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ABSTRACT. Phase velocities and attenuation in snow cannot be explained by the widely used elastic or

viscoelastic models for acoustic wave propagation. Instead, Biot’s model of wave propagation in porous

materials should be used. However, the application of Biot’s model is complicated by the large property

space of the underlying porous material. Here constant properties for ice and air, and empirical

relationships are used to estimate unknown porous properties from snow porosity. Using this set of

equations, phase velocities and plane wave attenuation of shear- and compressional waves are

predicted as functions of porosity or density. For light snow the peculiarity was found that the velocity

of the first compressional wave is lower than that of the second compressional wave that is commonly

referred to as the ‘slow’ wave. The reversal of the velocities comes with an increase of attenuation for

the first compressional wave. This is in line with the common observation that sound is strongly

absorbed in light snow. The results have important implications for the use of acoustic waves to

evaluate snow properties and to numerically simulate wave propagation in snow.
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1. INTRODUCTION

The use of acoustics to investigate snow is complicated by
the fact that sometimes lower wave velocities can be
observed with increasing density of snow (Oura, 1952). This
observation is at odds with elastic or viscoelastic wave
propagation theory, for which higher velocities are expected
for the considerably higher bulk and shear moduli of denser
snow. Yet the observed wave velocities can be explained
with wave propagation theory for porous materials, where a
second compressional wave, also known as the ‘slow’ wave,
is predicted (Johnson, 1982; Smeulders, 2005). Even though
the word ‘slow’ suggests that it is the velocity of the wave
that leads to its name it can actually be shown that ‘the fast
wave travels in the skeleton and the slow wave in the fluid’
(Carcione, 2007, p. 275).

Acoustic waves have been used in snow for a variety of
applications. Oura (1952), Smith (1969) and Yamada and
others (1974) measured acoustic wave velocities and
attenuation in field and laboratory environments. Gubler
(1977) measured acceleration in the snowpack and air
pressure above the snowpack for explosives used in
avalanche mitigation operations. Johnson (1982) success-
fully used Biot’s model for wave propagation in porous
materials to predict wave velocities in snow. Sommerfeld
and Gubler (1983) observed increased acoustic emissions
from unstable snowpacks compared to acoustic emissions of
stable snowpacks. Mellor (1975) and Shapiro and others
(1997) published extensive reviews on snow mechanics
including acoustic wave propagation and proposed wave
velocity as a potential index property for snow. Amongst
others, Buser (1986), Attenborough and Buser (1988), Marco
and others (1996, 1998) and Maysenhölder and others
(2012) investigated acoustic impedance and attenuation of
snow based on the so-called ‘rigid-frame’ model (Terzaghi,
1923; Zwikker and Kosten, 1947) in which the wave
traveling in the pore space is completely decoupled from
the wave traveling in the frame of the porous material.
Recently, acoustic methods have been used to monitor and
spatially locate avalanches (Surinach and others, 2000; Van

Herwijnen and Schweizer, 2011; Lacroix and others, 2012),
to estimate the height and sound absorption of snow
covering ground (Albert, 2001; Albert and others, 2009,
2013) and to estimate the snow water equivalent of dry
snowpacks (Kinar and Pomeroy, 2009). Kapil and others
(2014) used metallic waveguides to measure acoustic
emissions from deforming snowpacks. The advantage of
the rigid-frame model over Biot’s model is that it is relatively
straightforward to extract tortuosity of the pore space and
pore fluid properties from the phase velocities of the slow
wave. Applications are widespread and range from non-
destructive testing, medical applications and soil character-
ization to sound absorption (Fellah and others, 2004; Jocker
and Smeulders, 2009; Attenborough and others, 2013; Shin
and others, 2013).

