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A port-Hamiltonian approach to visual servo control of a pick and
place system

Daniel A. Dirksz and Jacquelien M.A. Scherpen

Abstract— In this paper we take a port-Hamiltonian ap-
proach to address the problem of image-based visual servo
control of a pick and place system. We realize a closed-loop
system, including the nonlinear camera dynamics, which is
port-Hamiltonian. Although the closed-loop system is nonlinear,
the resulting controller is a PD-type controller which only
requires the camera states. From the passivity property of port-
Hamiltonian systems we then derive conditions for exponential
stability of the closed-loop system, which are used to tune the
PD controller gains.

I. INTRODUCTION

The current technological advances continuously increase
the demand for robots and intelligent systems which are
fast, accurate and are able to perform under different cir-
cumstances. A popular approach to deal with the different
operation circumstances is to use visual information. As
mentioned in [9], vision is a useful robotic sensor since it al-
lows for non-contact measurement of the environment. With
the increase of computational speed of modern computers,
image processing is becoming faster, making vision systems
more interesting for control applications.

The most popular classifications of visual servo control in
the vision control literature are position-based visual servo
(PBVS) control and image-based visual servo (IBVS) control
[9]. In PBVS control, the pose of the target is estimated
based on extracted features from the image. The error of
the estimated pose is then used for computing the feedback
control. In IBVS control, the control feedback is directly
computed from the image features. Both classifications have
received considerable attention and it is out of the scope of
this paper to summarize all of them. For more details and
other references we refer the interested reader to [9]. Lately,
the vision control research has focused on control methods
that deal with the shortcomings of both PBVS and IBVS
control [2], [12], apply visual servo control to mobile robots
and underactuated systems [3], [8], [13], [15] and exploit the
passivity properties for visual servo control [6], [15].

In this paper a pick and place (P&P) system is considered,
with a camera mounted on the gripper (eye-in-hand configu-
ration). Similar to many publications on robot vision control,
we apply perspective projection to model the camera dynam-
ics. The main contribution of this paper is to realize a closed-
loop PH system, via a coordinate transformation, which

D.A. Dirksz is with the Faculty of Mechanical Engineering, Control
Systems Technology, Eindhoven University of Technology, 5600 MB Eind-
hoven, The Netherlands. Email: d.a.dirksz@tue.nl

J.M.A. Scherpen is with the Faculty of Mathematics and Natural Sci-
ences, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The
Netherlands. Email: j.m.a.scherpen@rug.nl

includes the nonlinear camera dynamics. The combination of
the PH framework and the coordinate transformation leads to
an IBVS PD control structure, which exponentially stabilizes
the system.

The PH framework [14] has received a considerable
amount of interest in the last decade because of its insightful
physical structure. It is well known that a large class of
(nonlinear) physical systems can be described in the PH
framework. The popularity of PH systems can be accredited
to its application for analysis and control design of physical
systems, as shown in [4], [5], [17], [18], [19] and many
others. To the authors knowledge, only [11] has taken a PH
approach to visual servo control. Contrary to in our paper,
in [11] they deal with an aerial robot and apply a spherical
image representation, while we apply perspective projection.

In section II we briefly summarize the PH modeling
framework and describe the P&P system and the camera
system. We then present our main contributions in section III,
where we show the PH approach to IBVS control. In section
IV we analyze the robustness of the designed controller.
Simulation results are then shown in section V and we give
some concluding remarks in section VI.

II. PRELIMINARIES

In this section we briefly summarize the PH modeling
framework and the important results on visual servo control
necessary in this paper. We also give the model for the P&P
system with vision.

A. Port-Hamiltonian systems

PH systems were introduced as a generalization of sys-
tems stemming from different physical domains [14]. They
describe a large class of (nonlinear) systems including pas-
sive mechanical systems, electrical systems, electromechan-
ical systems and mechanical systems with nonholonomic
constraints [19]. A general (time-invariant) PH system is
described by

ẋ = [J(x)−R(x)] ∂H
∂x (x) + g(x)u

y = g(x)⊤ ∂H
∂x (x)

(1)

with J(x) ∈ Rn×n the skew-symmetric interconnection
matrix, R(x) ∈ Rn×n the symmetric, positive-semidefinite,
damping matrix, x ∈ Rn, the Hamiltonian H(x), input u and
output y, with u, y ∈ Rm, m ≤ n. PH systems are passive
systems [19], [21], i.e.,

Ḣ ≤ u⊤y (2)
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B. The pick and place system
Figure 1 shows the P&P system1 we consider in this paper.

