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A poor man’s coherent Ising machine based on
opto-electronic feedback systems for solving
optimization problems
Fabian Böhm 1, Guy Verschaffelt 1 & Guy Van der Sande 1

Coherent Ising machines (CIMs) constitute a promising approach to solve computationally

hard optimization problems by mapping them to ground state searches of the Ising model

and implementing them with optical artificial spin-networks. However, while CIMs promise

speed-ups over conventional digital computers, they are still challenging to build and operate.

Here, we propose and test a concept for a fully programmable CIM, which is based on opto-

electronic oscillators subjected to self-feedback. Contrary to current CIM designs, the arti-

ficial spins are generated in a feedback induced bifurcation and encoded in the intensity of

coherent states. This removes the necessity for nonlinear optical processes or large external

cavities and offers significant advantages regarding stability, size and cost. We demonstrate a

compact setup for solving MAXCUT optimization problems on regular and frustrated graphs

with 100 spins and can report similar or better performance compared to CIMs based on

degenerate optical parametric oscillators.
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R
ecent advances in optical and quantum computing are
paving the way for new computational paradigms, which
may soon replace conventional digital computers in chal-

lenging tasks. Of particular interest are combinatorial optimiza-
tion problems, which are often known to be NP-hard and thus
considered hard to solve efficiently on digital computers1. To
speed up calculation time compared to digital hardware, different
non-von Neumann architectures have been proposed that
attempt to solve optimization problems by mapping them to Ising
models. Finding the optimal solution then becomes equivalent to
finding the ground state of the Ising model2, which is imple-
mented with networks of coupled artificial Ising spins that can be
realized with various physical systems, e.g. Josephson junctions,
trapped ions, or optical states3–9. The energy function of these so-
called Ising machines is proportional to the Ising Hamiltonian, so
that they will naturally evolve to the ground state of the Ising
model and thus to the optimal solution. As the evolution to the
ground state typically occurs on very fast timescales, Ising
machines promise a considerable speed up over conventional
algorithms in finding solutions to optimization problems10,11,
which will have significant implications for various important
areas such as finance, pharmaceutics, logistics, or machine
learning.

Among the different concepts, coherent Ising machines (CIMs)
have attracted recent interest12. CIMs use the formal similarities
between the Ising Hamiltonian and the Hamiltonian of bistable
interfering coherent optical states to realize large-scale Ising
machines with networks of coupled optical states. This offers a
number of advantages over other Ising machines such as quan-
tum annealing, as CIMs are able to operate at room temperature,
can be constructed from off-the-shelf photonic components, and
are capable of implementing arbitrary coupling topologies12.
CIMs are also gain-dissipative systems, which makes them effi-
cient in escaping local energy minima and thus suitable for sol-
ving optimization problems13. The optimal solution then
represents the lowest loss configuration and can be found by
driving the system close to the minimum gain threshold, where
other local energy minima are not stable yet. Based on this,
various types of CIMs have been proposed that implement Ising
spin networks with bistable coherent optical states, such as cou-
pled lasers7,14 and degenerate optical parametric oscillators
(DOPOs)8. Current state-of-the-art CIMs based on DOPOs have
demonstrated their ability as global optimizers for various large-
scale problems11,15–17. By taking advantage of the large band-
width of optical systems, they can operate at high speed and have
shown speed-ups over conventional algorithms11,18.

However, the generation, interference and detection of the
coherent optical states is phase-sensitive and thus makes stable
operation technically challenging. In DOPO-based CIMs, artifi-
cial Ising spins are represented by the optical phase of short laser
pulses that are generated by nonlinear optical processes and
circulated inside a 1 km long ring fiber cavity8. This requires
phase-stability for the whole length of the cavity and makes the
system highly susceptible to external perturbations, often leading
to cases where unstable conditions deteriorate performance16,19.
Furthermore, the nonlinear DOPO generation process demands
powerful laser systems and temperature-controlled nonlinear
materials, which results in large and complex optical setups.
These drawbacks make CIMs challenging to build and operate
and hinder realization as small and cost efficient devices, e.g. as
photonic integrated circuits.

