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Abstract

Transposable elements (TEs) are self-reproducing selfish DNA sequences that can
invade the genome of virtually all living species. Population genetics models have
shown that TE copy numbers generally reach a limit, either because the
transposition rate decreases with the number of copies (transposition regulation) or
because TE copies are deleterious, and thus purged by natural selection. Yet, recent
empirical discoveries suggest that TE regulation may mostly rely on pi-RNAs,
which require a specific mutational event (the insertion of a TE copy in a pi-RNA
cluster) to be activated — the so-called TE regulation ”trap model”. We derived
new population genetics models accounting for this trap mechanism, and showed
that the resulting equilibria differed substantially from the existing expectations.
We proposed three sub-models, depending on whether or not genomic TE copies
and pi-RNA cluster TE copies are selectively neutral or deleterious, and we provide
analytical expressions for maximum and equilibrium copy numbers, as well as
cluster frequencies for all of them. In the full neutral model, the equilibrium is
achieved when transposition is completely silenced, and this equilibrium does not
depend on the transposition rate. When genomic TE copies are deleterious but not
cluster TE copies, no long-term equilibrium is possible, and active TEs are
eventually eliminated after an active incomplete invasion stage. When all TE copies
are deleterious, a transposition-selection equilibrium exists, but the invasion
dynamics is not monotonous, and the copy number peaks before decreasing.
Mathematical predictions were in good agreement with numerical simulations,
except when genetic drift and/or linkage disequilibrium dominates. Overall, the
trap-model dynamics appeared to be substantially more stochastic and less
repeatable than traditional regulation models.

1 Introduction 1

Transposable elements (TEs) are repeated sequences that accumulate in genomes 2

and often constitute a substantial part of eukaryotic DNA. According to the 3

consensual ”TE life cycle” model (Kidwell and Lisch 2001; Wallau et al. 2016), TE 4

families do not maintain actively for a long time in genomes. TEs are the most 5
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active upon their arrival in a new genome (often involving a horizontal transfer, 6

Gilbert and Feschotte (2018)); their copy number increases up to a maximum, at 7

which point transposition slows down. TE sequences are then progressively 8

degraded and fragmented, accumulate substitutions, insertions, and deletions, up to 9

being undetectable and not identifiable as such. The reasons why the total TE 10

content, the TE families, and the number of copies per family vary substantially in 11

the tree of life, even among close species, are far from being well-understood, which 12

raises interesting challenges in comparative genomics. 13

TEs spread in genomes by replicative transposition, which ensures both the 14

genomic increase in copy number and the invasion of populations across generations 15

of sexual reproduction. They are often cited as a typical example of selfish DNA 16

sequences, as they can spread without bringing any selective advantage to the host 17

species, and could even be deleterious (Orgel and Crick 1980; Doolittle and 18

Sapienza 1980). Even if an exponential amplification of a TE family could, in 19

theory, lead to species extinction (Brookfield and Badge 1997; Arkhipova and 20

Meselson 2005), empirical evidence rather suggests that TE invasion generally stops 21

due to several (non-exclusive) physiological or evolutionary mechanisms, including 22

selection, mutation, and regulation. Selection limits the TE spread whenever TE 23

sequences are deleterious for the host species: individuals carrying less TE copies 24

will be favored by natural selection, and will thus reproduce preferentially, which 25

tends to decrease the number of TE copies at the next generation (Charlesworth 26

and Charlesworth 1983; Lee 2022). The effect of mutations relies on the 27

degradation of the protein-coding sequence of TEs, which decreases the amount of 28

functional transposition machinery (and thus the transposition rate) (Le Rouzic 29

and Capy 2006). Even though TEs can be inactivated by regular genomic 30

mutations, as any other DNA sequences, there exist documented mutational 31

mechanisms that specifically target repeated sequences, such as repeat induced 32

point mutations in fungi (Selker and Stevens 1985; Gladyshev 2017). Alternatively, 33

substitutions or internal deletions in TEs could generate non-autonomous elements, 34

able to use the transposition machinery without producing it, decreasing the 35

transposition rate of autonomous copies (Hartl et al. 1992; Robillard et al. 2016). 36

Transposition regulation refers to any mechanism involved in the control of the 37

transposition rate by the TE itself of by the host. There is a wide diversity of 38

known transposition regulation mechanisms; some prevent epigenetically the 39

transcription of the TE genes (Deniz et al. 2019), others target the TE transcripts 40

(Adams et al. 1997), or act at the protein level (Lohe and Hartl 1996). Recently, the 41

discovery of small-RNA regulation systems have considerably improved and clarified 42

our understanding of TE regulation (Brennecke et al. 2007; Malone and Hannon 43

2009; Zanni et al. 2013; Ozata et al. 2019). Small-RNA regulation seems to concern 44

a wide range of species, and defines a regulation scenario known as the ”trap model” 45

