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Abstract
TheMulti-DepotCumulativeCapacitatedVehicleRoutingProblem is a variation of the
recently proposed Capacitated Cumulative Vehicle Routing Problem, where several
depots can be considered as starting points of routes. Its objective aims at minimizing
the sum of arrival times at customers for providing service. Practical considerations
imply to address the delivery of customers from multiple depots where the service
quality level depends on the customer waiting time and the delivering vehicles may
be able to depart from different points. Those scenarios require theoretical models
to support the decision-making process as well as for measuring the quality of the
solutions provided by approximate approaches. In the present work, we formalize
this new problem variant by means of a mathematical formulation and propose a
matheuristic approach (POPMUSIC) for solving it.

Keywords Multi-Depot Cumulative Vehicle Routing Problem · POPMUSIC ·
Matheuristic · Disaster logistics · Customer-oriented applications

1 Introduction

The Cumulative Capacitated Vehicle Routing Problem (CCVRP) is a quite recent
routing problem that differs from the well-known Vehicle Routing Problem (VRP)
[5] in that the required objective aims to minimize the total arrival time (i.e. the sum
of arrival times) or the sum of the (estimated) time of finishing services at customers
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ensuring that every customer is visited and fully serviced. Considering this type of
problem setting, a straightforward (and optimal) way of solving it is having each
customer served by a separate vehicle. Nevertheless, that requires to have as many
vehicles as customers, which usually does not happen in reality where the number of
customer jobs normally exceeds the number of available vehicles. That consideration
makes the problem interesting (and harder). Even further, when considering scenarios
with multiple depots, this problem becomes more complex as the decision range of the
problem is extended to also determine from which depot a customer has to be served.

The first work that formally investigates the CCVRP is from Ngueveu et al. [16].
Their aim for proposing the CCVRP is to address problems where fast services
characterizing the transport of supplies are required; practical applications include
distribution, machine scheduling and even power-control and receiver optimization
in wireless telecommunication systems (see [1]). The authors compare the contribu-
tion of the problem with already proposed routing problems and its similarities with
the Traveling Repairmen Problem (TRP) also known as Minimum Latency Problem
(MLP) and the Delivery Man Problem (DMP). For solving the CCVRP they propose
a Memetic Algorithm (MA). The algorithm is assessed using instances whose size
ranges from 50 to 199 nodes. Ribeiro and Laporte [18] propose an Adaptive Large
Neighborhood Search (ALNS) for this problem. ALNS is able to improve the com-
putational results obtained by means of the MA from [16]. Chen et al. [3] propose
an Iterated Local Search (ILS) algorithm and provide a comparison with MA and
ALNS. The comparison shows that they are able to improve the computational time
to reach some best-known solutions; nevertheless, on average ALNS exhibits a better
performance. Lysgaard andWøhlk [13] investigate a branch-and-cut-and-price (BCP)
algorithm. In their computational experiments, they consider the case of having an
extra route. That is, they increase the instance feature concerning the number of avail-
able vehicles by one unit. The computational results show that the BCP is able to
solve the CCVRP problem instances with up to 70 customers within reasonable com-
putational times without considering an extra vehicle. Moreover, when an additional
vehicle is added, the authors observe that the instances seem to be easier allowing
to solve instances with more nodes for some of the instance sets they consider. A
CCVRP with a modified objective function (minimizing the maximum arrival time)
is proposed in [22].

In several logistic contexts, a large number of scenarios considers vehicles depart-
ing from different depots when starting their routes. This issue is addressed by the
Multi-Depot Vehicle Routing Problem (MD-VRP); see Sumichras andMarkham [21],
Renaud et al. [17] and Montoya et al. [15]. This can be extended to the CCVRP for
addressing scenarios where the service level to customers and timing is important from
a customer viewpoint andwhere a set of vehicles can depart fromdifferent depots. That
is, the vehicles can depart from one of the available depots and provide the requested
deliveries or service to customers as soon as possible. Hence, including this additional
decision level enables to also decide from which depot each vehicle has to depart and
to which customer provide service. Thus, this extension allows to capture different
real-world scenarios from distribution services centered in the customer satisfaction
to humanitarian response or city services such as ambulance routing.
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The importance of considering multiple depots can be contextualized by means
of some related works in the literature. For instance, Talarico et al. [25] address the
ambulance routing in disaster response where ambulances departing from different
hospitals have to aid patient groups depending on the severity of the health problem.
In that problem, the objective aims to minimize the weighted sum of the latest service
completion time among red code patients and the latest service time among all green
code patients. Salazar et al. [14] propose a routing problem allowing multiple uses of
a single vehicle with the aim of minimizing the sum of the customer waiting times
aiming to aid disaster-stricken communities. Similarly, Rivera et al. [19] propose the
Multi-Trip Cumulative Capacitated Vehicle Routing Problem (MT-CCVRP) in which,
inspired by disaster logistics, a single vehicle can perform successive trips for serving
a set of sites or individuals with the objective of minimizing the sum of arrival times.
It has to be noted that in that problem the authors consider a single vehicle which can
perform more than one trip.

