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A Port Ontology for Conceptual
Design of Systems
During conceptual design of systems, the emphasis is on generating the system architec-
ture: the configuration of sub-systems and the interactions between them. Ports, as loca-
tions of intended interaction, play an important role at this stage of design. They are
convenient abstractions for representing the intended exchange of signals, energy or
material; they can be applied at different levels of detail, across different energy domains,
and to all aspects of design: form, function, and behavior. But to play this versatile role,
ports need to be represented in an unambiguous yet flexible fashion, accommodating the
differences in vocabulary and approach across different disciplines and perspectives. In
this article, we introduce the semantic structure for such an unambiguous representation:
a port ontology. The ontology formalizes the conceptualization of ports such that engi-
neers and computer aided design applications can reason about component connections
and interactions in system configuration. It defines ports in terms of form, function and
behavior attributes and further includes axioms that can be used to support a variety of
engineering design tasks, such as port refinement, port compatibility checking, and the
instantiation of interaction models. A LEGO example is used to illustrate the ontology and
its applications in conceptual design. @DOI: 10.1115/1.1778191#

Introduction

Ports are defined as locations of intended interaction between a

component and its environment. Together they constitute the in-

terface of a component, and define its boundary in a system con-

figuration. As illustrated in Fig. 1, the conceptual design of a

windshield wiper system can be represented as a configuration of

components or sub-systems that interact with each other through

well-defined interfaces. The port connections represent interac-

tions consisting of the exchange of energy, matter or signals ~in-

formation!. For instance, the configuration interface of the motor

in Fig. 1 has ports for the stator, the shaft of the rotor, and the

electrical connectors. The interactions between components ~sub-

systems! are indicated in the graph by the connections between

ports.

Representing design alternatives as configurations of port-based

objects is useful at the conceptual design stage when the geometry

and spatial layout is still ill-defined. At this stage of design, the

emphasis is on generating the system architecture, and this archi-

tecture can be captured conveniently as a ~hierarchical! configu-

ration of port-based interfaces. As an example, consider a satellite

system which is typically composed of a propulsion system, an

electrical power system, a thermal management system, a control

system, a communication system, and the mechanical structure

connecting all the other systems @1#. Designers rarely deviate from

this top-level decomposition ~partly due to the alignment between

subsystems and human organizational structures!; however, for

each subsystem, there exists a large variety of solutions and/or

further decompositions. A graph representation is an important

tool for a systematic ~possibly automated! exploration of this mul-

titude of design alternatives.

Representing systems as port-based objects is particularly use-

ful in the context of collaborative design @2#. Design problems are

often decoupled by discipline into multiple problems solved sepa-

rately. However, the decoupling is rarely complete so that infor-

mation regarding other subsystems needs to be exchanged, up-

dated, and integrated frequently throughout the design process. An

explicit, formal interface between decoupled subsystems, as pro-

vided by ports, allows information management systems to propa-
gate design changes to the other connected subsystems efficiently.

Although there has been previous work on the development of
comprehensive design representations that recognize the decom-
position of artifacts from a functional and systems perspective
@3–5#, there has been little attention paid to the representation of
ports. The goal of this article is to provide an unambiguous rep-
resentation framework in which design decisions about compo-
nent interactions can be captured at the conceptual design stage,
and in which knowledge about system composition can be ex-
pressed to support computer reasoning. This leads to the following
two questions: Which types of knowledge and information about
component interactions should be captured to support system
design? And how should this knowledge and information be
formalized?

As has been previously recognized, design knowledge can be
represented in terms of the three complementary aspects: function,
behavior and form ~or structure! @6#. These three aspects also form
the foundation of the port ontology introduced in this article. They
are formalized through a set of attributes and relations between
them. By combining these attributes, a virtually infinite set of
ports can be defined. In addition, the port ontology includes axi-
oms to support compatibility checking and the instantiation of
interaction models. A LEGO example is used to illustrate these
applications of the port ontology.

