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While Digital contact tracing (DCT) has been argued to be a valuable complement to manual

tracing in the containment of COVID-19, no empirical evidence of its effectiveness is available

to date. Here, we report the results of a 4-week population-based controlled experiment that

took place in La Gomera (Canary Islands, Spain) between June and July 2020, where we

assessed the epidemiological impact of the Spanish DCT app Radar Covid. After a substantial

communication campaign, we estimate that at least 33% of the population adopted the

technology and further showed relatively high adherence and compliance as well as a quick

turnaround time. The app detects about 6.3 close-contacts per primary simulated infection, a

significant percentage being contacts with strangers, although the spontaneous follow-up

rate of these notified cases is low. Overall, these results provide experimental evidence of the

potential usefulness of DCT during an epidemic outbreak in a real population.
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D igital contact tracing (DCT)1, i.e. using mobile phone
apps to make contact tracing and notification between
individuals, has recently been proposed to be a plausible

complement of manual contact tracing2–6 within the Test, Trace
and Isolate (TTI) containment strategy in the context of the
COVID-19 pandemic7–9. While several countries, initially
including Singapore or South Korea and more recently Switzer-
land, Italy, France or Germany to cite a few10 have started to
deploy different implementations of such technology, to date
there is however a lack of empirical evidence of the effectiveness
of such DCT11,12. Indeed, putting the technical functionality of
DCT apps aside, the effectiveness of digital solutions is largely
unproven in real-world outbreak settings. Moreover, further
concerns on the usefulness of DCT range from the possibility that
the app detects avalanches of false close-contacts—what would
subsequently overwhelm primary healthcare—to skepticism on
the possible low adoption and adherence to the technology.
Finally, privacy issues have also been flagged.

In this work, we aim to bridge this gap by designing and
conducting a population-based controlled experiment to assess
the technical and epidemiological viability of a DCT app. In May
and June 2020 the Secretary of State of Digitalisation and Arti-
ficial Intelligence (SEDIA) developed a Spanish app called Radar
COVID13, a bluetooth-mediated DCT technology based on the
Apple/Google protocol14. The app embraces privacy-by-design
and takes into account in its design the resulting impact on the
citizens, technology and governance15. To further validate its
usefulness in a controlled environment and anticipate its poten-
tial impact, during 4 weeks in July 2020 we conducted a con-
trolled experiment in San Sebastián de La Gomera, a town of
population 10,000 in La Gomera, Canary Islands (Spain). During
this experiment, we were able to assess both the performance of
the app and its epidemiological impact, according to a list of Key
Performance Indicators (KPIs).

Results
Radar COVID app. Radar COVID is a bluetooth-based DCT app
specifically designed for the COVID-19 pandemic based on the
Exposure Notification System (ENS) developed by Apple and
Google14. ENS, also called the Apple/Google protocol, is itself
strongly influenced by DCT protocols such as the Decentralized
Privacy-Preserving Proximity Tracing (DP3T16) or the Tempor-
ary Contact Number (TCN) protocol, but is directly implemented
at the operating system level, thereby circumventing problems
and allowing for more efficient operation as a background pro-
cess, as well as ensuring interoperability between Android and
iOS devices, which constitute the sheer majority of the market.

Radar COVID has been developed under the principles of
privacy-by-design, embracing the goal of user anonymity and
minimisation as prescribed by European legal standards and
established in the GDPR17. Some of the main characteristics
includes (i) lack of login or identification of any kind along the
process; (ii) the user can remove or de-activate the app at any
given time; (iii) interaction among mobile phones take place
thanks to randomly generated ephemeral and privacy-preserving
identifiers according to the DP3T protocol. (iv) The generated list
of ephemeral identifiers is stored in a decentralised way for
14 days and subsequently destroyed.

The app then uses the Apple and Google API which is in charge
of generating, managing and storing the daily list of ephemeral
identifiers as well as the bluetooth-mediated interaction between
mobile phones. Additionally, and in compliance with the DP3T
protocol, a backend is deployed in a public cloud server to deal
with the management of positive confirmed identifiers and
additional functionalities, such as surveys. The app is coded in

Kotlin (Android) and Swift (iOS) (for a detailed report of Radar
COVID technical specifications and open-source code, see ref. 13).

