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Abstract. The volume of thax-dimensional polytope
Max) :={yeR" yy >0andy; +---+Vy <X +---+x forall1 <i <n}

for arbitraryx := (Xg, ..., X,) with x; > O for all i defines a polynomial in variables

xi which admits a number of interpretations, in terms of empirical distributions, plane
partitions, and parking functions. We interpret the terms of this polynomial as the volumes
of chambers in two different polytopal subdivisiond&f(x). The first of these subdivisions
generalizes to a class of polytopes called sections of order cones. In the second subdivision
the chambers are indexed in a natural way by rooted binary treeawithvertices, and the
configuration of these chambers provides a representation of another polytope with many
applications, thassociahedron

1. Introduction

The focal point of this paper is thedimensional polytope
Ma(x) :={yeR" y;>0andy; +---+Vy <xg+---+x foralll <i <n}
for arbitraryx := (Xg, ..., Xn) with x; > O for alli. Then-dimensional volume

Vh(X) 1= Vol(ITh (X))

* The research of R. P. Stanley was supported in part by NSF Grants #9743966 and #9988459, and that by
J. Pitman was supported in part by NSF Grant #9703961.
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Fig. 1. TI2(X) and its two subdivisions.

is a homogeneous polynomial of degmeén the variablesxg, ..., X,, which we call
the volume polynomialThis polynomial arises naturally in several different settings:
in the calculation of probabilities derived from empirical distribution functions or the
order statistics oh independent random variables (see Section 2), and in the study of
parking functions and plane partitions (see Section 5). See also [15] regarding similar
connections between the theories of parking functions, empirical processes, and rooted
trees.

Trivially, V1(xX) = x;. The formula

Vo(X) = X1z + 3X2

has two natural interpretations by a subdivisioTB{(x) into two pieces of areag x,
and%xf, as shown in Fig. 1 for horizontal coordinate = 1 and vertical coordinate
Xo = 2.

The five terms of

1,2 1 2 1,2 1,3
V3(X) = X1XoX3 + 5X1X2 + 5X1X5 + 5X1X3 + §X] D

can be interpreted in two ways as the volumes determined by two different subdivisions
of IT3(x) into five chambers, as in the perspective diagrams of Fig. 2 whetei for
i =1, 2,3, the first coordinate points out of the page, the second to the right, and the
third up, and the viewpoint i€, —2, 4).

A central result of this paper is the general formula for the volume polynomial which
we present in the following theorem. Section 2 offers a simple probabilistic proof of this
theorem. We show in Section 4 how this argument can also be interpreted geometrically

Fig. 2. TI3(x) and its two subdivisions.
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by a subdivision of1,(x) into a collection oh-dimensional chambers, with the volume

of each chamber corresponding to a term of the volume polynomial. This generalizes the
subdivisions ofi1, andITz shown in the right-hand panels of Figs. 1 and 2. Technically,
by asubdivisiorof IT,(x) we mean golytopal subdivisioin the sense of Ziegler [39, p.
129], and we call the-dimensional polytopes involved tithamberof the subdivision.

The subdivision of1,(x) described in Section 4 is a specialization of a result presented
in Section 3 in the general context of “sections of order cones.” Section 6 shows how
the subdivisions shown in the left-hand panels of Figs. 1 and 2 can be generalized to
arbitraryn. The chambers of this subdivision f,(x) are indexed in a natural way by
rooted binary plane trees withy- 1 leaf vertices, and the configuration of these chambers
provides a representation of another interesting polytope with many applications, known
as theassociahedron

Theorem1l. Foreachn=1,2,...,

Vh(X) = Z ﬁiﬂ — i n Xkl...xkn (2)
k!~ nl S ke k)70

keK, i=1

where

i n
Kn = keN”:Zkizjforalllfj§n—1and2ki=n} 3)
i—1 i—1

WithN = {0,1,2,...}.

In particular, the number of nonzero coefficientsvnis the number of elements of
Kn, which is well known to be thath Catalan numbe€, (see, e.g., Exercise 6.19(w)
of [34] for a simple variant), the first few of which are2, 5, 14, 42,132 . .. :

1 /2n

Formula (2) should be compared with the following alternate formula, which as
indicated in Section 2 can be read from a formula of Steck [36], [37] for the cumulative
distribution function of the random vector of order statisticsaafidependent random
variables with uniform distribution on an interval:

o : j—i+1
B Wj—i+1>0 [
Vh(X) = det{w (Z Xh) j| s )

h=1 .
1<i.j=n

where detfij]1<i j<n denotes the determinant of thex n matrix with entriess;, and
1(---) equals 1if--- and O else. See [23] for an elementary probabilistic proof of (5).
This formula allows the expansion & (x) into monomial terms to be generated for
arbitraryn by just a few lines oMathematicecode.

Another formula of Steck [36], [37], with an elementary proof in [23], gives the
number #b, c) of j € 7" with ji<ja<---<jpandb < jj <cgforalll<i <n
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for arbitraryb, ¢ € Z" withb; <b, <--- <bjandc; < ¢, < --- < Cp:

b —i—1
#(b, ¢) = det[l(j —i4+1>0¢ b > 1)(°' by +J - )} )
]_|+1 1<i,j<n

We explain after the proof of Theorem 12 how these formulae (5) and (6) can be deduced
from a result of MacMahon on the enumeration of plane partitions.

In Section 2 we deduce the following special evaluations of the volume polynomial
from some well-known results in the theory of empirical distributionsafds > 0,

nVa@,b,...,b) =a@+nb" 1, )

while forn > 3 anda, b, c > 0,
n—2 places
—
n'Vh(@a,b,...,b,c) =a@+nb)"*+naic—b)y@+ (n—1)b)"2, (8)
andforn>3,1<m<n-2anda,b,c >0,

n—m-1places m—1places

— —
n'Vy@, b,...,b, ¢, 0,...,0
=a2(';)(c—<m+1—j)b)i<a+<n—j>b>”i1. 9)
j=0

Aswe indicate in Section 5, these formulae read from the theory of empirical distributions
have interesting combinatorial interpretations in terms of parking functions and plane
partitions.

2. Uniform Order Statistics and Empirical Distribution Functions

Let (Uni, 1 <i < n) be theorder statisticsof n independent unifornd0, 1) variables
Ui, Uz, ..., Uy Thatis to saylJn 1 < Up2 < --- < U, are the ranked values of the
Ui, 1 <i < n. Because the random vectdts, j, 1 < j < n)and(1 — Upnp1-j, 1 <

j < n) have the same uniform distribution with constant densitgn the simplex

ueR:M0<u;<---<u, <1} (10

for arbitrary vectors andsin this simplex there are the formulae

PUpj < s foralll<j<n)=n!Va(Xy,..., Xn)
where X :=§ —S_1, (11)
wheres, := 0 and
PUpj > rjforalll < j <n)=n!Va(Xg, ..., Xn)

where Xj '=rpyo—j — Mti-j, (12)
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wherer,;; := 1. Thus the probability
Pa(r,s) ;= P(rj <Upj <siforalll<j <n (13

can be evaluated in terms b, if eitherr = 0 or s = 1. See Section 9.3 of [30] for
a review of results involving these probabilities, including various recursion formulae
which are useful for their computation.

Proof of Theoreni. By homogeneity ofV,, it suffices to prove the formula when
s, < 1. Fix x and consider the probability (11). For4 i < n + 1 let N; denote
the number olJ, ; that fall in the interval(s_1, 5], with the conventions, = 0 and
Sy =1

n n
Nii=Y LUs1<Unj<s)=) Us1<Uj<s). (14
i=1 i=1
The second expression fbk shows that the random vect@¥;, 1 <i < n+ 1) has the
multinomial distribution with parameters n ar@dy, ..., X, Xny1) fOrx := 5 — s5_1,
meaning that for each vector af+ 1 nonnegative integerd;, 1 < i < n+ 1) with
> ™!k = n, we have

) n+1 Xik‘
P(Nizki,1§|§n+1)=n!ﬂm. (15
By definition of theU, ; and (14), the eventdJ,; < s) and (Zijzl N, > j) are
identical. Thus

P(Unj <sforalll<j <n)

i
=P<2Nizjforalll§j§n>

i=1
n

zz:P(Ni:ki,lsisn,Nn+1=0)=”!Z:l_[)%!i

keKp keKp i=1

by application of (15) wittk, .1 = 0. Compare the result of this calculation with (11) to
obtain (2). O

It is easily seen that the decomposition of the event (11) considered in the above
argument corresponds to a polytopal subdivisioflgfx) which forn = 2 andn = 3iis
that shown in the right-hand panels of Figs. 1 and 2. See Section 4 for further discussion
of this subdivision ofl1,(x).