The system consists of a gripper that can translate in three

Fig. 1. Pick and place system with camera.

directions. Such a P&P system is widely used in industry,
for both small and large objects. The gripper with camera
of the P&P system is modeled as a mass m that can be
translated in horizontal and vertical direction. We distinguish
two coordinate frames: a base frame and a camera frame. The
base frame (or world frame) [20], described by qx, qy, qz , is
the fixed coordinate system to which all objects, including
the P&P system, are referenced. The dynamics of the mass
m are described in the form of (1) by[

q̇
ṗ

]
=

[
0 I
−I −D

][ ∂H
∂q

∂H
∂p

]
+

[
0
u

]
y = ∂H

∂p = q̇

(3)

with position q = (qx, qy, qz)
⊤, input vector u =

(ux, uy, uz)
⊤, I the identity matrix and D the damping

matrix. The Hamiltonian of the system is equal to the sum
of kinetic and potential energy:

H(q, p) =
1

2
p⊤M−1p+ V (q) (4)

where M is the system mass matrix and V (q) the potential
energy, i.e.,

1P&P image from www.designworldonline.com

M = diag{m,m,m}, V = mgqz (5)

Furthermore we have the vector of momenta p =
Mq̇. We also assume a constant damping matrix D =
diag{d1, d2, d3}. The mass m can be translated in qx di-
rection by the input ux, in qy direction by the input uy and
in the qz direction by uz . Define uz = mg+ ūz with ūz the
new input in qz direction. The mg term is a precompensator
to cancel the gravitational forces on the system.

In the image plane of the camera, objects are seen with
respect to the camera coordinate frame. For the camera
coordinate system the X and Y axes form a basis for the
image plane, as described in [9]. The Z axis (optical axis)
is perpendicular to the image plane with origin located at
a distance f behind the image plane and where f is the
focal length of the camera lens, see figure 1. The origin of
the camera coordinate frame (also called viewpoint in [9]) is
located at the focus of the camera lens. Since the gripper with
camera is modeled as a mass, we assume this focus to be on
the mass, as shown in figure 1. Notice for our P&P system
that qz is the vertical position of the gripper/camera (mass
m) with respect to the base frame, while Z is the vertical
distance from the camera to the object. Hence, Z = qz − h
with h the object height. In this paper we assume that we
cannot directly measure the position q of the system, and
rely only on the camera information for control. The goal is
to pick and place an object with length L and height h.

The vision literature [9] distinguishes perspective and
orthographic projection models for the representation of the
image formation process. In visual servo control perspective
projection is mostly used, since orthographic projection is
valid for scenes where the relative depth of the points in a
scene are small compared to the distance from the camera
to the scene, which is not the case here. For perspective
projection, a point P = (X,Y, Z)⊤, whose coordinates
are expressed with respect to the camera coordinate frame,
projects onto the image plane as shown in figure 1 with
coordinates p = (µ, ν)⊤, given by[

µ
ν

]
=

f

Z

[
X
Y

]
(6)

Notice that the measurement of one point of the object
only gives us information on the X,Y positioning of the
object, i.e., the horizontal position of the object with respect
to the camera frame. To control the distance between the
gripper/camera and the object we use the fact that the object
has a constant length L, as shown in figure 1. The third
state in our camera model then becomes the length l, which
is the length of the object in the image plane2 . The object
has constant dimensions, so choosing the object thickness
instead of length is also possible. Both increase (or decrease)
in the image plane with the same factor, i.e., f

Z . In short,
we use the µ and ν measurements to control the X and Y
positions respectively, while the length l is used to control the
vertical position. As shown in figure 2, we want to bring the

