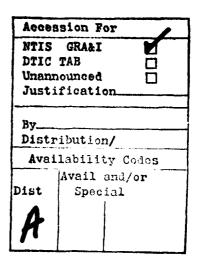

4 3 w	· ·]	• •							
					ا#1	 E.		Č.	
	8			•					
				END BATE FILMED 4		_	_		

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)				
REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
TR-RL-81-4	AN-A096 197			
4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED		
A Ployvinylidene Fluoride Diffe	rential Membrane			
Pressure Acoustical Array Trans		Technical Report		
		6. PERFORMING ORG. REPORT NUMBER		
		B. CONTRACT OR GRANT NUMBER(4)		
7. AUTHOR(=)				
John A. Schaeffel, Jr.		DA1L162303A214		
9. PERFORMING ORGANIZATION NAME AND ADDRES	\$	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Commander		AREA & WORK UNIT NUMBERS		
US Army Missile Command				
ATTN: DRSMI-RL Redstone Arsen	AL 35898	AMCMS 6123032140911		
11. CONTROLLING OFFICE NAME AND ADDRESS COmmander		12. REPORT DATE		
US Army Missile Command		<u>30 September 1980</u>		
ATTN: DRSMI-RPT		13. NUMBER OF PAGES		
Redatone Arsenal AL 35898	nt from Controlling Office)	15. SECURITY CLASS. (of this report)		
		Unclassified		
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE		
	·			
16. DISTRIBUTION STATEMENT (of this Report)				
	DISTRIBUTION S			
	Approved for p	ublic release;		
	Distribution	Unlimited		
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)				
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side if necessary				
Polyvinylidene	Transducer			
Polyvinylidene Fluoride (PVDF) Acoustical Transducer	Ultrasonics Transducer A			
Membrane Transducer	ITansducer A	litay		
Differential Membrane Pressure				
20. ABSTRACT (Castline an reverse stde M necessary a	ad identify by block number)			
This work describes the fabrica	tion of a PVDF ar	ray transducer for use in NDT		
and Experimental Mechanics Appl	ications. The ar	ray and its control electron-		
ics are described in the report	. Specific perfor	mance data is also given.		
DD 1 JAN 73 1473 EDITION OF ! NOV 65 15 085	DLETE Unclass	ified		

Ľ

ولترزع الحمد معمدها فمستقدمة وعميد مركاتك ولاستعماما المتعاقل ومعاديا الالتعاد والمعاد

and the set of the set


SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

1

TABLE OF CONTENTS

Section		Page
Ι.	INTRODUCTION	1
11.	ARRAY TRANSDUCER CONCEPT	1
111.	ARRAY FABRICATION AND TESTING	8
IV.	CONCLUSIONS	27
v.	APPENDIX	A-1

ALC: NO.

i

List of Figures

Figure		Page
1.	Cross Sectional View of PVDF Ultrasonic Transducer Design Concept	1
2.	Circular Membrane of Radius (a) Deflected Under a Differential Pressure (P)	3
3.	Transducer Focal Length Versus Differential Membrane Pressure	. 4
4.	Near Field Length Versus Frequency for a .5 Inch Diameter Transducer in Water	6
5.	Schematic of PVDF Membrane	7
6.	Front and Rear Electrode Holders for the PVDF Array Transducer	9
7.	Gas Supply Chamber for the PVDF Array Transducer	10
8.	Front Mask for Etching the PVDF Membrane	11
9.	Back Pressure Plate for the Etching Mask	12
10.	Top view of the Assembled PVDF Array Transducer	13
11.	Gas Fittings for the PVDF Array Transducer	13
12.	Assembled PVDF Array Transducer	14
13.	System Control Electronics	14
14.	Transducer Electronics Control Panel	15
15.	RF Switch System Block Diagram	16
16.	Selector Switch, Assembly	17
17.	Array Transducer Connected to the Electronics System	18
18.	Mechanical Block Schematic of PVDF Transducer Gas Supply System	21
19.	PVDF Transducer Gas Supply System	22
20.	Real-Time Array Performance Viewing System	26

ii

List of Tables

Table	·	Page
1.	System Electronic Control Functions	19
2.	Procedure-1 Receiver Voltages	23
3.	Procedure-2 Receiver Voltages	24
4.	Procedure-3 Receiver Voltages	25

and the descent

١.

فستغريد

I. INTRODUCTION

The need for low cost, high output power, broad-band frequency response, variable focal length acoustical transducers is readily established in NDT and Experimental Mechanics applications. A single element transducer was developed [1] in 1979 to meet some of these requirements. The transducer was fabricated from Polyvinylidene Fluoride (PVDF) and featured the following:

- o Low Cost
- o Variable frequency response
- o Variable focal length

The transducer had very low output power but showed great promise for being fabricated into arrays. This report documents the initial effort to package the differential membrane pressure acoustical transducer developed in 1979 into an integrated array.

The present device has the same basic operating characteristics as the previous single element device except that 16 transducers are presently packaged into a single array. It is conceived that large arrays may one day be packaged into units for applications in NDT and Experimental Mechanics.

II. ARRAY TRANSDUCER CONCEPT

Figure 1 illustrates the basic concept of the differential pressure acoustical PVDF membrane transducer. A PVDF membrane with surface deposited electrical conductors is sandwiched between two electrodes. The membrane and acoustical cavity walls form an acoustical cavity into which a gas or liquid is pumped through a pressure control port. By controlling the differential pressure between the acoustical cavity medium and the external acoustical cavity medium, the membrane is made to deflect in approximately a spherical shape as shown.

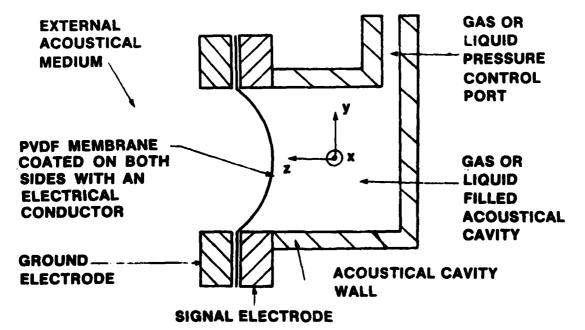


Figure 1. Cross sectional view of PVDF ultrasonic transducer design concept.

If a signal is applied to the two electrodes, the membrane will tend to contract or expand with the polarity of the applied voltage. The expansion is a length-expansion characterized by the piezoelectric constants d_{31} and d_{32} [2] and is tangential to the surface of the membrane. The ultimate result of applying the differential membrane pressure is to introduce a component of motion of the membrane in the z direction as shown in Figure 1.

When driven at ultrasonic frequencies (1-10 MHz), the result is the transmission of an acoustical wave into the external acoustical medium. Assuming that the wave is transmitted normal to the surface of the membrane then the beam will have a focal point determined by the membrane radius. By varying the differential membrane pressure, the focal point position in space is also varied.

When a mechanical stress is applied to an area of piezoelectric material a polarization per unit area P_1 (or dipole moment per unit volume) is generated [3], where:

(1)

 $P_{i} = d_{ij} \sigma_{j}$ i = 1,2,3 and j = 1,2,3,4,5,6 $P_{i} \equiv \text{ploarization per unit area}$ $d_{ij} \equiv \text{piezoelectric moduli (matrix representation)}$ $\sigma_{j} \equiv \text{applied stress (matrix representation)}$

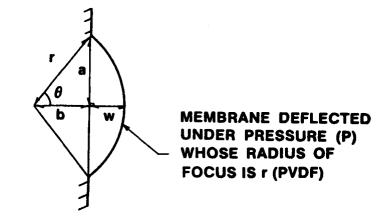
Equation (1) refers to the direct piezoelectric effect.