Here, to improve the stability and decrease the footprint of
CIMs, we introduce a different concept by implementing a CIM
based on opto-electronic oscillators (OEOs) subjected to self-
feedback. OEOs are an attractive choice since they can easily be
built from few off-the shelf components or as photonic integrated

circuits and are known for their inherent stability and complex
nonlinear dynamics, which are used in various applications, e.g.
cryptography, microwave generation, and optical neuronal com-
puting20. We demonstrate how the rich bifurcation structure of
OEOs can be used to generate arbitrarily large controllable arti-
ficial spin networks. Our concept results in a more compact
experimental setup, which requires only a few components. We
test its performance in solving optimization problems with up to
100 spins and find that it is suitable as a solver for MAXCUT
optimization problems with a similar or better performance
compared to DOPO-based CIMs. Contrary to DOPO-based
CIMs, our machine does not require external cavities or nonlinear
optical processes, which drastically decreases its cost and its
footprint, while also enhancing its stability. This demonstrates the
large potential of feedback systems in general to be used for
computation of the Ising model.

Results
Implementing artificial Ising spin network with OEOs. The
Ising model describes an ensemble of binary spins σn, which are
either in the spin up σn= 1 or the spin down state σn=−1.
Interaction of the spins is achieved by coupling them using the
spin coupling topology Jmn. The energy function of an ensemble
of N coupled spins is then given by the Ising Hamiltonian

HIsing ¼ � 1

2

X

N

mn

Jmnσmσn: ð1Þ

As shown in ref. 21, the Hamiltonian of interfering optical
coherent states is analogous to the Ising model, where the spin
coupling Jmn corresponds to the optical phase difference Δφ and
the optical coupling strength of the interfering states. For
example, the Ising Hamiltonian corresponds to coupled
DOPOs21, where the phase difference is fixed to Δφ= {0, π}.
Due to this phase degeneracy, the electrical field is real valued
with a positive or negative amplitude. Motivated by this, we
suggest to remove the phase sensitivity in CIMs with an OEO,
which consists of an optical and an electrical pathway (see
Fig. 1a). The optical pathway implements a nonlinearity by
feeding the output of a laser diode through a Mach–Zehnder
modulator (MZM) and detecting it with a photodiode. The
electrical pathway creates time-discrete feedback by sampling the
photovoltage and feeding it back to the input of the MZM. Inside
the MZM, the coherent input is split and interfered with itself. A
phase difference corresponding to the feedback signal is set within
one of the arms by a phase modulator and the output of the MZM
is then the squared in-phase component of the interfering
electrical fields. In the Methods section, we show how this output
approximates the coherent superposition of DOPO pulses in
DOPO-based CIMs. By coupling the output of multiple OEOs
together, either electrically or optically22,23, a network of bistable
optical states can thus be generated to represent an ensemble of
Ising spins. Contrary to DOPO-based CIMs however, generation,
interference, and detection of the optical states is fully contained
within the MZM and the feedback system. All information about
the optical states is encoded in the light intensity outside of the
MZM and therefore phase sensitivity is removed.

To map the OEO network to a network of Ising spins, we
exploit the nonlinear nature of the opto-electronic feedback
system. For an ensemble of coupled OEOs with time-discrete
feedback, the time evolution of the nth OEO xn[k] during
iteration step k is given by the following nonlinear map23:

xn½kþ 1� ¼ cos2 fn½k� � π=4þ ζn½k�ð Þ � 1

2
: ð2Þ
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Gaussian white noise ζn[k] and a constant bias of −π/4 are
applied to the system. The feedback term fn[k] is calculated
according to

fn½k� ¼ αxn½k� þ β
X

m

Jmnxm½k�: ð3Þ

fn[k] includes both self-feedback to each oscillator xn[k] with
the feedback strength α as well as mutual coupling with the
coupling matrix Jmn and the coupling strength β. Without mutual
coupling (β= 0), it can easily be shown by linear stability analysis
that the system undergoes a pitchfork bifurcation at α= 1. Below
the bifurcation point, the system has only one stable fixed point
x�1 ¼ 0, while above the bifurcation point the system has two
stable fixed points x�2;3 ¼ �a0; a0f g and one unstable fixed point

x�1 ¼ 0. The pitchfork bifurcation results in a symmetrical
bistability, where there is an equal probability that a single
oscillator will end up in either of the two stable fixed points when
the system is initially in the unstable fixed point. Ising spin
networks are then generated by mapping the photovoltage xn[k]
to the Ising spins σn by σn= sign(xn[k]). As DOPO-based CIMs
have to implement this kind of bistability with a phase-sensitive
nonlinear optical amplification process, using the nonlinearity of
an MZM subjected to self-feedback presents a significantly easier
and more stable approach to realizing large-scale spin networks.