The rigid-frame model can be deduced from Biot’s
(1956a, 1962) theory under the assumption that the stiffness
of the porous frame is considerably higher than the stiffness
of the pore fluid. The rigid-frame model does not account for
the interaction between the pore fluid and the porous frame
as does Biot’s theory. The viscous effects of the pore fluid are
approximated with complex moduli in the rigid-frame
model. Consequently the rigid-frame model is a phenom-
enological model. Biot’s model, where the viscous friction
of the fluid moving relative to the solid frame is causing the
observed attenuation, is a physical model instead. Under
exclusion of phenomenological attenuation (e.g. complex
bulk and shear moduli) the rigid-frame model is not
frequency-dependent while Biot’s model, due to its explicit
treatment of relative fluid motion, is. Especially in light snow
and in wet snow, where the frame and the stiffness of the
pore fluid are of a comparable order of magnitude, Biot
theory is expected to provide better results than the rigid-
frame model (Hoffman and others, 2012). Also a physical
model is to be preferred over a phenomenological model as
the results can be compared to complementary measure-
ments and consequently have more predictive power.
However, a disadvantage of the application of Biot’s model
is the large number of properties that have to be known to
solve the differential equations.
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While phase velocities obtained with plane wave
solutions for Biot’s theory tend to correspond relatively well
with its measured counterparts, generally the plane wave
attenuation cannot be readily compared. The wave attenu-
ation is complicated by the superposition of effects that all
lead to a decrease in wave amplitude and are difficult to
separate. Plane wave attenuation does not, for example,
account for geometrical spreading, that strongly depends on
the geometry of the experiment and is present in virtually all
physical measurements.

Here I propose a porous snow model as a function of
porosity and use it to estimate wave velocities and attenu-
ation of compressional and shear wave modes using plane
wave solutions for Biot’s (1956a) differential equation of
wave propagation in porous materials. I compare the results
to measurements from the literature and investigate the
sensitivity of the fast and slow compressional waves to in-
dividual snow properties, such as specific surface area (SSA).

2. METHODS

2.1. Porous material properties for snow

An inherent problem when working with Biot-type porous
models is the large number of material properties involved.
To address this problem, empirical relationships and a priori
information are gathered in this subsection to express the
porous material as a function of porosity.

Ten properties have to be known to solve Biot’s (1956a)
differential equations of wave propagation in porous
materials, with porosity arguably being the most significant.
For the stress–strain relations the fluid bulk modulus Kf, the
bulk modulus of the frame material Ks, the bulk modulus of
the matrix Km and the shear modulus �s have to be known.
The equations of motion require the densities of the solid
and fluid materials �i and �f, respectively, the porosity � and
the tortuosity T . The energy dissipation due to the motion of
the fluid relative to that of the solid is based on Darcy’s
(1856) law and requires knowledge of the permeability �
and viscosity � of the pore fluid.

Typical values for Young’s modulus of ice, the frame
material of snow, are 9.0–9.5GPa with a Poisson’s ratio of
�0.3 (Hobbs, 1974; Mellor, 1983; Schulson, 1999). The

Young’s modulus E can be converted to bulk modulus K as
(Mavko and others, 2009)

K ¼
E

3ð1� 2�Þ
, ð1Þ

where � is the Poisson’s ratio. The resulting frame bulk
modulus Ks for snow is �10GPa.

For the snow matrix bulk modulus Km, the Krief equation
(Garat and others, 1990)

Km ¼ Ksð1� �Þ
4

ð1��Þ ð2Þ

can be parameterized as

Km ¼ Ksð1� �Þ
a

ðb��Þ ð3Þ

and values for a ¼ 30:85 and b ¼ 7:76 can be obtained by a
least-square fit on the measurements presented by Johnson
(1982). The fit has a relative mean square error of 6%. The
relative mean square error towards the complete dataset
shown here is 19%. The data of Reuter and others (2013),
especially, show a higher variation towards the fit.

Most porous materials have a so-called critical porosity
�c that separates their acoustic behavior into two distinct
domains (Mavko and others, 2009). For porosities lower
than �c the solid frame is load-bearing while for porosities
higher than �c the porous material acts more like a
suspension. The Krief equation is often used in rock physics
as it combines the two porosity ranges (e.g. Carcione and
Picotti, 2006). Krief’s equation in the form of Eqn (2) is
empirically fitted to shaley sand where the critical porosity is
�c � 0:4. For snow the critical porosity is considerably
higher at about �c � 0:8, which corresponds to highly
porous materials like pumice or porous glass. It is therefore
not surprising that the values for a and b differ substantially
between Krief’s equation and its corresponding fit to snow.