The converse piezoelectric effect occurs when an electric field is applied to a piezoelectric material and it becomes strained by an amount directly proportional to the electric field strength. For this case:

 $\epsilon_{j} = d_{ij} E_{i}$ (2)

 $\varepsilon_j \equiv matrix$ representation of strain $E_i \equiv electric$ field strength.

As illustrated in Equations (1) and (2) the piezoelectric moduli are measures of the conversion efficiency from an electrical signal to a mechanical strain in the material and vice versa.


Figure 2 shows a cross sectional view of a PVDF circular membrane deflected under a differential pressure (P) to form a focused transducer as shown in Figure 1. If the ultrasound is emitted normal to the surface of the membrane, the focal point of the transducer will be located at

$$\mathbf{r} = \frac{\mathbf{a}^2 + \mathbf{w}^2}{2\mathbf{w}} \tag{3}$$

where,

Royal and the second state of the second

- r = membrane transducer focal radius
- a ≡ membrane radius
- $w \equiv$ membrane deflection.

r ≡ MEMBRANE FOCAL RADIUS a ≡ MEMBRANE RADIUS w ≡ MEMBRANE DEFLECTION

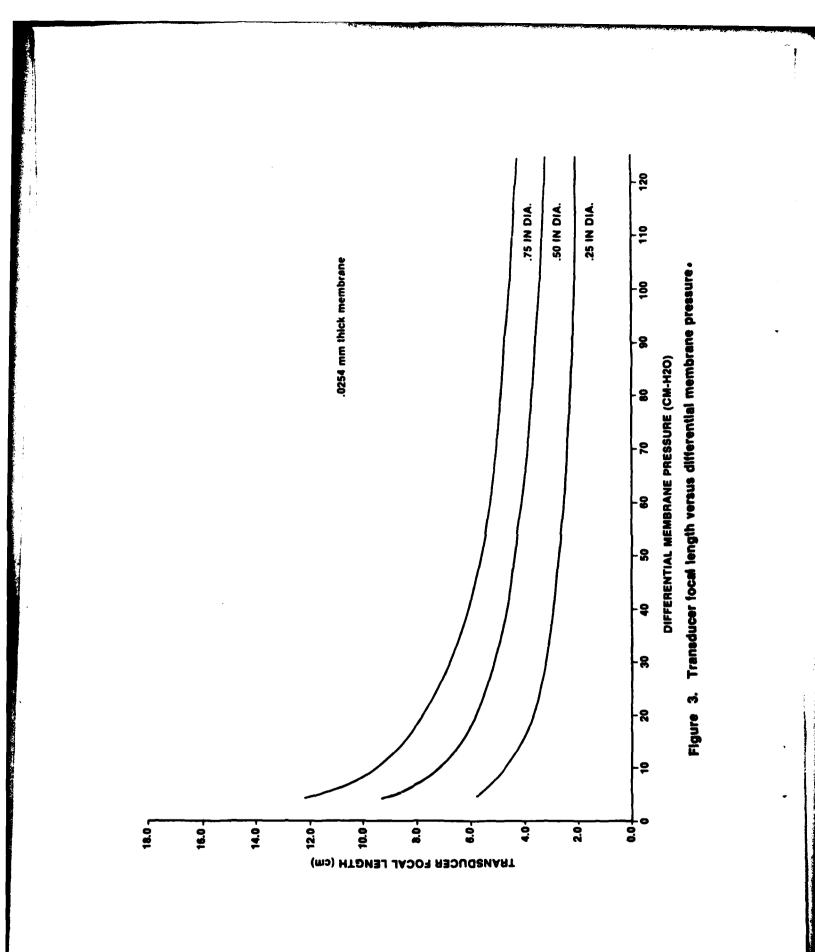
Figure 2. Circular membrane of radius (a) deflected under a differential pressure (P).

Equation 3 assumes a spherical shaped membrane deflection.

For the membrane under uniform pressure load P, the Hencky deflection equation is [4].

$$w = .662 \text{ a } \sqrt[3]{\frac{\text{Pa}}{\text{Et}}}$$
(4)

where:


- w = membrane deflection under differential pressure load
- a = membrane radius
- t = membrane thickness
- $P \equiv$ differential membrane pressure
- E = membrane modulus of elasticity

These equations assume the absence of a radial tensile force under no differential pressure load. Equations 3 and 4 were used to predict the focal length of .25 inch, .50 inch and .75 inch diameter PVDF transducers under a differential membrane pressure of 0 to 120 cm H₂O. The modulus of elasticity used in the computations was 8.438×10^6 cm H₂O. Figure 3 illustrates the results.

3

۲

Contraction of the second

4

4.02.00

If the transducer is operated as a diverging acoustic radiator, the angle of divergence θ will be given as

$$\Theta = \operatorname{Arcsin} \left\{ \frac{2wa}{a^2 + w^2} \right\}$$
(5)

Equations 3 and 5 assume normal transmission from the surface of the membrane into the external acoustical medium which is not exactly true. For instance, a plane circular surface radiator of ultrasound will have a beam divergence given as [5],

$$\gamma = 68.8 \lambda/D \tag{6}$$

where

 $\gamma \equiv$ angle of divergence in degrees

 $\lambda \equiv$ ultrasonic wave length

 $D \equiv$ diameter of circular radiator.

Equation 6 assumes small λ/D .

Another important parameter is the length of the near field [5]. For circular flat radiators of ultrasound


$$N = \frac{(D^2 - \lambda^2)}{4\lambda}$$
(7)

where,

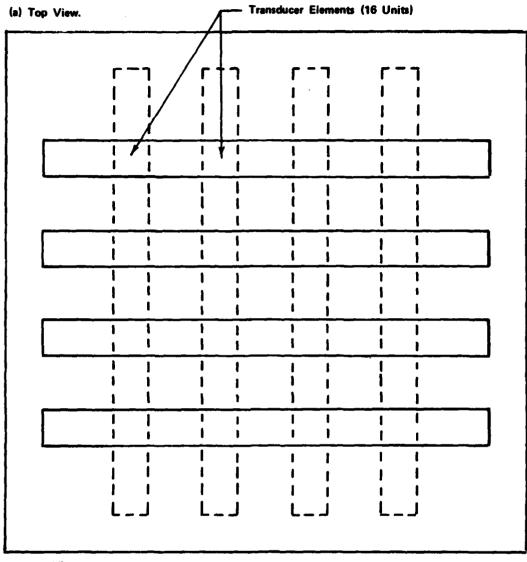

- D = diameter of ultrasonic radiator
- $\lambda \equiv$ wavelength of ultrasonic wave
- $N \equiv$ nearfield length

Figure 4 illustrates the variation of N with frequency for a 1500 m/sec wave velocity in water and a .5 inch diameter transducer. For uniform test results all calibration tests should be performed at ranges greater than N.

The basic concept for the PVDF array is illustrated in Figure 5. A membrane of KYNAR PVDF piezoelectric film (obtained from the Pennwalt Corporation) had electrode material of nickel-chrome deposited on both sides of a film which measured 127 mm x 127 mm x 27 µm thick. Portions of both sides of the membrane were selectively etched in acid to leave four electrode strips (on each side). When an RF signal is applied to a front and rear electrode, where these electrodes cross-over, the E-field becomes intense. This action activates the PVDF material in the cross-over region and a transducer is formed. Figure 5 illustrates 16 such transducers on a single PVDF membrane. The next step is to place the membrane in a cavity similar to Figure 1 to generate ultrasound. In reality, sixteen individual cavities were used to contain ultrasound.

S. S. S.

(b) Side View.