(Kofler 2019). In such a scenario, regulation is triggered by the insertion of a TE in 46

specific ”trap” regions of the genome, the pi-clusters. TE sequences inserted in 47

pi-clusters are transcribed into small regulating pi-RNAs, that are able to silence 48

homologous mRNAs from close TE families by recruiting proteins from the PIWI 49

family. 50

Early models, starting from Charlesworth and Charlesworth (1983), assumed 51

that the strength of regulation increases with the copy number. The transposition 52

rate is then expected to drop progressively in the course of the TE invasion up to 53

the point where transposition stops. In contrast, the PIWI regulation pathway 54

displays unique features that may affect substantially the evolutionary dynamics of 55

TE families: (i) it relies on a mutation-based mechanism, involving regulatory loci 56
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that may need several generations to appear (ii) the regulatory loci in the host 57

genome segregate independently from the TE families and have their own 58

evolutionary dynamics (the TE amplifies in a genetically variable population, which 59

are a mixture of permissive and repressive genetic backgrounds), and (iii) the 60

regulation mechanism is independent from the genomic copy number. The 61

consequences of these unique features on the TE invasion dynamics are not totally 62

clear yet. Individual-based stochastic simulations have shown that pi-RNA 63

regulation is indeed capable of allowing a limited spread of TEs, compatible with 64

the TE content of real genomes (Lu and Clark 2010; Kelleher et al. 2018). Kofler 65

(2019) has shown that the major factor conditioning the TE success (in terms of 66

copy number) is not the transposition rate, but rather the size of the pi-clusters. 67

The dynamics of transposable elements when regulated by a trap model thus appear 68

to differ substantially from the predictions of the traditional population genetics 69

models. 70

With this paper, we extend the existing corpus of TE population genetics 71

models by proposing a series of approximations for the trap model equilibrium copy 72

number and equilibrium cluster frequency in three scenarios: (i) neutral TEs, (ii) 73

deleterious TEs and neutral clusters, and (iii) deleterious TEs and deleterious 74

clusters. We show that these scenarios correspond to qualitatively distinct 75

outcomes, and we validate the predicted equilibria based on numerical simulations. 76

2 Models and methods 77

2.1 Population genetic framework 78

Model setting and notation traces back to Charlesworth and Charlesworth (1983), 79

who proposed to track the mean TE copy number n̄ in a population through the 80

difference equation: 81

n̄t+1 = n̄t + n̄t(u− v), (1)

where u is the transposition rate (more exactly, the amplification rate per copy and 82

per generation), and v the deletion rate. In this neutral model, if u is constant, the 83

copy number dynamics is exponential. If the transposition rate un is regulated by 84

the copy number (u0 > v, dun/dn < 0), un ≃ un̄, and lim(un) < v, with un̂ = v, 85

then a stable equilibrium copy number n̂ can be reached. 86

However, in most organisms, TEs are probably not neutral. If TEs are 87

deleterious, fitness w decreases with the copy number (wn < w0). As a consequence, 88

individuals carrying more copies reproduce less, which decreases the average copy 89

number every generation. The effect of selection can be accounted for using 90

traditional quantitative genetics, considering the number of copies n as a 91

quantitative trait: ∆n̄ ≃ Var(n)∂ log(wn)/∂n, where Var(n) is the variance in copy 92

number in the population, and ∂ log(wn)/∂n approximates the selection gradient on 93

n. The approximation is better when the fitness function wn is smooth and the copy 94

number n is not close to 0. Assuming random mating and no linkage disequilibrium, 95

n is approximately Poisson-distributed in the population, and Var(n) ≃ n̄. 96

Charlesworth and Charlesworth (1983) proposed to combine the effects of 97

transposition and selection to approximate the variation in copy number across 98
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generations as: 99

n̄t+1 ≃ n̄t(un − v) + n̄sn̄, (2)

where sn̄ = ∂ logwn/∂n|n̄. When the transposition rate is high, the Poisson 100

approximation does not hold and Var(n) > n̄ (transposition overdisperses the copies 101

in the population, as new TEs tend to appear in TE-rich genomes). After 102

transposition, the copy number rises to n̄ = n̄(1 + u), while its variance becomes 103

V(n) = n̄(1 + u)2. In the following, we used a correction s′ ≃ s(1 + 2u); this 104

correction is subtle and was proposed solely to ensure a better match with 105

numerical simulations, it does not affect the conclusions qualitatively. 106

2.2 Numerical methods 107

Data analysis was performed with R version 4.0 (R Core Team 2020). 108

Mathematical model analysis involved packages deSolve (Soetaert et al. 2010) and 109

phaseR Gra14. All figures and analyses can be reproduced from the scripts 110

available at https://github.com/lerouzic/amodelTE. 111

Mathematical predictions were validated by individual-based simulations. 112

Populations consisted in N = 1000 hermaphroditic diploid individuals, with an 113

explicit genome of 30 chromosomes and a total of n = 10, 000 possible TE insertion 114

sites. k pi-clusters of size nπ/k were distributed on different chromosomes, the 115

parameter π standing for the proportion of the n loci corresponding to pi-clusters. 116