As discussed below, extending the CCVRP to consider multiple depots is hard to
solve through the optimization model implemented in a general purpose solver. Thus,
to improve the solution quality, in this work, we propose a Partial Optimization Meta-
heuristic under Special Intensification Conditions (POPMUSIC [23,24]) approach. In
particular, the matheuristic version of this template proposed by Lalla-Ruiz and Voß
[10], where sub-problems are solved to optimality by using exact approaches instead
of approximate ones, is used for solving the MD-CCVRP. The underlying idea behind
POPMUSIC is to address large problems by firstly decomposing them into parts and,
subsequently, bundle those parts in order to build sub-problems. Those sub-problems
are later solved using either an approximate or an exact approach. Similar to [10–12],
we solve a reduced version of the problem instance and solve it by means of its opti-
mization problem. The results in those works indicate that solving the sub-problems
following that procedure reports a better performance than solving the complete prob-
lem at once.

Considering the aforementioned discussion, the goal of this paper is to propose the
extension of the CCVRP for considering multiple depots by means of an integer pro-
gramming formulation. This newproblem is referred to as theMulti-DepotCumulative
Capacitated Vehicle Routing Problem (MD-CCVRP). Moreover, as indicated in [16],
the CCVRP generalizes the TRP by adding capacities while considering a homoge-
neous fleet. Therefore, the MD-CCVRP allows addressing the TRP/MLP/DMP with
multiple-depots and vehicles if the capacity constraints are relaxed and a maximum
of one vehicle per depot is permitted. Thus, although not being the main goal of this
paper, an adaptation of the developed mathematical model for tackling those problems
is provided. Additionally, to enhance the proposed mathematical formulation, a lower
bound on the minimum number of vehicles considering the capacities and require-
ments of the customers is proposed and assessed in the context of this problem. Finally,
matheuristic POPMUSIC approaches are proposed and assessed to solve this problem.

The remainder of this paper is organized as follows. The proposed optimiza-
tion problem, the MD-CCVRP, is introduced in Sect. 2. For solving this problem,
a POPMUSIC matheuristic approach is developed and presented in Sect. 3. The com-
putational experience carried out in this work is presented in Sect. 4. Finally, some
conclusions are drawn in Sect. 5.
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2 Mathematical formulation

TheMulti-Depot Capacitated Vehicle Routing Problem (MD-CCVRP) can be defined
as follows. Let G = (V , A) be a directed graph, where V = N ∪ D is the vertex or
node set that contains all customer and depot nodes, and A is the arc set. Vertex set
D = {1, 2, . . . ,m} represents the set of m uncapacitated depots, whereas vertex set
N = {1, 2, . . . ,m+n} represents the customers to be served.A travelling cost, ci j > 0,
is defined for each arc between each pair of vertices (i, j), i, j ∈ V , i �= j . The
traveling cost can represent, according to the application environment, the distance,
time, fuel consumption, etc., between each pair of vertices. It is assumed that travel
times are symmetric and satisfy the triangle inequality.Moreover, each customer i ∈ N
has demand qi and, each depot d ∈ D stores and supplies enough goods to serve all the
customers. In theMD-CCVRP, the number of vehicles is limited, whereas R represents
the set of identical vehicles with the same positive capacity, denoted as Q. The MD-
CCVRP aims to minimize the total arrival times at customers while satisfying the
following conditions: (a) each customer must be visited on exactly one route, (b) each
customer has to be fully served when visited, (c) each vehicle departs from one of the
available depots and finishes at one of them, (d) the total demand of the customers on
any route does not exceed the capacity of the vehicles, i.e., Q.

In the following, we introduce a mathematical formulation for solving the MD-
CCVRP that extends CCVRP [16] to consider multiple depots. The decision variables
are the following:

xki j 1 if vehicle k travels directly from node i ∈ V to node j ∈ V , 0 otherwise.

tki the time at which vehicle k arrives at node i ∈ V . If a customer is not serviced
by a given vehicle, then this value is 0.