Ares of

the standard man to the

があるがありません

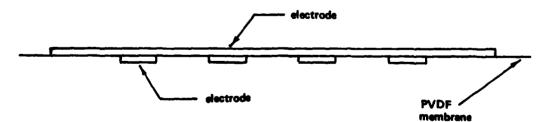


Figure 5. Schematic of PVDF Membrane,

7

JII. ARRAY FABRICATION AND TESTING

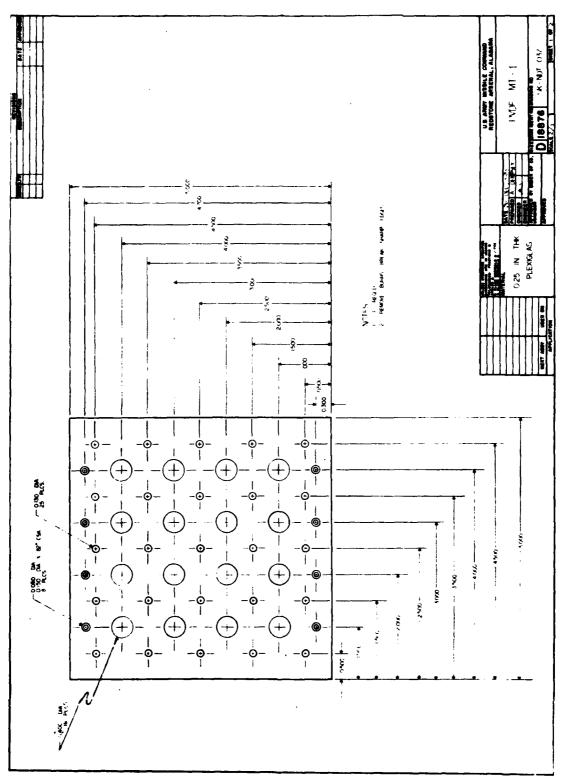
In order to hold the PVDF membrane and obtain suitable electrode contacts, front and rear electrode holders were constructed as in Figure 6. The membrane was sandwiched between these holders. A gas supply chamber for supplying gas pressure to deflect the membrane was attached to the rear electrode holder. This chamber is illustrated in Figure 7.

Etching of the membrane was performed according to the following procedure:

1. Paint all regions not to be etched with a moderately thick coat of Pacific 8010-00-584-3150 Lacquer, Nitrocellulose, Type I, TT-L-50G and Amend III, Flat White, No. 37875 paint. Contract GS-10S-40992, flash point -56.6°C (-70°F.).

2. Etch the unpainted Ni-Cr metal with a 25 percent solution of 38.6 percent concentrated Hcl.

3. Rinse membrane in H_2O to remove residual Hcl.

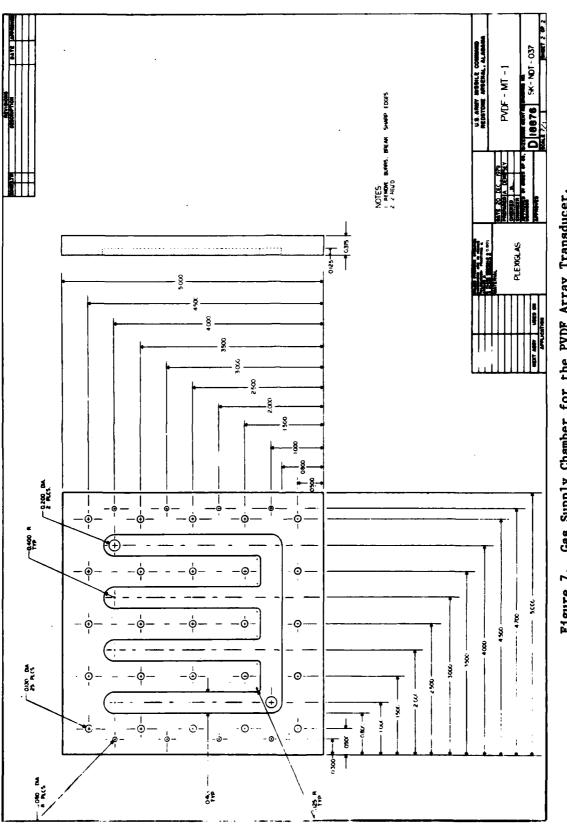

4. Soak membrane in Hexane for 30 seconds and peel away the paint from the unetched Ni-Cr PvF2 membrane material.

The mask used in the etching procedure is illustrated in Figures 8 and 9.

Following the etching process, discontinuities in the Nickel-Chrome electrodes were removed by applying ten thin coats of powdered silver in Amyl Acetate over each electrode. Assembly of the transducer was performed by punching all the necessary assembly holes (16 in all) into the membrane. Flathead counter-sunk screws for electrode contacts were then placed in the electrode holders and covered with liquid solder for good electrical contact. The membrane was sandwiched into the holders and the gas supply assembly was bolted to the transducer as a complete packaged unit. Figures 10 through 12 illustrate the transducer assembled and mounted in a holder frame.

The control electronics for the transducer were designed and fabricated by Sperry Support Services in Huntsville, Alabama under contract to the government. Figures 13 and 14 illustrate the system with the transducer attached. The RF switch system block diagram is illustrated in Figure 15 for the control electronics. The system features a Wavetek, Model 143 signal generator for generating RF signals (either continuous or pulsed). The signals are amplified by an ENI Model Al50 signal RF amplifier and selectively switched to the array by a selector switch assembly shown in Figure 16. Figure 17 illustrates the array connected to the electronics.

Table 1 contains a summary of the electronics functions. The system is capable of generating continuous or pulsed RF signals. In the pulsed RF mode, $0.1-50 \mu s$ pulses with a 1 to 10,000 Hz repetition rate trigger the RF wave burst mode of the Wavetek RF generator which can generate either 1-20 MHz continuous or pulsed RF signals. The selector switch assembly can be used to apply the RF signal to all, one, any combination of row or any combination of column transducers. The method in which the signal can be applied to the transducer assembly is illustrated in Table 1.



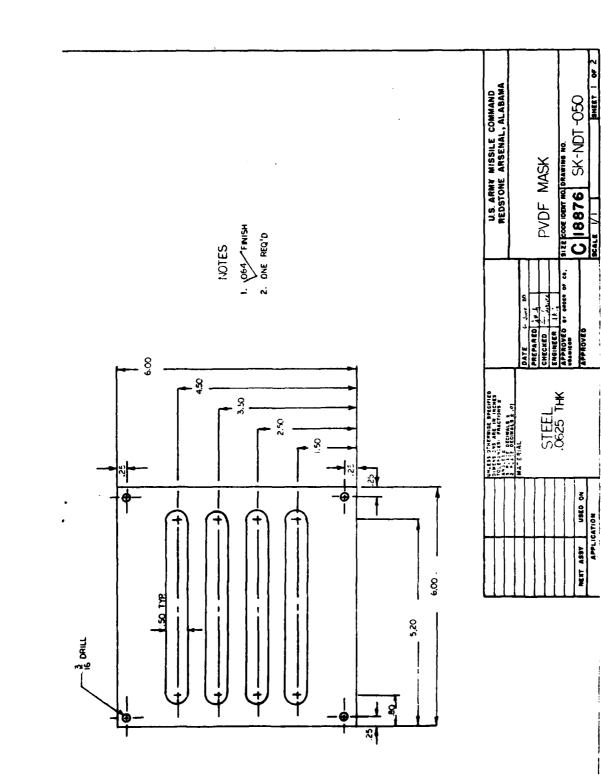

ALC: NO

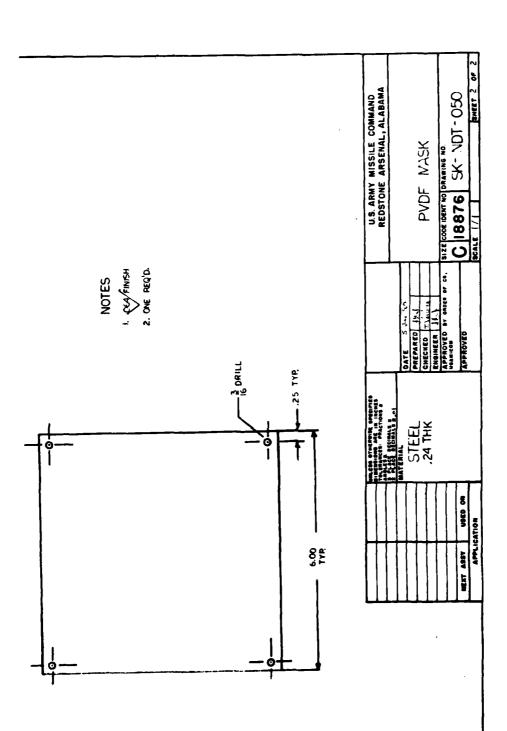
Figure 6. Front and Rear Electrode Holders for the PVDF Array Transducer.