Insertion sites were freely recombining, except within pi-clusters. Generations were 117

non-overlapping; reproduction consisted in generating and pairing randomly 2N 118

haploid gametes from 2N parents sampled with replacement proportionally to their 119

fitness. Transposition occurred with a rate ui computed for each individual as a 120

function of its genotype at pi-clusters, with the same assumptions as described 121

below. The location of the transposed copy was drawn uniformly in the diploid 122

genome. Transposition events in occupied loci were cancelled, which happened 123

rarely as TE genome contents were always far from saturation. Populations were 124

initialized with 10 heterozygote insertions (in non-piRNA loci), randomly 125

distributed in the population at frequency p0 = 0.05 each, resulting in n0 = 1 copy 126

in average per diploid individual. For each parameter set, simulations were 127

replicated 10 times, and the average number of diploid TE copies was reported. 128

Average cluster frequencies were calculated by dividing the number of diploid TE 129

copies in pi-clusters by 2k; frequencies could theoretically be slightly > 1 due to 130

rare events in which several TEs could insert simultaneously in the same cluster. 131

The simulation software was implemented in python (version 3.8.10 for Linux), with 132

data structures from the numpy library (Harris et al. 2020). The code is available 133

at https://github.com/siddharthst/Simulicron/tree/amodel. 134

3 Results 135

3.1 Neutral trap model 136

The model assumes k identical piRNA clusters in the genome, and the total
probability to transpose in a cluster region is π. Each cluster locus can harbor two
alleles: a regulatory allele (i.e., the cluster carries a TE insertion), which segregates
at frequency p, and an ”empty” allele (frequency 1− p). Allele frequencies at all
clusters were considered to be the same (infinite population and identical cluster
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properties). If the regulatory allele frequency at generation t is pt, the average
number of cluster insertions for a diploid individual is 2kpt. TE deletions were
neglected (v = 0). The presence of a single regulatory allele at any cluster site was
supposed to trigger complete regulation: the transposition rate per copy and per
generation was u in absence of regulation, and 0 otherwise. Assuming random
mating and no linkage disequilibrium (i.e. no correlation between n and the
genotype at the regulatory cluster), we approximated the discrete generation model
with a continuous process, and the neutral model (equation 2) was rewritten as a
set of two differential equations on n̄ (relabelled n for simplicity) and p:

dn

dt
= nu(1− p)2k

dp

dt
=

π

2k
nu(1− p)2k.

(3)

Initially, there are n0 copies per individual in the population, and p0 = 0. 137

The system of equation 3 admits three equilibria (characterized by the 138

equilibrium values n̂ and p̂): E1 : u = 0 (no transposition, n̂ = n0 and p̂ = 0), 139

E2 : n̂ = 0 (loss of the transposable element), and E3 : p̂ = 1 (fixation of all 140

regulatory clusters). Equilibria E1 and E2 do not need to be investigated further, 141

as u = 0, n0 = 0, or p0 = 1 do trivially result in the absence of any TE invasion. 142

Equilibrium E3 is analytically tractable, as dn/dp = 2k/π, and n = n0 + 2pk/π at 143

any point of time: 144{
n̂ = n0 + 2k/π

p̂ = 1.
(4)

Cluster fixation is asymptotic (limt→∞ p = 1), and the equilibrium is 145

asymptotically stable (dn/dt > 0 and dp/dt > 0). Figure 1 illustrates the effect of u 146

and k on the dynamics nt and pt. Assuming that n0 is small, the number of copies 147

at equilibrium is proportional to the number of clusters k, and inversely 148

proportional to the cluster size π. The fact that the equilibrium copy number does 149

not depend on the transposition rate u is one of the most counter-intuitive results 150

of the trap model. This prediction was confirmed by simulations. It relies on the 151

absence of linkage disequilibrium between regulatory clusters and genomic copies. 152

This assumption does not hold when the number of clusters increases, or when the 153

transposition rate is very high (Appendix B.1). 154

3.2 Selection 155

Natural selection, by favoring the reproduction of genotypes with fewer TE copies, 156

generally acts in the same direction as regulation. A piRNA regulation model 157

implementing selection could be derived by combining equations 2 and 3. In order 158

to simplify the analysis, we derived the results assuming that the deleterious effects 159

of TE copies were independent, i.e. wn = exp(−ns), where n is the copy number 160

and s the coefficient of selection (deleterious effect per insertion), so that 161

∂ logwn/∂n = −s. 162

The following calculation relies on the additional assumption that π ≪ 1, 163

(leading to n ≫ 2kp, i.e. that the number of TE copies in the clusters is never large 164

enough to make a difference in the total TE count). We will describe two selection 165

scenarios that happened to lead to qualitatively different outcome: (i) TE insertions 166
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Figure 1: Dynamics in the neutral piRNA model, n0 = 1, π = 0.03. The top panel
illustrates the influence of the transposition rate, the bottom panel of the number of
clusters. Left: number of copies n, right: frequency of the segregating clusters in
the population (p). Open symbols: simulations, plain lines: difference equations,
hyphenated lines: predicted equilibria. The copy number equilibrium n̂ does not
depend on the transposition rate, and the cluster frequency at equilibrium p̂ = 1 in
all conditions.

in pi-clusters are neutral, and (ii) TE insertions in pi-clusters are as deleterious as 167

the other insertions. 168

Deleterious TEs and neutral clusters If cluster TEs are neutral, the model
becomes:

dn

dt
= nu(1− p)2k − ns′

dp

dt
=

π

2k
nu(1− p)2k.