The user journey is schematically depicted in Fig. 1. Once users
downloaded the app, every phone starts to periodically transmit
(via Bluetooth) ephemeral identifiers to its close physical
neighbourhood. If another phone is close enough, it will receive
the signal and establish an interaction. When two phones
interchange ephemeral identifiers (i) for a duration larger than
a certain threshold (15 min) and such that the Bluetooth
attenuation suggests that the interaction happens below a certain
physical distance (2 m), then a ‘match’ between the two phones is
established, and this is the proxy for detecting a close-contact
between the users. This match is stored by the API in each phone.
In the event an individual is found to be infected (positive result
of a PCR test), she is also provided at the point of care with a 12-
digit code which she voluntarily introduces in the app. This code
triggers the process of the app alerting her list of matches that
they have been in close-contact with an infected individual.

The controlled experiment. We designed and conducted a
4-week longitudinal population-based experiment with the aims
of testing and validating, in a controlled environment, two dif-
ferent aspects of the Radar COVID app: its technical viability (i.e.
whether the technology works in a realistic environment) and its
epidemiological impact (i.e. whether the app can be useful to
perform contact tracing and help contain an epidemic outbreak).
The experiment was approved by the Public Health General
Directorate of the Ministry of Health, Government of Spain.

The strategy to assess both tasks is based on initially
propagating a thread of simulated infections across the popula-
tion, then allowing people to freely interact while the “ infected”
individuals are in the “asymptomatic” or “pre-symptomatic”
phase, and subsequently monitoring how many of these
simulated infections give rise to detection of close-contacts
through the contact tracing app and the turnaround times of
response to notifications.

The experiment took place between 29th June and 22nd July
2020 in San Sebastián de la Gomera, the capital and a
municipality of La Gomera in the Canary Islands, Spain. The
location was decided based on three criteria: (i) it is an island (i.e.
easy management of intake), (ii) which is in a low-incidence state,
and (iii) where different mobility patterns coincide (local
population, tourists and commuters from other islands). Its
population is ~10,000, including residents and daily commuters
and the municipality also hosts the main harbour of the island.
Downloading of RadarCovid app was voluntary and all
participants provided an informed consent. The first days were
devoted to marketing and communication aspects, such as
highlighting the app in TV and local media, distribution of
promotional material, etc. By the 10th of July—date of the first
simulated outbreak—we expected a large percentage of the
adoption cohort had already downloaded the app, either directly
from the Apple/Google servers or with the help of marketing
promoters and other venues. In the following weeks, several
outbreaks were simulated, such that roughly 10% of the cohort
that adopted the technology was infected, and digitally mediated
detection of close-contacts was subsequently monitored. Such
attack rate is in the order of magnitude of those that have been
documented in a Singapore call centre (8.5%18) or in the
Diamond Princess (18.8%19). We simulated a total of four
epidemic outbreaks (three downtown, one in the Navieras—boats
connecting La Gomera to Tenerife island) to explore different
parametrisations: different asymptomatic times, Bluetooth cali-
brations (see Supplementary notes 2 and 3 for details) and
different mobility patterns (we made sure that, across different
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outbreaks, each infected individual was only flagging an alert at
most once). In retrospect, the adequate Bluetooth attenuation
range for a correct implementation of the 15 min—2 metre rule
was incorporated after the 15th July recalibration.

Both the analysis and dynamical tracking of the experiment
was carried out based on data retrieved from the server, from
extensive (voluntary and anonymous) app surveys, and from
(voluntary and anonymous) follow-up calls of individuals to local
primary health call centre, always on compliance with the
privacy-by-design approach (see Supplementary note 4 for
additional details).

Key performance indicators. To assess the potential usefulness of
the app in a realistic epidemiological context, we have defined seven
KPIs against which we evaluated the experiment: five assessing the
user behaviour (adoption, adherence, compliance, turnaround time,
follow-up), and two assessing the effectiveness (overall detection,
hidden detection). We consider that all these seven KPIs must be
met satisfactorily in order for the app to be deployed:

● Adoption: This quantifies the percentage of the population
that downloads the app, and provides an upper bound to the
degree of penetration of the technology. Recently, the debate
on contact tracing apps has gone through the misunderstand-
ing of the results of an article20 which induced the message
that a 60% target of adoption was needed for DCT to be
effective. This seems a difficult target to achieve as a large
percentage of the population might be skeptic and unwilling
(or unable) to download the app. However, a deeper reading
of the study reveals that the apps are already efficient at vastly
lower levels of adoption. Given the non-linear relationship
between adoption and mitigation of the disease, and the high
heterogeneity of social networks, recent studies4,6 indeed
show that levels of adoption above 20% already have an
epidemiological impact in the containment strategy and thus
justify their nationwide deployment.