The mathematical model we propose is defined as follows:

(MD-CCVRP) minimize
∑

k∈R

∑

i∈N
tki (1)

subject to:

∑

i∈V

∑

k∈R

xki j = 1, ∀ j ∈ N (2)

∑

i∈V
xki j −

∑

i∈V
xkji = 0, ∀ j ∈ N ,∀k ∈ R (3)

∑

i∈D

∑

j∈V
xki j = 1, ∀k ∈ R (4)

∑

i∈D

∑

j∈V
xkji = 1, ∀k ∈ R (5)

∑

i∈V

∑

j∈V
q j x

k
i j ≤ Q, ∀k ∈ R (6)

tki + ci j − tkj ≤ (1 − xki j )M, ∀i ∈ V ,∀ j ∈ N , k ∈ R (7)
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tki ≥ 0, ∀i ∈ V , k ∈ R (8)

xki j ∈ {0, 1}, ∀i, j ∈ V , k ∈ R (9)

The objective function (1) minimizes the sum of arrival times at the customers.
Constraints (2) guarantee that each customer is visited exactly once. Constraints (3)
impose the degree balance of each node, including both customers and depots. Con-
straints (4) and (5) establish that each vehicle starts and finishes at a depot i ∈ D.
Constraints (6) represent the capacity restriction of each vehicle. Constraints (7) ensure
that if customer j is served after customer i by vehicle k, then tkj must be greater than

or equal to tki plus the travel time ci j , and M is a sufficiently large positive constant.
Note that (7) also guarantees that subtours are avoided. Finally, Constraints (8) and (9)
are the integrality and non-negativity constraints for the different kinds of variables.

Furthermore, it should be mentioned that MD-CCVRP is a generalization of the
CCVRP for considering multiple depots. The special case of having one depot (|D| =
1) is the standard CCVRP. Therefore, since the MD-CCVRP can be reduced to the
CCVRP, this problem is NP-hard.

Property 1 Optimal MD-CCVRP solutions use exactly min(R, n) vehicles. This is
derived from the properties of the CCVRP (see [16]). The objective function value
of the solution decreases as R increases. Moreover, the solution having |R| larger
than n is a set of back and forth routes between depots and customers, with R − n
vehicles unused. Note that this applies in the case where the triangle inequality is
maintained as well as having the initial position of the vehicles not fixed. In this case,
a vehicle visiting a customer j ∈ N will depart from that depot yielding the minimum
travelling cost to the customer, i.e., min(ci j )i∈D . The objective function value of that
lower bound is equal to

∑
j∈N cmin(ci j )i∈D j .

Property 2 A CCVRP solution using exactly min(R, n) vehicles for a scenario with
fixed starting depot is a valid upper-bound for MD-CCVRP. Since the MD-CCVRP
is a generalization where several depots are added, the solution of the CCVRP is valid
and constitutes a valid upper bound.

2.1 Illustrative example

In order to improve the understanding of the MD-CCVRP, Fig. 1 shows an example
of a solution of the MD-CCVRP composed of 13 customers {c1, c2, . . . , c13} and 3
depots {depot1, depot2, and depot3}. The dashed lines represent the routes. In this
solution a vehicle departs from each depot. To ease the following of this example, the
identifier of each vehicle matches with its departing depot and the solution satisfies the
capacity constraints. Thus, the route followed by vehicle 1 is (c4, c5, c6, c7, c8, c9),
by vehicle 2 is (c12, c11, c10), and by vehicle 3 is (c1, c2, c3, c13).

In the example vehicle 1 is departing from depot1 and visits a total of six customers
along its route; the time that the first customer of this route, c4, waits for its service
is 14. Customer c5 is served after 24 time units. The objective function value of this
solution is 290, composed of the following values: (t3c1 = 3) + (t3c2 = 15) + (t3c3 = 17) +
(t1c4 = 14) + (t1c5 = 24) + (t1c6 = 32) + (t1c7 = 38) + (t1c8 = 41) +(t1c9 = 43) + (t2c10 = 15)
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Fig. 1 Example of a solution for the MD-CCVRP. This example is composed of 13 customers and 3 depots

+ (t2c11 = 13) + (t2c12 = 10) + (t3c13 = 25). It is worth to mention that this problem
can be categorized as an open problem since the last arc is not considered in the
objective function. The above highlights the focus given by this problem to customer
oriented applications as mentioned in Sect. 1. For the same solution drawn in Fig. 1,
the objective function value of the MD-VRP considering the traveled arcs is 109.