WHERE Y

A CONTRACTOR

and the state of the

S. Carlinson



A service .

Figure 9. Back Pressure Plate for the Etching Mask.

......

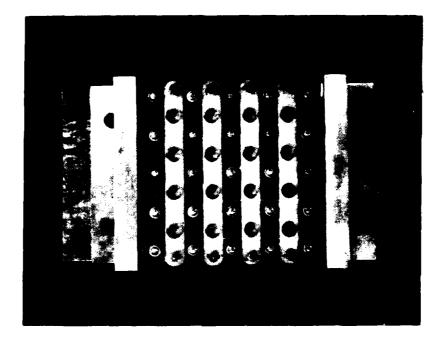
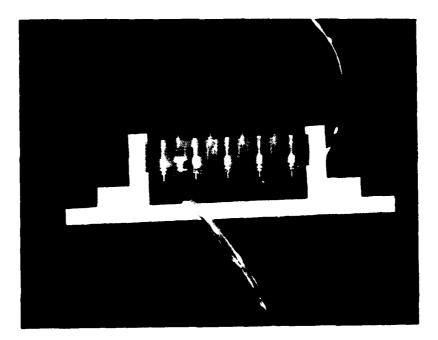



Figure 10. Top view of the assembled PVDF array transducer.

ł

Figure 11. Gas fittings for the PVDF array transducer.

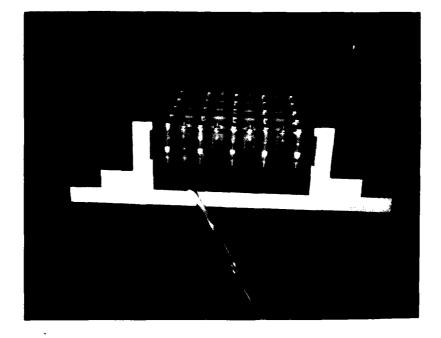


Figure 12. Assembled PVDF array transducer.

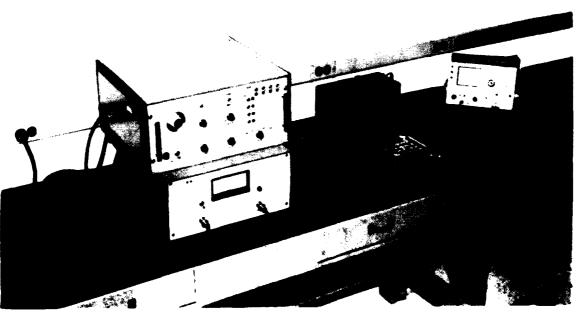
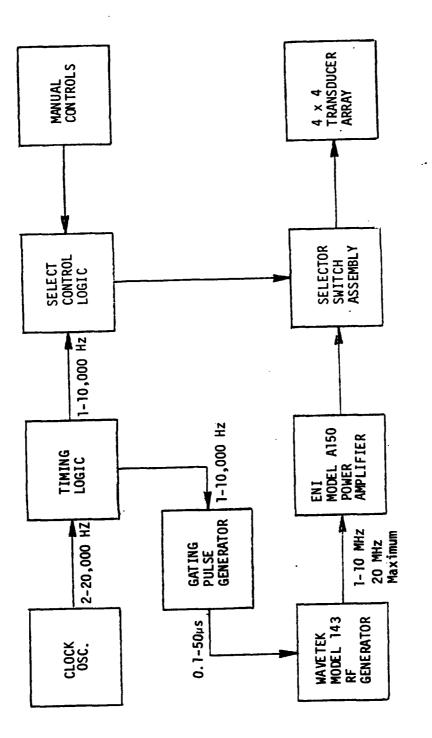



Figure 13. System control electronics.

والمسجو فالمحمد والمحمد والمحمد والمعامل والمعاملة والمحمد والمتكل المعامل والمسترك والمتكاف والمحمد والمحمد والمحمد

Figure 15. RF Switch System Block Diagram.

ŗ

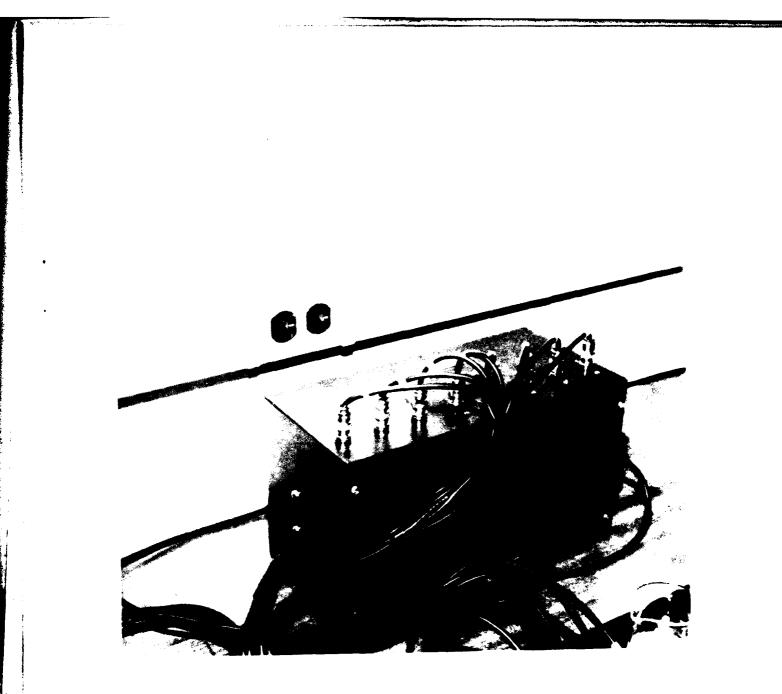


Figure 16. Selector switch assembly.

17

٩,

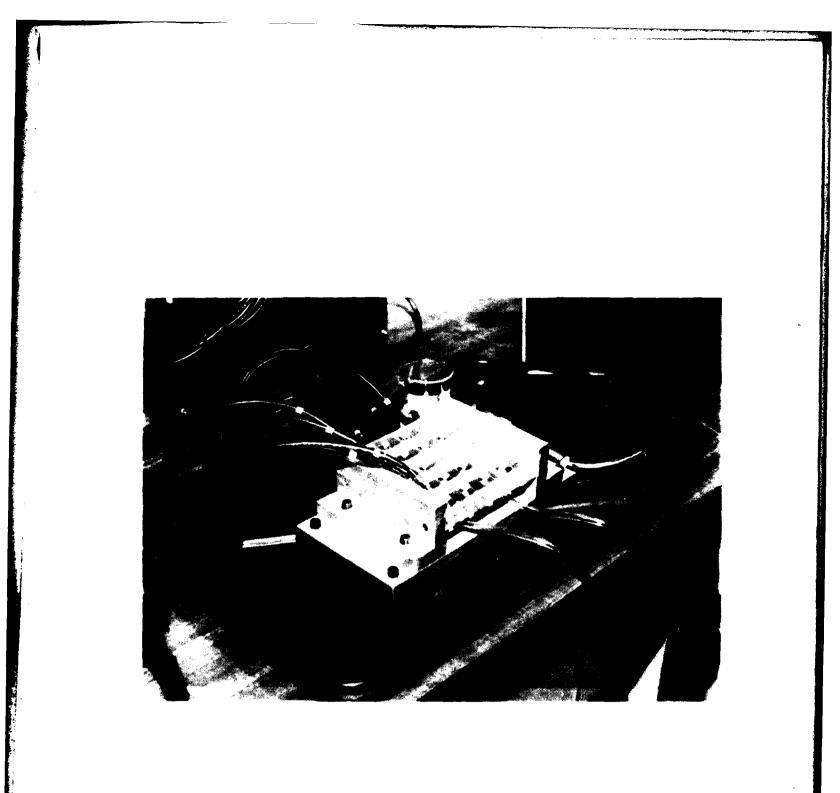


Figure 17. Array transducer connected to the electronics system.