The following corollary of Theorem 1 spells out two more probabilistic interpretations
of V,.

Corollary 2. Let(N;j, 1 <i < n+1)bearandom vector with multinomial distribution
with parameters n andpy, ..., pnt1), @s if N is the number of times i appears in
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a sequence of n independent trials with probabilitygp getting i on each trial for

1<i<n+1,where} " pi = 1.Then

i
P(ZNJziforalllsign):n!vn(pl, P2y ..., Pr) (16)
=1

and

i
P (Z Nj <iforall1<i < n) =n!'Va(Pnst1, Prs - - -5 P2)- 17

=1

Proof.  The first formula is read from the previous proof of (2). The second is just the
first applied to(Ny, ..., Npy1) := (Npy1, ..., Np) instead of(Ny, ..., Ny.1), because

i ] nt+1-j
ZNi ZZNn+2—i =n-— Z Ni
i=1 i=1 i=1
so that
i n41-j
ZNizj iff ZNi<n+1—j,
i=1 i=1
and hence the event th@tji":1 N < jforalll < j < nisidentical to the event that
M N <mforall<m<n. O
Let

Fa(t) = %Z U <t = %Z 1WUni <)
i=1 i=1

be the usuatmpirical distribution functiorassociated with the uniform random sample
Ui, ..., Un. SoF, rises by a step of /In at each of the sample points. It is well known
[30] that for any for continuous increasing functiohsandg, the probability

P(f(t) < Fa(t) < g(t) for all t)

equalsP,(r, s) as in (13) wherg ands are easily expressed in terms of values of the
inverse functions of andgati/nfor0 <i < n. Asanexample, Daniels [3] discovered
the remarkable fact that for & p < 1 the probability that the empirical distribution
function does not cross the line joinig@, 0) to (p, 1) equals 1— p, no matter what
n=12...

P(Fat) <t/pforall0<t<1)=1-p (18
which can be rewritten as
P(Uni =ip/nforalll<i <n)y=1-p. (19

As observed in Chapter X of [24], Daniels’ formula (18) can be understood without
calculation by an argument which gives the stronger resula&f€s [38, Theorem 13.1]
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that this formula holds withr, replaced byF for any random right-continuous nonde-
creasing step functiofr with cyclically exchangeable increments aR@0) = 0 and

F (1) = 1. Essentially, this is a continuous parameter form of the ballot theorem. Many
other proofs of Daniels’ formula are known: see Section 9.1 of [30] and papers cited
there. The form (19) of Daniels’ formula is equivalent via (12) to

nNVvVa1—p,p/n,...,p/N)=1—p (20

for 0 < p < 1. By homogeneity o¥,, this amounts to the identity (7) of polynomials
in two variablesa andb.
Pyke [25, Lemma 1] found the following formula: for all rdabndx with

O<b<1l and O<nb-—x<1, (21)
P(Maxzi (bi—Un i) <x) = (14+x—nb) 3756 (1) (jb—)] (1+x—jb)i-1. (22)

As indicated in Exercise 2 on p. 354 of [30], this formula gives an expression for the
probability that the empirical cumulative distribution function based on a sampie of
independent unifornd0, 1) variables crosses an arbitrary straight line through the unit
square. See Section 9.1 of [30] for proof of an equivalent of (22), various related results,
and further references. The identity in distribution

Unis1<i<m& Q- Upnrri.1<i <n)
shows that the probability in (22) equals
PUni <1+x—nb+b(i —1foralll<i<n) (23

which according to (11) is equal in turn to

N Via(Xg, ..., %) for
14+x—nb if i=1,
b if 2<i<n-—|x/a]+1,
V. L tozslensbials (24)
(n—i+2b—-x if i=n-—|x/al+1,
0 if i >n—|x/a]+1

Fora := 14 x — nb andb subject to (21), thatis3 a < 1and 0< b < 1, the
above discussion gives us equality of (22) and (24) with a + nb — 1. In particular,
provided 0< X < athere is only a term foj = 0 in (22), so the equality of (22)
and (24) reduces to (7). Similarly, far < x < 2a there are only terms foy = 0 and
j = 1in (22). Forn > 3 this allows us to deduce (8) from (22) first farb,c > 0
with a + (n — 2)b 4+ ¢ = 1 andc < b, thence as an identity of polynomialsanb, c.
Similarly, forn > 3 and 1< m < n — 2 when|x/a] = m we obtain the identity (9) of
polynomials ina, b, c.

According to Steck [36], [37], for, s in the simplex (10) there is the following
determinantal formula foP,(r, s) as in (13):

1(j—i+1>0 ji+1:|
1<i,j<n

P.(r,s) = n! det[ G-t (s =T (29
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The special case of (5) when < 1 can be read from (11), (13) and the special case of
(25) withr = 0 ands the vector of partial sums of. The general case of (5) follows

by homogeneity ofv, from the special case, witk; replaced byx; /o for arbitrary

o > Y | x. See also [22], where probabilities of the form (25) are expressed in terms
of Sheffer polynomials.

3. Sections of Order Cones

We obtain some results for a class of polytopes we call “sections of order cones” and
then show in the next section how these results apply direcilta). Let P be a partial
ordering of the sefy, . .., «p}, such that iftv; < ¢, theni < j. A linear extensiorof

P is an order-preserving bijection. P — [p] ={1,2,..., p},soifz < Z in P, then

7(2) < 7 (Z). We identifyr with the permutation (written as a wore)j - - - a, of [p]
defined byr («y ) = i. Inparticular, the identity permutation 12- pis alinear extension

of P. Let L(P) denote the set of linear extensionsRfGivenr = a;---a, € L(P)
define A, to be the set of all order-preserving mafppsP — R such that

flag) < flag) <--- < f(aap),
f(aaj) < f(“ajﬂ), if g > aj41.
A basic property of order-preserving maps P — R is given by the following

theorem, which is equivalent to Lemma 4.5.3(a) of [32].

Theorem 3. The set of all order-preserving maps P — R is a disjoint union of the
setsA, asmw ranges ovetrZ(P).

For instance, ifP is given by Fig. 3, then the order-preserving mdpsP — R are
partitioned by the following seven conditions:

floar) < flap) < flas) < flag) < flas) < flap),
fla) < flor) < fag) < flas) < flaa) < f(ap),
f (1)
f(oa)
f (1)

A IA

IA

flaz) < f(a2) < fas) < fas) < f(ap),
flaz) < f(a2) < flas) < flaa) < f(aep), (26)

fas) < flas) < flaz) = flaw) < fae),

IA

IA

[e73
Qy s
(€9} Q3

€3]

Fig. 3. A partially ordered set.
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flap) < flop) < f(az) < flas) < fas) < f(ap),

flap) < flag) < faz) < flas) < flaa) < f(ag).

Define theorder coneC(P) of the posetP to be the set of all order-preserving maps
f: P — R.o. ThusC(P) is a pointed polyhedral cone in the sp&& Assume now that
P has a unique maximal elemehtand let; < --- < t, = 1 be achairC in P. (With a
little more work we could relax the assumption tBeis a chain. The condition thit = 1
entails no real loss of generality since we can just adjdjmaP andincludeitirC.) Let
X1, ..., Xn be nonnegative real numbers. 8gt= x; + --- + X; andu = (Ug, ..., Up).
Let W, denote the subspaceRf defined byf () = uj for 1 < i < n. Define theorder
cone sectiorCc (P, u) to be the intersectiof(P) N W,, restricted to the coordinates
P —C. (The restriction to the coordinat®— C merely deletes constant coordinates and
has no effect on the geometric and combinatorial structu€g Bj N W,,.) Equivalently,
Cc (P, u) isthe set of all order-preserving maps P —C — R such that the extension
of f to P defined byf (t;) = u; remains order-preserving. Note tidat( P, u) is bounded
since forallse P — C and all f € Cc(P, u) we have 0< f(s) < u,. ThusCc (P, u)
is a convex polytope contained R"~¢. Moreover, dinCc (P, u) = |P — C| provided
eachx; > 0 (or in certain other situations, such as when no elemeRt-efC is greater
thant;,).