(5)

This equation only gives two equilibria, E2 : n̂ = 0, and E3 : s′ = 0 and p̂ = 1, 169

which is the same as for the neutral model (equation 3): no selection and fixation of 170

all regulatory clusters. At the beginning of the dynamics, assuming p0 = 0, the TE 171

invades if u > s′ (otherwise the system converges immediately to equilibrium E2 172

and the TE is lost). The copy number increases (dn/dt > 0) up to a maximum n∗, 173

which is achieved when p = p∗ (Figure 2). The maximum copy number can be 174
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obtained analytically (Appendix A.1): 175

p∗ = 1−
(
s′

u

)1/2k

n∗ = n0 +
2k

π

[
1− 1

2k − 1

(
2k

(
s′

u

)1/2k

− s′

u

)]
.

(6)

Once the maximum number of copies is achieved, cluster copies keep on 176

accumulating, decreasing the transposition rate, which leads to a decrease in the 177

copy number, up to the loss of the the element (n̂ = 0 at equilibrium). At that 178

stage, clusters are not fixed, and the equilibrium cluster frequency p̂ can be 179

expressed as a function of copy number and cluster frequency at the maximum (p∗ 180

and n∗) (Appendix A.2): 181

p̂− s′

u(2k − 1)

1

(1− p̂)2k−1
= p∗ − s′

u(2k − 1)

1

(1− p∗)2k−1
− πn∗

2k
, (7)

from which an exact solution for p̂ could not be calculated. The following 182

approximation (from Appendix A.3): 183

p̂ ≃ 1−
[ u
s′
(2k − 1)p∗ + 1

] 1
1−2k

(8)

happens to be acceptable for a wide range of transposition rates and for small 184

selection coefficients (s < 0.1) (Figure 3). 185

Equation 6 can be reorganized to address the problem of population extinction, 186

as formulated in Kofler (2020). Numerical simulations have indeed shown that even 187

if the final equilibrium state involves the loss of all TE copies, populations need to 188

go through a stage where up to n∗ deleterious copies are present in the genome. 189

This makes it possible to approximate mathematically the critical cluster size πc, 190

from which the population fitness drops below an arbitrary threshold wc and is at 191

risk of extinction: 192

πc >
2k

−(logwc)/s− n0

[
1− 1

2k − 1

(
2k

(
s′

u

) 1
2k

− s′

u

)]
. (9)

Setting s = 0.01, u = 0.1, and n0 = 1, as in the other examples, and taking 193

wc = 0.1 gives πc > 0.0036 for k = 1 and πc > 0.005 for k = 5, these values being of 194

the same order of magnitude than the interval 0.1% to 0.2% determined numerically 195

by Kofler (2020). 196

Deleterious TEs and deleterious clusters If the cluster insertions are as 197

deleterious as other TEs, selection acts on cluster frequency as predicted by 198

population genetics (assuming no dominance): 199

dn

dt
= nu(1− p)2k − ns′

dp

dt
=

π

2k
nu(1− p)2k − sp

1− p

1− sp
.

(10)
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Figure 2: Dynamics of the deleterious TE - neutral cluster model. The top panel
illustrates the influence of the selection coefficient s (with u = 0.1, k = 1), the
bottom panel of the number of clusters k (with s = 0.01, u = 0.1). Left: number
of copies n, right: frequency of the segregating clusters in the population p. Open
symbols: simulations, plain lines: difference equations, hyphenated lines: predicted
cluster frequency equilibrium p̂, dotted lines: predicted copy number maximum n∗.
Whenever s > 0, the copy number equilibrium n̂ is 0.

This allows for a new equilibrium E4: 200
n̂ =

2k

π

s

s′

(
s′

u

)1/2k
p̂

1− sp̂

p̂ = 1−
(
s′

u

)1/2k

.

(11)

The equilibrium exists (n̂ > 0 and p̂ > 0) whenever s < u(1 + 2u), i.e. the 201

transposition rate must be substantially larger than the selection coefficient. The 202

dynamics for n and p are illustrated in Figure 4, and the influence of model 203

parameters (u, s, and π) on equilibrium values are depicted in Figure 5. 204

A linear stability analysis (Appendix A.4) shows that for the whole range of u, 205

π, and k, as well as for most of the reasonable values of s, the equilibrium is a 206

stable focus, i.e. the system converges to the equilibrium while oscillating around it. 207

3.3 Genetic drift 208

The models described above assume infinite population sizes, which may not hold 209

for low-census species and for laboratory (experimental evolution) populations. We 210

assessed the influence of population size on the copy number with numerical 211
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Figure 3: Equilibrium cluster frequency p̂ for the deleterious TE - neutral cluster
model as a function of the transposition rate u and the selection coefficient s. The
number of clusters k is indicated with different line types. The approximation
proposed in equation 8 is illustrated in gray.

