W

induced by arc (k,l) consists of arc (k, ) and the tree path P in T(k) from node I to node k (see

Figure 4). The subsequent flow augmentation reduces the capacity of exactly one arc (p,q) in

W to zero. Let T = T - (p,q) + (k,l). Then the orientation of each arc in T'(p) - { (k,l)} is the

same as the orientation of the arc in T(k), and so c < O0 for every arc in T'(p) - { (k,l) }.

Further, notice that ckl < 0, completing the proof.
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Figure 4. Illustrating the proof of Lemma 3.

In the preceding proof, we observed that in an execution of the procedure modify-

premultipliers the reduced cost of some tree arc, say (a,3) satisfying a X S and [3 E S,

becomes zero. Consequently, node az becomes an eligible node after the procedure has been

executed, establishing the following lemma.

Lemma 4. Each call of modify-premultipliers strictly increases the number of eligible

nodes.

We are now ready to prove the main result of this section.

Theorem 1. The premultiplier algorithm is a special case of the network simplex algorithm.

As such, it solves the minimum costflow problem in a finite number of iterations.

Proof. The premultiplier algorithm maintains a vector of premultipliers at every step and,

therefore, the basic cycle induced by an eligible arc always has a negative cost. Therefore,

the premultiplier method is a special case of the network simplex algorithm. The finiteness

follows directly from the non-degeneracy assumption, which guarantees that basis structures

are not repeated.

4. THE SCALING PREMULTIPLIER ALGORITHM.

In this section, we apply the Goldberg-Tarjan [1990] cost scaling algorithm to the

premultiplier algorithm of Section 3. The resulting specialization of the primal network

simplex algorithm runs in O(min(log nC, m log n)) scaling phases, each of which performs

O(nm) pivots. So the total number of pivots is O( min(nm log nC, nm 2 log n)). We also

show how to implement the algorithm so that the average time per pivot is O(n) and the total
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running time is O(min(n 2m log nC, n2m 2 log n)). The cost scaling version of the

premultiplier algorithm uses four additional notations which we define next.

Definition 5. The set N* denotes a subset of nodes whose multipliers have yet to change

during the c-scaling phase. For example, if nO denotes the multipliers at the beginning of the

current scaling phase, and if 7 denotes the current multipliers, then N* = {i: i = I ) .

Definition 6. Let r be a vector of premultipliers with respect to a basic feasible flow x.

Then, Ir is a vector of E-premultipliers if c: -efor all arcs (i, j) in G(x).

Definition 7. We call a node awake if i E N* or if r i is an integral multiple of e/4. Nodes

that are not awake are called asleep.

Definition 8. An arc (k, I) in G*(x) is called admissible for the c-scaling phase if node k is

an eligible and awake node, and Ckl -/-E4.

The cost scaling version of the premultiplier algorithm is similar to Goldberg and

Tarjan's [1990] cost scaling algorithm and performs a number of scaling phases. The

algorithm maintains a set of E-premultipliers. A scaling phase, called an c-scaling phase,

consists of an execution of the procedure improve-approximation which takes in a vector n of

E-premultipliers with respect to a basic feasible solution x and transforms it into a vector n' of

c/2-premultipliers with respect to a basic feasible solution x'. The phase terminates when N*

= ). The formal description of the cost scaling algorithm is as follows.
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algorithm scaling-premultiplier;
begin

let x be any basic feasible flow;
let X be a vector of simplex multipliers;

£ := max (IcXI: c7 < 0, (ij) G(x));

while x is not optimal do
begin

improve-approximation(x, e, It);

£ := max (ICI: cJ < 0 and (i,j) E G(x));

{In general, c is decreased by at least a factor of 2 at each stage. }
end;

end;

procedure improve-approximation(x, e, ar);
begin

N*: = N;

while N* • ) do

begin
if there is an admissible arc do
begin

select an admissible arc (k, );
simplex-pivot(k, );

end

else modify-e-premultipliers;
end;

end;

procedure modify--premultipliers;
begin

let S be the set of eligible nodes;
N* := N* - S;

if N* = then terminate improve-approximation(x, e, Ir);

Al: =min(-c : (ij) E T(v), i S, j E S);