There is an alternative way to view the polytapg P, u). Let Py, ..., P, be convex
polytopes (or just convex bodies) in the same ambient sBiteand letxy, ..., X, €
R-o. Define theMinkowski sun{or, more accuratelyylinkowski linear combination

X1P1+ -+ XaPn = {Xa Xe + - + X Xt Xj € P}

Then Q = x3P1 + -+ + XaPn IS a convex polytope that was first investigated by
Minkowski (at least form < 3) and whose study belongs to the subjecintégral
geometry(e.g., [29]). In particular, then-dimensional volume of has the form

m
ol@= Y (al__. an>v<7>f1,...,7>g«)x;1...xgn,

ar+--+an=m
g eN
whereV (Pfl, ..., P&) € Rso. These numbers are known as thixed volumesf the
polytopesPs, ..., P, and have been extensively investigated.
Now suppose thaPy, ..., P, areinteger polytopegi.e., their vertices have integer
coordinates) iR™, and letxy, ..., X, € N. Given any integer polytop® c R™, write

N(P) = #P NZ™,

the number of integer points iR. Then we callN(x3 P + - - - + XaPn), regarded as a
function of x4, ..., Xy € N, themixed lattice point enumerataf P, ..., P,. It was
shown by McMullen [16] (see also [17] and [18] for two related survey articles) that
N(X1P1 + -+ - 4+ X, Ppn) is a polynomial inxy, . . ., X, (with rational coefficients) of total
degree at mosh. Moreover, the terms of degregare given by VoIX1 Py + - - - + Xn Pn).
Hence the coefficients of the terms of degrmeeare nonnegative, but in general the
coefficients ofN (x;P1 + - - - + X, Pn) may be negative. In the special case- 1, the
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mixed lattice point enumeratadd (xP) is called theEhrhart polynomialof the integer
polytopeP and is denoted(P, x). An introduction to Ehrhart polynomials appears on
pp. 235-241 of [32].

Define theorder polytopeO(P) of the finite posetP to be the set of all order-
preserving mapsd: P — [0,1] = {x € R: 0 < x < 1}. ThusO(P) is a convex
polytope inRP of dimension P|. The basic properties of order polytopes are developed
in [31].

Theorem 4. Given P, C, andu as aboveso Uy = X1 + --- + X, let
P={seP-C:s#£t_1}

(with P, = P — C). Regard the order polytop&(P,) as lying inRP~C by setting
coordinates indexed by elementg Bf— C) — P, equal to0. Then

Cc(P,u) = X10(Py) + x0(P2) 4 - - - + Xn O(Py).

Proof. We can regard@(P,) as the set of order-preserving mappsP — C — [0, 1]
such thatf (s) = 0if s < tj_;. From this it is clear that every elementxafO(P;) +
X2O(P2) + - - - + X, O(Py) is an order-preserving map P — C — R such that the
extension ofy to P defined byg(tj) = x; + - - - + X remains order-preserving. Hence

Cc(P,u) 2 X1O(Py) + X20(P2) + - - - + Xy O(Py).

For the converse, we may assume (by deleting elememsfafecessary) that each >
0.Letf € Cc(P, u). Lets € Pc and defingyy (s) = f(s)andfi(s) = min(l, xl‘lgl(s)).
Set

02(S) = 01(8) — X1 f1(s) = max(gi(s) — x1, 0).
Now let f(S) = min(, x, *g2(s)) and set

03(S) = 92(8) — X2 f2(s) = Max(ga(s) — X, 0).
Continuing in this way gives functionf, fo, ..., f,, for which it can be checked that
fi e O(P) and
f=xfo4+- + X fp,
o)
Cc(P,u) € x10(Py) + x0(Py) + - - - + X, O(Py). O

We now want to give a formula for the number of integer point§diaP, u), which
by Theorem 4 is just the mixed lattice point enumerator of the polytGpés). LetC
be the chairt; < --- < t, = 1 as above. Giver = ai---ap € L(P), write h; () for
theheightof t; in 7, i.e.,tt = 771(an or)). Thus 1< hy(r) < --- < hy(r) = p. Also
write

di(m) =#j: hi_1(m) < j <h(m), g > a1},
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where we sélg(r) = 0 andag = 0. Thugd; (;r) is the number oflescentsf r appearing

betweerh; _1(7) andh; (;r). Recall (e.g., Section 1.2 of [32]) that the number of ways
to choosej objects with repetition from a set &fobjects is given by

k k+j—1\ kk+1--(k+]j—1
()-(r -t

Regarding((‘j‘) as a polynomial irk € Z, note that(('j‘)) =0for—j+1<k<O.

Theorem 5. We have

n-1 P — d| 1
NCe®.w= 2 ] ((hi(:t) - hfi)<:> - 1))' (29

nel(P)i=1

Proof. Fixm =a;---a, € L(P). Writeh; = hj(r) andd; = di (). Let f: P - R
be an order-preserving map such thatf(ag A, (b) f(tj)) = u; = x¢+---+ X, and (c)
the restrictionf |p_c of f to P —C satisfiesf |p_c € Cc (P, u). Ifwe writeci = f (),
then for fixedr it follows from Theorem 3 that the integer point$p_c € Cc (P, u),
where f satisfies (a) and (b), are given by

0<ci<c<---<Cp =X <Cht1<---<Cp,
=X1t+Xe < =C=Xp+- -+ Xn, (29)

C <Gt if i > qj41. (30)

Leta, B, me Nand0< j; < jo» < --- < jq < m. Elementary combinatorial reasoning
shows that the number of integer vectars . . ., ry) satisfying

¢=rg<rn=<--<rIm<rImap=a+ph

i < T for 1<i=<q

is equal to((ﬂj?q“)). Hence the number of integer sequences satisfying (29) and (30)

is given by
Xp—dp+ 1) /x—d2+1 Xn — Oy +1
h]__l h2_hl_1 hn_hn71_1 ’
Summing over allr € L(P) yields (28). |

Example 6. Let P be given by Fig. 3, and ldy = a3, to = a3, andtz; = ag. The
conditions in (26) become in the notation of the above proof as follows:

0<C=X=<C=<C=X +X =<C4=C5=C=X+ X2+ X3,
0<C=X=<C=<C3=X+X2<Cs<C5=Cs=Xy+ X2+ Xa,
0<C=X=<C=X+X <C3=<Cs<C5=Cs=Xy+ X2+ X,
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0<C=X<C=X+X2<C=<C4<C5=<C=X+ X+ X3,
0<C=X=<C=X+X <C3<C4<C5=Cs= X1+ X2+ X3,
0<C<C=X=<C=X+X2<C4<C5=<Cs=X+ X2+ X3,
0<Ci<C=X<Ca=X1+X2<C4 <C5 <Cs=X1+ X2+ X3,

yielding

e = ()T )
A ) ) G

NP1+ - -+ + XaPn) are given by Volx; P + - - - + X, Pn). Hence we obtain from
Theorem 5 the following result.

Corollary 7. The volume of¢ (P, u) is given by

Xihi (m)—hi_1(7)

Vol(Ce (P, ) = Z l_[ (hi () — hi_1 (@) <Y

nel(P)i=1

Thus if m= |P — C|, then the mixed volume!mV (O(Pp)%, ..., O(P,)?) is equal to
the number of linear extensionse £(P) such thatithas heighta+ - - -+ g in 7, for
1<i<n.

The casen = 2 of Corollary 7 (or equivalently the case= 1 wheret; can be any
element ofP, not just the top element) appears in (16) of [31].

The productof two polytopesP € RP andQ € RY is defined to be their cartesian
product? x Q e RP*A, If L(P) denotes the poset afonemptyfaces of P, then
L(P x Q) = L(P) x L(Q) (see pp. 9-10 of [39]). IP is ad-simplex, theri_ (P) is just
a boolean algebra of rartkwith the minimum element removed. Moreover, the product
of n one-dimensional simplices is combinatorially equivalent (even affinely equivalent)
to ad-cube. Ifr =a; ---a, € Lp, then define\; to be the subset @i (P, u) given by
(29). Thus when eack > O we have that\, is a product of simplices of dimensions
hl—1,h2—h1—1,...,hp—h1—1,and

n hi (r)—hi_1(r)

Xl
Vol (Ay) = .11 () — 2!