● Adherence: Defined as the percentage of the population that
has downloaded the app and still uses it 10 days after
downloading it. In order for the technology to be disruptive,
individuals need to both adopt it and adhere to it. We
estimate this KPI indirectly via satisfaction surveys and
number of active apps (from the public server).

● Compliance: Defined as the percentage of infected individuals
that declare their status to the app by properly introducing a
12-digit code.

● Turnaround time: It considers two factors: the percentage of
those infected individuals that declare their status to the app
within the first 24 hours, and the average time between a code
is introduced by a primary infection and a close-contact who
receives an alert in the app makes the follow-up call to
primary care to confirm the potential infection. The shorter
the turnaround, the better we can minimise tracing delays, a
critical parameter in the surveillance and containment of the
epidemic21,22.

● Follow-up: Defined as the percentage of those individuals
which, having been alerted by the app that they have been in
close-contact to a PCR-positive (PCR+) case, decide to
follow-up with a call to primary healthcare call centre.
Whereas app users that receive an alarm can already
voluntarily self-isolate or at least change their behaviour, this
follow-up procedure is necessary to enable the contact to
discuss her situation with a health professional who will
eventually conduct the PCR test and provide advice.

● Overall detection rate: Defined as the average number of
close-contacts of a given infected individual which are notified
by the app. Ideally, this number is around or larger than the
average number of close-contacts effectively traced by a
manual contact tracer, although in general both digitally
traced contacts do not necessarily need to fully overlap with
manually traced contacts, and as such both tracing is
complementary. In Spain, the median of manually traced
contacts is about 3 (see Table 6 from23 and SI).

● Hidden detection: Defined as the percentage of the digitally
traced close-contacts which are indeed unknown to the
infected individual, and hence could constitute potential seeds
for hidden transmission chains which by definition cannot be
detected by manual contact tracing. This is a particularly
important metric in regions where there is strong mixing, e.g.
in touristic countries. We estimated this percentage via app
surveys follow-up calls. While to the best of our knowledge
there is no direct estimate in the literature of the percentage of
close-contacts that an individual has with strangers to
compare to, as a proxy we can use Polymod social contact
network data where contacts are categorised as taking place at
home, work, school or ‘other’24,25: we assume that most of the
close-contacts that happen at ‘other’ locations typically
happen among strangers (public transport, gym, library,
restaurant, etc). Under this assumption, the percentage of
hidden close-contacts would fluctuate across countries some-
what in the range 25–40%.

Fig. 1 Radar Covid’s user journey. Describes the whole user journey, from the moment the user downloads the app until a close-contact is being notified
by the app and what to do next.
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Implications of privacy-by-design. Since Radar COVID embraced
a privacy-by-design approach, the data that could be retrieved
from the API to analyse the KPIs was limited, and indirect
evidence had to be sought via extensive follow-ups and online
surveys, which nonetheless were always anonymous and
privacy-preserving (see Supplementary note 4 for details). For
the same reason, the numerical estimates of some KPIs are only
approximate and we cannot provide the standard dispersion
metrics which would be otherwise available with a more intru-
sive app. For instance, the estimated number of digitally traced
contacts per primary infection is an indirect average estimate,
we could not sample the whole distribution and accordingly do
not have dispersion statistics. To further assess the efficiency of
the app, in this experiment we were also able to measure an
aggregated and anonymous metric quantifying the total daily
number of notified alerts. Note that such metric is made avail-
able during the controlled experiment for the purpose of vali-
dating the efficiency of the app, and collected for research
purposes as part of the privacy policy.

Estimation of KPIs. In Table 1 we summarise the results of the
experiment against all seven KPIs.

First, on relation to adoption, note that we could not use the
number of downloads directly from the Apple and Google online
stores (over 61k during the course of the experiment) as these are
not geolocalised. Using indirect methods we estimate a 33%
adoption, only using the amount of verifiable downloads directly
performed offline by promoters, downloads from the Canary
island government, and assuming a 2% spontaneous adoption
percentage and a few other assumptions. This percentage could
actually be just a lower bound as the spontaneous adoption could
actually be larger, and in-depth interviews indeed suggest a much
larger adoption estimate (see Supplementary note 5 for details).
We shall also highlight that not having a more accurate estimate
on adoption is a consequence of the app having followed a
privacy-by-design approach.