Table 1. System electronic control functions

NORMAL

FUNCTIONS

FULL SCAN

Sequences through all of the rows and columns - one at a time

SELECT SCAN Sequences through any rows and columns that are selected

ALI.

ROW PARALLEL

Selected rows are excited and

All rows are excited and all columns are grounded

all columns are grounded COLUMN PARALLEL Selected columns are exc

Selected columns are excited and rows are grounded

MATRIX

See the Participation of the second second second second

3

.....

Sequences through all 15 crosspoints in order - one at a time

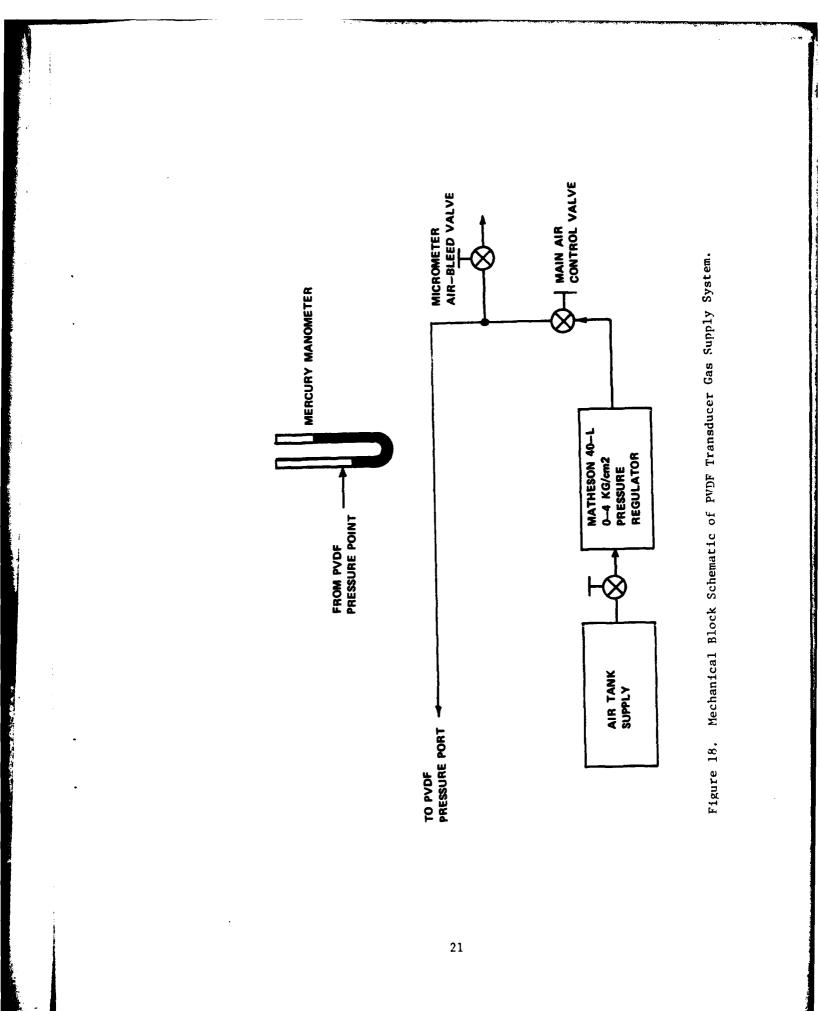
Sequences through any of the crosspoints that are selected All columns are excited and all rows are grounded

Selected columns are excited and selected rows are grounded

Selected columns are excited and selected rows are grounded

19

۲


e states

To test the transducer in the laboratory, the gas system was attached as illustrated in Figure 18 and shown in Figure 19. A gas pressure regulator (Matheson 40-L) supplied pressure to one port of the array transducer. The differential pressure acting on the membrane was monitored through the other array gas pressure port using a mercury manometer. Fine control of the gas pressure was performed using a micrometer air-bleed valve.

Preliminary tests have been conducted on the transducer to better understand its operation. In the tests, the transducer was mounted face-up as shown in Figure 17. A .4375 in. dia. acoustical receiver transducer was connected to an oscilloscope. In each transducer, water was placed as an acoustical couplant material between the membrane and receiver transducer. All transducers were found satisfactory for operation. In row 1, the column 2 transducer had about 20 percent of its silver paint flaked off due to membrane crimping during assembly. The column 4 transducer had a scratch on the paint. The row 2, column 2 transducer suffered about a five percent paint loss. In all the tests 2.8 cm Hg differential membrane gas pressure was used.

In test procedure-1 a continuous wave 20 MHz signal at 30 percent Amplitude was applied to all of the transducers. When the receiver transducer was placed over each transducer, a signal from 90 to 110 mv peak-to-peak could be received. The orientation of the receiver was very important. This test established initial uniformity of the transducer output signal. Table 2 indicates the results of the test. In test procedure-2, the frequency was lowered to 15.2 MHz and readings were again taken. The uniformity of the signal output is indicated in Table 3. In test procedure-3, the test was the same as in previous experiments except that all the transducers in row-1 were activated in the pulse mode. Although the row-1 transducers generated more output power overall, there was still a great deal of signal being generated from the other units. This RF coupling problem needs further investigation. Even when a single transducer was activated, significant RF bleed-over was encountered. To test whether or not this was RF coupling between the source electrode and the transducer, the parameters of test procedure-2 were repeated. In the first step, transducer 3-3 [row-3, column-3] was read at 128 mv peakto-peak. When a .0045 inch thick piece of foil was placed in front of the receiver 12 mv peak-to-peak was read. Finally, the signal electrode output was placed on the foil and no change was observed in the transducer output. This indicates that RF antenna coupling to the receiver transducers may not be the problem. The major problem in using a transducer as a single element is its own internal capacitance. The high capacitance of the dielectric PVDF material results in significant internal coupling. Even when a signal and ground electrode on a transducer have been connected, output from the shorted transducer has been observed.

The final test of the array was to set up the system shown in Figure 20. Spatially filtered argon laser light is collimated on to the water covered surface of the array and collected onto a viewing screen. An aperture is placed at the focal point of the lense for higher-order filtering of the reflected light from the water surface. When a transducer element is activated, levitation of the water surface occurs resulting in a diffracted image on the viewing screen. When maximum continuous wave power was applied to all transducer elements simultaneously with an 8.4 cm Hg vacuum and 1.0 inch of water covering the array, the following was observed:

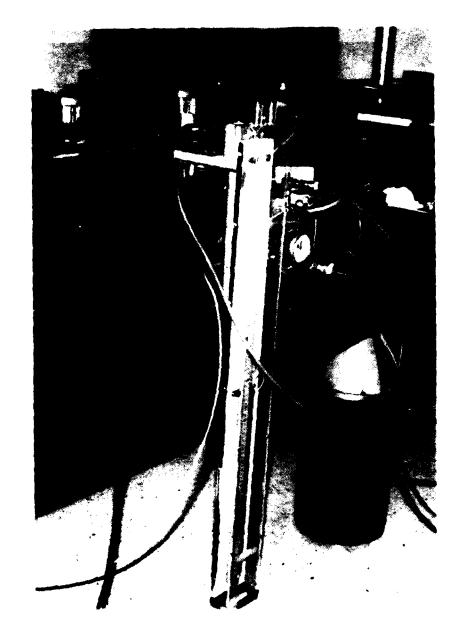


Figure 19. PVDF Transducer Gas Supply System.