2The length l increases when the camera approaches the object, an
decreases when the camera moves away.
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mass m (the gripper with camera) to a position such that the
object is seen in a desired form in the image plane (usually
the center of the image plane). When this is achieved the

Fig. 2. Image plane view of the object. The origin of (µ, ν) lies
in the center of the image plane.

gripper is ready to pick up the object. The three image plane
coordinates used for control can be described by µ

ν
l

 =
f

Z

 X
Y
L

 (7)

resulting in µ̇
ν̇

l̇

 =


f
Z 0 − µ

Z

0 f
Z − ν

Z

0 0 − l
Z


 Ẋ

Ẏ

Ż

 (8)

The desired values for µ, ν and l are given by the constants
µd, νd and ld respectively.

We can now describe the relationship between the position
of the gripper/camera (mass m) in the base frame and the
position of the object in the camera frame. Let Px and Py

be the (fixed) qx and qy position of the center of the object.
We then have

X = Px − qx Ẋ = −q̇x
Y = Py − qy Ẏ = −q̇y
Z = qz − h Ż = q̇z

(9)

where qx, qy, qz describe the position of the gripper/camera
(mass m) in the base frame, and X,Y, Z the position of the
object in the camera frame. It can be noticed from (9) and
figures 1-2 that when the gripper/camera (mass m) moves
in the positive qx direction, the object in the image plane
moves in the negative µ direction and vice versa. The same
holds for movement in qy and ν direction. This is because
not the object is moving, but the camera. Furthermore, since

L is constant in (7), we have Z =
fL

l
and (8) becomes

 µ̇
ν̇

l̇

 =

 − l
L 0 − µl

fL

0 − l
L − νl

fL

0 0 − l2

fL


︸ ︷︷ ︸

∆(µ,ν,l)

 q̇x
q̇y
q̇z

 (10)

We can then describe the dynamics of the P&P system with

vision by q̇
ṗ
τ̇

 =

 0 I 0
−I −D 0
0 ∆(τ) 0




∂H
∂q

∂H
∂p

∂H
∂τ

+

 0
ū
0

 (11)

with τ = (µ, ν, l)⊤, ū = (ux, uy, ūz)
⊤, V (q) = 0 in the

Hamiltonian (4) and matrix ∆(τ) as in (10). Notice that since
l describes the length of the object, l ≥ 0 always holds. The
matrix ∆(τ) is then always negative semi-definite.

III. A PORT-HAMILTONIAN APPROACH TO IBVS
CONTROL

In this section we present how to realize a PH closed-loop
system, such that the gripper of the P&P system moves to a
desired position based on only the camera states. The main
advantages of IBVS control is that it reduces computational
time, eliminates the necessity for image interpretation and
eliminates errors due to sensor modeling and camera cali-
bration [9].

First, we define bounds on the 2-norm for the matrix ∆(τ).
We can write for ∆(τ) in (10)

∆ = Λ
l

L
, ||∆|| ≤ ||Λ|| ||l||

L
(12)

A matrix Λi×j satisfies [10] 3

1√
i
||Λ||∞ ≤ ||Λ||2 ≤

√
j||Λ||∞ (13)

Let N be the maximum sensor dimension, such that
|µ|, |ν|, |l| ≤ N . The focal length f exclusively depends on
the image sensor format, the working distance and the object
size. Nevertheless, in most cameras the focal length is larger
than the image sensor dimensions. We can then say that l < f
holds for most applications, such that ||Λ||∞ ≤ (1+ N

f ) and

||l||2

fL
<

1√
3
(1 +

N

f
)
||l||
L

(14)

We then have for ∆(τ)

||l||2

fL
≤ ||∆(τ)|| ≤

√
3(1 +

N

f
)
||l||
L

(15)

Theorem 1: Consider system (11) and a constant positive
definite matrix K. Assume that l < f and that

km >
3f

4Ldm
(1 +

N

f
)2 (16)

with km the smallest eigenvalue of K and dm =
min{d1, d2, d3}. Define the control input by

ū = MK ˙̄τ +DKτ̄ + v (17)

with new input v, τ̄ = τ − τd and τd = (µd, νd, ld)
⊤. Then,

the control input (17) with v = 0 exponentially stabilizes the
system (11) in τ = τd.