Moreover, theA,’s form the chambers of a polyhedral decompositieg(P, u) of
Cc(P, u). We regardc (P, u) as the set of all faces of th&,;’s (including theA,;’s
themselves), partially ordered by inclusion. Note that formula (31) corresponds to an
explicit decomposition o€ (P, u) into “nice” pieces (products of simplices) whose
volumes are the terms in (31).
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Our next result concerns the combinatorial structure of the decompositietiBf u)
into the chambera ;. First we review some information from Section 5 of [31] about the
coneC(P) of all order-preserving maps. P — R.q. (Paper [31] actually deals with the
order complex?(P) rather than the con&(P), but this does not affect our arguments.)
Recall (e.g., p. 100 of [32]) that arder ideal | of P is a subset oP such thatift € |
ands < t, thens € |. The poset (actually a distributive lattice) of all order ideal$of
ordered by inclusion, is denoteld P). GivenachairK: §d=1lp <1 <--- < Iy =P
in J(P), defineCk (P) to consist of allf: P — R satisfying

O<fdy = flz—1p) < < Fll— o), (32

where f(S) denotes the common value df at all the elements of the subs8tof
P. Clearly, Ck (P) is a k-dimensional cone iRP. It is not hard to see that the set
Q(P) = {Ck (P): K is achain inJ(P) containingd and P} is a triangulation of (P).
The chambers (maximal faces)@f P) consist of the cones

OS f(aal) <---= f(aap),

wherer = a;---ap € L(P). Moreover,Ck (P) is aninterior face ofQ(P) (i.e., does
not lie on the boundary) if and only if each subget- |;_; of (32) is anantichain i.e.,
no two distinct elements df — |;_; are comparable. Such chains bfP) are called
Loewy chainsLet Q°(P) denote the set of interior facesQf( P) regarded as a partially
ordered set under inclusion. Thes (P) is isomorphic to the set of Loewy chains of
J(P), ordered by inclusion. Similarly, we |2 (P, u) denote the set of interior faces
of the polyhedral decompositidc (P, u).

Theorem 8. Let W, denote the subspaceRf given by f(tj)) = u;, 1 <i < n. Define
amapg: Q°(P) — Qg (P, u) by lettingg (Ck (P)) equalgk (P) N W, restricted to the
coordinates P— C. Theng is an isomorphism of posets

Proof. Let(32) define aninterior fagg (P) of C(P),sol =lg<li <--- < Ilxy=P

is a Loewy chain. Thus each skt— I;_; contains at most one element of the chain
C:ity <--- <ty Lett €l —Ij,_1. (Inparticular,j, = ksincet, = i.)Then(p(CK(P))

is defined by the equations

0

IA

fdp<flo—=lp<---<f(j, = ljj-D=w

fljgr— i) << fl, = lp—D) =up < -+ < f(lx— lo1) = Up.

IA

IA
A

It follows immediately tha is a bijection, and that two Loewy chaiksandK’ satisfy
K € K’ifand only if ¢ (Ck (P)) € ¢(Ck-(P)). Henceg is a poset isomorphism. O

The point of Theorem 8 is that it gives a simple combinatorial description (namely, the
poset2°(P), which is isomorphic to the set of Loewy chainsXfP) under inclusion)
of the geometrically defined pos€g (P, u). Note that2°(P) depends only or, not
on the chairC.
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4. TI,(x) as a Section of an Order Cone

In this section we apply the theory developed in the previous sectibh (r). We say
that two integer polytope® c R* andQ c R™ areintegrally equivalenif there is an
affine transformatiop: R — R™ whose restriction td is a bijectiong: P — Q,
and such that if aff denotes affine span, tierestricted taZ* N aff(P) is a bijection
@: ZX N aff(P) — Z™ N aff(Q). It follows that? and Q have the same combinatorial
type and the same “integral structure,” and hence the same volume, Ehrhart polynomial,
etc.
Now leti denote ari-element chain, and 16, = 2 x n, the product of a two-

element chain with an-element chain. We regard the elements@fasasy, ..., oz
with oy < -+ < an, ony1 < -+ < agp, andeg < apyj forl <i < n. Letti = apyi,
and letC be the chairt; < --- < t,. As in the previous section leg, ..., X, > 0, and

setu; = Xy + - - - + X. The polytopelc(Qn, u) € R*~€ = R", thus by definition is
given by the equations

Lety; = fi — fi_1 (with fg = 0). Then the above equations become

Yi >0, 1<i<n,
Vit Y S X+ X,
These are just the equations fir (x). The transformatiory;, = f; — fi_; induces
an integral equivalence betweé€g(Qn, u) andII,(u). Hence the results of the above
section, when specialized # = Q,, are directly applicable tdl,(x).
Theorem 4 expressé€s (P, u) as a Minkowski linear combination of order polytopes

O(PR,). In the present situation, whee = 2 x n, the poset?, is just the chainy; <
i1 < --- < ap. The order polytop®(P) is defined by the conditions

fi=--.=fi_1=0, O<fi<---<fa=<l
This is just a simplex of dimensiam— i + 1 with vertices(0/, 1" 1),i —1 < j <n,

where(0!, 1"-1) denotes a vector of zeros followed byn — j ones. Switching to the
y coordinates (i.ey; = fi — fj_1) yields the following result.

Theorem 9. Lett be the(n — i + 1)-dimensional simplex iRR" defined by

yi==¥%1=0,
yl 205"'7yﬂ205
Yty <1,

with vertices(0' 1, 1, 0" ) fori < j <n,and(0,0,...,0). Then

ITh(X) = X171 + X2T2 + - - - + XnTp.
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Considerthe sef(Q) of linear extensions dP,,. Alinear extensior = a; - --ap, €
L(Qp) is uniquely determined by the positionsmf+ 1, ...,2n (since 1...,n must
appearinincreasingorder)df = n+iforl <i <n,thenl< j; <--- < j, = 2nand
ji > 2i. The number of such sequences is just the Catalan nu@ber(1/(n+ l))(zn“)
(see, e.g., Exercise 6.19(t) of [34], which is a minor variation). If wekset ji — ji_1
(with jo = 0), then the sequencés= (kg, ..., k,) are just those of (3). Moreover,
in the linear extensiomy - - - agy, there are no descents to the leftroft 1, and there
is exactly one descent betweent i andn + i + 1 provided thak;,; — ki > 2. (If
ki.1 — ki = 1, then there are no descents betweepni andn +i + 1.) By Theorem 5

we conclude
1\ & /X
N([Ta(0) = 3 ((Xllj ))1‘[ ((E)) 33)
keKn 1 i=2 \N

whereK, is given by (3). Taking terms of highest degree yields Theorem 1. Thus we
have obtained an explicit decompositionfdf(x) into products of simplices whose vol-
umes are the terms in (2). (A completely different such decomposition will be given in
Section 6.) Moreover, Theorem 8 gives the combinatorial structure of the interior faces
of this decomposition.

Note Equation (33)was obtained independently by Ira Gessel (private communication)
by a different method.

We illustrate the above discussion with the case- 3. The posetQs is shown
in Fig. 4. The linear extensions @3 are given as follows, with the elements546
corresponding to the chaid shown in boldface:

123456
124356
124536
142356
142536

Qg

Fig. 4. The poseQsz =2 x 3.
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a

Fig. 5. The latticeJ(Qs3) of order ideals 0Q3.

Hence the pointsyi, Y2, y3) € I13(x) are decomposed into the sets

O<y1 <y <y3 <Xy,
0<y <Yy <Xy <Y3 <X+ Xo,
O0<y1 <Y2 <Xy < X1+ X2 < Y3 < X3 + X2 + X3, (34
O0<y1=X1 <Y2=Y3= X1+ X,
O0<y1<X1 <Y2< X1+ X2 < Y3 <Xy + X2+ Xa,

= (457205 ()
)

Theorem 8 allows us to describe the incidence relations among the faces of the decom-
position of [T3(x) whose chambers are the closures of the five sets in (34). The lattice
J(Q3) of order ideals 0fQ3 has five maximal chains. This lattice is shown in Fig. 5,
with elements labeled, b, ..., j. The elements, b, i, ] appear in every Loewy chain

of J(Q3) and can be ignored. The simplicial complex of chaind @®) (with a, b, i, j
removed) is shown in Fig. 6(a). The Loewy chains correspond to the interior faces, of
which five have dimension 2, five have dimension 1, and one has dimension 0. Figure 6(b)
shows the “dual complex” of the interior faces. This gives the incidence relations among

ST

@) (b)

Fig. 6. The order complex o8 (Q3) with a, b, i, j omitted, and the interior face dual complex.

yielding
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the five chambers of the decompositiorTbf(x) into five products of simplices obtained
from Qg (P, u) by the change of coordinatgs = f; — fi_; discussed above. For a
picture, see the second subdivision[df(x) in Fig. 2.

We mentioned earlier that in general the coefficients of the mixed lattice point enu-
meratorN (x;P1 + - - - + X, Pn) may be negative. The polytofé,(X) is an exception,
however, and in fact satisfies a slightly stronger property.

Corollary 10. The polynomial NIT,(X1—1, X2, ..., X,)) has nonnegative coefficients
Proof. Immediate from (33), since the polynom(afl)) has nonnegative coefficients.