While it is difficult to evaluate the adherence—as this metric
suffers from the same privacy-by-design measurement problems
than adoption—indirect evidence suggests this is likely to be high.
First, according to the public server we recorded that over 12,000
apps were active throughout the duration of the experiment (with
the capacity of receiving alert notifications), and this number was
slightly increasing (see Supplementary note 6). We also gathered
indirect evidence of a potentially high adherence from survey
data: from 735 app surveys, 82% concluded that the app was a
useful tool, and the question “I will recommend friends and
family members to download and use Radar COVID” was given
7.8/10 marks. From the list of in-depth interviews (15 surveys)
the question “I will keep on using the app when it is officially
launched” reaches full marks. Note, however, that survey results
on both adoption and adherence should be taken with caution
and these might suffer from a selection bias (participants

engaging with the experiment might be overly enthusiastic about
the whole population’s engagement).

In relation to compliance, we inserted a total of 349 simulated
infections: 119 among public workers, 181 among those who
interacted with the app promoters, and the rest among visitors
from Tenerife who came to the island by boat. An additional 43
secondary-case infections were given a code. Out of these 349
initial simulated infections, a total of 213 12-digit codes were
introduced in the app, whereas 38 12-digit codes (of 43) were
introduced as secondary cases. Combining both, we find an
overall compliance of about 64% (61% for primary infections and
88% of secondary infections).

Some studies have recently emphasised the critical importance
of a quick turnaround time for the epidemiological success of
DCT21,22. In our study, about 98% (see Supplementary note 8 for
details) of those who comply and introduce a code do so on time
(within the first 24 hours), suggesting an initial very quick
turnaround time. We then consider the average time from
introducing the code in the app to the follow-up call that the
close-contact makes to the designated point of care, to confirm
whether the alert is really indicative of a potential infection. The
average time across the different four outbreaks was 2.35 days, to
be compared to the average of 2.6 days from onset of symptoms
to isolation which is reported in manual contact tracing26,27.

Overall detection of secondary cases, estimated as the quotient
of all cumulated new alerts over all cumulated introduced codes
within a certain time window, is also significant. While initially
we found an average of about 1.5 close-contacts per simulated
primary case, after a proper recalibration of the matching
parameters of the app (the Bluetooth parameters) that took place
on the 15th of July, such overall detection rate increased up to an
average of 6.3 close-contacts per primary case. Reaching such
levels of detection is an indirect evidence that adoption density is
high. Note that this is an average quantity and, again, the privacy-
friendly design of the app makes it difficult to compute any
dispersion estimate (e.g. standard deviation or interquartile
range), because we cannot trace back the number of alerts to
any particular infected individual: we only count how many daily
alerts are triggered and how many codes are introduced.
Accordingly, we cannot quantify the role or presence of
superspreaders and the heterogeneity of the contact network.
This uncertainty notwithstanding, our estimate after Bluetooth
recalibration is almost twice as large as the median of manually
detected contacts by professional contact tracers in Spain, which
was about 323 during the time of the experiment (note also that in
July, Spain was overall in a very low-incidence state and thus
manual contact tracing was efficient, so we expect the improve-
ment of DCT over manual tracing to be even higher during an
epidemic outbreak, where if not enough manual tracers are hired,
the average number of manually traced contacts per primary case
can be severely reduced, see Supplementary note 9). At the same
time, the number of digitally detected contacts is manageable in

Table 1 Summary of key performance indicators and results of the population-based controlled experiment.

KPI Result

Adoption ~33%, potentially larger based on indirect survey data.
Adherence high during the whole duration of the experiment.
Compliance 64% of those cases that are given a code introduce it in the app.
Turnaround time 98% of those index cases that comply introduce the code within 24 h, and on average it takes 2.35 days between a simulated index

case introduces a code in the app and the alerted close-contacts follow-up with call centre.
Follow-up 10% of notified close-contacts follow-up with a call to the designated point of care (call centre).
Overall detection on average and after adequate Bluetooth calibration, the app can trace 6.3 close-contacts per index case.
Hidden detection between 23% and 39% (depending on the survey form) of exposed close-contacts are strangers to the index case.
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the follow-up process, indicating that primary care is not
overwhelmed by potential avalanches of false positives.

Hidden detection is also significant: 23% of the secondary cases
that followed-up with primary care stated that the possible contagion
probably happened with a stranger, and this number increases up to
39% according to the app survey (see Supplementary note 10 for
details). Note that since this KPI is solely estimated based on
questionnaires and surveys, we should treat it with extra caution,
and we acknowledge that a more direct estimation is needed.

Finally, only about 10% of all potential secondary cases
followed-up with primary care, i.e. yielding an effective average of
6.3 ⋅ 0.1= 0.63 follow-up calls to the primary healthcare call
centre per code introduced, or 0.64 ⋅ 6.3 ⋅ 0.1= 0.4 follow-up calls
per simulated infection.