3|| · ||s denotes the matrix s-norm. Unless otherwise defined, || · || denotes
the 2-norm.
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Proof. Consider the coordinate transformation given by

p̄ = p−MKτ̄ (18)

Since ˙̄p = ṗ−MK ˙̄τ (19)

the input (17) with v = 0 realizes a system which is
described by the coordinate p̄, i.e., 4

 q̇
˙̄p
˙̄τ

 =

 0 I K
−I −D 0

−K ∆(τ) ∆(τ)K




∂H̄
∂q

∂H̄
∂p̄

∂H̄
∂τ̄

 (20)

with
H̄ =

1

2
p̄⊤M−1p̄+

1

2
τ̄⊤τ̄ (21)

For the system (20) we then have

˙̄H = −

[
∂H̄
∂p̄

∂H̄
∂τ̄

]⊤ [
D 0

−∆(τ) −∆(τ)K

][
∂H̄
∂p̄

∂H̄
∂τ̄

]
(22)

Based on (15) equation (22) then satisfies

˙̄H ≤ −

[
||∂H̄∂p̄ ||

||∂H̄∂τ̄ ||

]⊤  dm −B
2 ||l||

−B
2 ||l||

km||l||2
fL


︸ ︷︷ ︸

A

[
||∂H̄∂p̄ ||

||∂H̄∂τ̄ ||

]

(23)
with

B =

√
3

L
(1 +

N

f
) (24)

The matrix A is positive definite when

dmkm
fL

||l||2 >

(√
3

2L
(1 +

N

f
)||l||

)2

(25)

from which (16) is derived such that ˙̄H ≤ 0. Then, H̄ and
˙̄H satisfy

a1||ω||2 ≤ H̄ ≤ a2||ω||2 (26)

˙̄H ≤ −a3||ω||2 (27)

with a1, a2, a3 positive constants and ω = (p̄, τ̄)⊤. Following
the proof of exponential stability in [10], all trajectories
starting in {a2||ω||2 ≤ b} for a sufficiently small b remain
bounded. From (26) we see that ||ω|| satisfies the bound

||ω||2 ≥ H̄

a2
(28)

We can then write
˙̄H ≤ −a3

a2
H̄ (29)

Separation of H̄ and t gives

dH̄

H̄
≤ −a3

a2
dt (30)

resulting in

H̄(ω(t)) ≤ H̄(ω(0))e−λt, λ =
a3
a2

(31)

4Since τd is constant, ˙̄τ = τ̇ .

Since in (26) we see that ||ω|| ≤
√

H̄
a1

, we have that

||ω(t)|| ≤
(
H̄(ω(t))

a1

) 1
2

≤
(
a2
a1

) 1
2

||ω(0)||e−λ1t, λ1 =
a3
2a2

(32)

which shows that ω = (p̄, τ̄) converges to zero exponentially.
If all the assumptions hold globally, b can be chosen arbi-
trarily large and (32) holds globally. Since any square matrix
can be described by the sum of a symmetric matrix with a
skew-symmetric matrix, system (20) can be described in the
PH form (1). �

The total control input u is then given by

u = ρ(q)+MK ˙̄τ+DKτ̄+v, ρ(q) = (0, 0,mg)⊤ (33)

with v = 0.

IV. DESIGN ANALYSIS

A. Controller properties and robustness

In the previous section we presented a PH approach to
IBVS control of a P&P system. The total control input (33)
has the PD plus gravity cancelation structure presented in
[16], since we also compensate for the gravitational force
that pulls the mass m down. The controller however has the
disadvantage that we need to know the matrices M and D.
The assumption that the matrix D is known is not realistic.
To analyze the robustness to uncertainty in the damping
matrix we first make the following assumption.