Note One canalsothink @fc (Qn, u) asthe “polytope of fractional shapes contained in
the shapé€u,, Un_1, ..., U1)." Ingeneral, let.. = (A4, ..., Ay) be apartition, i.e}; e N
andi; > --- > Ap, Which we also call shape We say that a shape = (11, - .., in)

is contained inA if w; < A; for alli. (This partial ordering on shapes definégaing’s
lattice [32, Exercise 3.63]. Additional properties of Young's lattice may be found in
various places in [34].) If we relax the conditions that th&s are integers but only
require them to be real (withhy > --- > 1, > 0), then we can think of as a “fractional
shape.” ThugLc(Qn, u) just consists of the fractional shapes contained in the shape
(Un, Up_1, ..., U1).

5. Connections with Parking Functions and Plane Partitions

There are two additional interpretations of the volume and lattice point enumerator of
IT,(x) that we wish to discuss. The first concerns the subject of parking functions,
originally defined by Konheim and Weiss [9]. parking functionof lengthn may be
defined as a sequenéa, . . ., a,) of positive integers whose increasing rearrangement
b; < --. < by satisfiedy < i. For the reason for the terminology “parking function,”
as well as additional results and references, see Exercise 5.49 of [34]. A basic result of
Konheim and Weiss is that the number of parking functions of lengsh(n + 1)"1.

Write park(n) for the set of all parking functions of length Forx = (xg, ..., Xp) €
N" define arx-parking functiorto be a sequendey, . . ., a,) of positive integers whose
increasing rearrangemelnt < - - - < by, satisfiedy < X; + --- + %. Thus an ordinary
parking function corresponds to the case (1, 1, ..., 1). Let P,(x) denote the number
of x-parking functions. Note tha®,(x) = 0 if x; = 0.

Theorem 11.

Pa(X) = > Xay - - - Xa, = N Vu(X). (35)
(ag,...,an)eparkn)

Proof. Given(ay, ..., a,) € park(n), replace eachby anintegerinthe s¢k; +- - -+
Xi—1+1,...,%X 4+ --- + X}. The number of ways to do this is given by the middle
expression in (35), and everyparking function is obtained exactly once in this way.
This vyields the first equality. The second equality follows from the expansion (2) of
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Vh(X), since a parking function is obtained by chooskg K, forming a sequence
with k; i’s, and permuting its elements (pl n kn) ways. O

Takex; = 1 for alli in (35) and apply (7) foa = b = 1 to recover the result of [9]
that the number of parking functions of lengtls (n 4+ 1)"~1. We note that formula (7)
can be given a simple combinatorial proof generalizing the proof of Pollak [5, p. 13] for
the case of ordinary parking functions; see p. 10 of [33] for the aasé. We note that
Theorem 11 also gives enumerative interpretations of formulae (8) and (9). Presumably
these formulae too could be derived combinatorially in the setting of parking functions,
but we do not attempt that here.

An interesting special case of Theorem 11 arises when wexiakeq' ~* for some
g > 0. In this case we have

n!'Va(1,9,9%...,9" Y = S guberaen

(a,....an) epark(n)

It follows from a result of Kreweras [11] (see also Exercise 5.49(c) of [34]) that also

N'Va(1.g,9%...,9" Y = q@1,(1/q),

wherel,(q) is theinversion enumerator of labeled trees

We can generalize (7) by giving a simple product formula for the Ehrhart polynomial
i (ITh(x), r) of [1,(x) in the casex = (a, b, b, ..., b) (see Theorem 13). First we need
to discuss another way to interpfe{I1,(x)).

LetA = (A1,..., Ao) be a partition, sd; € Nandi; > --- > A, > 0. A plane
partition of shapei and largest part at most nis an arrayr = (mj) of integers
1 < m < m,definedforl<i < ¢and 1< j < A, which is weakly decreasing
in rows and columns. For instance, the plane partitions of stiade and largest part
at most 2 are given by

11 21 22 21 22
1 1 1 2 2°

where we only display the positive parts > 0. Basic information on plane partitions
may be found in Sections 7.20-7.22 of [34]xl& (g, ..., X)) € N", then set

U:(U]_,...,Un):(Xl’Xl+X2’_._’Xl+...+Xn)
and writel = (up, ..., Up), so thatli is a partition.

Theorem 12. Letx € N". Then NII,(X)) is equal to the number of plane partitions
of shapei and largest part at mos2.

Proof. If (y1,...,¥n) € IIh(X) NZ", then define the plane partition of shapeu to
havey; + --- +y; twos in rown + 1 — i and the remaining entries equal to one. This
sets up a bijection between the integer pointEljf{x) and the plane partitions of shape
0 and largest part at most 2. O
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Note Because of the connection given by Theorem 12 between integer politéxn

and plane partitions, a number of results concermipgx) appear already (sometimes
implicitly) in the plane partition literature. In particular, consider the determinantal for-
mula (6) of Steck. Lef/ = ji —i, b =b —i +1,andc, = ¢ —i — 1. We are then
counting sequencejg < j, < --- < j; satisfyingb! < j/ < c.If bf > b/ ,, then we
can replacdy, ;, by b{ without affecting the sequencgs < --- < j; being counted.

i+1
Similarly, if ¢i > ¢, we can replace with ¢ ,. Moreover, clearly the number of

i+1
sequences being cgunted is not changed by adding a fixed it¢geachb; andc;.

Hence it costs nothing to assume that®; < --- < b, and 0< c; < --- < ¢ (with

b <c).Leta =(c,...,cy) andp = (by, ..., b)). Theni andy are partitions, and

1 C X in the sense of containment of diagrams (see Section 7.2 of [34]) denote

the poset (actually a distributive lattice) of all partitions of all nonnegative integers, or-
dered by diagram containment. The latti¢és justYoung'’s latticanentioned above. In
terms of Young’s lattice, we see that that the numkr &) of (6) is just the number of
elementgj/, ..., j;) in the interval k., ] of Y. Alternatively, #b, c) is the number of
multichainsy = A% < A < A% = x of length 2 in the interval;f, A] of Y. Kreweras

[10, Section 2.3.7] gives a determinantal formula for the number of multichains of any
fixed lengthk in the interval [« A]. (See also Exercise 3.63 of [32].) Such a multichain is
easily seen to be equivalent to a plane partition of shapewith largest part at mo$t

When specialized t&k = 2, Kreweras’ formula becomes precisely our (25). Moreover,
the special casp = ¥ of Kreweras’ formula was already known to MacMahon (put

x = 1in the implied formula foGF(pipz - - - pm; N) [14, p. 243]). By Theorem 12 the
number of elements of the interval,[] is just N(I1,(x)), wherex is the partitiond

of Theorem 12. Hence in some sense MacMahon already knew a determinantal formula
for N(IT,(x)) and thus also (by taking leading coefficientsNofT1,(r X)) regarded as a
polynomial inr) for the volumeV, (x).

Theorem 13. Leta,be Nandx = (a,b,b, ..., b) € N". Then the Ehrhart polyno-
mial i (IT, (X)) is given by

i (ITh(X), )= n—ll(ra +Dr@+nbh+2)r(@+nb+3)---(r(@a+nb)+n). (36
In particular, the number NI, (x)) of integer points iMl,(X) satisfies
N (I, (X)) = n—ll(a+ 1)(@a+nb+2)(@+nb+3)---(@+nb+n).

First Proof. The theorem is simply a restatement of a standard result in the subject of

ballot problems and lattice path enumeration, going back at least to Lyness [13], and with
many proofs. A good discussion appears in Sections 1.4-1.6 of [19]. See also Lemma 3B
in Section 1.3 of [20].

Second Proof We give a proof different from the proofs alluded to above, because it
has the virtue of generalizing to give Theorem 14 below. The polytdpgXx) is just
T, (r x). Hence by Theorem 1i211,(X), r) is just the number of plane partitions of shape
ru and largest part at most 2. Identify the partitiomith its diagram consisting of all
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pairs(i, jywith1 <i <nand 1< j < = a+ (n —i)b. Define thecontent ¢s) of
s=(,j)elbyc(s)=j—i(seep. 373 of [34]). An explicit formula for the number

of plane partitions of shape andanybound on the largest part was first obtained by
Proctor and is discussed in Exercise 7.101 of [34] (as well as a generalization due to
Krattenthaler). Proctor’s formula for the case at hand gives

. ~ 14 n+c(s) rb+1+n+c(s)
1(ITn(X), 1) = ﬁuru “htcs) s:lli:[srﬂ n+c(s) '

n+c(s)=rgj n+c(s)>r

When all the factors of the above products are written out, there is considerable cancel-
lation. The only denominator factors that survive are those indexéd by, 1 <i < n,
yielding the denominaton!. The surviving numerator factors ara + 1 (indexed by
(n,ra)) andr(a+ nb) + k, 2 < k < n (indexed by(1,r (a+ (n — 1)b) — n + k)), the

lastn — 1 squares in the first row @f). O

Note from (36) that the leading coefficient off1,(x), r) (and hence the volume
Vi, (x) of TT,(X)) is given bya(a 4+ nb)"~*, agreeing with (7).