Past Work on Ports in Engineering Design

The idea of including the port concept in conceptual design
modeling is not new. Early work by Roth @7# identified different
types of mechanical connections ~with zero or more degrees-of-
freedom!. He recognized that mechanical connections always re-
sult from parts in contact through sets of surfaces:
Wirkflächenpaarungen—the equivalent of ports. Horváth et al. @8#
further developed these ideas and classified port concepts used in
conceptual design into external, internal, concrete and abstract
ports. The external ports denote the energy, material or signal
interfaces between a component and its environment. The internal
ports, on the other hand, refer to the interfaces of the sub-
components—they are internal to a component. Abstract ports
represent the interfaces of abstract design entities, while concrete
ports represent the interfaces of design entities with specified ge-
ometries. In related research @9#, various situational relations be-

Contributed by the Engineering Informatics ~EIX! Committee for publication in

the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING.

Manuscript received May 25, 2003; revised June 1, 2004. Associate Editor: S.

Szykman.

206 Õ Vol. 4, SEPTEMBER 2004 Copyright © 2004 by ASME Transactions of the ASME

Downloaded 28 Apr 2011 to 131.180.81.145. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



tween design entities are also formalized into seven ‘‘situation
views,’’ such as morphology, relative position and structure. In
this article, these situation views are folded into the port ontology
as constraints on attributes of connected ports. Ports are also used
in Schemebuilder @10#, where they formalize the connections of
elements. They are classified statically as either power, material,
or information ports, each with a specified flow direction. No
other characteristics, such as geometry or intended use, are con-
sidered. Singh and Bettig @11#, on the other hand, focus primarily
on the geometric aspect of ports in the context of component
assembly. They provide conditions for compatibility and connect-
ability and suggest several static labeling schemes for ports.

In this article, multiple perspectives ~form, function, and behav-
ior! are combined in a comprehensive view of ports. This work
builds on earlier contributions by Sinha @12# who defined ports as
locations of intended interaction between a component and its
environment. Sinha separated interaction concepts from compo-
nent connections at the behavioral model level. The type of inter-
action between two components is determined based on the com-
ponent’s port attributes. Instead of using statically defined port
types, Sinha used attribute grammars to provide flexibility in de-
fining and retrieving components with compatible port informa-
tion ~e.g. intended use, material, and CAD features!. From a set of
primitive attributes, ports in any system and all application do-
mains can be represented by refining the primitives into domain-
specific concepts. In this article, we provide a formal definition of
ports and their attribute structures as a foundation for supporting
such domain-specific refinements.

Why Ports?

Ports are more than just a convenient abstraction for represent-
ing component interactions in system configuration. In this article,
ports are formalized to represent the functional, behavioral, and
structural, relationships between components. Although the con-
cepts of form, function and behavior are commonly used in engi-
neering design, in the context of ports, these concepts have a
much more restricted scope: interactions between components.
With respect to the representation of function, ports correspond to
flows—a change in material, energy or signal over time @13#. The
notion of exchange of material, energy or signals is also used in
behavioral modeling. For instance, the bonds in bond-graph mod-
eling represent energy flow @14#. When connecting two compo-
nents, the energy, material, or signals flowing out of one compo-
nent must flow into the other component, resulting in conservation
models. Connecting two components also imposes constraints on
the form of the ports. For instance, the choice of a ‘‘120V AC
plug’’ for one component requires a very specific geometry of the
mating component, the outlet.

Formalizing functional, and behavioral and structural aspects of
ports is needed to support composition or configuration in systems
design. Teams of designers working on the design of the indi-

vidual components of a system need to communicate clearly and
unambiguously which decisions they have made about the com-
ponent interaction. At the early stages of design, such decisions
may be limited to functional specifications, but as the design pro-
cess progresses, more and more geometric specifications will be
used. To maintain as much flexibility as possible in future design
decisions, it may be desirable for the designers to specify only
those port characteristics that impact their design decisions about
the internals of the component. Yet, even such partial port speci-
fications need to satisfy certain compatibility constraints. A formal
representation of ports would allow design teams to communicate
their decisions with each other and verify whether their decisions
remain compatible.

A second important reason for formalizing ports during concep-
tual design is that in formal port representations, associations are
stablished between form, function, and behavior. These associa-
tions can then be used to support a variety of composition tasks.
For instance, in Fig. 2, each configuration interface is linked
through port associations to a container of behavioral models.
These integrated product representations may also include func-
tional and geometric models, and the associations between them.
The associations between the ports of the configuration interface
and the ports of the corresponding behavioral models are often,
but not always, one-to one mappings. For instance, the DC motor
has three configuration ports, two for transferring mechanical en-
ergy and one for electrical energy. The configuration port for the
shaft of the DC motor corresponds in the behavioral view to a
single port conveying rotational mechanical energy, but the con-
figuration port for the electrical connection is modeled as two
electrical behavioral ports, one for each wire. Such associations
are established by explicitly specifying the relations among
form, function, and behavior of the components in the design
representation.