2.2 Amulti-depot multi-vehicle generalization for the traveling repairman
problem

As indicated in [16], the CCVRP generalizes the Traveling Repairman Problem (TRP
[20]), the Minimum Latency Problem (MLP [2]), and the Delivery Man Problem
(MDP [6]), which at the same time are special cases of the time-dependent traveling
salesman problem [8] by adding capacities and considering a homogeneous fleet.
Therefore, the MD-CCVRP allows addressing those problems with multiple depots
and vehicles if the capacity constraints are relaxed and a maximum of one vehicle per
depot is permitted. In order to adapt the previous mathematical model, Constraints (6)
have to be removed for avoiding the capacity restrictions and Constraints (4) and (5)
have to be redefined as follows.

∑

j∈V
xii j = 1,∀i ∈ D (10)
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∑

j∈V
xiji = 1,∀i ∈ D (11)

Constraints (10) and (11) establish that one vehicle departs and returns to each
depot. It should be noted that this problem requires that |R| = |D|.

Furthermore, it should be mentioned that the formulation for the TRP/MLP/MDP
can be improved by adapting and using the strengthening constraints already proposed
for those problems.

Lemma 1 The TRP/MDP/MLP with multiple depots is a special case of the MD-
CCVRP when the capacities are not considered and one vehicle is only able to depart
from each depot.

Proof Consider the formulation of MD-CCVRP. Define q j = 0,∀ j ∈ V , |R| =
|D|, and replace Constraints (4) and (5) by Constraints (10) and (11). The resulting
formulation leads to the corresponding of TRP/MDP/MLP with multiple depots. �	
Lemma 2 The TRP/MDP/MLP is a special of the MD-CCVRP when one depot is
considered.

Proof Consider Lemma 1 while setting |D| = |R| = 1. �	

2.3 Lower bound on the number of vehicles

A constraint is proposed to set a lower bound on the number of vehicles required to
serve customers.

∑

i∈D

∑

j∈N

∑

k∈R

xki j ≥
∑

i∈N qi
Q

(12)

Proposition 1 The following constraint is valid for the MD-CCVRP:

∑

i∈D

∑

j∈N

∑

k∈R

xki j ≥
∑

i∈N qi
Q

Proof By contradiction. Let us consider a feasible solution where Constraint (12) is
not satisfied. Therefore,

∑

i∈D

∑

j∈N

∑

k∈R

xki j <

∑
i∈N qi
Q

.

This means that the amount of goods delivered by the vehicles is lower than the
requirement of the customers. That is,

Q
∑

i∈D

∑

j∈N

∑

k∈R

xki j <
∑

i∈N
qi ,
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which leads to not satisfying Constraints (2) and (6), and henceforth the solution is
not feasible. �	

3 A POPMUSIC approach for theMD-CCVRP

The POPMUSIC framework was firstly proposed by Taillard and Voß [23]. Its basic
idea is to split a solution of the problem at hand, S, into t parts part1, part2, . . . , partt
and joining some of them to build a sub-problem, T . To form the sub-problem, one
of the t parts is selected, partseed , termed as seed-part. With that, a number r of
the closest parts to partseed are aggregated to the latter to form the sub-problem T .
In order to determine the closeness of the parts, a distance measure among them is
defined. Once a sub-problem is constructed, it is solved by using an approximate or
an exact solution approach (leading to the matheuristic version, see [10]). If parts and
sub-problems are defined in an appropriate way, each improvement of a sub-problem
corresponds to an improvement of the whole solution S. This process of parts selection
is repeated until the solution does not contain a sub-problem that can be improved.

Algorithm 1: POPMUSIC framework

1 Generate an initial solution S
2 Decompose S into t parts, H = {part1, ..., partt }
3 Set O = ∅
4 while (O �= {part1, ..., partt }) do
5 Select a seed part partseed /∈ O
6 Build a sub-problem T composed of the r parts of S which are the closest to partseed
7 Optimize T by using an approximate or exact solution approach
8 if (T has been improved) then
9 Update solution S

10 O ← ∅
11 end
12 else
13 Include partseed in O
14 end
15 end
16 return improved solution S

Algorithm 1 depicts the POPMUSIC framework. An initial solution is generated,
S (line 1). Once it is generated, the next step is to divide the solution into t parts (line
2). Then, a seed part, partseed , is selected (line 5). A sub-problem, T , is constructed
by considering its r nearest parts according to a relatedness function (line 6). In this
regard, the unique parameter of this framework, r , is used for delimiting the size
of the sub-problems. The sub-problem T is then solved by an approximate or exact
procedure (line 7). In this framework, the set of parts O corresponds precisely to
seed parts that have been used to define sub-problems that have been unsuccessfully
optimized. Once O contains all the parts of the complete solution (line 4), the process
stops as all sub-problems have been examined without success.
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3.1 Solution structure