There is a straightforward generalization of Theorems 12 and 13 involving plane
partitions of shape with largest part at mosh + 1 (instead of jusin + 1 = 2). Given
x € N" as before, leII]'(x) C R"™ be the polytope of ath x m matrices(y;) satisfying
yj = 0and

Vi1 S Vi2 <o S Vim < X1+ X,
for1 <i < n, where
vij = Yi1 + Yi2+ - Vi

ThusTIi(x) = I,(x). Then the proof of Theorem 12 carries over mutatis mutandis to
show thatN (TIT'(x)) is the number of plane partitions of shapand largest part at most
m + 1. The result of Proctor mentioned above gives an explicit formula for this number
whenx = (a, b, b, ..., b). Replacingx by rx and computing the leading coefficient
of the resulting polynomial im gives a formula for the volum¥,"(x) of IT7'(x). This
computation is similar to that in the proof of Theorem 13, though the details are more
complicated. We merely state the result here without proof. Is there a direct combinatorial

proof similar to the proofs of Theorem 13 (the case- 1 of Theorem 14) appearing in
[19] and [20]?

Theorem 14. Letx=(a,b,b,...,b) e N". Then
Mm!Vro) =120 .ml F ™4+ m)"tn4+m—-1" 2. (n+ "™,

where f™" denotes the number of standard Young tableaux of sfrae= (m, m, . . .,
m) (n m’s in all), given explicitly by the “hook-length formulgd34, Corollary 7.21.6].
6. A Subdivision of IT,,(x) Connected with the Associahedron

Inthis section we describe a polyhedral subdivigdp(k; X), k € K,) of [T, (x) different
from the subdivision discussed in Section 3. This subdivision is closely related to a
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convex polytope known as ttessociahedropdefined as follows. LeE,,, be a convex

(n+ 2)-gon. Apolygonal decompositioof E,» consists of a set of diagonals Bf.»

that do not cross in their interiors. Hence the maximal polygonal decompositions are the

triangulations, and contain exactly- 1 diagonals. Let dé&, . ») denote the poset of all

polygonal decompositions &, », ordered by inclusion, with a top elemehnadjoined.

It was first shown by Lee [12] and Haiman [7] that dEg,,) is the face lattice of an

(n — 1)-dimensional convex polytopd, 2, known as theassociahedroror Stasheff

polytope (Earlier Stasheff [35] defined the associahedron as a simplicial complex and

constructed a geometric realization as a convex body but not as a polytope. Some authors

(e.g., p- 18 of [39]) refer to the dual of.» as the associahedron.) A vast generalization

is discussed in Chapter 7 of [6]. For some further information see Exercise 6.33 of [34].
We next give a somewhat different description of the associahedron (or, more pre-

cisely, of its face lattice) that is most convenient for our purposdans R™ is a (finite)

collectionF of pointed polyhedral cones (with vertices at the origin) satisfying the two

conditions:

e If C,C’ € F, thenC N’ is a face (possibly consisting of just the origin)&nd
C.
e If C € Fand(C' is aface ofC, thenC’ € F.

AfanF is calledcompletdf | .. = R™.

In analogy to subdivisions of polytopes, thredimensional cones of a complete fan
in R™ are callecchambersWe define a fan whose chambers are indexed by plane binary
trees withn internal vertices. The definition of a plane tree may be found for instance in
the Appendix of [32]. The key point is that the subtrees of any vertex are linearly ordered
Ty, ..., Tk, indicated in drawing the tree (with the root on the bottom) by placing the
subtrees in the orddm, ..., Tx from left to right. Abinary plane tree is a plane tree for
which each vertex has zero or two subtrees. In the latter case we call the vertex an
internal vertex. Otherwise is aleaf or endpoint We always regard plane trees as being
drawn with the root at the bottom.

Let T be a plane binary tree with internal vertices (so + 1 leaves). The humber
of such trees is the Catalan numitgy [34, Exercise 6.19(d)]. Do a depth-first search
throughT (as defined, e.g., on pp. 33—34 of [34]) and label the internal verti&s 1 , n
in the order they are first encounterfeoim above Equivalently, every internal vertex is
greater than those in its left subtree, and smaller than those in its right subtree. We call
this labeling of the internal vertices af the binary search labelingFigure 7 gives an
example whem = 4. Letys, ..., y,_1 denote the coordinates R"~1. If the internal

Fig. 7. A plane tree with the binary search labeling of its internal vertices.
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vertexi of T (using the labeling just defined) is the parent of verfeandi < j, then
associate with the paif, j) the inequality

Yier + Yig2 + -+ Y <0, (37
while if i > j, then associate witfi, j) the inequality

Vi1 + Yjq2+---+y = 0. (38

We get a system aof — 1 homogeneous linear inequalities that define a simplicial cone
Cr in R"1, For example, the inequalities corresponding to the tree of Fig. 7 are given

by

A

Yo < 0,
Yo+y3 > 0,
ys < 0.

\

IA

Lemma 15. The G, cone<r, as T ranges over all plane binary trees with n internal
vertices form the chambers of a complete f&p in R"~1. (For instance, Fig. 8 shows
the fanF3.)

Proof. Given 1<i < n, letD; be the cone ilR"~* defined by

Yo+ Ya+--+ Vi 0,
Yat+---+VYi >0,

v

[N

Fig. 8. The fanFs.
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}/i 207

Viv1 < 0,

Yit1+ Vie < 0,

Vit1+ VYiee+ -+ Y < 0.

Note that
Di={(Yo ... ¥n) ER" Yot ys+- 4y =maxyz+Ys+- -+ Yy 1<k <n}h
In particular,

Di={(Y2....Y) ER"™ Yo+ yg+---+ W <0, 2<k=<n}.

Claim. Let7; consist of all plane binary trees with n internal vertices and with root i
(in the binary search labelingThen

D= Jcr (39

TeTi

The proof of the claim is by induction am the cases = 1 andn = 2 being trivial
to check. Letn > 3, and assume the claim for all < n. Let T € 7;. Hence by the
induction hypothesis, the set of all possible left subtfBesith root j of the rooti of T
defines all pointgys, v, ..., yi_1) € R—*suchthat, + yz+- - - + y;j is the maximum
partial sum of the sequendg., ..., yi_1). Since generically vertex will be the left
child of the rooti (because the maximum partial sya+ ys + - - - + Yk will occur for
aunique R, we obtain the additional inequaligy.1 + yj+2+ - - - + ¥ > 0. This means
thaty, + y3 + --- 4+ V; is the maximum partial sum of the sequenge, vs, ..., Vi).
Similarly, the set of all possible right subtre&swith root j of the rooti of T defines
all points(yi 41, Yi+2, - - -» Yn) € R such thatyi 1 + Yi2 + - - - + yj is the maximum
partial sum of the sequenc® .1, Vii2, ..., ¥n). Since genericallyj will be a child of
the rooti, we obtain the additional inequality;1 + Yi42 + --- + ¥ < 0. This means
that

Yo+ VYa+- F Y <Y+ VYz+---+Vi, forall i+1<k=<n.

HenceD; = UTe’I.’ Ct, so the proof of the claim follows by induction.
From the definition ofD; it is clear that

Lnj D =R"L (40)
i=1

The proof of the lemma then follows from (39) and (40). O
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Fig. 9. Atriangulated 10-gon and the corresponding plane binaryTree

Theorem 16. The face poset fF,) of the fanF,, with a top elemenl adjoined is
isomorphic to the face lattice de,, ) of the associahedrod,, .

Proof. The face lattice of a complete fan is completely determined by the incidences
between the chambers and rays (one-dimensional faces). (See Exercise 3.12 of [32] for a
stronger statement.) The chamberE g{proved to be a complete fan in Lemma 15) have
already been described in terms of plane binary trees. There is a well-known bijection
between plane binary trees on2 1 vertices and triangulations of a conugx+ 2)-gon
En.2. This bijection is explained for instance in Corollary 6.2.3 of [34]. In particular, to
define the bijection we first need to fix an edgef E, », called theoot edge We hope
that Fig. 9 will make this bijection clear; see the previous reference for further details.
Thus we have a bijection between the chamlged§ F,, and the triangulations of the
convex(n + 2)-gonE,».