A2 := min(£/4 - ri(mod £/4): i E S);

increase ni by A = min(Al, A2) for each i E S; observe that A > 0)

end;

Observe that gi(mod £/4) E [0, £/4). In the procedure modify-£-premultipliers, we

define A2 to be the least positive real number such that for some eligible node i, zci + A2 is an

integral multiple of /4. The subroutine simplex-pivot is the same subroutine as in the

premultiplier algorithm described earlier. It pivots in the arc (k,l) and pivots out arc (p,q) so

as to maintain primal feasibility. If arc (p,q) is pivoted out, then node p is set to be the root

of the new spanning tree. By the non-degeneracy assumption, there is a unique choice for the

leaving arc.
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In order to guarantee an amortized average time of O(n) per pivot, we need to be

careful in how we identify admissible arcs. For this purpose, we maintain a widely used data

structure, called the current arc data structure (see, for example, Ahuja et al. [1993]). Each

node i has a current arc, which is an arc in G(x) and is the next candidate for admissibility

testing. Initially, the current arc of node i is the first arc emanating from node i. We assume

that arcs emanating from each node are ordered in some fashion and this ordering once

defined remains unchanged throughout the algorithm. Whenever the algorithm attempts to

find an admissible arc emanating from node i, it tests whether the node's current arc is

admissible. If not, it designates the next arc in the arc list as the current arc. The algorithm

repeats this process until it either finds an admissible arc or reaches the end of the arc list.

When the arc list is exhaused, the current arc of i is set to be 0, representing the fact that there

are no arcs to scan. The current arc of node i is reset to FirstArc(i) when i is reawakened, that

is, when the premultiplier of node i has increased to the next integral multiple of £/4.

In a search for an admissible arc, the algorithm will first perform a depth first search

starting at the root node to identify nodes that are eligible. For each node that is both eligible

and awake, the algorithm will scan the node's arc list starting with its current arcs. The time

to identify nodes that are both eligible and awake and for which the current arc is not null is

O(n) per pivot. We conclude that the number of times that arc (i,j) is scanned per scaling

phase is at most the number of times in which node is awakened.

In principle, one could once again scan arcs emanating from node i as soon as hKi

increases; however, if one were to do so, then scanning for admissible arcs would become the

bottleneck operation of the algorithm. In order to eliminate this bottleneck, we say that node

i goes to sleep subsequent to scanning its arc list, and does not wake up until ni has increased

by a total of £/4 units. Since each node is awakened O(n) times per scaling phase (see

Lemma 9 below), each arc is scanned O(n) times per scaling phase, for a total running time

of O(nm) per scaling phase for scanning arc lists for admissible arcs. Moreover, suppose that

the premultipliers are It' and the flow is x' when node i goes to sleep and the multipliers are T

and the flow is x when node i awakens. Then for. each arc (ij) E G(x'), c > -/4. Also 7ci

= /' i + £/4, and one can show that for each arc (ij) E G(x), c > -/2. So c/2-optimality is

maintained for all arcs emanating from a node not in N* (see Lemma 6).

We now outline some important features of the cost scaling premultiplier algorithm.

1. As in the premultiplier algorithm of Section 3, during the E-scaling phase, each

multiplier will be monotonically non-decreasing from iteration to iteration.
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Moreover, there will be at least one multiplier that does not change during the entire

scaling phase, and each other multiplier will increase by at most 3nc/2.

2. Each arc (k,l) that is pivoted in is an admissible arc with reduced cost ck_ < -/4, and

so the cost of the basic cycle is less than or equal to -/4.

3. Each arc (k,l) will be pivoted in at most 6n times during a scaling phase, and the total

number of pivots per scaling phase is O(nm).

4. The number of scaling phases is O(min(m log n, log nC)).

We will now establish a polynomial bound on the number of pivots performed by the

algorithm. We will prove this result after establishing a series of lemmas.

Lemma 5. Suppose that r is a vector of e-premultipliers obtained during the e-scaling

phase, and let i be any node not in N*. Let r' be the vector of pre-multipliers immediately

prior to the most recent execution of modify-e-premultipliers at which time i was both eligible

and awake. Then O < ri - n'i e/4.