A. 1: The matrix D is defined as the sum of a known
constant matrix D0 and an unknown/uncertain matrix D̂, i.e.,

D = D0 + D̂, −δ1I ≤ D̂ ≤ δ2I (34)

with known constants δ1, δ2. ▹

Notice that when there is uncertainty in the matrix D, that

ū = MK ˙̄τ +DKτ̄ − D̂Kτ̄︸ ︷︷ ︸
ue

+v (35)

instead of (17), with ue = D̂Kτ̄ the error in the control
input due to damping uncertainty. By following the same
steps as in the proof of Theorem 1 with v = 0 we get the
closed-loop system

 q̇
˙̄p
˙̄τ

 =

 0 I K

−I −D −D̂K

−K ∆(τ) ∆(τ)K




∂H̄
∂q

∂H̄
∂p̄

∂H̄
∂τ̄

 (36)

For which we have

˙̄H = −

[
∂H̄
∂p̄

∂H̄
∂τ̄

]⊤ [
D D̂K

−∆(τ) −∆(τ)K

][
∂H̄
∂p̄

∂H̄
∂τ̄

]
(37)
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and which satisfies

˙̄H ≤ −1

2

[
||∂H̄∂p̄ ||

||∂H̄∂τ̄ ||

]⊤  dm −B||l||

−B||l|| km||l||2
fL


︸ ︷︷ ︸

A1

[
||∂H̄∂p̄ ||

||∂H̄∂τ̄ ||

]

−1

2

[
||∂H̄∂p̄ ||

||∂H̄∂τ̄ ||

]⊤  dm δMkM

δMkM
km||l||2

fL


︸ ︷︷ ︸

A2

[
||∂H̄∂p̄ ||

||∂H̄∂τ̄ ||

]

(38)

with B as in (24), δM = max{δ1, δ2} and kM the largest
eigenvalue of matrix K. Matrix A1 is positive definite when

dmkm
fL

||l||2 >

(√
3

L
(1 +

N

f
)||l||

)2

(39)

which results in the condition on km

km >
3f

Ldm
(1 +

N

f
)2 (40)

Matrix A2 is positive definite when

dmkm
fL

||l||2 > δ2Mk2M (41)

For simplicity, it is possible to write kM = αkm, with α ≥ 1.
We can then rewrite (41) resulting in

||l|| >

√
δ2Mα2kmfL

dm
(42)

for matrix A2 to be positive definite. Exponential stability
can now be proven as in the proof of Theorem 1. It can be
noticed that condition (40) is relatively straightforward, but
that (42) imposes a lower bound on ||l||, which is difficult
to guarantee. The following proposition defines a region of
attraction based on (42).

Proposition 1: Consider the closed-loop system (36) real-
ized by the input with damping uncertainty (35) and v = 0.
Assume that (40) and (42) are satisfied. Define constants
α ≥ 1 and β > 1 such that

kM = αkm ≥ km (43)

km = β
3f

Ldm
(1 +

N

f
)2 >

3f

Ldm
(1 +

N

f
)2 (44)

in order to describe km and kM in (40) and (42) in terms of
the system parameters. Then, the closed-loop system (36) is
exponentially stable with region of attraction given by

{ξ ∈ R9 : ||ξ|| < γ}, γ =
Ldm

δMα
√
3β(1 + N

f )
(45)

with redefined state ξ = (q̄, p̄, τ̄)⊤, q̄ = (qx, qy, qz − h)⊤.

Proof. We explained above that we can take the same steps
as in the proof of Theorem 1 to prove exponential stability of
the closed-loop system (36), which is realized by the input
with damping uncertainty (35) and given that conditions (40)

and (42) are satisfied. Recall from section II that l = f
ZL

and from (9) that Z = qz −h. We can then rewrite (42) into

fL

||qz − h||
>

√
δ2Mα2kmfL

dm
(46)

which then gives

||qz − h|| < fL√
δ2Mα2kmfL

dm

(47)

With (44) we can simplify (47) into

||qz − h|| < Ldm

δMα
√
3β(1 + N

f )
(48)

Define q̄ = (qx, qy, qz − h)⊤. Since

||qz − h|| ≤ ||ξ|| (49)

with ξ = (q̄, p̄, τ̄)⊤, we have the (conservative) region of
attraction given by (45). �

It can be seen that when there is an error due to uncertainty
in the matrix D, that exponential stability holds for a specific
region of attraction. Notice that the region of attraction is
made smaller when increasing β, which means increasing
km, see (44).