We now describe the rayR of F,. We can describ® uniquely by specifying one
nonzero point orR. We index these points by the diagon8lof a convex(n + 2)-gon
En. 2. Label the vertices o, 2 asQ1, ..., n+ 1 clockwise beginning with one vertex
of ¢ and ending with the other. Let denote the unit coordinate vector corresponding to
the coordinatey; in the spac&"! with coordinatesy,, ..., y,. Given the diagonaD
between vertices < j of Ep,,, associate a poirp € R"* as follows:

g, if i=0,
€ — 641, otherwise

We claim that the rayapp: o € R0} is the ray ofF, that is the intersection of all the
chambers of-, corresponding to the triangulations Bf, , that containD. From this
claim the proof of the theorem follows (using the fact tRatis asimplicial fan, i.e.,
every face is a simplicial cone).
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Consider first the diagon&® with vertices 0 and . Let Y be a triangulation ok,
containingD. The internal vertices of correspond to the regions (triangles) of the
triangulationY. Because of our procedure for labeling the internal vertices of a plane
binary treeT, it follows that the labels of the internal vertices “abov@”(i.e., on the
opposite side ob as the root edge) willbe 1, 2, ..., j — 1, while the internal vertices
below D will be labeledj, j + 1, ..., n. (See Fig. 9 for an example with= 8. The
diagonalD in question is labeled; and connects vertex 0 to vertgx= 6. The plane
binary treeT is drawn with dashed lines.) Consider the internal edgdstbht give rise
(via (37) and (38)) to chambers whose equations invgjvéNo such edge can appear
belowD, sincej is the least vertex label appearing belbwSimilarly no such edge can
appear abov®, since only vertices less tharappear abov®. Hence such an edge must
crossD. The top (farthest from the root) vertexof this edge is< j, while the bottom
vertexb is > j. Hence the chamber equation is givenyay; + Yai2 + -+ + yp > 0,
wherea < j andb > j. Hence the poing; lies on this chamber, and so the ray through
g is the intersection of the chambers corresponding to triangulations conténing

A completely analogous argument holds for the diagd@alith vertices andn+ 1.

Finally suppose thab has vertices, j where 0< i < j < n+ 1. The internal
vertices of T appearing abov® will be labeledi + 1,i + 2,...,j — 1, while the
remaining vertex labels appear bel@v (See Fig. 9, where the diagorialin question
is labeledD,, and wheré = 2 andj = 6.) Consider an internal edge ®f whose
vertex labels ar@ andb wherea < i andi + 1 < b < j. These are precisely the
edges whose corresponding chamber equation (eyther+ Yai2 + -+ + Yo > 0 or
Yat+1 + Yat2 + - + Yb < 0) involvesy; 1 but noty;. Sinceb appears abov® anda
below, the chamber equation is in fagt,1 + Yai2 + --- + ¥b < 0. In particular, the
pointe — &1 lies on the chamber. Similarly, consider an internal edg& efhose
labels area andb wherei + 1 < a < j andj < b. These are precisely the edges
whose corresponding chamber equation (again eyher+ Va2 +---+ yp > 0 or
Yat+1 + Yay2 + - + Yo < 0) involvesy; but noty;,1. Sinceb appears belovb and
a above, the chamber equation is in fagt 1 + Yay2 + --- + Yo = 0. In particular,
the pointe; — &1 lies on the chamber. Every other chamber equation either involves
bothyi ;1 andy; (with a coefficient 1), or else involves neither. Herge; — g lies
on every chamber corresponding to a triangulation contaiBingo the intersection of
these chambers is the ray contain®g- & 1. This completes the proof of the claim,
and with it the theorem. O

The connection betwedn, (x) and the farF, is provided by the concept of a plane
tree with edge lengths. If we associate with each esigkthe plane tred a positive
real numbet (e), then we call the paifT, £) aplane tree with edge lengthSuch a tree
can be drawn by letting the length of each eddm ¢(e).

Now fix a real numbes > 0, which will be the sum of the edge lengths of a plane
tree. Letx = (Xg,..., %)) € RT with ) x < s. Lety = (y1,...,yn) € R] with
Vi+--+Y <X +---+ % forl <i < n.We associate with the pa(ix, y) a plane
tree with edge lengths(x, y) = (T, £) as follows. Start at the root and traverse the tree
in preorder (or depth-first order) [34, pp. 33—34]. First go up a distapcthen down
a distancey;, then up a distance,, then down a distancg, etc. After going down a
distancey,, complete the tree by going up a distamge; = S— X3 — - - - — X, and then
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Fig. 10. A planted plane binary tree with edge lengths.

down a distancg,.1 = S— Y1 — - - - — Yn. Generically we obtain planted plane binary
tree with edge lengths.e, the root has degree 1 (or one child), and all other internal
vertices have degree 2. Figure 10 shows the planted plane binary tree with edge lengths
associated witls = 16 andx = (6,2,7), y = (1,4, 3). If T is a planted plane tree,
then we lefT denote the tree obtained by “unplanting” (uprooting?).e., remove from
T the root and its unique incident edgéletting the other vertex af become the root
of T).

Fix the sequence = (X, ..., Xn) With }_ X; < s. For a plane binary tre€ (without
edge lengths) witm internal vertices (and henee+ 1 leaves), definé\t = At (x) to
be the setof ally = (y1, ..., yn) € R} such thaip(x, y) = (T, ¢) for somer. Let 7y,
denote the set of plane binary trees witinternal vertices. LeT € 7, with the binary
search labeling of its internal vertices as defined earlier in this section. We now define a
sequencé(T) = (ky, ..., ky,) € N"as follows: (1)k; = O if the left child of vertex is
an internal vertex. (2) If the left child of vertéxs an endpoint, then ldé¢ be the largest
integerr for which there is a chain= j; < j, < --- < j; of internal vertices such that
jnis aleft child of j,,.1 for 1 < h <r — 1. For instance, il is the tree of Fig. 11, then
k(T)=(2,3,0,1,0,1,0,2,0).

Fig. 11. A plane binary tred with k(T) = (2,3,0,1,0, 1,0, 2, 0).
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Lemma 17. The map T k(T) is a bijection fron1Z, to the set K defined by(3).

Proof. Letk(T) = (ky, ..., ky). The chains = j; < j» < --- < j; described above
partition the internal vertices df, so) ki = n. Sincek;, = --- = kj, = 0, it follows
thatkpy1 + Kngo +---+ky <n—hfor0O<h <n—1.Hencek; +--- +k, > h, so
kK(T) € Kp.

It remains to show that givek = (ky, ..., kn) € Ky, there is a uniqu@ e 7, such
thatk(T) = k. We can construct the subtree of internal vertice$ afs follows. LetT;
be defined by starting at the root and makikag- 1 steps to the left. (Each step is from a
vertex to an adjacent vertex.) Hence we hleyveertices in all, and we are located at the
vertex furthest from the root. Suppose tiahas been constructed for< n, and that
we are located at vertex. If ki1 > 0, then move one step to the right dag; — 1 steps
to the left, yielding the tre@&;, ; and the vertex;_; at which we are located. K,; = 0,
then move down the tree (toward the root) until we have traversed exactly one edge in a
southeast direction. This gives the tfBe; = T; and a new present locatian, ;. Let
T = T,. Itis easily checked that the definition &f, ensures thal is defined (and,
though not really needed here, thatis the root vertex) an&(T) = k. Since there are
Ch=1/(n+ 1))(2n”) plane binary trees with internal vertices and since# = C,, it
follows that the maf@ +— k(T) is a bijection as claimed. (It is also easy to see directly
thatT is unique, i.e., ik(T) = k(T’), thenT =T'.) O

Now givent € R, letoy(t) denote th&k-dimensional simplex of pointdy, ..., t)
satisfying0<t; <t, <--- <ty <t.Thus

tk
Vol (o () = 1.

By conventionog(t) is just a point, with Volog(t)) = 1. Define two compact subsets
X and) of R" to beunimodularly equivalenif there is an affine transformation of
determinantt1 that mapst onto). (Hence Vo{X') = Vol())).) We can now state the
main result of this section.

Theorem 18. (a) The setAr(x), for T € 7y, form the maximal faceghamber¥of a
polyhedral decompositioRn,, of I (X).