In the context of POPMUSIC, we first define a solution structure for the MD-CCVRP.
It is defined as a sequence of routes starting at each depot. The visiting order of each
customer is determined by its position in the sequence. That is, for example, if we
consider the solution of Fig. 1 for three vehicles and thirteen customers, the solution
is as follows:

S = {d1, c4, c5, c6, c7, c8, c9, d2, c12, c11, c10, d3, c1, c2, c3, c13}.
In the solution, the parts are delimited by the depots, so in this case, the first part

is defined as part1 = {d1, c4, c5, c6, c7, c8, c9}. Moreover, as indicated above, the
POPMUSIC framework uses the information from the solution and problem instance
to delimit the parts that will be subsequently used to build the sub-problems. In the
MD-CCVRP, the number of parts, t , is a parameter depending on the instance. Thus, a
solution is divided into part1, part2, . . . , partt parts, where t is equal to the number
of depots (m), i.e. t = m. At this point, it should be noted that some parts (i.e. vehicle
routes) can be empty, meaning that the vehicle does not visit any customer. In that
case, the corresponding part starts and finishes at the same depot without any customer
in-between.

3.2 Initial solution generation procedure

In order to properly start the POPMUSIC search process, a starting solution is required.
In this sense, different ways can be considered, such as running the optimization
model until an incumbent solution is obtained or using heuristics for its generation.
In this work we propose a greedy clustering algorithm that takes into consideration
the distance of each customer to each depot. By means of this method, we are able to
generate a fast initial and feasible solution.

Algorithm 2 depicts the initial solution generation procedure. Firstly, we determine
the nearest depot to each customer (lines 1–3). Afterward, as shown in lines 5–19, for
each depot and customer, we route a vehicle until its capacity does not enable to serve
a customer. In such case, a new vehicle is assigned to that customer (see lines 12–16).

3.3 Sub-problem generation strategy

In order to form a sub-problem, T , a part, termed as partseed , is selected and its r
neighbor parts are joint together. Thus, a sub-problem contains all the customers and
depots associated with any of its parts. That is, those customers served in the joined
parts are the ones considered in the sub-problem. The information related to the depots
and customers remains the same as in the complete problem while the information
regarding the parts not belonging to the sub-problem is not considered for solving the
sub-problem.

For building a sub-problem, the way the parts are bundled can be conducted by
using different strategies. In the current paper, two strategies are proposed:

– Lexicographic The sub-problem is constructed according to the indexes of the
parts. That is, for a given part parto and r = 1 all the customers belonging to that
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Algorithm 2: Initial solution generation procedure

1 for (each i ∈ N) do
2 min[i] = argmin(ci j ) j∈D
3 end
4 vehicleid=1
5 for (each j ∈ D) do
6 for (each i ∈ N) do
7 if (min[i]==j) then
8 if (Qvehicleid ≥ di ) then
9 Qvehicleid = Qvehicleid - qi

10 customer i added to routevehicleid
11 end
12 else
13 vehicleid++
14 Qvehicleid = Qvehicleid - qi
15 customer i added to routevehicleid
16 end
17 end
18 end
19 end

part are grouped to those belonging to the next increasing index neighbor part, i.e.
parto+1. If r = 2, the part parto+2 is also included in the sub-problem. Thus,
this can be generalized to �o+r

i=o parti . For the example shown in Fig. 1 with the
solution divided into 3 parts, if we consider r = 1, we can have the following sub-
problems, T = {part1, part2}, T = {part2, part3}, and T = {part3, part1}. At
this point, it has to be noted that if o + r is larger than T , the consideration of the
parts also includes starting from the first part.

– Distance This strategy takes into account the minimum distance between the
depots. That is, the distance between two parts, for example, parti and part j ,
is given by the distance between the two depots as d̄i j = ci j . Thus, the con-
struction of the sub-problem is then performed in a greedy way. Once the seed
parto ∈ H has been selected, those r parts with the minimum distance to that
part are selected to build the sub-problem. For example, for r = 1 and being
the seed part parto, the part chosen to form the sub-problem is the one given by
part j = argmin(doj )part j∈H , j �=o.