In Figure 1 the Young’s moduli resulting from Eqn (3) are
shown in comparison with measured and theoretical esti-
mates of Young’s moduli (Smith, 1969; Johnson, 1982;
Schneebeli, 2004; Reuter and others, 2013).

As data are presented for Young’s moduli rather than bulk
modulus in the literature, the bulk moduli resulting from
Eqn (3) are converted to Young’s moduli using Eqn (1) and
the linear relationship

� ¼ 0:38� 0:36�, ð4Þ

to express the Poisson’s ratio, �, of snow as a function of
porosity. Figure 2 shows how this function relates to
measurements of Poisson’s ratio from Bader (1952), Roch
(1948) and Smith (1969).

In combination with the Poisson’s ratio, Eqn (3) can also
be used to estimate shear moduli of snow, �s, as a function
of porosity by using the relationship (Mavko and others,
2009)

�s ¼
3

2

Kmð1� 2�Þ

1þ �
: ð5Þ

The shear moduli resulting from Eqns (3–5) are shown in
Figure 3 and compared to measurements from Johnson
(1982) and Smith (1969).

The tortuosity T describing the ‘twisting’ of the actual
flow path of the pore fluid compared to a straight line can be
estimated based on geometrical considerations as

T ¼ 1� s 1�
1

�

� �

, ð6Þ

where s is the so-called shape factor (Berryman, 1980). For a

Fig. 1. Krief equation (solid line) fitted and compared to dynamic
measurements of Young’s moduli (circles) from Johnson (1982).
Additional measurements from Smith (1969) are indicatedwith stars.
Theoretical values obtained from numerical modeling of microtom-
ography snow structures are indicated with diamonds and triangles
for Schneebeli (2004) and Reuter and others (2013), respectively.
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packing of equally sized spheres the shape factor is 0.5 and
Eqn (6) reduces to

T ¼
1

2
1þ

1

�

� �

: ð7Þ

The permeability � is estimated using the Kozeny–Carman
relation

� ¼ C
r2�3

ð1� �Þ2
, ð8Þ

where C is an empirical constant and depends on the
material under consideration (Mavko and others, 2009). For
sediments the constant is Csediment ¼ 0:003 (Mavko and Nur,
1997; Carcione and Picotti, 2006), but for snow it is an order
of magnitude larger, Csnow ¼ 0:022 (Bear, 1972; Calonne
and others, 2012). The grain diameter r can be related to the
SSA of snow with the relation

r ¼
3

SSA�i
, ð9Þ

where �i is the density of ice. Substituting Eqn (9) into
Eqn (8) leads to

� ¼ 0:2
�3

ðSSAÞ2ð1� �Þ2
: ð10Þ

Due to the compaction and metamorphosis processes
inherent to snow it can be assumed that the SSA by itself
is a function of porosity (Legagneux and others, 2002;
Herbert and others, 2005). Domine and others (2007) use

SSA ¼ �30:82
m2

kg
ln ð�=�wÞ � 20:60

m2

kg
, ð11Þ

where �w is the density of water, to relate SSA to snow
density. For dry snow, density � can be obtained from snow
with porosity � as

� ¼ ð1� �Þ�i: ð12Þ

Equation (11) yields negative values for the SSA for
porosities � � 0:44. Therefore the relationship is used here
only for porosities � � 0:65. A constant value for SSA of

15m2 kg�1 is used for lower porosities. In this study,
Eqn (11) is intended only to reflect an average trend. Where
SSA has significant influence on the analysis, high and low
end-member values for SSA are also considered.

The density �f, viscosity � and bulk modulus Kf of air as
the pore fluid of snow are assumed to be constant, i.e.
independent of temperature and altitude, and are given in
Table 1 (Lide, 2005).