Proof. Let ic0 denote the premultipliers at the beginning of the scaling phase. We first note

that node i is both eligible and awake at the first time that the potential of node i is increased

in the e-scaling phase, and so T' is well-defined. Consider first the case that i - [ < /4. In

this case the lemma is easily seen to be true. We next consider the case that ri - Q > /4. In

this case, let a be the largest integral multiple of /4 that is strictly less than Jtj. It follows that

Pi - a < /4, and ic < at < ni. We will show that = a, and this will complete the proof.

Consider the first iteration at which the premultiplier of node i is increased to a value

that is at least a. By construction of A2 in the subroutine modify-e-premultipliers, the

premultiplier of node i is increased to exactly a. Now consider the first iteration at which the

premultiplier of node i is increased to a value that is strictly larger a. At this iteration, node i

was both eligible and awake. We conclude that node i will not again become awake until its

node potential becomes a + /4 >2 i, and so Ti = a, completing the proof. +

Lemma 6. Suppose that x is a basic feasible flow and that X is a vector of e-premultipliers

obtained during the e-scaling phase. For all (ij) e G(x), if i o N*, then cy > -/2. In

particular, if N* = p, then r is a vector of e/2-premultipliers with respect to x.

Proof. Consider arc (ij) E G(x). Let ' be the vector of premultipliers immediately prior to

the most recent iteration of modify-e-premultipliers at which time node i was both awake and
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eligible. At this point, arc (i,j) was not admissible, and so cj > -/4 or else (ij) had no

residual capacity. Let us first consider the case that c > -/4. In this case, cj = c~' - (i- ic')

+ (j - c). By Lemma 5, (i - i' ) < /4, and xj > tj. It follows that i -/4 - /4 + O = -c/2.

We now consider the case that (ij) had no residual capacity at the iteration in which

the premultipliers were Ar'. Suppose at some later iteration, when the pre-multipliers are ",

(ij) receives some residual capacity. Arc (i,j) can receive residual capacity only when arc

(j,i) enters the basis, and so cj < -/4 implying cI = c? i 2 £/4. Moreover, Cj = cj -1 (i 

I') + (j - I>) 2 c - ( - i) + (nj - TC;) 2 e/4 - /4 + 0 = 0, completing the proof.

Lemma 7. Either some node becomes awake subsequent to the execution of modify-£-

premultipliers or the number of eligible nodes strictly increases.

Proof. Let n denote the vector of premultipliers prior to the execution of modify-e-

premultipliers, and let ' denote the premultipliers subsequently. Let S denote the nodes that

are eligible with respect to n. Note that all of the nodes in S are eligible with respect to n'. In

the case that A = A2 , at least one node becomes awake. We now consider the case that A =

A l . This is the same case as in the proof of Lemma 4, and so there is at least one node that is

eligible with respect to ' that is not eligible with respect to S. +

We now proceed to bound the total increase in the multipliers during the scaling

phase. We will show in Lemmas 8 and 9 that each i increases by O(ne) during the e-scaling

phase. The counterpart of Lemmas 8 and 9 for pseudoflow algorithms for the minimum cost

flow problem was proved by Goldberg and Tarjan [1990].

Lemma 8. Letx and x' denote any two distinct nondegenerate basic feasible flows. Then for

any pair of nodes i and j, there is a path P in G(x) from node i to node j such that the reversal

of P is a path from node j to node i in G(x').

Proof. Let T denote the tree corresponding to the basic flow x. Let d(i,j) denote the number

of arcs in the unique path from node i to node j in tree T. We prove the result inductively on

d(i,j). Consider first the case that d(i,j) = 1, and thus either (i,j) E T or (j,i) E T. Suppose

that (i,j) E T. Let rji denote the residual capacity of (j,i) with respect to x'. If rji > 0, then

let P = (ij) and the result is true. So suppose that rji = 0. It follows from the non-

degeneracy assumption that rji > 0. By flow decomposition, x' - x can be decomposed into

flows around cycles each of which is a directed cycle in G(x). Equivalently, x may be

transformed into x' by sequentially sending flow around a number of directed cycles, each of

which is in G(x) (see, for example, Ahuja et al. [1993] for more details). Since rji = 0 < rji,
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it follows that one of these cycles, say W, contains arc (j,i). Let P denote the path in W from

node i to node j. Then P is in G(x), and the reversal of P is in G(x'), completing the proof in

the case that (i,j) E T.

