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I. INTRODUCTION

The need for low cost, high output power, broad-band frequency response,

variable fw31 length acoustical trai dirs is readily established in NDT and

Experimental Mechanics applications. A single element transducer was developed

[1] in 1979 to meet some of these requirements. The transducer was fabricated

from Pol,2vinylidene Flinridp (PVfF) and featured the following:

o Low Cost

o Variable fr .Autic\ , e ,.nse

o Variable focal length

The transducer had very low output power but showed great promise for being

fabricated into arrays. This report documents the initial effort to package

the differential membrane pressure acoustical transducer developed in 1979

into an integrated array.

The present device has the same basic operating characteristics as the

previous single element device except that 16 transducers are presently pack-

aged into a single array. It is conceived that large arrays may one day be

packaged into units for applications in NDT and Experimental Mechanics.

II. ARRAY TRANSDUCER CONCEPT

Figure 1 illustrates the basic concept of the differential pressure

acoustical PVDF membrane transducer. A PVDF membrane with surface deposited

electrical conductors is sandwiched between two electrodes. The membrane and

acoustical cavity walls form an acoustical cavity into which a gas or iiquid is

pumped through a pressure control port. By controlling the differential pres-

sure between the acoustical cavity medium and the external acoustical cavity

medium, the membrane is made to deflect in approximately a spherical shape as

shown.

EXTERNAL GAS OR

ACOUSTICAL LIQUID

MEDIUM N- PRESSURE
CONTROL
PORT

PVDF MEMBRANE 4
COATED ON BOTH z X GAS OR
SIDES WITH AN -- LIQUID

ELECTRICAL FILLED
CONDUCTOR ACOUSTICAL

GROUND _T CAVITY
ELECTRODE ACOUSTICAL CAVITY

WALL

SIGNAL ELECTRODE

Figure 1. Cross sectional view of .DVDF ultrasonic transducer design concept.
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If a signal is applied to the two electrodes, the membrane wl~l tend to

contract or expand with the polarity of the applied voltage. The expansion is
a length-expansion characterized by the piezoelectric constants d3l and d32
[2] and is tangential to the surface of the membrane. The ultimate result of

applying the differential membrane pressure is to introduce a component of
motion of the membrane in the z direction as shown in Figure 1.

When driven at ultrasonic frequencies (1-10 MHz), the result is the trans-

mission of an acoustical wave into the external acoustical medium. Assuming
that the wave is transmitted normal to the surface of the membrane then the
beam will have a focal point determined by the membrane radius. By varying
the differential membrane pressure, the focal point position in space is also
varied.

When a mechanical stress is applied to an area of piezoelectric material

a polarization per unit area Pi (or dipole moment per unit volume) is gener-
ated [31, where.

P i . dii '1 (1)

i - 1,2,3 and j - 1,2,3,4,5,6

Pi= ploarization per unit area

dij=- piezoelectric moduli (matrix representation)

Yapplied stress (matrix representation)

Equation (1) refers to the direct piezoelectric effect.

The converse piezoelectric effect occurs when an electric field is ap-

plied to a piezoelectric material and it becomes strained by an amount directly
proportional to the electric field strength. For this case:

C j d ij E (2)

e ~matrix representation of strain

Ei=-electric field strength.

As illustrated in Equations (1) and (2) the piezoelectric moduli are
measures of the conversion efficiency from an electrical signal to a mechani-
cal strain in the material and vice versa.

Figure 2 shows a cross sectional view of a PVDF circular membrane de-

flected under a differential pressure (P) to form a focused transducer as
shown in Figure 1. If the ultrasound is emitted normal to the surface of the
membrane, the focal point of the transducer will be located at

a2 +w2
ar + (3)

where,

2



r membrane transducer focal radius

a B membrane radius

w membrane deflection.

r
* a

b w MEMBRANE DEFLECTED
UNDER PRESSURE (P)
WHOSE RADIUS OF
FOCUS IS r (PVDF)

r =-MEMBRANE FOCAL RADIUS
aa MEMBRANE RADIUS
w mMEMBRANE DEFLECTION

Figure 2. Circular membrane of radius (a) deflected under a differential
pressure (P).