2.2. Phase velocities and plane wave attenuation

A convenient way to obtain closed form solutions for Biot’s
(1956b) differential equations is to assume plane wave
solutions and substitute these into the differential equations.
The complex plane wave modulus is then obtained by
solving the resulting dispersion relation (Johnson, 1982;
Pride, 2005; Carcione, 2007). As, in the poroelastic case,
the dispersion relation is a quadratic equation, there are two
roots that correspond to the first and second compressional
waves. The phase velocity V and the dimensionless quality
factor Q, describing the amount of attenuation, can then be
obtained from the complex plane wave modulus Vc as
(O’Connell and Budiansky, 1978)

Vð!Þ ¼ ReðVcð!Þ
�1Þ

h i�1
, ð13Þ

Qpð!Þ
�1 ¼ 2

Im ðVcð!ÞÞ

ReðVcð!ÞÞ
, ð14Þ

where ! is the angular frequency.
In this study, the solutions of the dispersion relation

resulting from Biot’s equations are computed for individual
frequencies and porosities. However, if any dissipative
effects are ignored and the bulk modulus of the fluid is much
smaller than the bulk modulus of the solid matrix it can be
shown that the first compressional wave velocity V11 can be
expressed as

V11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Em
�� ��f=T

s

, ð15Þ

Fig. 2. Poisson’s ratio as a function of porosity (solid line) according
to Eqn (4) compared to measurements from Bader (1952) (dashed
lines), Roch (1948) (dotted lines) and Smith (1969) (circles).

Table 1. Pore fluid properties of air (Lide, 2005)

Density, �f 1.30 kgm�3

Viscosity, � 1:7� 10�5 Pa s
Bulk modulus, Kf 1:42� 105 Pa

Fig. 3. The shear modulus of snow as a function of porosity (solid
line) calculated using Eqns (3–5). Measurements presented by
Johnson (1982) and Smith (1969) are indicated with diamonds and
stars, respectively.
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and the second compressional wave velocity V12 as

V12 ¼

ffiffiffiffiffiffiffiffiffi

Kf
�fT

s

, ð16Þ

where Em ¼ Km þ ð4=3Þ�s is the ice matrix P-wave modulus
(Bourbié and others, 1987, p. 81). Equations (15) and (16)
are related to the rigid-frame model and not to Biot’s
equations considered in this study. These equations are
shown here only to illustrate that the first compressional
wave travels mainly in the skeleton and the second
compressional wave travels mainly in the fluid. Moreover,
these expressions also illustrate that the first compressional
wave is most sensitive to the properties of the ice matrix,
whereas the second compressional wave is sensitive mostly
to properties of the pore space and the pore fluid. Note that
the compressional wave velocities for the rigid-frame model,
Eqns (15) and (16), are not frequency-dependent.

2.3. Dynamic viscous effects

The fluid flow in the pores of the material has a different
character for lower and higher frequencies (Biot, 1956b).
For lower frequencies the flow is of Poisson type where the
flow is fastest in the center of a pore and reduces gradually
in a parabolic shape towards the outside of the pores. For
higher frequencies the importance of inertial forces in-
creases. The fluid in the center of the pores flows all with the
same velocity like an ideal fluid, while the fluid at the
outside of the pores remains attached to the pore walls. In
between the two, the so-called viscous boundary layer
forms (Pride, 2005). The transition between low- and high-
frequency flow behavior occurs when the viscous boundary
layers are smaller than the pore diameter. The frequency at
which this transition occurs is called the Biot frequency fBiot
and can be computed as (Carcione, 2007, p. 270)

fBiot ¼
��

2�T ��f
: ð17Þ

Biot’s (1956a) theory is considered valid for frequencies up
to the Biot frequency. For higher frequencies Johnson and
others (1987) introduced a frequency-dependent permea-
bility that accounts for the different flow behavior in the

low- and high-frequency limit and is often referred to as a
frequency correction or the JDK model. Figure 4 shows the
Biot frequency for snow based on the relationships between
porosity and the involved material properties as presented in
Section 2.1, where the permeability further depends on the
SSA. To illustrate the variability of Biot’s frequency due to
SSA, the Biot frequency is plotted for Eqn (11) which
depends on porosity, and for constant end-member values

of SSA=15m2 kg�1 and SSA=90m2 kg�1.
The results shown in this study are evaluated using the

frequency correction (Johnson and others, 1987). However,
for the first compressional wave there are virtually no
differences when the frequency correction is neglected. For
the second compressional wave the differences are rather
low, except for frequencies in the range of the Biot
frequency, where moderate differences can be observed.