Now suppose that d(i,j) = K > 1, and assume that the lemma is true for all pairs of

nodes u and w such that d(u,w) < K - 1. Let h be the node that precedes j on the path from i

to j in T. Thus d(i,h) = K-l, and d(h,j) = 1. By the inductive hypothesis, there are paths P 1

and P2 in G(x) such that P 1 is a path from i to h, P 2 is a path from h to j, and the reversals of

P 1 and P 2 are in G(x'). Let P 3 be a path obtained by concatenating PI and P 2 into a directed

walk from i to j and then removing any directed cycles contained in the walk. Then, P 3 is in

G(x) and its reversal is in G(x'), completing the proof.

Lemma 9. During the e-scaling phase, i is increased by at most 3/2 ne units.

Proof. Let x denote the basic flow and 7 denote the premultipliers at the beginning of the

e-scaling phase. Let x' denote basic flow and 7c' the premultipliers at some iteration during

the e-scaling phase. Select a node j E N*. (The -scaling phase ends immediately when N*

= 4, and so throughout the scaling phase N* • 4.) By the definition of N*, rcj = xj.

Let P be a path from node j to node i in G(x) such that the reversal of P, denoted as pr,

is in G(x'). Without loss of generality, we assume that node j is the only node of N* in P.

(Otherwise, we could replace j by the last node j* of N* in P, and replace P by the subpath P*

of P from j* to i.) Then, it follows from the c-optimality of flow that

c(P) = c(P) - + x i 2 -(n-1).

Moreover, since every arc of pr emanates from a node in N - N*, it follows from Lemma 6

that

c'(Pr) = c(P) - cr + j -(n-1)£/2.

Adding the negative of the above two inequalities and noting that (i) j = j, and (ii)

c(P) + c(Pr) = 0 yields the following inequality: tri < i + 3(n-1)£/2. +

Lemma 10. The scaling premultiplier algorithm performs at most 6nm pivots per scaling

phase.

Proof. In the c-scaling phase, suppose that t is the vector of premultipliers at some iteration

at which (ij) or (j,i) is pivoted in, and that iT' is the vector of premultipliers at the next

iteration at which (ij) or (j,i) is pivoted in again. We claim that i - i + Ij - j > £/2. By

.1�BbPd�nn�------ -----II- �--- ----·-��r_-�-_ __�._____�_____�______^_------
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Lemma 9, 7i and 7j may each increase by at most 3n£/2 during the scaling phase. If our

claim is true, then the number of iterations at which (i,j) or (j,i) is pivoted in is at most 6n,

and the lemma would follow.

We now justify our claim that ;i - i + tj - j > c/2. Suppose that X is the vector of

premultipliers when arc (ij) is pivoted in. (The proof in the case when arc (j,i) is pivoted in

at that iteration is essentially the same.) Thus, c.. = c.. - i + < -e/4. Consider first the

case that (j,i) is pivoted in when A' are the multipliers. Then, cji < -/4, and so c = - c.. >
1J j1

/4. It follows that /2 < cj - cj = -(gi - i) + (rj - j ) ( - i) + (j - cj ), and thus the

claim is true in this case.

We now consider the case that arc (ij) in G(x) is pivoted in when A' is the vector of

premultipliers. It is easy to see that in between the two iterations when (ij) is pivoted in, arc

(j,i) must be pivoted out of the rooted in-tree (because when arc (ij) is pivoted in, positive

flow is sent from node i to node j and it cannot pivot in again until flow is sent back from

node j to node i). Let " be the vector of premultipliers when (j,i) is pivoted out of the rooted

in-tree T(v). Since A' is a vector of premultipliers and (j,i) E T(v), it follows that c < 0, or

equivalently cj 2 0. Since premultipliers are nondecreasing during the scaling phase, < n"

< i'. Now observe that c.. - i + -/4, Cj- i + j > 0, and c.. - + n- < -£/4. It

follows from these observations that cj ni -7j > j - j £/4, and i - i - Tci >- 4, and so

our claim that i - ni + j - j > /2 is true, completing the proof.