B. Implementation issues

So far we have assumed that the vision system works
perfectly. However, there are a few issues that can cause
problems in a practical setup. The fast motions of the gripper
can cause motion blur. Techniques exist to compensate for
motion blur, but are usually for constant speed motions [1].
Motion blur can also be reduced by a shorter exposure time
of the camera, however, more light is then needed to have a
good quality image. Images may also appear blurred if too
close or too far away from the camera, unless the camera
has autofocus capabilities. Furthermore, for vision systems
it is very important to keep objects in the image plane. In the
previous sections we showed that the gripper/camera of the
P&P system converges exponentially to the desired position.
Assuming that the system starts at t = 0 from a position at
which it is at rest (zero velocity), then the Hamiltonian (21)
with p̄ as in (18) satisfies

H̄(0) =
1

2
τ̄⊤(0) (KMK + I) τ̄(0) (50)

since at rest p(0) = 0. The passivity property of PH systems
implies that H̄(t) ≤ H̄(0), and we can then conclude that

||τ̄(t)|| ≤ ||τ̄(0)||, t ≥ 0 (51)

V. SIMULATION EXAMPLE

In this section we test te designed controller of section III
on the system shown in figure 1 and described by (11). For
simulation purposes we also assume that all parameters are
known. The goal is to bring the center of the object to the
center of the camera, i.e., µd = 0, νd = 0, since then qx = Px

and qy = Py . The mass m (gripper/camera) is then right
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above the object. The distance to the object is then controlled
by bringing the object to a position such that the length of
the object in the image l is equal to the desired value ld.
See also figure 2. For simplicity, take m = d1 = d2 =
d3 = 0.5. The camera is assumed to have an image sensor5

with dimensions 5× 4 mm and focal length f = 5 mm. The
object is assumed to have dimensions 20×20 mm and height
h = 10 mm. The desired object length in the image plane
is set to ld = 2 mm, which coincides with qz = 0.06 m.
Furthermore, we choose K = diag{500, 500, 500}, which
satisfies (16). Figure 3 shows the simulation results when
there is no damping uncertainty, when D0 > D (dashed red)
and D0 < D. The first column shows the position error

0 2 4 6
−2

−1

0

1
x 10

−3

Time (s)

µ−
µ d (

m
)

Object position error 
   in image plane     

0 2 4 6
−1

0

1

2
x 10

−3

Time (s)

ν−
ν d (

m
)

0 2 4 6
−2

−1

0
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Time (s)
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m
)

0 2 4 6
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m

)
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       in base frame        

0 2 4 6
0.5
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0.65

Time (s)
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Fig. 3. Trajectories for the P&P system. Initial conditions:
[q(0) p(0)] = [0.5 0.5 0.4 0 0 0]. Object position: Px = 0.4
m, Py = 0.6 m. Solid blue lines: D0 = D, dashed red lines:
D0 = 1.25D, dotted black lines: D0 = 0.75D.

of the object in the image plane, while the second column
shows the position of the gripper with camera (mass m) in
the base frame. The figure shows that the error trajectories
for the camera states converge to zero, which means that
the camera position qx, qy converge to the object position
Px, Py (also shown in the results) and qz converges to the
specified 0.06 m. We emphasize again that positioning of
the camera (and so of the mass) is realized by a feedback
control depending only on the camera states µ, ν and l.

VI. FINAL REMARKS

We have presented a PH approach to visual servo control
of a P&P system. The camera dynamics based on perspective

5In practice a charged-coupled device (CCD) or complementary metal-
oxide semiconductor (CMOS).

projection modeling introduce nonlinearities in the whole
system. Based on a coordinate transformation we realize a
PD controller that exponentially stabilizes the system, using
only the camera states. We also analyzed robustness of the
results, since the PD controller requires exact knowledge of
the damping coefficients. When there is damping uncertainty
we prove that exponential stability holds for a region of
attraction, and give an estimate of this region.
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