3. RESULTS

In this section, phase velocities and plane wave attenuation
for snow are presented as a function of porosity based on the
relationships presented in Section 2.1. Figure 5 shows the
predicted phase velocity for the first compressional wave
and a frequency of 1 kHz as a function of porosity. The
predicted phase velocities are compared to measurements
from Smith (1969) and Johnson (1982). In addition, the
predicted velocity for an individual and a combined
variation of 25% in bulk and shear modulus is shown. The
velocity strongly decreases with increasing porosity, and the
variation of bulk and shear modulus for snow of the same
porosity is small compared to the change of velocity over
the porosity range.

The predicted shear velocities at 1 kHz are compared in
Figure 6 to measurements by Johnson (1982) and Yamada
and others (1974). Similar to the first compressional wave, the
shear velocity strongly decreases with increasing porosity.

The predicted phase velocities of the second compres-
sional wave at 500Hz as a function of porosity are shown in
Figure 7 and are compared to measurements from Oura
(1952) and Johnson (1982). As the pore fluid properties are
assumed constant, the phase velocity of the second

Fig. 5. Predicted phase velocities for the first compressional wave
(solid line) at 1 kHz. Measurements from Johnson (1982) and Smith
(1969) are indicated with diamonds and crosses, respectively. The
dashed and dotted lines are predicted velocities for a 25%
variation of matrix bulk modulus and shear modulus, respectively.
The dash-dot line corresponds to a 25% variation in both.

Fig. 4. Biot’s characteristic frequency for snow as a function of
porosity based on the relations presented in Section 2.1. The solid
line corresponds to SSA as a function of porosity (Eqn (11)). The
dashed and dotted lines correspond to the end-member values

SSA=15m2 kg�1 and SSA=90m2 kg�1, respectively.

Sidler: Acoustic waves in snow792

https://doi.org/10.3189/2015JoG15J040 Published online by Cambridge University Press

https://doi.org/10.3189/2015JoG15J040


compressional wave depends almost exclusively on vari-
ations in permeability and tortuosity. Variations in frame
bulk modulus and shear modulus have virtually no
influence on phase velocity and attenuation of the second
compressional wave. The tortuosity has a stronger lever on
the phase velocity than the permeability, and 30% variation
in tortuosity leads to larger changes in phase velocity than a
50% variation in permeability. The phase velocity of the
second compressional wave shows little variation with
porosity and is mainly sensitive to the geometrical structure
of the pore space.

The plane wave attenuation for the first compressional
wave as a function of porosity is shown for three different
frequencies in Figure 8a. It is striking that the attenuation is
orders of magnitude higher for light snow with a porosity
��> 0.8 than for denser snow, such that the variations in the
porosity range between �=0.55 and �=0.8 cannot be
resolved and are therefore shown in Figure 8b.

Homogeneous Biot-type porous materials are known to
have a characteristic peak of attenuation (Geertsma and
Smit, 1961; Carcione and Picotti, 2006). In Figure 9 these
attenuation peaks are shown for snow of different densities.
As in Figure 8, the figure is split into two panels to account
for the significant difference of attenuation levels for light
and dense snow. Peak attenuation shifts towards lower
frequencies, and the attenuation level increases with
increasing porosity. The same is true for light snow but
with considerably higher attenuation levels. Also the peak
attenuation frequencies overlap for a porosity range around
� ¼ 0:8.

Phase velocity and attenuation for the second compres-
sional wave obtained with and without using the frequency
correction discussed in Section 2.3 are shown in Figure 10.
The dynamic viscous effects are relatively small except in
the range of Biot’s frequency, where the phase velocity
shows a moderate difference between the solutions in-
cluding and neglecting a frequency correction (Johnson and
others, 1987). In contrast to the first compressional wave,
there is no distinctive difference in attenuation for dense and
light snow for the second compressional wave. The sharp
bend in phase velocity and attenuation is due to the
relationship between porosity and the SSA that was chosen
to be constant for � < 0:65 to avoid the negative values
resulting from Eqn (11).