Equation 3 assumes a spherical shaped membrane deflection.

For tbe membrane under uniform pressure load P, the Hencky deflection

equation is [41.

w -. 662 a _Pa (4)
v Et

vbere:

v membrane deflection under differential pressure load

* a Emembrane radius

t smembrane thickness

P sdifferential membrane pressure

E =_membrane modulus of elasticity

dfeTiapesser lodquations a3sand 4hwereenusedfto predicenthe fo calude n
dfet pesur od quations asum the abec of r ase raia tensilte focde ln

length of .25 inch, .50 inch and .75 inch diameter PVDF transducers under a
differential membrane pressure of 0 to 120 cm H20. The modulus of elasticity
used in the computations was 8.438 x 106 cm H20. Figure 3 illustrates the
results.
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If the transducer is operated as a diverging acoustic radiator, the angle

of divergence e will be given as

0 f Arcsin 5a) + 2 (

Equations 3 and 5 assume normal transmission from the surface of the membrane

into the external acoustical medium which is not exactly true. For instance,

a plane circular surface radiator of ultrasound will have a beam divergence

given as [5],

y = 68.8 X/D (6)

where

y angle of divergence in degrees

X ultrasonic wave length

D E diameter of circular radiator.

Equation 6 assumes small X/D.

Another important parameter is the length of the near field [5). For

circular flat radiators of ultrasound

2 _2 (7)
(D ) 7N 4X

where,

D diameter of ultrasonic radiator

X wavelength of ultrasonic wave

N B nearfield length

Figure 4 illustrates the variation of N with frequency for a 1500 m/sec wave

velocity in water and a .5 inch diameter transducer. For uniform test results

all calibration tests should be performed at ranges greater than N.

The basic confept for the PVDF array is illustrated in Figure 5. A

membrane of KYNAR 9 PVDF piezoelectric film (obtained from the Pennwalt

Corporation) had electrode material of nickel-chrome deposited on both sides

of a film which measured 127 mm x 127 mm x 27 Um thick. Portions of both

sides of the membrane were selectively etched in acid to leave four electrode

strips (on each side). When an RF signal is applied to a front and rear elec-

trode, where these electrodes cross-over, the E-field becomes intense.

This action activates the PVDF material in the cross-over region and a trans-

ducer is formed. Figure 5 illustrates 16 such transducers on a single PVDF

membrane. The next step is to place the membrane in a cavity sinilar to

Figure 1 to generate ultrasound. In reality, sixteen individual cavities

were used to contain ultrasound.
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III. ARRAY FABRICATION AND TESTING

In order to hold the PVDF membrane and obtain suitable electrode contacts,

front and rear electrode holders were constructed as in Figure 6. The mem-

brane was sandwiched between these holders. A gas supply chamber for supply-

ing gas pressure to deflect the membrane was attached to the rear electrode

holder. This chamber is illustrated in Figure 7.

Etching of the membrane was performed according to the following pro-

cedure:

1. Paint all regions not to be etched with a moderately thick coat of

Pacific 8010-00-584-3150 Lacquer, Nitrocellulose, Type I, TT-L-50G and Amend

III, Flat White, No. 37875 paint. Contract GS-10S-40992, flash point -56.6*C

(-70
0
F.).

2. Etch the unpainted Ni-Cr metal with a 25 percent solution of 38.6

percent concentrated Hcl.

3. Rinse membrane in H20 to remove residual Hcl.

4. Soak membrane in Hexane for 30 seconds and peel away the paint from

the unetched Ni-Cr PvF2 membrane material.

The mask used in the etching procedure is illustrated in Figures 8 and 9.