Lemma 11. The scaling premultiplier algorithm terminates in O(min(m log n, log nC))

scaling phases with an optimal flow.

Proof. We first bound the number of scaling phases to log nC in the case when the data are

integral. The initial value of E is O(nC). (Recall that we have added artificial arcs with cost

nC + 1 to create the initial basis.) By Lemma 6, £ decreases by at least a factor of 2 at each

scaling phase. Thus, within O(log nC) scaling phases, £ is reduced to a number that is strictly

less than 1/n. We now claim that x is an optimal flow if £ < 1/n. By Lemma 6, X is a vector

of £-premultipliers, and so c > - > -1/n for each arc (ij) in G(x). Suppose W is any
iji

directed cycle in G(x). Then c(W) = cn(W) > -1. Since c(W) is integral, it also follows that

c(W) > 0, and thus the flow is optimal. (Here we make use of a well-known result that if the

residual network G(x) does not contain any negative cycle, then x is an optimal flow.) This

completes the proof that there are O(log nC) scaling phases.
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We now show that the number of scaling phases at which a pivot takes place is

O(m log n). We say that an arc is permanently nonbasic at the c-scaling phase if it is not in

any feasible basis in the c-scaling phase or in any subsequent phase. (The idea of

permanently nonbasic arcs is based on the work of Tardos [1985, 1986].) For every scaling

phase with a pivot, we will show that some arc in the spanning tree becomes permanently

nonbasic within (3 + [2 log n ) additional scaling phases. Since each arc may become

permanently nonbasic at most once, this will bound the number of scaling phases with a pivot

at (3 m+ mF2 log n ).

Since (i) the total increase in ni in the £-scling phase is 3n£/2, and (ii) £ decreases by

a factor of at least 2 in two consecutive scaling phases, it follows that the total increase in i

in the £-scaling phase and all subsequent scaling phases is bounded by 3n£/2 + 3n£/4 + 3n/8

+ ... = 3n£. So if ci > 3n£ during the £-scaling phase, (ij) is permanently nonbasic because

its reduced cost will never become negative.

Suppose that arc (ij) is pivoted in during the £-scaling phase, and let W denote the

basic cycle containing (ij). Then c(W) < -£/2 because arc (i,j) is £/2-eligible. Let £' denote

the scale factor (3 + 2 log n ) scaling phases later, and let R' be the vector of premultipliers

at the beginning of £' scaling phase. Then E' < /(8n2 ). Thus cn'(W) = c(W) < -4n2£'. Since

W has at most n arcs, there is an arc (ij) of W for which c.' < -3n£'. Since X is a vector of

£'-premultipliers (and thus satisfies c" - for each arc (i, j) in G(x)), it follows that arc (ij)

is not present in G(x). But then arc (j,i) is present in G(x), and cj > 3n£'. Therefore (j,i) is

permanently nonbasic, which is what we wanted to prove. We conclude that the number of

scaling phases in which a pivot takes place is O(m log n).

Finally, we bound the number of scaling phases at which no pivot takes place.

Actually, we will show that there are never two consecutive scaling phases in which no pivot

takes place. Suppose that no pivot takes place at the -scaling phase. Since no arc is pivoted

in, the subroutine modify-£-premultiplieres is called consecutively until each node is eligible.

So, at the end of the scaling phase, the vector X of premultipliers is a vector of simple

multipliers, and each arc of the tree has a reduced cost of 0. At the next scaling phase, the

scale factor £ = max(-c: c < 0). Thus there will be some arc (k,l) with ck/ = -c. Since all

nodes including node k are both eligible and awake, it follows that (k, ) is an admissible arc,

and thus a pivot takes place during this scaling phase. Therefore, the number of scaling

phases is at most twice the number of scaling phases at which a pivot takes place, and this is

O(m log n).
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Lemma 12. The subroutine modify-e-premultipliers is executed O(nm) times per scaling

phase.

Proof. By Lemma 7, each execution of modify-E-premultipliers either awakens a new node

or it leads to an eligible node being added. By Lemma 9, the former case can happen at most

6n times. We now bound the number of times that a new node is made eligible.