The variation of the phase velocity of the second
compressional wave due to changes in SSA is shown in

Figure 11. For fixed end-member values of SSA=15m2 kg�1

and SSA=90m2 kg�1 the phase velocity at 500Hz is plotted
with dashed and dotted lines, respectively. The solid line
represents the phase velocities resulting from Eqn (11). The
variation is larger for denser snow than for light snow, where
permeability is less affected by SSA.

In Figure 12, attenuation for both compressional waves is

shown for constant values of SSA=15m2 kg�1 and SSA=

90m2 kg�1. Also shown is the attenuation for SSA as a
function of porosity according to Eqn (11). The attenuation
levels of both compressional waves increase with an
increase of SSA.

4. DISCUSSION

4.1. Slow first compressional phase velocity

Compressional phase velocities as a function of porosity
compared to measurements presented by Johnson (1982)
and Sommerfeld (1982) are shown in Figure 13. The
relations between porosity and the properties of the porous
material, especially the strong decrease of matrix bulk
modulus with increasing porosity, lead to the peculiarity
that the predicted first compressional wave becomes slower
than the second compressional wave for light snow with
porosity ��>0.8. In most materials, the second compres-
sional wave is considerably slower than the first and is
therefore sometimes also called the ‘slow’ wave. No
measurements of the first compressional wave with a lower
phase velocity than the second compressional wave have
been reported for snow. However, a first compressional
wave with lower phase velocity than the second compres-
sional wave has been observed in high-porosity reticulated
foam (Attenborough and others, 2012).

From the plane wave solutions it is not immediately
clear that the lower compressional velocity in light snow

Fig. 6. Predicted shear velocities (solid line) at 1 kHz. Squares and
crosses correspond to shear wave velocity measurements from
Johnson (1982) and Yamada and others (1974), respectively.

Fig. 7. Predicted phase velocity for the second compressional wave
(solid line) at 500Hz. The dashed and dotted lines correspond to
the phase velocities for 30% variation in tortuosity and 50%
variation in permeability, respectively. Squares represent velocity
measurements from Johnson (1982). Crosses correspond to
measurements from Oura (1952). Note that an increasing tortuosity
decreases the velocity while an increase in permeability increases
the velocity of the second compressional wave.
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corresponds to the first compressional wave mode as there
are no explicit rules to choose the signs of the square roots.
To illustrate that it is indeed the velocity of the first
compressional wave that is slower than the phase velocity
of the second compressional wave, two numerical

simulations solving Biot’s equations of wave propagation
in poroelastic materials were performed. In the first simu-
lation the homogeneous poroelastic material corresponds to
snow with porosity � ¼ 0:7, where the first compressional
wave is expected to be faster than the second compressional

Fig. 9. Frequency-dependent attenuation for the first compressional wave in (a) medium to dense and (b) light snow. The peak of the
attenuation shifts toward higher frequencies for denser snow. Note that the amplitude of the attenuation is orders of magnitude larger for
light snow with porosity ��>0.8.

Fig. 10. Phase velocity (a) and attenuation (b) for the second compressional wave for 100Hz, 1 kHz and 10 kHz. The black lines correspond
to solutions including dynamic viscous effects considered by Johnson and others (1987) while the red lines correspond to solutions of Biot’s
(1956a) differential equations without correcting these effects. The symbols denote velocity measurements from Oura (1952) and Johnson
(1982).

Fig. 8. Predicted attenuation for the first compressional wave as a function of porosity. (b) shows a fragment of (a) for porosities � < 0:8. The
attenuation of the first compressional wave is orders of magnitude higher for light snow than for denser snow.
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wave. In the second simulation the porosity of the snow is
chosen to be � ¼ 0:9 and the first compressional wave is
expected to be slower than the second compressional wave.
The relations from Section 2.1 are used to characterize the
remaining porous material properties.