To facilitate the realization and coupling of several OEOs, we
employ a time-multiplexing scheme that allows us to emulate a
large ensemble of oscillators with a single system. For a network
of N spins, the feedback signal is divided into N equal intervals,
where each individual interval represents a single artificial spin
(see Fig. 1b). The feedback signal and the photovoltage are then
represented by piecewise constant functions and are generated
and read out sequentially. Similar to DOPO-based CIMs, we
employ a hybrid computing scheme where multiplexing and
coupling are performed by digital hardware while the nonlinear
system is implemented with the optical system. For each iteration,
the photovoltage xn and the feedback signal fn for each spin n are
updated in a two-stage process, namely a sampling and a
processing stage (see Fig. 1b). In the sampling stage, the
multiplexed feedback signal is injected from a digital–analog
converter (DAC) to the MZM and the resulting photovoltage is
sampled by an analog–digital converter (ADC). In the processing

stage, the signal is demultiplexed, a matrix multiplication is
performed to facilitate the spin coupling and the resulting
feedback signal is multiplexed again for the next iteration. This
hybrid computing scheme presents a good compromise as it
allows to implement arbitrary networks while taking advantage of
some of the high bandwidth of the optical system. In DOPO-
based CIMs, this enables fast computation times at rates of
hundreds of megahertz per spin, which can already outperform
other heuristic methods11,18. However, an all-optical approach
could remove any slowdown of the digital I/O system and take
full advantage of the optical system to further increase the rate to
tens of gigahertz.

We test the behavior of the OEO-based CIM as an artificial
spin network by emulating an ensemble of 100 uncoupled spins
(Jmn= 0). Figure 2a shows the amplitude distribution for all spins
after 50 iterations as we increase the feedback strength α from
below to above the bifurcation point. Below the bifurcation point,
only the trivial fixed point x�1 ¼ 0 is stable and the artificial
spins are distributed around x�1 . As the feedback strength
increases above α= 1, the trivial fixed point becomes unstable
and the artificial spins bifurcate into the two new stable fixed
points x�2;3 ¼ ± a0. As expected for a pitchfork bifurcation, the

amplitude a0 of the stable fixed points increases with the feedback
strength, which also agrees well with simulations of the nonlinear
map (2) (orange dots in Fig. 2a). For higher feedback strengths,
we observe a deviation from the nonlinear map (2) as the spin
amplitude starts to saturate due to load limitations of the DAC.
Figure 2b shows two exemplary time evolutions for all spins
below (α= 0.8) and above (α= 1.3) the bifurcation point. At α=
0.8, we observe how the spins are fluctuating around the stable
fixed point x�1 as a consequence of the system’s noise. At α= 1.3,
the noise drives the spins away from the now unstable fixed point
x�1 as the spin amplitude bifurcates into the new stable fixed
points x�2;3. From the histogram, we see that 49 spins are in the

spin up state and 51 spins are in the spin down state, which
exemplifies that there is an equal probability for both configura-
tions. For 50 independent measurements, we find that the average
probability for the spin up and spin down configuration are
Pup= 0.49 ± 0.08 and Pdown= 0.51 ± 0.08, thereby corroborating
that the artificial spins are emulating the correct behavior of
independent Ising spins.

P
h

o
to

v
o

lt
a

g
e

 (
V

) 

0

0

F
e

e
d

b
a

c
k

s
ig

n
a

l 
(V

)
S

p
in

 s
ta

te

100 0 100

D
A

Q

M
a
trix

 m
u
ltip

lic
a
tio

n

D
A

Q

M
a
trix

 m
u
ltip

lic
a
tio

n

1

(1) Sampling (2) Processing

5 1 5

Spin number

Iteration k Iteration k+1

Sample step

Photodiode
Mach-Zehnder

modulator

Modulator

bias

Optical signal

Electronic signal

F
e
e
d
b
a
c
k
 s

ig
n
a
l

D
a
ta

 a
q
u
is

ito
n

S
p
in

 s
ta

te
s

M
a
trix

 m
u
ltip

lic
a
tio

n

Digital signal

ADC

DAC

f
1

f
2

f
3

f
...

f
N

X
1

X
2

X
3

X
...

X
N

PC

a b

Laserdiode

DC-bias

1
(i)

(ii)

(iii)

–1

0.03

0.00

–0.03

Fig. 1 Experimental schematic and working principle. a Experimental schematic of an OEO-based coherent Ising machine. PC polarization controller, ADC

analog–digital converter, DAC digital–analog converter. b Working principle during two consecutive iterations. In the sampling stage (1), the feedback

signal is generated (i) and the resulting spin amplitude is measured (ii). The spins states are then determined by the sign of the spin amplitude (iii). In the

processing stage (2), spins are digitally processed and the matrix multiplication of Eq. (3) is performed