Same and a state of

Procedure - 1

Test Parameters:

Δ^P membrane = 2.8 cm Hg 20 MHz Operating Frequency CW Mode Transmit - ALL 10,000 pps 30% Amplitude 50 μs pulse width

Table 2. Procedure-1 Receiver Voltages

		1	2	3	4
	1	100 mv <u>+</u> 10%	100 mv <u>+</u> 10%	100 mv <u>+</u> 10%	100 mv <u>+</u> 10%
Electrodes	2	100 mv <u>+</u> 10%	100 mv <u>+</u> 10%	100 mv <u>+</u> 10%	100 mv <u>+</u> 10%
Row Elect	3	100 mv <u>+</u> 10%	100 mv <u>+</u> 10%	100 mv <u>+</u> 10%	100 mv <u>+</u> 10%
8	4	100 mv <u>+</u> 10%	100 mv <u>+</u> 10%	100 mv <u>+</u> 10%	100 mv <u>+</u> 10%

Column Electrodes

Signals are peak-to-peak voltages

23

۰,

Ne.

Procedure - 2

Test Parameters:

Same as Procedure - 1 except that a 15.2 MHz Operating Frequency was used.

Table 3. Procedure-2 Receiver Voltages

		1	2	3	4
th.	1	140 mv	146 mv	146 mv	146 mv
Electrodes	2	148 mv	146 mv	140 mv	144 mv
Row Ele	3	150 mv	146 mv	146 mv	144 mv
R	4	150 mv	160 mv	144 mv	144 mv

Column Electrodes

Signals are peak-to-peak voltages

......

and the second second

Procedure - 3

Test Parameters:

فانطحا عالمسميد فاختلا

And State Street, St.

2

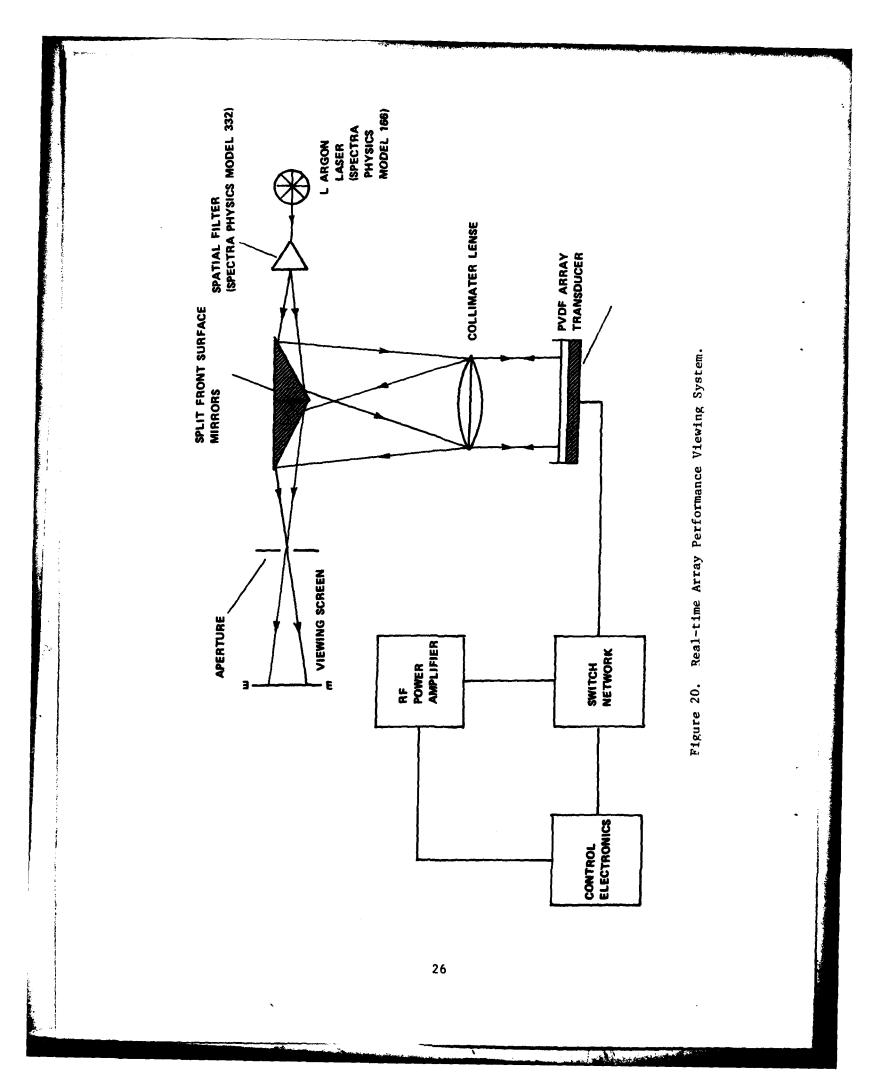

Same as Procedure - 2 except that the Row Mode and Pulse Mode were activated. Row-1 was activated.

Table 4. Procedure-3 Receiver Voltages

	1	2	3	4
1	70 mv	70 mv	64 mv	64 mv
2	62 mv	62 mv	64 mv	66 mv
3	60 mv	62 mv	62 mv	62 mv
4	60 mv	62 mv	64 mv	64 mv

Column Electrodes

Signals are peak-to-peak voltages

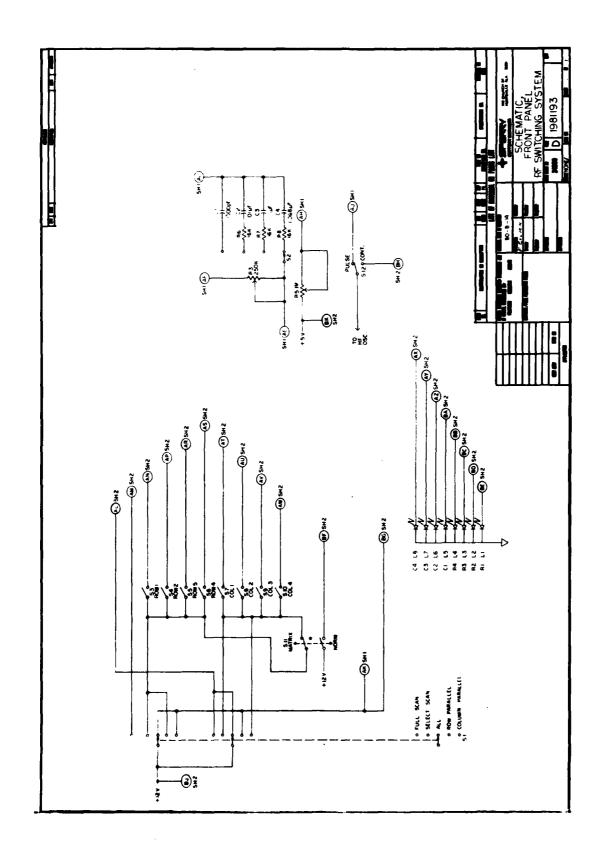
- (1) A .500 MHz to 13.500 MHz Response Frequency was observed.
- (2) The maximum response occurred at 13.500 MHz.

(3) Transducer performance was improved with the applied vacuum.