simulations, comparing the neutral model, the deleterious TE - neutral cluster 212

model, and the deleterious TE - deleterious cluster model with a ”classical” 213

copy-number regulation model in which un = u0/(1 + bn) (Charlesworth and 214

Charlesworth 1983). Since the deleterious TE - neutral cluster model does not allow 215

for an equilibrium, comparisons had to be performed before the stabilization of the 216

copy number (arbitrarily, at T = 100 generations). Models were parameterized such 217

that the copy number n was approximately the same after 100 generations. Drift 218

affects piRNA models substantially more than copy number regulation, the variance 219

of all trap models being approximately one order of magnitude larger (Figure 6). 220

Consistently with population genetics theory, the variance across simulation 221

replicates decreased with 1/N for all models. 222

The standard population genetics theory predicts that selection in small 223

populations is less effective at eliminating slightly deleterious alleles. Assuming that 224

TE copies are deleterious, they should be eliminated faster in large populations 225

compared to small ones. Although this mechanism has been proposed to explain 226

the accumulation of junk DNA (including TE copies) in multicellular eukaryotes 227

(Lynch and Conery 2003), little is known about how the equlibrium copy number of 228

an active TE family is expected to be affected by drift even in the simplest 229

scenarios (Charlesworth and Charlesworth 1983). Yet, informal models suggest that 230

drift may have a limited effect, as copy number equilibria rely on the assumption 231

that evolutionary forces that limit TE amplification (regulation and/or selection) 232

increase in intensity when the copy number increases. Thus, when drift pushes the 233

average copy number up or down, TE amplification is expected to be less or more 234

effective respectively, which compensates the random deviation. Simulations show 235

that, whatever the model, the copy number is indeed slightly higher in small 236

populations (N < 100), but this effect never exceeds 20% of the total copy number 237

(Figure B1). Overall, drift has a very limited impact on the mean copy number 238

when N > 50. 239
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Figure 4: Dynamics of the copy number (n, left) and the cluster frequency (p,
right) in the deleterious TE - deleterious cluster model. Top panels: influence of
the selection coefficient, bottom panels: influence of the number of clusters. Plain
lines: predicted dynamics from equation 10, hyphenated lines: predicted equilibrium
(eq. 11), open circles: simulations.
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Figure 6: A: The effect of genetic drift is larger in the trap model than for copy-nuber
regulation models. The figure displays the average copy number n̄ in 20 independent
replicates, N = 100 for both models. Parameters were u = 0.1, s = 0.01, π = 0.03,
k = 2 for the trap model, and un = 0.1/(1+0.3n), and s = 0.01, for the copy-number
regulation model. Regulation strengh was set so that the expected equilibrium copy
number n̂ ≃ 25 was the same for both models. B: Variance in the average copy
number (relative to the average copy number) at generation 100 among replicated
simulations for various population sizes. Four models are displayed: neutral trap
model, Deleterious TE - neutral clusters, Deleterious TE - deleterious cluster, and
copy number regulation. Models were parameterized so that they have very similar
copy numbers (about 18) at generation 100; Neutral trap model: u = 0.045, π = 0.03,
k = 2); Deleterious TE - neutral clusters: u = 0.13, π = 0.03, s = 0.01, k = 2;
Deleterious TE - deleterious clusters: u = 0.07, π = 0.03, s = 0.01, k = 2; Copy
number regulation: un = 0.07/(1 + 0.3n), s = 0.01. The theoretically-expected
decrease in variance (in 1/N) is illustrated for the neutral piRNA model (slope of
−1 on the log-log plot).
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4 Discussion 240

4.1 Population genetics of the trap model 241

The formalization of TE regulation by pi-RNA clusters (the ”trap model”) made it 242

possible to derive a series of non-intuitive results, and evidence how trap regulation 243

differs from traditional (copy-number based) regulation models. Among the most 244

striking results: (i) in absence of selection (neutral trap model), the equilibrium 245

copy number does not depend on the transposition rate, (ii) the efficiency of 246

regulation increases with the size of clusters and decreases with the number of 247

clusters, (iii) deleterious TEs can always invade when the transposition rate is 248

larger than the selection coefficient, but the TE family can persist only if copies 249

inserted in clusters are deleterious as well. When cluster copies are neutral, they 250

can increase in frequency up to fixation, which leads to the loss of all non-cluster 251