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11484-3 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3538 | https://doi.org/10.1038/s41467-019-11484-3 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Solving MAXCUT optimization problems with OEO-based
CIMs. To demonstrate the capability of OEO-based CIMs as
general solvers for optimization problems, we perform different
benchmarks for the MAXCUT problem. MAXCUT is the task of
dividing a graph Jmn into two subsets with a maximal number of
connecting edges between both subsets and is known to be an
NP-hard problem1. MAXCUT problems can easily be trans-
formed to an Ising model by implementing the graph structure
Jmn and setting each non-zero edge to be antiferromagnetic (Jmn

=−1). The energy minimum of the Ising Hamiltonian is then
equivalent to the maximal cut11. In the following, we perform
ground state searches for MAXCUT problems in various graph
structures to demonstrate that OEO-based CIMs can find the
correct solution. As a first instance, we consider a square lattice,
where the spins are organized in a two-dimensional (2D) grid
structure and coupled to their four nearest neighbors. The ground
state is given by a checkerboard pattern, where neighboring spins
are alternating between the spin up and down configuration.

We implement a 10 by 10 square lattice with periodic
boundary conditions and study the ground state evolution. In
Fig. 3a, we show the time evolution of each spin’s amplitude and
the corresponding Ising energy. Starting from the unstable fixed
point x�1 , the system is driven across the threshold of the pitchfork
bifurcation where the spins start to bifurcate into the two stable
fixed points x�2;3. The mutual coupling drives the spins to reorder

themselves, which is accompanied by a drop in the Ising energy.
This process continues until after 28 iterations, the ground state
energy has been reached. To better understand the evolution to
the ground state, we show snapshots ((i)–(iv) in Fig. 3b) of the
spin amplitude during the ground state search. The spins are
color coded, so that yellow indicates spin up and blue indicates
spin down. We find that, as the artificial spins start to bifurcate,
they organize themselves into small circular domains ((i) in
Fig. 3b). Within these domains, spins are already organized in a
checkerboard pattern. At the boundaries, domain walls are
formed, which create a mismatch in the pattern (indicated by
magenta lines). As the ground state search progresses, the domain
walls start to move and the domains merge and shrink ((ii)–(iii)
in Fig. 3b) until all of them eventually vanish and the ground state
is reached ((iv) in Fig. 3b). It is interesting to note here that these
domain evaporation dynamics are likewise observed in DOPO-
based CIMs17,24.

MAXCUT performance in regular and frustrated graphs. To
assess the performance of the OEO-based CIM, we evaluate the
success rate to reach the ground state in 50 independent

experiments. This indicates whether it is likely that the machine
becomes trapped in local energy minima. In Fig. 4a, we show the
time evolution of the success rate for the square lattice. After
around 100 iterations, 90% of the instances are able to reach the
ground state, which indicates a high probability to escape local
minima. Only 10% of the calculations get stuck in local energy
minima, so that all instances are within 76% of the ground state
energy (indicated by shades of blue in Fig. 4a and the histogram
in Fig. 4b). While the square lattice can be considered as an easy
problem that can be efficiently solved by computer algorithms25,
we also evaluate the performance in frustrated lattice structures,
where competing spin interactions lead to a disordering and
results in more complex ground state patterns. Typically, fru-
strated lattices can be more challenging to solve due to local
energy minima and critical slowing down and thus present a
challenge to conventional solvers such as Monte Carlo methods
and Hopfield networks26,27. In the following, we consider the
Möbius ladder graph, which is a cubic ring graph, where each
spin is also connected to its neighbor on the opposite site of the
ring. When N/2 is an even number for N spins, competing spin
interactions due to the antiferromagnetic coupling to neighboring
spins cause lattice frustrations. In Fig. 4c, we show the time
evolution of the success rate for a Möbius ladder graph with
100 spins. After 100 iterations, the CIM achieves a success rate of
34%. From the timeseries, we can also observe that the system can
escape from the global energy minimum, so that the overall
success rate is higher when we consider the total number of
instances that have reached the ground state at some point. In this
case, the CIM achieves an overall success rate of 59% (indicated
by the dotted line in Fig. 4), which is almost three times higher
than previously reported values for DOPO-based CIMs15. For the
distribution of energies, we find that all unsuccessful calculations
lie within 90% of the correct ground state energy, which presents
a good approximation of the global minimum (see Fig. 4d).
Similar or enhanced performance can also be observed for other
frustrated graphs. In Fig. 4e and g, we test the success rate to
reach the ground state for the triangular lattice and a 2D random
lattice. In the triangular lattice, frustrations are caused by cou-
pling of each spin to its six nearest neighbors. This results in
various degenerate ground states, which for example relate to the
ground state in quantum spin liquids in YbZnGaO4 (ref. 28). For a
10 by 10 triangular lattice, the CIM achieves a success rate of 52%
after 100 iterations, while almost all other instances are a good
approximation at 94% of the ground state energy (see Fig. 4f). In
a 2D random lattice, frustrations are caused by randomly
choosing between ferromagnetic and antiferromagnetic coupling
for each edge. We evaluate the success rate for a randomly
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generated graph and find that the CIM achieves an overall success
rate of 58%. This is an improvement when compared to the
success rate reported for DOPO-based CIMs, where an average of
28% was reported for various 2D random graphs17. The