Returning to the example shown in Fig. 1, and let us suppose our seed part partseed
is the third part associated to the third depot (i.e. d3), and let us suppose a value r equal
to 1. Then, the sub-problem T , using the Lexicographic strategy is constructed with
part3 and part1. Notice that part1 is bundled as the next part of part3. At first glance,
it would be part4, but since we only have three parts we restart and use part1 instead.
On the other hand, by means of the Distance strategy, the resulting sub-problem is
composed of part2 and part3.
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4 Computational results

This section is devoted to present the computational experiments carried out for assess-
ing the performance of the mathematical model proposed in this work (see Sect. 2),
the provided lower bound on the number of vehicles, and our proposed POPMUSIC
approach. The computational experiments related to our mathematical model were
conducted on a computer equipped with an Intel Dual Core 3.5GHz and 16GB of
RAM. The model was implemented in a general-purpose solver, CPLEX version 12.6,
with a maximum computational time of 7200s and the number of threads restricted to
1. The problem instances used in this work are those proposed by Cordeau et al. [4] for
the MD-VRP. Additionally, a new set of small and medium size problem instances1

generated based on [4] is proposed. Namely, for generating an instance of n customers
and m depots, we randomly extract from a larger instance of [4] n +m node locations
as well as n customer demands that are later associated at random to the n customers of
the new instance. The capacity of the vehicles remains the same as the original instance
of Cordeau et al. [4]. The rationale behind this is to provide problem instances where
CPLEX can provide a feasible solution within the given time limit to better assess
and tune our proposed algorithm. By means of this new set, we aim to provide the
possibility of comparing future approximate and exact approaches for this problem.
The new instances identifier format is as follows: n ×m × |R|-id. This way, instance
10 × 4 × 5-1 is the first instance considering 10 customers, 4 depots, and 5 vehicles.
Finally, for the instances of Cordeau et al. [4] we fix the number of vehicles to 35.

4.1 Assessment of lower bound contribution on the number of vehicles

This subsection compares the performance of both formulations, with and without a
lower bound on the number of vehicles, i.e. MD-CCVRP w/o (12) and MD-CCVRP
w/(12), respectively. In doing so, first, we evaluate their performance on small and
medium size instances as shown in Table1 to investigate the performance and contri-
bution of the lower bound when the size of the problems is not so large. Table2 reports
the results of both optimization models for large instances. In the tables, we report the
calculated upper and lower bounds, UB and LB, respectively, the relative error [gap
(%)], and the time measured in seconds [t (s)].

As can be checked in Table1, while the performance of the model without the lower
bound exhibits a better performance in terms of best-known solutions, the quality of
the lower bounds is better when considering a lower bound on the number of vehicles.
Moreover, in those cases where an optimal solution is reached, the time performance
of both optimization models remains similar. Although MD-CCVRP without (12)
provides better lower bounds, in some cases (i.e. 25 × 4-3, 50 × 4-3) MD-CCVRP
with (12) shows a better performance. The weak influence of the lower bound on the
number of vehicles finds its rationale in the fact that such lower bound considers the
requested quantity and the capacity of the vehicle but the objective seeks to reduce
the waiting time. Moreover, this bound may be redundant for the general purpose
solver, since it is a preprocessing requisite for starting to solve a given problem. Note

1 The new instances are online available at: https://github.com/elalla/MDCCVRP.
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Table 2 Computational results of the optimization models for the instances proposed in [4] considering
|R|= 35 vehicles (best UB values are given in bold face)

Instance MD-CCVRP w/o (12) MD-CCVRP w/(12)

UB LB Gap (%) t (s) UB LB Gap (%) t (s)