TE copies. Equilibria are always stable. Pi-RNA regulation being a mutational 252

process, the TE copy number is more stochastic and substiantially more sensitive to 253

genetic drift than other regulation models. 254

These results confirm and formalizes previous work based on numerical 255

simulations, in particular from Kofler (2019) who has already pointed out the small 256

effect of transposition rate on the final state of the population and the inverse 257

relationship between the number of clusters and the number of TE copies. The 258

characterization of the equilibria demonstrate how the neutral trap model differs 259

from the transposition-selection balance model proposed by Charlesworth and 260

Charlesworth (1983); while the transposition-selection balance mostly depends on 261

the transposition rate, the trap model equilibrium is determined by the mutational 262

target (the size and the number of pi-clusters). 263

While the equilibrium for the neutral trap model can be expressed with a very 264

simple formula (equation 3), the derivation of copy number and cluster frequencies 265

is less straightforward when selection is accounted for (equations 10 and 11). In all 266

cases, the TE copy number depends on the cluster size and distribution. The most 267

effective configuration for TE regulation is a single, large pi-cluster. Dividing the 268

cluster in smaller parts increases equilibrium TE copy numbers, and reducing the 269

total cluster size as well. When TEs are deleterious even when inserted in the 270

clusters, the equilibrium copy number depends on the transposition rate u and the 271

selection coefficient s in a non-monotonous way (less copies when u or s are either 272

very low or very large). The fact that there exists an optimal transposition rate 273

when TE insertions are deleterious have been proposed previously, in a different 274

theoretical framework (Le Rouzic and Capy 2005). The optimal rate in the trap 275

model (about 0.1 to 0.2 transpositions per copy and per generation in unregulated 276

genetic backgrounds, figure 5) seems convincingly compatible with empirical 277

estimates (Robillard et al. 2016; Kofler et al. 2022). 278

4.2 Model approximations 279

The mathematical formulation of the trap model relies on a series of 280

approximations. The general framework is strongly inspired from Charlesworth and 281

Charlesworth 1983, and is based on the same assumptions, such as a uniform 282

transposition rates and selection coefficients among TE copies, diploid, random 283

mating populations, and no linkage disequilibrium. This framework fits better some 284

model species, including Drosophila or humans, than others (plants, nematodes...) 285
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for which the population genetics setup needs to be adapted. In general, 286

individual-based (non-overlapping generations) simulations fit convincingly the 287

predictions, but errors are cumulative in the trap model: small biases in the 288

differential equations could add up over time and generate a visible discrepancy 289

after several dozens generations. 290

The biology of the pi-cluster regulation was also simplified. We considered that 291

pi-clusters were completely dominant and epistatic, i.e. a single genomic insertion 292

drives the transposition rate to zero. Relaxing slightly this assumption is unlikely to 293

modify qualitatively the model output, e.g. considering that regulatory insertions 294

are recessive would change the frequency of permissive genotypes from (1− p)2k to 295

(1− p2)k, which would increase the cluster frequency at equilibrium but not its 296

stability. In contrast, imperfect regulation (a residual transposition rate even when 297

clusters are fixed, such as in Lu and Clark 2010) would break the equilibrium in the 298

neutral case, and copy number would raise indefinitely. This only affects the neutral 299

model though, as imperfect regulation would have a much more limited effect when 300

TEs are deleterious. 301

In order to compute the equilibria, we assumed no epistasis on fitness, i.e. 302

constant ∂ logw/∂n = −s. Deriving the model with a different fitness function is 303

possible, although solving the differential equations could be more challenging. 304

Instead of our fitness function wn = e−ns, Charlesworth and Charlesworth (1983) 305

proposed wn = 1− snc (c being a coeffcient quantifying the amount of epistasis on 306

fitness), while Dolgin and Charlesworth (2006) later used wn = e−sn−cn2

(different 307

parameterizations for directional epistasis are discussed in e.g. Le Rouzic 2014). 308

Considering negative epistasis on fitness (i.e. the cost of additional deleterious 309

mutations increases) in TE population genetic models has two major consequences: 310

(i) the strength of selection increasing with the copy number, it ensures and 311

stabilizes the equilibrium even in absence of regulation (Charlesworth and 312

Charlesworth 1983), and (ii) the model is more realistic, as epistasis on fitness for 313

deleterious mutations has been measured repeatedly on many organisms 314

(Maisnier-Patin et al. 2005; Kouyos et al. 2007; Khan et al. 2011). Interestingly, 315

there is little evidence of negative epistasis for fitness among TE insertions (Lee 316

2022), suggesting that epistasis is probably not a major explanation for the 317

stabilization of the copy number. In the trap model, regulation itself is strong 318

enough to achieve an equilibrium in absence of selection, so epistasis on fitness is 319

expected to modify the equilibrium copy number and the range of parameters for 320

which a reasonable copy number can be maintained (Kofler 2019), but not the 321

presence of a theoretical equilibrium. 322

Very recent data might suggest that pi-RNA regulation may not be sufficient to 323

explain the early regulation of TE activity. For instance, Kofler et al. (2022) 324

observed, in a lab experimental evolution context, that the transposition of the P 325

element in Drosophila decreases before the first pi-cluster insertion appears in the 326

population. Combining a copy-number regulation component and the trap model 327

framework is theoretically possible and does not invalidate our approach, at the cost 328

of introducing a new regulation parameter in the equations. In a more general way, 329

the diversity of transposition regulation mechanisms in animals (Lu and Clark 2010; 330

Saint-Leandre et al. 2020), plants (Roessler et al. 2018), and micro-organisms 331

(Sousa et al. 2013), makes it impossible to derive models that are both accurate and 332

universal. 333
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4.3 pi-RNA clusters and recombination 334