remaining states all fall within 96% of the correct solution and
thus again present a good approximation (see Fig. 4h).

We also investigate how the graph properties influence the
success rate of the CIM. For the Moebius ladder graph, we
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consider the scaling of the overall success rate with the graph size
N in Fig. 5a. As the graph size decreases, the success rate quickly
increases to around 100% for N ≤ 72 spins. This overall success
rate is higher when compared to DOPO-based CIMs, where a
100% success rate for the Möbius ladder graphs was reported only
for N ≤ 16 spins15. This advantage becomes more pronounced in
comparison to classical Hopfield networks, which we have
implemented with the Metropolis–Hastings algorithm at low
temperatures. In that case, for the smallest graph N= 16, only
34% of 50 independent instances reach the ground state. As the
graph size is increased, the success rate for the Hopfield network
quickly drops to zero so that no instance is able to find the correct
ground state for N= 100. This demonstrates that the CIM can be
more efficient in escaping local energy minima. This is also
corroborated by the energy histograms in Fig. 4, where all
calculations end up in configurations at or very close to the global
minimum.

Another important measure which influences the success rate
is the density of edges in a graph. For quantum annealing for
example, the embedding of dense or complete graphs can be
challenging so that the success rate is poor compared to CIMs or
classical algorithms16. Here, we consider sparse and dense
random graphs, where each node has the same number of
randomly distributed links. In Fig. 5b, we show the average
success rate for five random graphs with N= 40 spins after 200
iterations as the edge density d is increased from a sparse
connectivity to an almost complete graph. We find that the
success rate is mostly unaffected by the edge density and reaches
over 50% in most instances, which is also comparable to previous
results in DOPO-based CIMs and significantly more successful
than quantum annealing based machines16. It has to be stressed
here that the DOPO-based CIM applies an annealing scheme in
ref. 16, where the system is slowly driven above the gain threshold
with a linear annealing schedule. While we observe similar
performance without the need for annealing, we expect that the
success rate could be further increased at the cost of longer
calculation times by adapting the same annealing technique.
Overall, our benchmarks demonstrate that the OEO-based CIM is
capable of finding the optimal solution for various difficult
optimization problems and achieves similar or even better
performance than current state-of-the-art CIMs.

Discussion
We have proposed and implemented a CIM, which is built from a
compact opto-electronic feedback system. Compared to quantum
annealing devices, our machine benefits from the same advan-
tages as DOPO-based CIMs, while having a more compact and
more controllable setup. OEO-based CIMs do not require an
external ring fiber cavity and nonlinear optical processes and the
overall footprint and cost can be significantly decreased. As OEOs
can be fabricated as photonic integrated circuits29,30, they will
enable miniaturization of cheap, fast and fully programmable
CIMs. OEO-based CIMs also provide a significant enhancement
in regard to the overall stability of CIMs. While the phase-
sensitive setup of DOPO-based CIMs can deteriorate perfor-
mance and requires filtering of the results16, the OEO-based
machine encodes spins in the light intensity. As a consequence,
we can report stable conditions over several hours of operation
without the need for active stabilization or additional filtering of
results. This increased stability allows to operate the CIM closer
to the gain threshold, which results in high success rates. It also
opens up CIMs to other fields of study, for example the statistical
properties of artificial spin networks with strong injected noise.

The performance of OEO-based CIMs as a general solver for
optimization problems was demonstrated by solving various
difficult MAXCUT problems. We find that the machine is able to
find the correct ground state for all graphs, even in the presence
of lattice frustrations where simple Hopfield networks are stuck in
local energy minima. Compared to DOPO-based machines, we
can report similar or increased performance in the success rate
for all graphs. Similar to DOPO-based CIMs, we expect that the
overall success rate can be further increased by gradually
increasing the feedback and the coupling strength16, which sug-
gests that similar good performance can be expected for various
tasks. In terms of computational speed, our system is interesting
from different perspectives. On the one hand, as the dynamical
equations are significantly simpler compared to those of other
CIM systems7,21, they are considerably more efficient to simulate
on digital computers and provide a fast general purpose method
for solving optimization problems on conventional hardware. On
the other hand, the high bandwidth of the optical system allows
for computation speeds that can potentially surpass conventional
methods. While fast calculation times per iteration are not the
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focus of our current setup, the compact optical system is designed
to be compatible with the fast field programmable gated array
(FPGA)-based measurement-feedback systems of DOPO-based
CIMs. By using an FPGA system, ground state searches within
only a few milliseconds are possible in the future11,15 and further
improvements could be achieved by using faster opto-electronic
components or sampling from several OEOs in parallel.