(b) Letk(T) = (Kq, ..., ky), where T € 7,,. ThenA+ (x) is unimodularly equivalent
to the producby, (X1) x - - - x ok, (Xn), SO in particular

k1

X xko
Vol(AT(X)) = k—1| con
1:

kn!

(c) The interior face complek; of I'y is combinatorially equivalent to the associ-
ahedroni.e, the set of interior faces df,, ordered by inclusionis isomorphic to the
face lattice of the associahedron

Proof. (a) The construction of the plane tree with edge lengths y) = (T, ¢) is
defined if and only ify € I1,(x). Since genericallp(X, y) is a planted plane binary tree,



630 R. P. Stanley and J. Pitman

it follows that the set&\r (x), T € 7,, form the chambers of a polyhedral decomposition
of Iy (X).

(b) Letp(x, y) = (T, £) as above. Call avertexof T aleft leafifitis aleaf (endpoint)
and is the left child of its parent. Similarlyraght edgeis an edge that slants to the right
as we move away from the root. LB{v) be the path from the left leaftoward the root
that terminates after the first right edge is traversed (or terminates at the root if there is no
suchright edge). Lat(v) be the label of the (internal) vertex that is the parent dthen
the length of the patR (v) is justxc,. If c(v) =i, then exactlyk; of the paths? (u) end
at the pathP (v). Suppose that these paths &), ..., P(uy) whereu; < --- < uy.
Then the path®(u;) intersect the patl (v) in the orderP(uy), ..., P(uy) from the
bottom up. Hence for eadtwith k; > 0, we can independently place on a path of length
X; thek; points that form the bottoms of the patRgu;). The placement of these points
defines a pointin a simplex unimodularly equivalenif@x; ), SOAt (X) is unimodularly
equivalent tasy, (X1) x - - - X ok, (Xn) @s claimed. O

Example 19. Let T be the planted plane binary tree of Fig. 12. On the path of length
x; from the rootr to v; we can place vertices 1 and 3 in bijection with the points of
the simplex 0< t3 < t; < Xx; of volume xf/z. On the path of lengtk, from 1 to

v2 We can place vertex 2 in bijection with the points of the simplex @, < xp, of
volumex,. Finally on the path of lengtk, from 3 tovz we can place vertices 8, 6 in
bijection with the points of the simplex 8 ts < t5 < t4 < X4, of volumex§/6. Hence

A+t is unimodularly equivalent to the produgb(x;) x o1(X2) x o3(Xs), Of volume
X2xox3 /2111 31

Itis easy to make the unimodular equivalence betweemandoy, (X1) X - - - X o, (Xn)
completely explicit. For instance, in the above exantpiethe distance between vertices
r and 3, so

3=X1—Y1+X2— Yo+ X3— Vs

Similarly,

Fig. 12. A planted plane binary tree.
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Now t, is the distance between vertices 1 and 2, so

th =X — Y.
In the same way we obtain

t6 = X4 — Ya+Xs— Y5+ X6 — Ve,
s = X4 — Y4+ Xs — Vs,
t4 = X4— Vs

Proof of Theoreni8(c). Letg(x,y) = (T, £). Then the height (or distance from the
root) of vertexi is justx; +---+ X — y1 —--- —Y; = Uj — vj. Hence if vertex is the
parent ofj, thenu; — vi < u; —vj. Ifi < j we get the equation

(Yig1 — Xig2) + -+ (Y — %) <0, (41
while if i > j we get
Yjrr = Xjg1) + -+ (Vi — %) = 0. (42

Thus thesan — 1 equations, together with > O andy; +---+ Vi < Xy + --- + X,
determineAr.

Note that if we replace eadch by yx — Xk in the inequalities (37) and (38) defining
the chambers of the fdf, of Theorem 16, then we obtain precisely the inequalities (41)
and (42). From this we conclude the following. Giver= (xy, . .., Xn) € RZ,, translate

the fanF, so that the center of the translated fanis at(x,, . .., X,). Add a newy; axis
and lift F, into R", giving a “nonpointed fan” (i.e., a decomposition®f satisfying the
definition of a fan except that the cones are nonpointed) which we dend@exb¥ ..
(Thus each con€ € F, lifts to the nonpointed con® x C.) Finally intersect each
chamber (maximal con® x C of R x F,, with the polytope,(x). Then the polytopes
C NI, (x) are just the chambef3(k; x) of the polyhedral decompositidd, of IT,(x).
Moreover, the interior faces of this decomposition are just the intersectiarbitfary
cones inR x F, with TT,(x). Hence the interior face poset &% is isomorphic to the
face poset of the faR,,, which by Theorem 16 is the face lattice of the associahedton.

Notes The decomposition dffl,,(X) given by Theorem 16 is fundamentally different
(i.e., has a different combinatorial type) than that of Theorem 8. For instance, when
n = 3 Fig. 6 shows that the interior face dual complex described by Theorem 8 is not
a decomposition of a convex polytope, unlike the situation in Theorem 16. In that case
whenn = 3 the interior face dual complex is just a solid pentagon. The two subdivisions
of I3(x) are shown explicitly in Fig. 2.

We are grateful to Victor Reiner for pointing out to us that Theorem 16 is related to
the construction of the associahedron appearing in [12] and [26], and Byadisalogue
of this construction appears in Section 3 of [1]. Note that the proof of Theorem 16 shows
that the rays of the faf, are the vectorg and—e for1 <i < n—1, andeg — g
for1 <i < j < n— 1. As pointed out to us by Reiner, it follows from [12] that we
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can rescale these vectors (i.e., multiply them by suitable positive real numbers) so that
their convex hull is combinatorially equivalent (as defined in the next section) to the
associahedrod,, .

Some of the results of this section can be interpreted probabilistically in terms of
the kind of random plane tree with edge lengths derived from a Brownian excursion by
Neveu and Pitman [21]. It was in fact by consideration of such random trees that we were
first led to the formula (2) for the volume polynomial, with the geometric interpretation
provided by Theorem 18.

7. The Face Structure ofT1,(X)

In this section we determine the structure of the faceBgfx), i.e., a description of
the lattice of faces of1,(x) (ordered by inclusion). This description will depend on the
“degeneracy” ofi1,(x), i.e., for whichi we havex; = 0. Thus letu; = x; +---+ X as
usual, and define integersda; <a; <--- <a =nhy

U1:"':Ua1<Ua1+1:"':Ua2<"'<Uak_1+l:"'—uak~

We say that two convex polytopes atembinatorially equivalenbr have the same
combinatorial typef they have isomorphic face lattices.

Theorem 20. Leta,..., ax beasaboveand setb= a —a;_; (with ay = 0). Assume
(without loss of generalijthat % > 0. ThenIT,(X) is combinatorially equivalent to a
productoy, X - - - X o, Whereo; denotes a j-simplexn particular, if each x > 0then
I, (X) is combinatorially equivalent to an n-cube

Proof. Forl<i <k, letS = {Cio,Ci1,...,Cip} denote the set of the following
bi + 1 conditionsC;; on a pointy e TT,(X):

(Cio) Ya 141 =Ya 42 =""=VYa =0,

(Cin) Ya_i+1 = Ui, Ya1+2 = Ya_1+3 ="'+ =Ya =0,
(Ci2) Ya_i+2 = Ui, Ya 141 = Ya 43 == Ya =0,
(Ci) Ya = Ui, Ya 141 =VYa 42 ="' =Ya-1=0.

Note that each of the conditioi®; consists ob; chambers of1,(x); we regardC;; as
being the set of these chambers. Betlenote any subset 6f, and lef) § = (.5 C.
A little thought shows that we can find a poipte IT,(x) lying on all the chambers in
each() S, but not lying on any other chamber Hf,(x). Moreover, no point of1,(x)
can lie on any other collection of chambersIff(x) but on no additional chambers.
From the above discussion it follows thBt,(x) is combinatorially equivalent to
a product of simplices of dimensioits, . .., bk, as desired. In particulafl,(x) has
(b1 +1)(b,+1)--- (b + 1) verticesv, obtained by choosing & j; < b; for eachi and
definingv to be the intersection of the chambers in all @jg’s. O
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AlthoughTl, (x) is combinatorial equivalent to a product of simplices, itis not the case
thatIT,(x) is affinelyequivalent to such a product. For instance, Fig. 1 sHaw(x1, Xo)
whenxy, Xo > 0. We see thall» (X1, X2) is a quadrilateral and hence combinatorially
equivalent to a square. HowevEr; (X, X2) is hot a parallelogram and hence not affinely
equivalent to a square. Similarly Fig. 2 shows tlBi(x;, X2, X3) is combinatorially
equivalent but not affinely equivalent to a 3-cube when each 0.
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