When a single transducer was activated, RF cross-over to the other transducers was observed only at the higher frequencies. The transducer was not characterized by broad-band frequency response. The array tended to resonate at rather narrow select frequencies. In general, all the elements of the array responded in a similar manner. Also, transducers with crimped edges tended to perform much more poorly.

IV. CONCLUSIONS

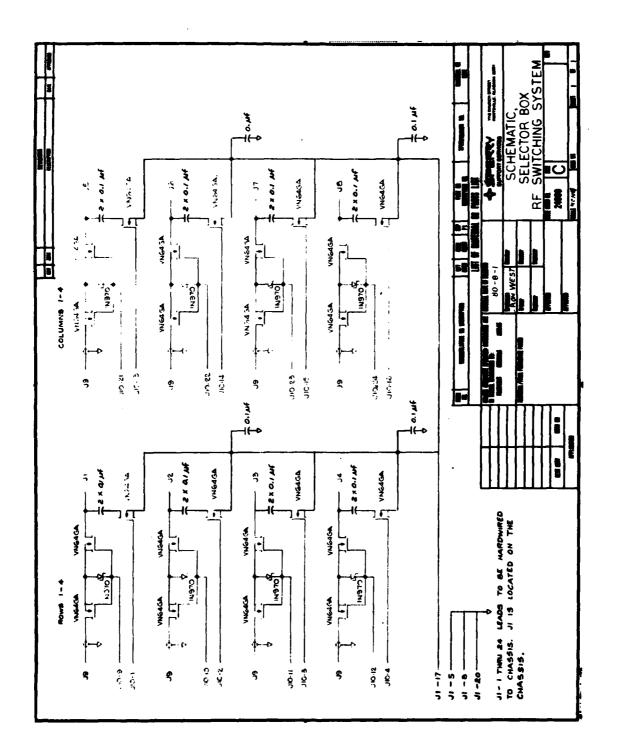
The acoustical array transducer is relatively inexpensive to fabricate, has a good frequency response range and a variable focal length. Specific problems encountered with the present device include RF cross-over, low power output resulting in low efficiency and electrode problems. A suitable replacement needs to be found for the silver paint since it tends to dampen the generation of ultrasound and degrades with operating time and exposure to water. The present device shows promise for being integrated into large panels of transducers and possibly phased arrays. It shows potential for NDT and Experimental Mechanics Applications.

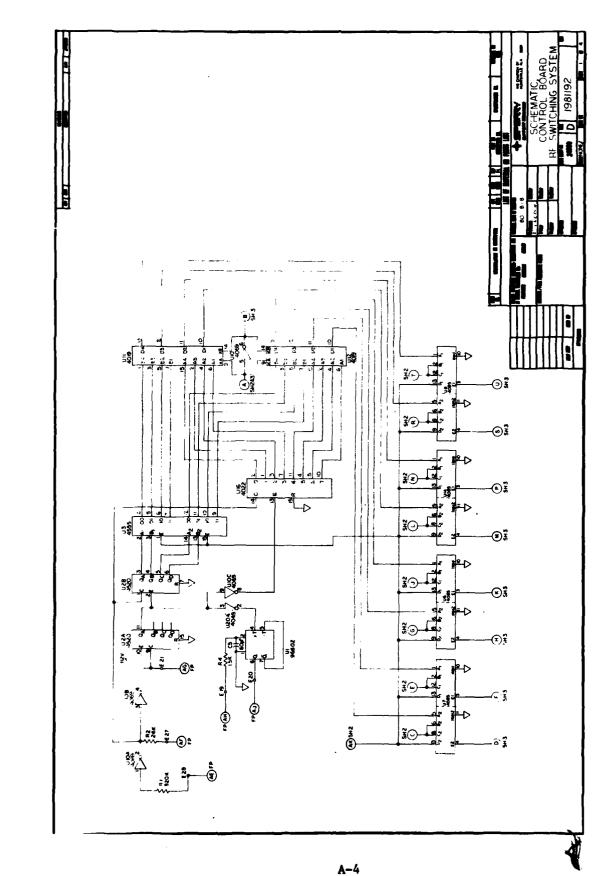

REFERENCES

- Scheffel, J. A., "A Polyvinylidene Fluoride Differential Membrane Pressure Acoustical Transducer," U. S. Army Missile Command, Technical Report T-79-95, 28 September 1979.
- [2] Murayama, N., Nakamura, K., O Bara, H., Segawa, M., "The Strong Piezoelectricity In Polyvinylidene Fluoride (PVDF)," Ultrasonics, Vol. 14, No. 1, January 1976.
- [3] Pollard, H. F., "Sound Waves In Solids," Pion Limited, London, England, 1977.
- [4] Roark, R. J., "Formulas for Stress and Strain," 3rd Edition, McGraw Hill Book Co., N. Y., 1954.
- [5] Boyer, H. E., Editor, "Metals Handbook Nondestructive Inspection and Quality Control," American Society of Metals, 8th Edition, Vol.11, 1976.

ومانع والمتلجة والمن

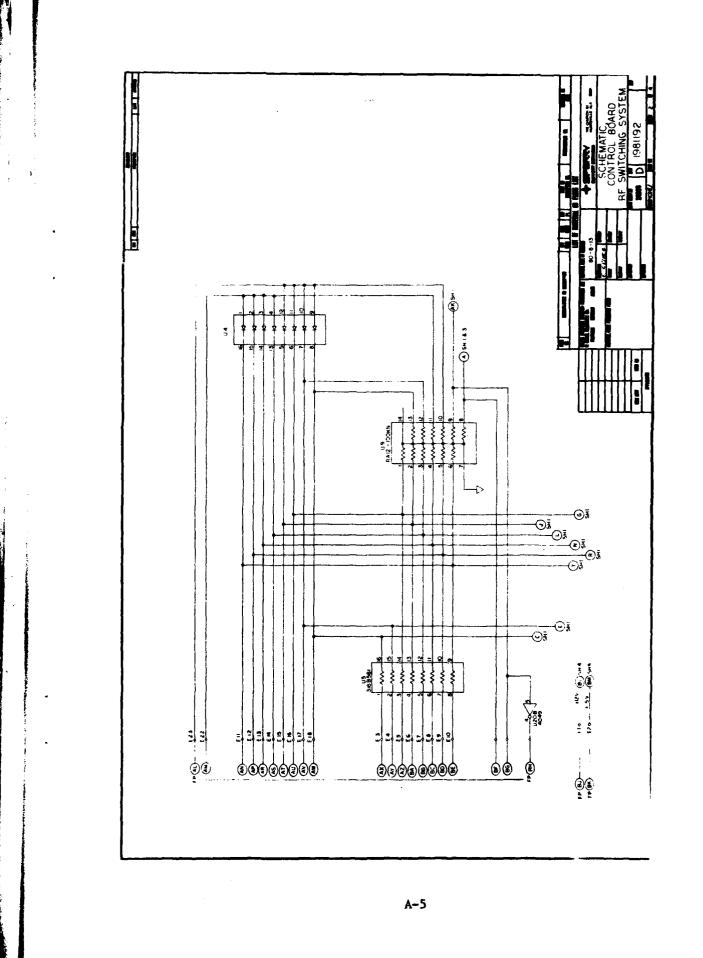
APPENDIX


This appendix contains drawings of the control electronics manufactured by Sperry Support Services to control the PVDF array transducer.