Due to the general nature of our proposed system, our work
shows that it should be possible to realize similar CIMs with other
nonlinear feedback systems. Since the cos2 nonlinearity can be
approximated with various functions, a realization with analog
electronics for example could be easy to implement and provide
similar speed. Nonlinear feedback systems as a whole thus
become interesting for the study of optimization problems and
will be an intriguing alternative to other artificial Ising spin sys-
tems. However, the advantages of using an optical feedback sys-
tem to implement Ising spin networks will prevail in an all-optical
setup. Since OEO-based CIMs can be implemented as integrated
photonic circuits, it will be possible to combine them with the
recent development of programmable silicon photonic circuits to
realize flexible spin coupling all optically31. This will enable
building programmable and energy efficient CIMs as a single
photonic integrated circuit and remove the digital I/O system
altogether, hence taking full advantage of the high bandwidth of
the optical system and yielding a significant speed up over
existing CIM concepts. Combining a cheap and compact setup
with the performance of DOPO-based CIMs, OEO-based CIMs
thus make CIMs more accessible and promise to overcome
important hurdles towards their practical application.

Methods
OEO-based CIM. For the OEO-based CIM, we employ a single time-multiplexed
feedback loop, which was similarly employed to study synchronization phenomena
in arbitrary networks23. The coherent signal is emitted from a single-mode
wavelength-stabilized DFB laser diode at a wavelength of λ= 1.55 μm. The laser is
operated at around two times its threshold current at an optical power of 0.3 mW.
The optical signal is transmitted through single-mode optical fibers. To reduce the
negative effects of optical feedback to the laser, all optical fibers use angled con-
nectors and an additional optical isolator is inserted directly behind the laser. We
use a 13 GHz Lithium Niobate MZM to modulate the optical signal. The angle of
polarization for the laser light is adjusted by a polarization controller in front of the
modulator. To shift the bias phase Δφ of the modulator, a constant DC bias of
Vbias ¼ 1

4
Vπ is applied. It has to be noted here that this results in a positive bias of

Δφ ¼ π
4
instead of a negative bias as in Eq. (2). The cos2 is symmetric under change

of sign (cos2(Δφ)= cos2(−Δφ)); however, since the slope of cos2 is antisymmetric
(−2sin(Δφ)= 2sin(−Δφ)), the sign of the feedback strength α and the coupling
strength β has to be inverted to implement the correct spin interaction. To relate
the coupling and feedback strength in the experiment to α and β, we rescale the
voltage signals with the voltage at the bifurcation point obtained in Fig. 2a.

For the signal generation and subsequent sampling, we use an USB data
acquisition interface which is coupled to a computer. In the sampling stage, the
feedback signal is generated by a 14-bit DAC from the stored values of the previous
iteration at a sampling rate of 6000 Sa/s. The optical signal from the MZM is
detected and transformed to an electrical signal by a photodiode with a 150MHz
bandwidth and sampled at 6000 Sa/s by a 14-bit ADC. To ensure synchronous
generation and sampling, the data acquisition is triggered by an external signal
generator operating at 1 Hz. This results in a computation time of 1 s per iteration.
We want to remark that this long computation is primarily due to the data
acquisition interface and can be performed much faster with more sophisticated
hardware.

During the data acquisition, a network of N spin is generated by time-
multiplexing, where the acquisition time is divided into N intervals. The artificial
spins are then represented by a piecewise constant function, where each interval
consists of 20 samples. To prevent transient effects during the sample generation
and the signal detection, only the last value of the 20 samples is used. In the
processing stage, the signal is then processed to obtain the spin amplitude xn[k] by
digitally subtracting the DC component, which is separately measured before each
experiment from the light intensity passing through the modulator without any
feedback signal. To calculate fn[k], a matrix multiplication is performed on the spin
amplitude xn[k] according to Eq. (3). Due to the low intrinsic noise of the system,
additional Gaussian white noise ζn with a standard deviation of σζ= 0.04 is digitally
injected. This could likewise be achieved by driving the system closer to the laser
threshold or by adding electronic noise.