Following the etching process, discontinuities in the Nickel-Chrome elec-

trodes were removed by applying ten thin coats of powdered silver in Amyl

Acetate over each electrode. Assembly of the transducer was performed by

punching all the necessary assembly holes (16 in all) into the membrane. Flat-

head counter-sunk screws for electrode contacts were then placed in the

electrode holders and covered with liquid solder for good electrical contact.

The membrane was sandwiched into the holders and the gas supply assembly was

bolted to the transducer as a complete packaged unit. Figures 10 through 12

illustrate the transducer assembled and mounted in a holder frame.

The control electronics for the transducer were designed and fabricated

by Sperry Support Services in Huntsville, Alabama under contract to the

government. Figures 13 and 14 illustrate the system with the transducer

attached. The RF switch system block diagram is illustrated in Figure 15 for

the control electronics. The system features a Wavetek, Model 143 signal

generator for generating RF signals (either continuous or pulsed). The sig-

nals are amplified by an ENI Model A150 signal RF amplifier and selectively

switched to the array by a selector switch assembly shown in Figure 16.

Figure 17 illustrates the array connected to the electronics.

Table 1 contains a summary of the electronics functions. The system is

capable of generating continuous or pulsed RF signals. In the pulsed RF mode,

0.1-50 Us pulses with a I to 10,000 Hz repetition rate trigger the RF wave

burst mode of the Wavetek RF generator which can generate either 1-20 MHz

continuous or pulsed RF signals. The selector switch assembly can be used to

apply the RF signal to all, one, any combination of row or any combination of

column transducers. The method in which the signal can be applied to the

transducer assembly is illustrated in Table 1.

8
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Figure 10. Top view of the assembled PVDF

array transducer.

Figure 11. Gas fittings for the PVDF

array transducer.
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Figure 12. Assembled PVDF array transducer.

Figure 13. System control electronics.
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Figure 14. Transducer electronics control panel.
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Figure 16. Selector switch assemibly.

17



Figure 17. Array transducer connected to the
electronics system.
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To test the transducer in the laboratory, the gas system was attached

as illustrated in Figure 18 and shown in Figure 19. A gas pressure regulator

(Matheson 40-L) supplied pressure to one port of the array transducer. The

differential pressure acting on the membrane was monitored through the other

array gas pressure port using a mercury manometer. Fine control of the gas

pressure was performed using a micrometer air-bleed valve.

Preliminary tests have been conducted on the transducer to better under-

stand its operation. In the tests, the transducer was mounted face-up as

shown in Figure 17. A .4375 in. dia. acoustical receiver transducer

was connected to an oscilloscope. In each transducer, water was placed as an

acoustical couplant material between the membrane and receiver transducer.

All transducers were found satisfactory for operation. In row 1, the column

2 transducer had about 20 percent of its silver paint flaked off due to mem-

brane crimping during assembly. The column 4 transducer had a scratch on the

paint. The row 2, column 2 transducer suffered about a five percent paint

loss. In all the tests 2.8 cm Hg differential membrane gas pressure was

used.

In test procedure-l a continuous wave 20 MHz signal at 30 percent Amnpli-

tude was applied to all of the transducers. When the receiver transducer was

placed over each transducer, a signal from 90 to 110 m'I peak-to-peak could be

received. The orientation of the receiver was very important. This test

established initial uniformity of the transducer output signal. Table 2 in-

dicates the results of the test. In test procedure-2, the frequency was

lowered to 15.2 MHz and readings were again taken. The uniformity of the

signal output is indicated in Table 3. In test procedure-3, the test was the

same as in previous experiments except that all the transducers in row-l were

activated in the pulse mode. Although the row-l transducers generated more

output power overall, there was still a great deal of signal being generated

from the other units. This HF coupling problem needs further investigation.

Even when a single transducer was activated, significant RE bleed-over was

encountered. To test whether or not this was RE coupling between the source

electrode and the transducer, the parameters of test procedure-2 were repeated.