As a result of the associations between configuration interfaces
and the corresponding simulation models, the definition of a sys-
tem architecture as a composition of component objects provides
the necessary information to compose the corresponding behav-
ioral models into a system-level model @12#. As is shown in Fig. 2,
the design configuration consisting of the pulley mounted onto the
motor shaft is represented by a motor object and a pulley object
connected through their rotor and shaft ports, respectively. When
composing the components at the configuration level, one has to
consider not only the composition of the underlying simulation
models of the components but also the interaction models that
describe the interactions between components @12#. For example,
in Fig. 2, when the rotor port is connected to the shaft port, the
connection of their simulation models is not a straightforward
connection. The corresponding system simulation model is ob-

Fig. 1 A system represented as a configuration of configura-
tion interfaces.

Fig. 2 An integrated product representation specifies the
composition of a DC motor and a pulley.
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tained by connecting the ports of the simulation models of the
motor and pulley through the rotor-pulley interaction model.

Having established the importance of ports in the context of
systems design, consider now the importance of defining a port
ontology. In order for product models to be useful for knowledge
representation, the information encoded in the models needs to be
unambiguously understood by all processing agents ~human as
well as computer agents!, independent of their perspectives,
physical locations, and times. Ambiguity may arise when multiple
terms are used to mean the same thing, or when one term is used
with multiple meanings. For example, a design concept may have
multiple descriptions: a hinge can also be called a rotary joint, or
a groove can also be called a notch. The representation of ports is
particularly susceptible to such ambiguity because ports reach
across disciplines, each with their own concepts and vocabulary.
To eliminate such ambiguity, a common port ontology is needed
to provide application developers a common vocabulary to de-
scribe their ports. However, the implementation of such ontology
is not straightforward. One has to consider carefully which con-
cepts to include in the ontology and how to represent them.

Related Work on Design Ontologies

There are two common approaches to support unambiguous
computable representations: labels and metadata. These two ap-
proaches provide different levels of using symbols in the repre-
sentation. The label approach considers only the semiotic or syn-
tactic consistency among concepts. The metadata approach
provides further meanings to the symbols that are used in the
representation. Giving a port a unique label or a name is a com-
mon implementation in computer aided design applications. The
benefit of using labels is that they are easy to create by the de-
signers. However, the labeling approach does not include seman-
tics in its representation and therefore requires extra effort to sort
and retrieve synonyms and maintain relations among the same
terms used for different design concepts.

The metadata approach, on the other hand, assigns primitive
and compound attributes to the terms used to define concepts. This
makes it more general than the labeling approach since it com-
pares not only the labels of the concepts but also the semantics
represented by the attributes. For example, a hinge can be defined
as a connection that does not resist an external moment around the
hinge axis. If a rotary joint is defined with the same degree of
freedom attribute, then a computer application or engineer can
infer that a hinge is also a rotary joint.

However, the implementation of the metadata approach is not
straightforward. The definition language must have the capability
to define not only the syntax productions but also the semantic
rules for the design concepts. In the past decade, syntactic meta-
data definition languages such as the Extensible Markup Lan-
guage ~XML! @15# or EXPRESS @16# have been developed and
used to represent design concepts and design products. While
XML provides an important solution for making Internet informa-
tion computer interpretable, it has by itself limited expressiveness
for describing the relationships between concepts, and is therefore
not suited for representing ontologies. XML regulates only syn-
tactic and structural relationships among tags. Most of the seman-
tics of the tags ~other than ‘‘has-a’’ and ‘‘one-of’’ relations! have
to be hard coded within the parsing modules of the applications.
Even a simple change of a tag label requires changing the code of
all the parsers.

These syntax ambiguities of the metadata can be eliminated by
introducing semantic metadata as defined in an ontology. The on-
tology is the content theory that specifies the concepts and their
relations used in a specific knowledge domain ~domain of dis-
course! @17#. Recently, more expressive languages than EXPRESS
and XML have been defined in support of ontologies. Constructs
in the ontology language are associated with semantic models so
that they can be used to infer the meanings of the relationships
and support unambiguous data exchange and definitions.