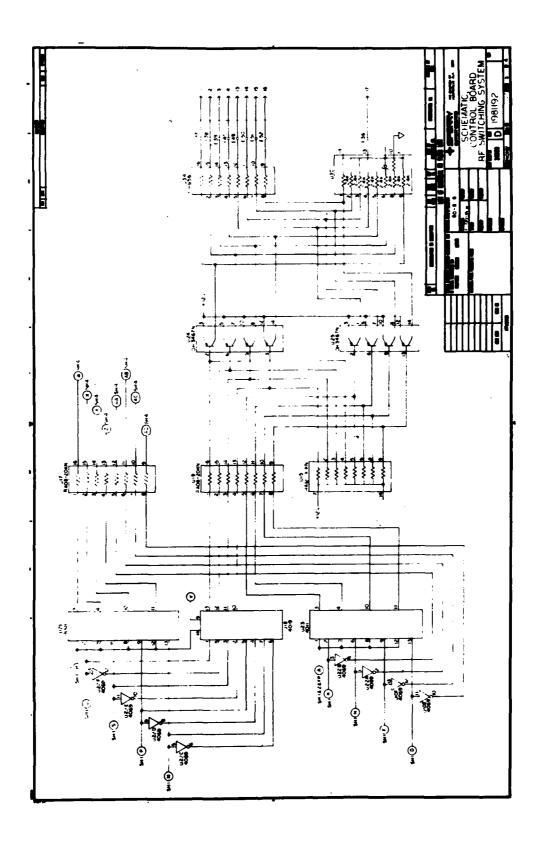

The second

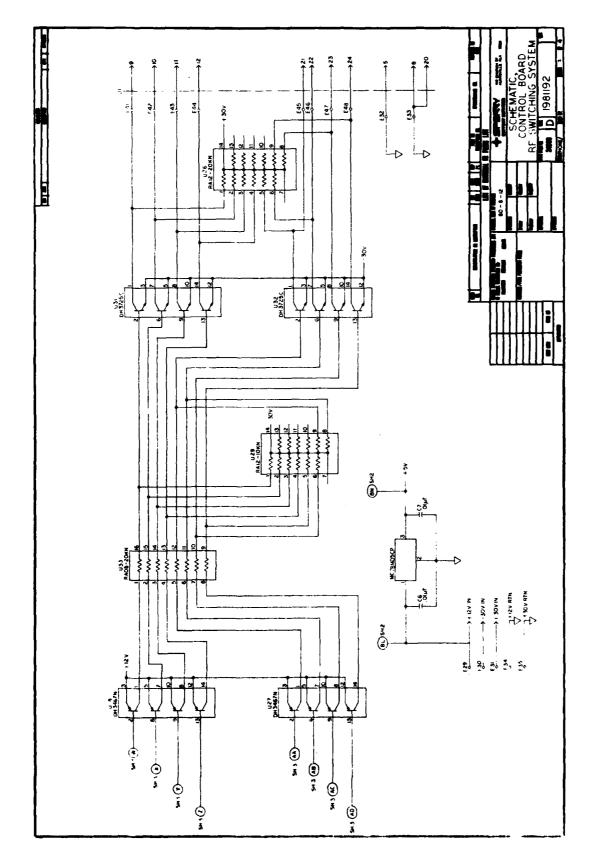
-

A-2



A-3




and the second secon

. Anda

A-6

<mark>de des logitions de la sectador de la sur de la sur consecta espectador en consectador en consectador de la se Estador</mark>

A-7

1

A State of the second sec

R

.

1

مر بر المراجع مراجع مراجع مراجع

Ê i

A CONTRACTOR OF A CONTRACT

.

at:

	No. of Copies
Director	
USA Mobility Equipment Research and Development Center	
Coating and Chemical Laboratory	
ATTN: STSFB-CL	1
Aberdeen Proving Ground, Maryland 21005	
Commander	
Edgewood Arsenal	
ATTN: SAREA-TS-A	1
Aberdeen Proving Ground, Maryland 21010	
Commander	
Picatinny Arsenal	
ATTN: SARPA-TS-S, Mr. M. Costello	
Dover, New Jersey 07801	1
Commander	
Rock Island Arsenal	
Research and Development	
ATTN: 9320	1
Rock Island, Illinois 61201	
Commander	
Watervliet Arsenal	
Watervliet, New York 12189	1
Commander	
US Army Aviation Systems Command	
ATTN: DRSAV-EE	1
-MT, Mr. Vollmer	1
St. Louis, Missouri 63166	
Commander	
US Army Aeronautical Depot	
Maintenance Center (Mail Stop)	1
Corpus Christi, Texas 78403	
Commander	
UA Army Test and Evaluation Command	-
ATTN: DRSTE-RA	1
Aberdeen Proving Ground, Maryland 21005	
Commander	-
ATTN: STEAP-MT	1
Aberdeen Proving Ground, Maryland 21005	

7

. Salaria

	No. of Copies
Chief Bureau of Naval Weapons Department of the Navy Washington, DC 20390	1
Chief Bureau of Ships Department of the Navy Washington, DC 20315	1
Naval Research Laboratory ATTN: Dr. M. M. Krafft Code 8430 Washington, DC 20375	1
Commander Wright Air Development Division ATTN: ASRC Wright-Patterson AFB, Ohio 45433	1
Director Air Force Materiel Laboratory ATTN: AFML-DO-Library Wright-Patterson AFB, Ohio 45433	1
Director Army Materials and Mechanics Research Center ATTN: DRXMR-PL -MT, Mr. Farrow Watertown, Massachusetts 02172	1
Commander White Sands Missile Range ATTN: STEWS-AD-L White Sands Missile Range, New Mexico 88002	1
Jet Propulsion Laboratory California Institute of Technology ATTN: Library/Acquisitions 111-113 4800 Oak Grove Drive Pasadena, California 91103	1
Sandia Laboratories ATTN: Library P. O. Box 969 Livermore, California 94550	1

30

CELL.

j

1

÷

ASIA Same

	No. of Copies
Commander US Army Air Defense School ATTN: ATSA-CD-MM	
Fort Bliss, Texas 79916	1
Technical Library Naval Ordnance Station Indian Head, Maryland 20640	1
Commander US Army Materiel Development and Readiness Command ATTN: DRCMT Washington, DC 20315	1
Headquarters SAC/NRI (Stinfo Library) Offutt Air Force Base, Nebraska 68113	1
Commander Rock Island Arsenal ATTN: SARRI-LKPL-Technical Library Rock Island, Illinois 61201	1
Commander (Code 233) Naval Weapons Center ATTN: Library Division China Lake, California 93555	1
Department of the Army US Army Research Office	
ATTN: Information Processing Office P. O. Box 12211 Research Triangle Park, North Carolina 27709	1
Commander US Army Research Office ATTN: DRXRO-PW, Dr. R. Lontz P. O. Box 12211 Research Triangle Park, North Carolina 27709	2
US Army Research and Standardization Group (Europe) ATTN: DRXSN-E-RX, Dr. Alfred K. Nodoluha Box 65 FPO New York 09510	2

31

١,

285 E.

Little in start

	No. of Copies
Headquarters Department of the Army Office of the DCS for Research Development and Acquisition	
Room 3A474, The Pentagon ATTN: DAMA-ARZ Washington, DC 20310	2
US Army Materiel Systems Analysis Activity ATTN: DRXSY-MP Aberdeen Proving Ground, Maryland 21005	1
IIT Research Institute	
ATTN: GACIAC 10 West 35th Street Chicago, Illinois 60616	1
ADTC (DLDSL) Eglin Air Force Base, Florida 32542	1
University of California Los Alamos Scientific Laboratory ATTN: Reports Library	1
P. O. Box 1663 Los Alamos, New Mexico 87545	
Commander US Army Materiel Development and Readiness Command ATTN: DRCRD DRCDL 5001 Eisenhower Avenue Alexandria, Virginia 22333	1 1
Director Defense Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, Virginia 22209	1
DRSMI-LP, Mr. Voigt	1
DRSMI-	1
R, RL, Mr. Comus	1
RLA, Mr. Pettey	1
RLA, Mr. Schaeffel	50

Ì

States and and

S. Sugar.

32

5

1 in the second