In the first step, transducer 3-3 [row-3, column-31 was read at 128 my peak-

to-peak. When a .0045 inch thick piece of foil was placed in front of the

receiver 12 my peak-to-peak was read. Finally, the signal electrode output

was placed on the foil and no change was observed in the transducer output.

This indicates that RE antenna coupling to the receiver transducers may not be

the problem. The major problem in using a transducer as a single element is

its own internal capacitance. The high capacitance of the dielectric PVDF

material results in significant internal coupling. Even when a signal and

ground electrode on a transducer have been connected, output from the shorted

transducer has been observed.

The final test of the array was to set up the system shown in Figure 20.

Spatially filtered argon laser light is collimated on to the water covered

surface of the array and collected onto a viewing screen. An aperture is

placed at the focal point of the lense for higher-order filtering of the re-

flected light from the water surface. When a transducer element is activated,

levitation of the water surface occurs resulting in a diffracted image on

the viewing screen. When maximum continuous wave power was applied to all

transducer elements simultaneously with an 8.4 cm Hg vacuum and 1.0 inch of

water covering the array, the following was observed:

20
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Figure 19. PVDF Transducer Gas Supply System.
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Procedure - 1

Test Parameters:

A
P 
membrane = 2.8 cm Hg

20 MHz Operating Frequency

CW Mode

Transmit - ALL

10,000 pps

30% Amplitude

50 ps pulse width

Table 2. Procedure-1 Receiver Voltages

Column Electrodes

1 2 3 4

1 100 mV 100 mv 100 mv 100 mv

+ 10% + 10% + 10% + 10%

2 lOOmv lOOmy lOOm v00 mv
@ + 10% + 10% + 10% + 10%

3 100 mv 100 mv 100 mv 100 mv

+ 10% + 10% + 10% + 10%

4 lOOmv 100 mv 100 mv 1OO mv

+ 10% + 10% + 10% + 10%

Signals are peak-to-peak voltages

23
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Procedure -2

Test Parameters:

Same as Procedure - 1 except that a 15.2 MHz Operating

Frequency was used.

Table 3. Procedure-2 Receiver Voltages

Column Electrodes

1 2 3 4

1 140Omv 146 mv 146 mv 146 mv

0 2 148 mv 146 mv 140Omv 144 mv

S3 150Omv 146 mv 146 mv 144 mv

4 150Omv 160Omv 144 mv 144 mv

Signals are peak-to-peak voltages

24



Procedure -3

Test Parameters:

Same as Procedure - 2 except that the Row Mode and

Pulse Mode were activated. Row-i was activated.

Table 4. Procedure-3 Receiver Voltages

Column Electrodes

12 3 4

1 70Omv 70Omv 64 mv 64 mv

2 62 mv 62 mv 64 mv 66 mv

3 60 iv 62 mv 62 mv 62 mv

4 60Omv 62 mv 64 mv 64 mv

Signals are peak-to-peak voltages

25
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(1) A .500 MHz to 13.500 MHz Response Frequency was observed.

(2) The maximum response occurred at 13.500 MHz.

(3) Transducer performance was improved with the applied vacuum.

When a single transducer was activated, RP cross-over to the other

transducers was observed only at the higher frequencies. The transducer was
not characterized by broad-band frequency response. The array tended to

resonate at rather narrow select frequencies. In general, all the elements

of the array responded in a similar manner. Also, transducers with crimped

edges tended to perform much more poorly.

IV. CONCLUSIONS

The acoustical array transducer is relatively inexpensive to fabricate,
has a good frequency response range and a variable focal length. Specific

problems encountered with the present device include UP cross-over, low

power output resulting in low efficiency and electrode problems. A suitable

replacement needs to be found for the silver paint since it tends to dampen

the generation of ultrasound and degrades with operating time and exposure

to water. The present device shows promise for being integrated into large

panels of transducers and possibly phased arrays. It shows potential for NDT

and Experimental Mechanics Applications.
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APPENDIX

This appendix contains drawings of the control

electronics manufactured by Sperry Support

Services to control the PVDF array transducer.
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