Ontologies consist of both concept taxonomies and axioms, al-
lowing computer programs to share, exchange, extend, reuse and
translate information and knowledge within the domain of dis-
course. The representations can be based on either frame-based
languages or description logic languages @18#. In frame-based lan-
guages such as Ontolingua @19#, the knowledge domain is de-
scribed using frames and slots. The frames and slots are similar to
the classes and attributes in object-oriented modeling except that
the slots can be defined outside the definition of the frames, pro-
viding additional options to refine and specify the attributes. Simi-
lar to the frames and slots defined in the frame-based languages,
the description logic languages use concepts and roles as the two
basic elements to define a knowledge domain. While frame-based
languages are usually supported by first-order logic reasoners, de-
scription logic languages only use a subset of the first-order logic
constructs. This subset remains highly expressive but is at the
same time decidable @20#, a desirable property that is lost in first-
order logic. Representative description logic systems include
CLASSIC @21#, FaCT @22#, and RACER @23#.

Recently, two ontology languages, the DARPA Agent Markup
Language ~DAML! @24# and DAML1OIL ~Ontology Inference
Layer! @25,26# have been merged and extended into the Web On-
tology Language ~OWL! as a W3C working draft @27#. Both
frame-based logic and description logic reasoners can be used to
handle OWL. So far, these languages have been used to build
ontologies mostly in the areas of computer science and social
sciences @28,29#. Only a few research efforts are underway in the
engineering design area.

Two notable research efforts in design ontologies are taking
place at the Delft University of Technology and at Osaka Univer-
sity. In Delft, Horváth and co-authors @9,30# have defined a gen-
eral ontology for design concepts and proposed a nucleus-based
conceptualization to describe the interactions between design con-
cepts. A nucleus describes the interactions between two objects or
devices as a set of connected surface regions. The nucleus concept
applies primarily to the mechanical domain. From what we have
described in the previous section, we envision that the ports and
their connections can be used in multiple domains. As compared
to the nucleus concept, the ports can be thought of as the interact-
ing surface regions while the connections correspond to the nu-
clei. One important difference in approach is that, in the nucleus
based approach, the behavior models are defined in the design
concepts rather than in the nuclei.

In Osaka, Kitamura and Mizoguchi @5,31# have proposed an
extended device ontology to describe artifacts, based on intended
use, as compositions of devices which process input and produce
output. This device ontology is part of a research effort for devel-
oping a functional concept ontology in support of function-based
design. In relation to ports and interactions, the authors describe
device connections in terms of conduits, input/output ports, oper-
ands, mediums or objects. When used in mechanical systems, a
conduit is a physical component that conveys or transfers flows
from one device to the other in an ideal fashion ~e.g. a shaft, wire,
or pipe!. A conduit is virtual when it is used to describe the con-
tact conditions ~point, line, or surface! between mechanical ele-
ments. No detailed geometrical and functional attributes are used
to describe the ports—their purpose is solely as a placeholder for
input and output flows ~operands, mediums, or objects!. The port
ontology introduced in this article can be considered as another
conceptualization of component interactions. However, it treats
connections as virtual by default and defines ports in terms of
form, function, and behavior attributes. This provides more flex-
ibility and extensibility in support of many design tasks in con-
ceptual design, such as component composition and component
refinement, as is illustrated later in this article.

Design and Definition of the Port Ontology

As pointed out earlier, ports are characterized by form, function
and behavior aspects. In this section, these aspects and the rela-
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tions between them are investigated more closely and their repre-
sentation is formalized in classes, properties and axioms.

The Structure of the Port Ontology. The main focus of the
port ontology is on port classes. The port classes define, at differ-
ent levels of abstraction, the types of ports that can be used in
systems design. These ports are also part of the ontology for arti-
facts, in which not only the interface ports but also the internal
characteristics of components and sub-systems are defined. Al-
though there is bound to be a strong connection and some overlap
between a port ontology and an artifact ontology, it is still mean-
ingful to capture the specific characteristics of ports as a separate
ontology.