Kofler (2019) has already noticed that recombination among cluster loci reduces the 335

efficiency of regulation. For a given proportion of the genome π occupied by piRNA 336

clusters, regulation is more efficient with one large, non-recombining cluster than 337

with many small clusters spread on several chromosomes (the single-cluster model 338

was called the ”flamenco” model in Kofler 2019, inspired from the flamenco 339

regulatory locus in Drosophila, Goriaux et al. 2014). Indeed, when several clusters 340

segregate, recombination decreases the heritability of the transposition regulation 341

(recombination between clusters can generate permissive genotypes in the offspring 342

of a cross between two transposition resistant individuals). In a similar way, 343

regulation efficiency is expected to decrease with the within-cluster recombination 344

rate (not modeled here). We confirmed here that the number of copies at 345

equilibrium is indeed expected to be proportional to the number of clusters k. 346

Selection for TE regulation should thus minimize recombination within and across 347

clusters; the fact that, in most organisms, pi-clusters seem to be located at several 348

loci needs to be explained by other factors (such as functional constraints) than the 349

regulation efficiency. The need to regulate independently different TE families 350

might also play a role in the scattering of pi-clusters; the interactions between 351

several TE families invading simultaneously may generate new constraints on the 352

regulation system, which probably deserves further investigation. 353

An interesting hypothesis was raised by Kelleher et al. (2018) about the 354

possibility that pi-cluster frequency could be influenced by positive selection. 355

Assuming deleterious TEs, genotypes able to control TE spread are indeed expected 356

to display a selective advantage over those in which transposition is unregulated, 357

suggesting that regulatory clusters should sweep in the population as advantageous 358

alleles. Our model, neglecting linkage disequilibrium between TEs and clusters, 359

would then underestimate the increase in frequency of regulatory alleles (and thus 360

overestimate the copy number). Although the reasoning is theoretically valid, the 361

actual strength of positive selection on pi-clusters is probably limited in general. 362

Assuming that TE insertions have a local deleterious effect (because they disrupt 363

genes or gene regulation), the selective advantage of a regulatory locus is weak and 364

indirect (of the same order of magnitude as n× u× s, the deleterious effect of the 365

few insertions arising in a single generation). In contrast, if active transposition is 366

deleterious (such as in the hybrid dysgenesis scenario explored by Kelleher et al. 367

2018), the selective advantage of regulatory cluster alleles is of the order of 368

magnitude of n× s (at least when few clusters are segregating), and selection may 369

have an effect on cluster frequencies. Although it is experimentally difficult to 370

determine how selection acts on TEs, both scenarios are expected to leave different 371

genomic footprints, as the positive selection hypothesis posits that regulatory alleles 372

should be shared among many individuals of the population, while the neutral 373

hypothesis expects that various individuals are regulated by independent cluster 374

insertions. Empirical evidence is scarce, but seems to favor the neutral hypothesis 375

(Zhang et al. 2020). 376

4.4 Concluding remarks 377

Comparative genomics applied to transposable elements is hard. Notwithstanding 378

the countless potential artefacts associated with sequencing, assembly, and 379

annotation biases, understanding the evolutionary history of genomes is limited by 380

the small number of evolutionary replicates, and the number of TE families and TE 381
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copy numbers accumulated in a single species is frequently dominated by stochastic 382

and contingent factors. Being able to compare observed patterns with predictions 383

from models is thus of utterly importance, even when models are necessarily naive 384

and imperfect. 385

By extending the existing theory of transposable elements population genetics, 386

we were able to demonstrate that the trap regulation model was affecting deeply the 387

dynamics of TE invasion. In particular, when regulatory cluster TE insertions are 388

neutral, the possibility to maintain a stable copy number equilibrium disappears, 389

and all active TE copies are expected to be lost eventually. When regulatory 390

insertions are slightly deleterious, a new kind of equilibrium was achieved, in which 391

genomic TEs maintain as selfish DNA sequences, while regulatory insertions 392

maintain as a result of a selection-mutation balance. This situation prevents the 393

fixation of regulatory clusters, which could be directly measured in populations to 394

estimate the likelihood of the different regulation scenarios. 395
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Appendix A Mathematical details 504

A.1 Equation 6 505

When the copy number n achieves its maximum n∗, dn/dt = 0. This happens when 506

the cluster frequency p∗ is: 507

dn

dt
= n∗u(1− p∗)2k − n∗s′ = 0

p∗ = 1−
(
s′

u

) 1
2k

.

The number of copies cumulated while p is rising from p0 to p∗ can be 508

calculated by integrating both sides: 509

dn

dp
=

2k

π

(
1− s′

u(1− p)2k

)
∫ n∗

n0

dn =
2k

π

[∫ p∗

p0

dp− s′

u

∫ p∗

p0

(1− p)−2kdp

]

n∗ − n0 =
2k

π

[
p∗ − p0 −

s′

u(2k − 1)
((1− p∗)1−2k − 1)

]
n∗ = n0 +

2k

π

[
p∗ +

s′

u(2k − 1)
(1− (1− p∗)1−2k)

]
n∗ = n0 +

2k

π

[
1− 1

2k − 1

(
2k

(
s′

u

) 1
2k

− s′

u

)]
.