Cordeau_p01 916.93 0.00 100.00 7200 1573.59 48.24 96.93 7200

Cordeau_p02 5377.49 0.00 100.00 7200 1814.32 11.50 99.37 7200

Cordeau_p03 7247.32 0.00 100.00 7200 8952.15 27.37 99.69 7200

Cordeau_p04 10,252.10 0.00 100.00 7200 10,602.68 95.35 99.08 7200

Cordeau_p05 16,626.06 0.00 100.00 7200 16,785.58 26.49 99.84 7200

Cordeau_p06 8350.04 0.00 100.00 7200 11,187.35 58.65 99.48 7200

Cordeau_p07 9601.76 0.00 100.00 7200 10,891.65 57.49 99.47 7200

Cordeau_p08 – – – 7200 – – – 7200

Cordeau_p09 – – – 7200 – – – 7200

Cordeau_p10 – – – 7200 – – – 7200

Cordeau_p11 – – – 7200 – – – 7200

Cordeau_p12 23,670.55 0.00 100.00 7200 31,989.96 65.00 99.80 7200

Cordeau_p15 – – – 7200 – – – 7200

Cordeau_p18 – – – 7200 – – – 7200

Cordeau_pr01 8088.03 0.00 100.00 7200 5339.00 11.93 99.78 7200

Cordeau_pr02 46,714.67 0.00 100.00 7200 47,051.32 20.13 99.96 7200

Cordeau_pr03 89,167.09 0.00 100.00 7200 89,167.09 36.47 99.96 7200

Cordeau_pr04 – – – 7200 – – – 7200

Cordeau_pr05 – – – 7200 – – – 7200

Cordeau_pr06 – – – 7200 – – – 7200

Cordeau_pr07 22,940.81 0.00 100.00 7200 38,705.41 17.45 99.96 7200

Cordeau_pr08 74,941.48 0.00 100.00 7200 74,941.48 27.95 99.96 7200

Cordeau_pr09 – – – 7200 – – – 7200

Cordeau_pr10 – – – 7200 – – – 7200

Avg. 24,914.95 0.00 100.00 7200 26,846.28 38.77 99.48 7200

that this is related to the influence of erraticism (see [7]) and could be exploited by
a more sophisticated framework as that proposed in [9]. Moreover, for the large size
instances reported in Table 2, similar insights can be extracted. Clearly, MD-CCVRP
without (12) provides better upper bounds whileMD-CCVRPwith (12) does the same
for the lower bounds. In this case, MD-CCVRP with (12) complements the results of
the other formulation by providing better results for the instances Cordeau_p02 and
Cordeau_pr01.

As discussed in Sect. 2, the number of available vehicles is a feature of the problem
instance that has an influence on the temporal performance of the models (see [13]).
Due to this, we have investigated the influence of such feature of the problem for three
problem instances where the optimal solution can be reached within the given time
limit (i.e. 10 × 4-1, 10 × 4-2, and 10 × 4-3). That is, we have incrementally varied
that problem instance feature from 2 to the number of nodes of those instances, i.e.
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Fig. 2 Performance of the optimization model for different number of vehicles

|R| = 2, 3, . . . , |N |. In this regard, it has to be noticed, considering the objective
function value and Property2 (see Sect. 2), that all available vehicles will always
be used when their number is less than the number of customers. Figure2 shows the
variation of the optimal solutions and solving timewhen the number of vehicles varies.
As expected, the lower the number of vehicles the harder to solve the problem while
in the range of 5 to 10 vehicles the temporal behavior keeps a similar trend.

4.2 Parameter setting of the POPMUSIC approach

In order to determine the best parameters for our POPMUSIC approaches, we have
conducted a proper selection of parameter values by executing themon a representative
set of problem instances. Theparameter values assessed in this subsection are presented
in Table3. The corresponding table thus reports the time limit t to solve in an exact
way each sub-problem, the different values of r for building the sub-problems, the
strategy to build the sub-problems (closeness), and if the used optimization model
for solving the sub-problem considers the lower bound on the number of vehicles
(mvc). We have run a Friedman parameter setting test considering the average values.
The test indicates that the parameter tuple (300, 2, lex, 0) is the best performing one.
Moreover, with the aim of illustrating the behavior of POPMUSIC for the different
parameters, we provide in Fig. 3 the trade-off between the average of best objective
function value and computational time for each parameter setting. As can be observed
in the plots, both lexicographic approaches behave better than those using the distance
closeness measure.

4.3 POPMUSIC computational results

POPMUSIC ruling parameters have been determined in the previous subsection. We
assess the performance of POPMUSIC on all the problem instances in terms of objec-
tive function value and computational time of the selected POPMUSIC approach

123



A POPMUSIC approach for the Multi-Depot Cumulative…

Table 3 POPMUSIC Parameter
values considered

Parameter Values

t ∈ {50, 100, 200, 300}
r ∈ {2, 3}
closeness ∈ {dist, lex}
mvc ∈ {0, 1}

Fig. 3 Overall performance in terms of objective function value and time of POPMUSIC for different
parameter values

embedding both models, namely, with and without a lower bound on the number of
vehicles. First, we analyze the performance of POPMUSIC on the small and medium
size instances in order to determine the quality of our decomposition strategy contem-
plated in POPMUSIC for such sizes. Those results are reported in Table4. Similarly,
in Table5, we provide the results for the same experiment on large size instances. In
the tables, we report the best-known solution provided by the optimization models
implemented in CPLEX (BKSCPLEX ) which includes the information concerning the
upper bound (UB) and the relative error [gap (%)] for each case. It has to be noted
that for these instances CPLEX reaches the time limit in all cases. Moreover, for the
POPMUSIC approach with and without the lower bound on the number of vehicles,
i.e. POPMUSICw/(12) and POPMUSICw/o(12), we provide the best (Min), average
(Avg), and worst (Max) objective function value provided per each problem instance
along ten replications. In addition, the gap with respect to the UB provided by CPLEX
is reported in column gap2(%).