For the simulation a pseudo-spectral modeling code was
used that solves the acoustic equations in a domain that is
located above a second domain where Biot’s (1962)
equations are solved. Special care is taken to correctly
account for the interface between these two domains, and
the code was successfully tested against analytical solutions
(Sidler and others, 2010). To avoid disagreement of the
simulations due to varying parameterization of the source
characteristics, which is cumbersome in poroelastic ma-
terials, the source was placed at 6.9m from the left
boundary and 1.46m above the air/snow interface at zero
vertical distance. The pressure source has a waveform of a
Ricker wavelet with a central frequency of 500Hz. The
boundary conditions between the acoustic and the poro-
elastic domain, which correspond to air and snow, respect-
ively, are assumed to be of the ‘open pore’ type
(Deresiewicz and Skalak, 1963). The field variables of the
simulation are the velocity of the solid frame, the velocity of

the pore fluid relative to that of the solid frame, the stress
tensor and the pore pressure. Note that these are particle
velocities and should not be confused with the phase
velocities discussed before. The first compressional wave
has its strongest amplitude in the solid frame velocity field
variable, while the second compressional wave has its
strongest amplitude in the field variable of the relative
fluid velocity.

In Figure 14, snapshots are shown for the two simulations
15.6ms after triggering the acoustic source. In the acoustic
domain, indicated by positive vertical coordinates, the air
pressure is shown in all four panels. For the poroelastic
domain, indicated by negative vertical coordinates,
Figure 14a and c show the horizontal component of the
solid frame velocity field that corresponds to the first
compressional wave, and Figure 14b and d show the
horizontal component of the relative fluid velocity field that
corresponds to the second compressional wave. The simu-
lation for snow with porosity � ¼ 0:7 corresponds to Figure
14a and b, and the simulation for snow with porosity
� ¼ 0:9 corresponds to Figure 14c and d.

Fig. 12. Predicted attenuation at 500Hz for the first (a) and second (b) compressional wave as a function of porosity. The dashed and dotted

lines correspond to end-member values of SSA= 15m2 kg�1 and SSA=90m2 kg�1, respectively. The solid line corresponds to Eqn (11) and a

constant value of SSA=15m2 kg�1 for densities above 315 kgm�3.

Fig. 13. Predicted velocities for the first (solid line) and second
(dashed line) compressional waves as a function of porosity based
on empirical relationships for frame bulk and shear modulus,
tortuosity and permeability in snow. The dashed lines identify
measurements of first compressional waves compiled by Sommer-
feld (1982), and diamonds and squares represent wave velocity
measurements compiled by Johnson (1982) for compressional
waves of the first and second kind, respectively.

Fig. 11. Predicted phase velocities for the second compressional
wave at 500Hz for a SSA as a function of porosity (solid line) and

constant values of SSA=15m2 kg�1 (dashed line) and SSA=

90m2 kg�1 (dotted line). Squares and crosses correspond to
measurements from Johnson (1982) and Oura (1952), respectively.
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In the snapshots, the waves will propagate as rings away
from the source. Red and blue indicate positive and negative
amplitudes, respectively. The stronger the color, the higher
the amplitude. For this example the absolute value of the
amplitude of the individual wave fields is only of
subordinate relevance; no color bars are indicated. Higher
wave velocities of the material will result in larger rings in
the snapshots shown for a fixed elapsed time. At the air/
snow interface the air-pressure wave will be converted into
a reflected air-pressure wave, transmitted first and second
compressional waves, as well as a transmitted shear wave.
The shear wave is not of interest here and cannot be seen in
the presented snapshots. The first and second compressional
waves will travel in the poroelastic material with its
characteristic velocities. If this velocity is higher than that
of the incident wave, the ring in the lower domain will be
larger than that in the upper domain (Fig. 14a). If the velocity
is less than the speed of sound in the air, the ring in the
lower domain will be elliptic with a shorter vertical axis
(Fig. 14b–d). Note the particularly short vertical axis in
Figure 14c, which indicates an especially low velocity.

Due to the interaction between pore fluid and skeleton, a
propagating wave mode will also have an amplitude in field
variables that are not its main field variable. For light snow
this interaction is relatively strong. Therefore in Figure 14c
not only the strong amplitude of the slower first compres-
sional wave with its short vertical axis can be seen, but also
a ‘shadow’ of the faster second compressional wave that

almost completes the circle of the air pressure wave in the
upper domain. From Figure 14 it becomes clear that in the
simulation of light snow the second compressional wave is
faster than the first compressional wave.