Discussion
Overall results of the controlled experiment study are positive and
we can conclude that, a priori, this technology works and after
appropriate communication campaigns it might have the suffi-
cient level of penetration and compliance to help and serve as a
useful complement to manual contact tracing and other non-
pharmaceutical interventions in the containment of epidemic
outbreaks, thus justifying its nationwide deployment. In parti-
cular, the fact that adoption is above threshold and that DCT not
only seems able to detect more secondary cases than manual
tracing but that a significant percentage of these could even
contact with strangers is encouraging. Some additional comments
and reflections on some challenges and limitations of such
deployment are now in order.

Due to privacy-preserving issues, accurate estimation of the
KPIs was difficult, and gauging their uncertainty was not always
possible. Accordingly, our results, while very promising, should be
treated with caution. As we have seen in the experiment, a suc-
cessful adoption of the technology is underpinned by a substantial
communication campaign. Also, we should distinguish overall
adoption (the total percentage of the population that downloaded
the app) from adoption density (which could vary from region to
region within a country). For the DCT to work in a certain region,
reaching sufficient adoption density is a necessary condition. This
fact emphasises the importance of deploying not only strong
nationwide communication campaigns, but also regional cam-
paigns which aim at increasing local adoption densities.

One of the common concerns raised by the healthcare sector
on relation to DCT is whether the app could trigger avalanches of
false close-contacts—leading to an avalanche of false positives
that could overwhelm primary healthcare resources. In this
controlled experiment we haven’t observed such avalanches.
While it is true that infections in this experiment were
simulated—and thus should be further evaluated in real scenarios
of disease transmission—the average number of matches per
simulated primary case (6.3) was on the same order of magnitude
than the average total number of contacts found in the BBC and
Polymod data24,25,28. This suggests that in the context of this
experiment the app is detecting about the correct amount of
close-contacts and thus suggests large avalanches of false positives
overwhelming primary healthcare would be unlikely.

Note that whereas Radar COVID is a nationwide DCT app, the
Spanish healthcare system is decentralised, and competences are
transferred to each autonomous community. Accordingly, an ade-
quate deployment and operationalisation of the technology requires
that each autonomous community integrates its healthcare system
with the app. For instance, each autonomous community needs to
be able to provide the 12-digit codes to PCR-positive cases in an
agile and efficient way. Similarly, the follow-up system which takes
place once close-contacts are alerted is unique for each autonomic

healthcare system as well. Such integration is a critical factor
underpinning success and has not been validated in this experiment.

While adoption and detection are high, the low percentage of
those close-contacts that follow-up (10%) is concerning, and this
is probably an important point to consider in any communication
campaign devoted to raise awareness on the DCT app. We cannot
distinguish whether this low percentage is due to the fact that in
our experiment infections were simulated (so that users were
aware that follow-up calls to the designated point of care would
not lead in this case to PCR test and/or further assessment), or
otherwise is due to the aversion of the user to proactively colla-
borate and make the call. Accordingly, further sociological studies
should be carried out to investigate whether the fact that the
close-contact is alerted by the app to have had a high-risk
exposure at least helps to induce a modification on her behaviour
(e.g. inducing spontaneous self-isolation), effectively reducing her
contacts with others over some time window. What is however
clear from our study is that if our estimation of the follow-up
percentage is representative, then the ability of the app to detect
tertiary or quaternary cases is seriously compromised, as no
possibility of ‘cascading’ emerges.

Another source of uncertainty is long-term adherence.
Whereas adherence was shown to be high in this study, we shall
recall that the experiment only covered four weeks, an arguably
short duration with respect to the real duration of the pandemic
(at least several months until a vaccine can be deployed). Long-
term adherence therefore remains unknown.

We should again highlight that in this controlled experiment
infections are simulated, and this is a general limitation: since
people in La Gomera are aware of this fact, we cannot extract any
‘behavioural’ conclusion of this study—e.g. we could not conclude
whether those people that have downloaded the app are more or
less risk averse. What is in any case clear is that the technology of
Radar COVID works correctly and that if the results of the
experiment are representative, then the nationwide deployment of
the DCT app and its integration with the healthcare system of
each autonomous community in Spain is justified and can con-
tribute to the management and containment of the epidemic. In
more general terms, this represents a much needed empirical
evidence on the usefulness of DCT as a complementary nation-
wide epidemiological tool for the containment of COVID-19.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data analysed during this study are included in this published article (and its
supplementary information files).

Code availability
No specific codes were developed to conduct the data analysis. Code and documentation
of the app RadarCovid is available at13.
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