In the results reported in Table4, it can be seen that in those cases where the optimal
solution is known, both POPMUSIC approaches are able to reach it. As the size of the
problem instances increases, CPLEX provides better solutions than POPMUSIC at the
expense of a higher computational time. This points out that, up to a given problem
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size, solving a problem as a whole by means of a general purpose solver such as
CPLEX may be advisable rather than partitioning it. That tendency is reversed when
the size of the problem instances reaches 100 customers. In such cases POPMUSIC
outperforms those results provided by the optimizationmodels. Thus, addressing large
problem instances, as in the latter cases, general purpose solvers as CPLEX require
quite some amount of memory and time. Furthermore, it can be observed that the time
performance and the overall quality of the solutions are better when POPMUSIC uses
the optimization model without a lower bound on the number of vehicles.

For those problem instances proposed by Cordeau et al. [4], it can be clearly
observed that besides three instances (i.e. Cordeau_p01, Cordeau_p02, and
Cordeau_p12), in the rest of the instances POPMUSIC provides better quality
results within reasonably less computational time. The above is summarized in row
Avg.vsCPLEX which only considers those instances where CPLEX is able to provide
a feasible solution. Furthermore, for these instances, both POPMUSIC approaches
exhibit a similar performance in terms of quality of the solution and computational
times. It is worth to point out that these results and those large scenarios of the previous
table shed light about the capability of POPMUSIC to tackle large-scale scenarios.
Finally, the performance variance among the different approaches highlights what
could be observed in advance in Table 2. Depending on the problem instance, one
optimization model within POPMUSIC may perform better than the other and not
coincide in all cases with the best optimizationmodel reported in Table 2. For instance,
in Cordeau_pr02 the best performing optimization model was MD-CCVRP w/o (12)
but the best performing POPMUSIC approach was the one embedding MD-CCVRP
w/(12). This directly relates to the way POPMUSIC builds the sub-problems which
is based on a seed part selected at random as well as the solver performance of sub-
instances different than solving the complete problem. The aforementioned issue also
points out a future research direction.

5 Conclusions

In thiswork,wehave proposed and addressed theMulti-DepotCumulativeCapacitated
Vehicle Routing Problem by means of a mathematical formulation and a POPMUSIC
matheuristic approach that uses reduced versions of the problem instance at hand as
a sub-problem to solve the overall problem. Different configurations of our approach
have been investigated in order to determine a suitable one. Additionally, by consid-
ering the definition and characteristics of the problem, we have also proposed a lower
bound on the minimum number of vehicles that considers the capacity of the vehicles
and the amount required by the customers. The assessment of the contribution of such
bound does not lead to an overall improvement of the quality of the solutions but
tighter lower bounds. On the other hand, we have found that the optimization model
without such constraint provides better results in terms of upper bounds. Nevertheless,
both models have shown to be complementary as, in some cases, one model provides
best-known solutions when the other cannot. Due to the size of the problem instances,
CPLEX is not able to provide a feasible solution for large-sized instances. Thus,
by means of our decomposition approach based on POPMUSIC, we have addressed
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them. The obtained results indicate that it allows to improve the majority of the best
solutions provided by the optimization model while reducing the computational effort
considerably. The advantage of POPMUSIC over the optimization model becomes
more clear as the size of the instances increases. Moreover, concerning the way of
constructing the sub-problems, we have observed a better performance by building
the parts in a lexicographic way than considering the distance between the depots. We
have also detected that POPMUSIC exhibits a similar performance with and without
the additional lower bound on the number of vehicles; this may indicate the good
search capability of POPMUSIC, especially bearing in mind the contribution of such
bound when solving the complete problem by means of a general purpose solver.

As a future research topic, we plan to investigate the use ofmore advanced heuristics
and metaheuristics within POPMUSIC for solving this and related vehicle routing
problems as well as study different ways to decompose the solutions into parts for
building the sub-problems. Moreover, we aim to study this problemwhen backhauling
is considered. Another issue concerns the consideration of matches and conflicts, i.e.,
building tours where several customers must be served one after each other from the
same vehicle or case, where customers are not allowed to be served from the same
vehicle at all.
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