4.2. Increased sound absorption of light snow

The attenuation levels of the first compressional wave differ
significantly for light snow with a porosity ��> 0.8 and snow
with a lower porosity. This separation corresponds roughly
to a separation between freshly fallen and aged snow
(Judson and Doesken, 2000). Between the two porosity
ranges, the attenuation vanishes completely as the two wave
modes have the same velocity and the viscous effects
leading to attenuation are not in effect. The sound
absorption above ground is a complex combination of
effects involving, amongst others, the interference of
incident and reflected waves, the reflection coefficient,
geometrical spreading, as well as surface and non-geo-
metrical waves (Embleton, 1996). However, it is clear that if
the reflection coefficient of the ground decreases, the sound
level above the ground also decreases (Watson, 1948;
Nicolas and others, 1985). Due to the high porosity of snow
and the open pore boundary conditions, the pressure of the
air above the snowpack interacts mainly with the air in the
pore space and little energy is transmitted into the ice frame.
As the velocity of the second compressional wave is almost
equal to the velocity of the air above the snow, there is
almost no impedance contrast that would lead to a

Fig. 14. Snapshots after 15.6ms of a numerical simulation of a pressure source in the air over snowpacks with a porosity (a, b) � ¼ 0:7 and
(c, d) � ¼ 0:9. The horizontal components of (a, c) the velocity of the porous frame and (b, d) the velocity of the pore fluid relative to the
porous frame are shown. It can be seen that in the highly porous material (� ¼ 0:9), the first compressional wave (c) is slower than the
second compressional wave (d).
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reflection. The low velocity of the first compressional wave
in snow with porosity � > 0:8 and the corresponding higher
attenuation further decreases the impedance contrast and
also reduces the contribution of refracted waves.

5. CONCLUSIONS

A method to predict phase velocities and plane wave
attenuation of acoustic waves as a function of snow porosity
has been presented. It is based on Biot’s (1956a) model of
wave propagation in porous materials and uses empirical
relationships to assess tortuosity, permeability, bulk and
shear moduli as a function of porosity. The properties of the
ice frame of the snow and air as the pore fluid are assumed
constant. The method is not restricted to porosity, as a single
degree of freedom and additional information on SSA or any
of the other properties characterizing a Biot-type porous
material can be readily incorporated.

For light snow with a porosity ��>0.8 the peculiarity is
found that the velocities of the first compressional wave are
slower than the phase velocities of the second compres-
sional wave which is commonly referred to as the ‘slow’
wave. Such a reversal of the velocities of the compressional
waves has been observed in reticulated foam before and is
due to the weak structure of the ice matrix in fresh and light
snow. The wave velocity reversal is a relatively sharp
boundary for the attenuation level of the first compressional
wave, which is orders of magnitude larger for highly porous
snow. This finding is in accordance with the well-known
observation that freshly fallen snow absorbs most of the
ambient noise, while after a relatively short time this
absorbing behavior vanishes.

The first compressional wave is sensitive mainly to matrix
and shear bulk moduli. A variation of �25% in both shear
and matrix bulk moduli can characterize the variability in
measured velocities. The attenuation of the second com-
pressional wave decreases with increasing porosity and is
considerably higher than for the first compressional wave.
Also frequency dependence of the attenuation is consider-
ably more distinct for the second compressional wave. The
velocity of the second compressional wave depends strongly
on tortuosity, permeability and the related SSA. The
variation of measured wave velocities for the second
compressional wave can be obtained by altering the
tortuosity by �30% or by altering the permeability by
�50%.

This method is a basic requirement for numerical
modeling of acoustic wave propagation in snow, which
makes it possible, for example, to assess the design of
acoustic experiments to probe for snow properties or to
assess the role of acoustic wave propagation in artificial or
skier-triggered snow avalanche releases.

Further research will address the presence of liquid water
in the pore space, a more complete analysis of sound
absorption above snow of varying porosity, and numerical
simulations of explosive avalanche mitigation experiments.
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