Whenever a new node is made eligible in the subroutine modify-e-premultipliers,

there is an arc (i,j) E T such that the reduced cost of (i,j) was nonzero before the change in

premultipliers, and the reduced cost was zero subsequently. We refer to this as canceling a

tree arc. We now claim that the number of times that an arc (ij) can be canceled is at most

the number of times that (ij) is pivoted in. To see that, notice that the reduced cost of (ij) is

negative when (i,j) is pivoted in, and it remains negative until either (ij) is canceled or else

(ij) is pivoted out. Once (i,j) is canceled, then the reduced cost of (ij) stays at zero until (ij)

is pivoted out. Thus each arc (ij) is canceled at most once in between successive times that

(ij) is pivoted in, proving that (ij) is canceled O(n) times per scaling phase.

We are now ready to prove our main result:

Theorem 2. The scaling premultiplier algorithm solves a minimum costflow problem in a

sequence of O(min(m log n, log nC)) scaling phases, each of which has O(nm) pivots.

Moreover, the running time per scaling phase is O(n2 m).

Proof. By Lemma 11, the number of scaling phases is O(min(m log n, log nC)), and the

algorithm ends with an optimal flow. By Lemma 10, each scaling phase has O(nm) pivots.

The time to send flow around the cycle and update the spanning tree is O(n) per pivot. If

there is an admissible arc, then the time to find it is O(n) per pivot plus the time to update

current arcs. We have noted earlier in this section that updating of current arcs requires

O(nm) time per scaling phase. By Lemma 12, there are O(nm) updates of the vector of

premultipliers in the subroutine modify-£-premultipliers. Each call of modify-E-

premultipliers potentially involves scanning all of the nodes in N, once to compute A1 and

once to compute A2, and thus takes O(n) time. We conclude that the running time per scaling

phase is O(n2m).

5. DIAMETER OF THE NETWORK POLYTOPE

In this section, we show that the diameter of the network polytope is O(nm log n).

That is, for any basic feasible solutions x' and x*, it is possible to obtain x* from x' via a

sequence of O(nm log n) primal simplex pivots. Our proof uses the same construction as
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does Goldfarb and Hao [1992], with a couple of minor technical details involving degeneracy

resolution.

Theorem 3. The diameter of the network polytope is O(nm log n).

Proof. Let x' be a basic feasible solution corresponding to the basis structure (T, L, U). We

first consider the case in which every basis is non-degenerate. We consider the degenerate

case subsequently.

ifx* letc*. *
Let c = 1 if xij = 0, let ci = -1 if xij =uij, and let c* = 0 if l..< < u... Then x*

' ij i 1J 1 

is the unique optimum flow that minimizes c*x. Using the premultiplier algorithm, one can

obtain x* as a sequence of O(nm log nC) = O(nm log n) pivots (because C = 0(1)).

We now consider the case that bases may be degenerate. Here it suffices to use

strong feasibility as per our discussion in Section 2. The technical issue that we must address

is that x' may not be strongly feasible, and so it may not be a legitimate basis from which to

start the scaling premultiplier algorithm. So, we do the following perturbations:

(1) for each degenerate arc (ij) E T with xij = 1ij we replace the lower bound of L.. for

(ij) by the constraint xi.. l.. - 6 for some positive 6 that is sufficiently small.

(2) for each degenerate arc (ij) E T with xij = uij, we replace u.. by u.. + 6.

The resulting flow x' is non-degenerate for the minimum cost flow problem. To

implement strong feasibility, we perform a perturbation by replacing b(l) by b(l) + 62 and

replacing b(j) by b(j) - 62/(n- 1) for j • 1. If 6 is chosen sufficiently small, then the following

results can be easily proved: (1) x' is nondegenerate, (2) any feasible basic structure for the

perturbed problem is also feasible for the original problem, and (3) an optimal basic structure

for the perturbed problem is also optimum for the original problem. Let (T*, L*, U*) be the

optimum basic structure for the perturbed problem. This basis can be found in O(nm log nC)

= O(nm log n) pivots using the scaling premultiplier algorithm. Since it is also optimum for

the original problem, it follows that the corresponding basic feasible solution is x*, which is

what we wanted to show.

We note that the results of Section 4 show that there is a sequence of O(nm log nC)

pivots moving from any basic feasible solution to another basic feasible solution so that the

costs are monotonically non-decreasing (or non-increasing).
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