A.2 Equation 7 510

The strategy was very similar than for obtaining n∗, with dp/dn integrated both 511

sides from the maximum to the equilibrium: 512

∫ n̂=0

n∗
dn =

2k

π

[∫ p̂

p∗
dp− s′

u

∫ p̂

p∗
(1− p)−2kdp

]

−n∗ =
2k

π

[
(p̂− p∗)− s′

u

(
(1− p̂)1−2k − (1− p∗)1−2k

2k − 1

)]
.

A.3 Equation 8 513

Rewriting the previous equation with δp = p̂− p∗ and 1− p∗ = q∗ gives: 514

−n∗ =
2k

π

[
δp− s′

u(1− 2k)

1

(q∗ − δp)2k−1
− s′

u(1− 2k)
q∗1−2k

]
,
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which turns out to be dominated by the second term (1/(q∗− δp)2k−1 ≫ δp when δp
increases) for most parameter values. As a consequence, neglecting p̂− p∗ leads to:

n∗ ≃ 2k

π

[
s′

u

(
(1− p̂)1−2k − (1− p∗)1−2k

2k − 1

)]
⇐⇒ p̂ ≃ 1−

[
(1− p∗)1−2k +

πu(2k − 1)

2s′k
n∗
] 1

1−2k

.

Replacing p∗ and n∗ with their expressions from equation 6 and reorganizing
gives:

p̂ ≃ 1−

[
u

s′
(2k − 1)(1 +

n0π

2k
−
(
s′

u

) 1
2k

) + 1

] 1
1−2k

.

Assuming that n0 is reasonably small and π ≪ 1, the term n0π/2k can be
further neglected, and:

p̂ ≃ 1−

[
u

s′
(2k − 1)(1−

(
s′

u

) 1
2k

) + 1

] 1
1−2k

.

A.4 Equilibrium stability for equation 11 515

The Jacobian matrix corresponding to the equilibrum (n̂, p̂) from equation 11 is: 516

J =

0 −2kn̂u
(

s′

u

) 2k−1
2k

πs′

2k
1−s

(1−sp̂)2 − n̂uπ
(

s′

u

) 2k−1
2k − 1

 .

Eigenvalues are negative (i.e., the equilibrum is stable) for all tested parameter 517

combinations. Eigenvalues happen to be complex for all parameter combinations, 518

except for very large values of s, the equilibrium is thus a stable focus, reached 519

asymptotically by oscillating around it. 520
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Figure A1: First Eigenvalue of the Jacobian matrix as a function of model parameters (u, s, and π) in the deleterious
TEs - deleterious cluster model. Default parameter values were u = 0.1, s = 0.01, and π = 0.03. The number of
clusters (k = 1, k = 2, and k = 5) is indicated by different line styles. Eigenvalues are complex for most of the range
of the parameters, real part is in black, imaginary part is in blue.
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Figure A2: Equilibrium stability for the deleterious TES - deleterious cluster model.
The figure represents the real part of the first eigenvalue of the Jacobian matrix
for two major parameters (u and s), with k = 1 and π = 0.03. The eigenvalue is
negative for the whole parameter range, and is a complex number for most of the
range (below the red line). The purple line delineates s = u/(1 + 2u), beyond which
selection is too strong to let the TE invade (white area).
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Appendix B Supplementary results 521

B.1 Sensitivity of the neutral equilibrium (Equation 4) to 522

model assumptions. 523
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Figure B1: Effect of the transposition rate u on the simulated equilibrium copy
number in the neutral model. Equation 4 predicts that, in the neutral model, the
equilibrium does not depend on the transposition rate, which is at odds with previous
TE regulation models, and does not seem to be observed in earlier numerical models
(Kofler 2019). Simulations were run for k = 1 and k = 2 clusters in populations
of size N = 5, 000; simulations were stopped after 10, 000 generations. The figure
displays the final copy number in each simulation (open symbols), their average
(filled symbols), and the theoretical prediction (plain lines). Simulations display a
slight increase in the equilibrium copy number for large transposition rates, due
to the linkage disequilibrium. This effect increases with the number of clusters.
Conversely, when the transposition rate is low, the invasion dynamics is slower,
and all TEs might not be fixed by the end of the simulations. Overall, theoretical
predictions fit well for a single cluster, but simulations featuring several clusters
are slower, and the final copy number remains below the theoretical expectation in
finite populations from k = 2 clusters.
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B.2 Effect of genetic drift on the average and variance of 524

the copy number 525
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Figure B2: Distribution of the average copy number n̄ among 1000 replicates in different models,
with various population sizes. Models were parameterized so that they achieve very similar average
copy numbers (n̄ ∼ 19) in large populations (horizontal dotted line): s = 0.01 for all models (except
the neutral model), k = 1 cluster and π = 0.03 in all trap models. Transposition rates were: u = 0.045
for the neutral model, u = 0.05 for the Deleterious TE - neutral cluster model, u = 0.15 for the
Deleterious TE - Deleterious cluster model, and un = 0.17/(1 + 0.45n) for the regulation model.
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