Analogy between OEO-based and DOPO-based CIMs. To understand the
analogy between DOPO-based and OEO-based CIMs, we are considering the
equations of motion for a DOPO-based CIM21:

dcn
dt

¼ �1þ p� c2n � s2n
� �

cn þ
1

As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2n þ s2n þ
1

2

r

dζn
dt

; ð4Þ

dsn
dt

¼ �1� p� c2n � s2n
� �

sn þ
1

As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2n þ s2n þ
1

2

r

dζn′

dt
: ð5Þ

The equations of motion describe the temporal evolution of the in-phase
component cn and the quadrature component sn of the optical field of the nth
DOPO for a network of N DOPO pulses that circulate in a ring cavity. p refers to
the pump parameter, where p= 1 represents the threshold of the pitchfork
bifurcation and is thus analogous to the feedback strength α in the OEO-based

CIM. As is the saturation amplitude and dζ
dt is a Gaussian white noise term. The

Ising model is implemented by coherently coupling the DOPO pulses. In
measurement-feedback based CIMs, this is achieved by measuring the in-phase
component ~cn½k� of each DOPO pulse during the roundtrip k with balanced
homodyne detection and then using this signal to generate an electronic feedback

signal ~fn that is injected back into the cavity by modulating a train of optical
pulses11,17. The homodyne signal ~cn corresponds to the coherent superposition

~cn½k� / cn½k� cos Δφn½k�
� �

þ β
X

m

Jmncm½k� cos Δφm½k�
� �

; ð6Þ

where Δφn is the phase difference between the DOPOs and the local oscillator and
β is the coupling strength. For DOPOs, the phase difference is degenerate and can
only be Δφ= {0, π}. All phase terms in the coherent superposition thus reduce to
cos(Δφ)= ±1, so that the electrical field of the DOPOs is real valued with a positive
or negative amplitude. This allows to calculate the coherent superposition inside a

FPGA, which generates the feedback signal ~fn :

~fn½kþ 1� ¼
X

m

Jmn~cm½k�: ð7Þ

After performing one roundtrip in the cavity, this signal is injected back into the
cavity to implement the coupling. In the equations, this corresponds to adding the

feedback signal ~fn½k� to the in-phase component after each roundtrip. During the
roundtrip, the time evolution of the DOPOs is given by Eqs. (4) and (5). It is
important to mention here that although their general operating principle is
different, DOPO-based CIMs with purely optical coupling can be described by the
same set of equations21.

It has been shown that arbitrary Ising Hamiltonians can be mapped to the
dynamics of Eqs (4)–(6)21. In the following, we show that the equations of motion
of DOPO-based CIMs and OEO-based CIMs become analogous when the CIM is
operating close to the threshold, so that the Ising model can be mapped to the
OEO-based CIM in the same way as for DOPO-based CIMs. As a first step, we
further simplify the equations of motion for the DOPO-based CIM. In Eqs. (4) and
(5), the noise term is multiplicative, i.e. its amplitude depends on cn and sn. Since
the noise amplitude is small compared to the spin amplitude above threshold,

variations in the noise amplitude become neglectable so that we use a noise term
d~ζn
dt

with a constant amplitude instead. Also above threshold, it is safe to neglect the
quadrature component sn. This is reasonable since the feedback signal has no
complex component and since Eq. (5) undergoes no bifurcation at p= 1, so that sn
always remains below threshold and thus cn � sn . This leads to the following
simplified equation of motion for the in-phase component, which is equivalent to
the normal form of a pitchfork bifurcation at p= 1 with the two stable fixed points
c�2;3 ¼ ±

ffiffiffiffiffiffiffiffiffiffiffi

p� 1
p

:

dcn
dt

¼ ðp� 1Þcn � c3n þ
d~ζn
dt

: ð8Þ

This continuous differential method can be transformed into a discrete map by
approximating it with the Euler method. For a single Euler step cn[k + 1]= cn[k] +
hf(tn, cn(tn)) with step size h, we assume a large time step of h= 1 that corresponds
to performing one entire cavity roundtrip. This assumes that cn only changes slowly
during each roundtrip, which is true for DOPOs close to the threshold17,32. Adding
the feedback signal after each roundtrip results in the following iterative map:

cn½kþ 1� ¼ pcn½k� � c3n½k� þ β
X

m

Jmn~cm½k� þ ~ζn: ð9Þ

Using the assumption that the spin amplitude xn is small close to the threshold,
we now demonstrate that the equation of motion for OEO-based CIMs can be
reduced to the same pitchfork normal form. Focusing solely on the behavior close
to the threshold (α= p ≈ 1) is a reasonable assumption, since it is well known that
CIMs and other gain-dissipative systems achieve the highest performance close to
the threshold13. We can thus expand the cos2 in Eq. (2) as a Taylor series around
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xn= 0 to the third order. This results in the following expression:

xn½kþ 1� ¼ αxn½k� þ β
X

m

Jmnxm½k� þ ζn �
2

3
αxn½k� þ β

X

m

Jmnxm½k� þ ζn

 !3

:

ð10Þ
We are assuming that any terms related to self-feedback are in general larger

than any terms related to mutual coupling, so that αxn½k� � β
P

m Jmnxm½k�. While
this may not be true for all cases, we will see in the following that it still presents a
reasonable approximation close to the threshold. Using this assumption, we neglect
the third-order terms in the feedback strength. Similarly, any higher orders terms
for the noise are disregarded, which leaves us with the following relation:

xn½kþ 1� ¼ αxn½k� �
2

3
α3xn½k�3 þ β

X

m

Jmnxm½k� þ ζn: ð11Þ

We find that this corresponds to the approximated DOPO model in Eq. (9).
Particularly, the coupling term in the OEO model is the same as the coherent
superposition of DOPO pulses in Eq. (6), showing that the output of the MZM
approximates the homodyne signal for small spin amplitudes. Similar to the
simplified equation of motion for the DOPO-based CIM, the simplified OEO
model exhibits the same pitchfork at α= 1 with the stable fixed points

x�2;3 ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=2ðα� 1Þ
p

. Although the expression for the nonlinear transfer function

contains an additional factor in the third-order term, we find that it still presents a
good approximation close to the threshold. In Fig. 6a, we compare the nonlinear
transfer functions for the OEO-based CIM (Eqs. (2) and (11)) and the DOPO-
based CIM (Eq. (9)) close to the threshold at α= p= 1.1 and β= 0 and find that all
expressions agree well for all values of the spin amplitude between the fixed points.
We also assess the similarities between both models by comparing the time
evolution of the spin amplitude xn and the in-phase component cn close to the
threshold. In Fig. 6b, c, we show the time evolution for a network of 100 uncoupled
artificial spins in the OEO-based CIM and in the DOPO-based CIM at α= p= 1.1
and β= 0. In the upper panel, we show the results from the simulations using the
full model while the lower panel contains the results of the simplified Eqs. (9) and
(11). For simulation of the full DOPO-model, we use the same set of parameters as
in ref. 17. Comparing the full models with the approximated models, we find that
both the OEO models and the DOPO models agree very well. Furthermore, when
comparing the dynamics of the OEO-based CIM to the DOPO-based CIM, we find
that they are almost indistinguishable. In all models, we can observe the spin states
bifurcating to the same fixed points at very similar timescales. Due to the
demonstrated analogy of the equations of motion, it can thus be shown that an
OEO-based CIM operates analogous to a DOPO-based CIM, which is for example
also reflected in the domain dynamics that we observe for the 2D Ising model in
Fig. 3. An OEO-based CIM thus possesses the same capability to implement
arbitrary Ising Hamiltonians as its DOPO-based counterpart, which is also
supported by our benchmarks.

Monte Carlo simulations. The Monte Carlo simulations were performed using the
Metropolis–Hastings algorithm, which is a local update method. For each iteration,
a single spin is flipped and the change in energy ΔE is considered. If the energy
decreases, the spin remains flipped. If the energy increases, the spin remains flipped

with a probability of

P ¼ 1� expð�ΔE=kBTÞ: ð12Þ
The spins are flipped sequentially in a typewriter ordering, which is known to

be effective for 2D graphs. We also checked the success rate to reach the ground
state with a random update order and found that the method performs worse in
terms of success rate and calculation time. To implement a Hopfield network, we
have set the temperature to T= 0.01. At this low temperature, the update
mechanism only flips a spin if the overall energy decreases, which is identical to the
deterministic update rule of Hopfield networks. To reach the lowest energy state,
300,000 iterations were performed for each simulation.

To verify the ground states found by the CIM, we have also implemented
simulated annealing by gradually decreasing the temperature of the
Metropolis–Hastings algorithm at each iteration k. We have applied an exponential
temperature schedule T[k]= 2 exp(−0.0001 k) and simulated the spin network
until the energy remained unchanged. For long annealing times, it is known that
simulated annealing can converge to the global minimum.

Data Availability
The authors declare that all relevant data are included in the manuscript. Additional data

are available from the corresponding author upon reasonable request.
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