In addition to port classes, the port ontology also contains
classes for attributes of ports. Instead of having ports directly
defined by the semantic constructs, an intermediate attribute layer
is defined in between the OWL constructs and port classes. The
resulting structure of the port ontology consists then of three lay-
ers: the ontology layer, the concept layer, and the OWL layer ~Fig.
3!. The port ontology layer and attribute layer will be described in
detail later in this section. The OWL layer is an implementation
layer, which may be replaced by other implementations such as
native description logic languages or restricted frame-based rep-
resentations. OWL is based on the Resource Definition Frame-
work and Schema ~RDF/RDFS!, which in turn is serialized in
XML syntax. RDF and RDFS provide a simple semantic model
for interpreting customized tags. It allows one to define inherit-
ance relationships for both classes ~resources in RDF! and prop-
erties ~any generic association between concepts!. OWL further
extends the expressiveness of RDF/RDFS by including
constraints.

The use of attributes to define ports allows one to formulate
knowledge about the ports in more general axioms. For instance,
rather than describing compatibility between any two ports di-
rectly, one could generalize the knowledge by defining it in terms
of the form attributes of the ports. The same axiom then applies to
all the ports that share these particular form attributes.

The introduction of the attribute layer also allows the ontology
to be extended more easily. It is not possible to have a complete
set of class definitions for conceptual design—engineers may need
to add new attributes to define new design concepts. If the design
concepts were defined using fixed class schemas, the engineers
would have to use an ad hoc attribute list to attach new design
information, as is for instance common practice in IFC ~Industry
Foundation Classes! @32#. The problem with such a generic at-
tribute list is that it lacks clear semantics—it does not allow one to
establish ~semantic! relationships between attributes. By forcing a
designer to define new attributes as classes and insert them into
the attribute layer before using them, it is easier to maintain the
consistency of the ontology ~e.g., one can establish equivalence
relationships between identical attributes with different names!
and extend the previously defined axioms ~e.g., an existing axiom
that refers to all the children of a given attribute can be automati-
cally extended by adding a new child attribute!.

The set of all port attributes has been divided into three main
categories—each represented by a top-level abstract class: form-
attribute, function-attribute and behavior-attribute.

Form Attribute Classes. Form attributes describe all charac-
teristics of ports that relate to geometry. Although during concep-
tual design, the complete geometry of a port is not yet determined,
it is still important to consider some geometric aspects. For ex-
ample, a port transferring rotational mechanical energy can be
characterized already during conceptual design by the rotation
axis of the port. This attribute can then be used to specify that the
rotation axis must be aligned with the rotation axis of the connect-
ing port. In addition to supporting the definition of partial geom-
etry during conceptual design, the ontology should provide suffi-
cient flexibility to refine this partial geometry incrementally into a
fully defined detailed design.

To achieve these goals, the ontology includes the following
sub-classes of attribute, as shown in Fig. 4: form-attribute,
location-attribute, form-feature, and aggregate-feature. The base
class, from which all geometric attributes derive, is form-attribute.
Each form attribute has a location-attribute that indicates the po-
sition and orientation of the form attribute relative to its parent in
an aggregation hierarchy. The top of this hierarchy is the compo-
nent of which the port is part. Each port can then have multiple
form-attributes for which the location is defined relative to the
reference frame of the component. If one of these form-attributes
is an aggregate-feature, then the locations of all the children in the
aggregation are referenced relative to the location of the parent,
i.e., the aggregate-feature, rather than the component. The loca-
tion may not be fully defined until embodiment design—partially
defined or even undefined location-attributes are allowed.

The intended interaction region of a port can be defined in
terms of primitive geometric form-features, such as points, curves,
and surfaces. In addition, more complex form features can be
defined as aggregations of form-features. Both simple and aggre-
gate form features can be mapped to existing CAD features
@33,34#. These CAD features often define commonly used geo-
metric concepts such as cylinders or holes—possibly including
chamfers, rounds, etc.

Form features and aggregate features differ from CAD features
in that they may represent complex geometries without specifying
all the geometric details. Such features are especially useful dur-
ing conceptual design because they allow the designer to establish
the associations between the form of a port and its function and
behavior without having to define all the detailed geometry. One
class of such incompletely defined form features are standardized
features that can be unambiguously referred to by a single label,
e.g., a 120V AC plug. ~This is the type of form features used in
the LEGO example in the next section.! Even though the detailed
geometry is not specified explicitly, it is implied in the use of the
standardized label. As a result, one can define compatibility axi-

Fig. 3 Main Structure of the port ontology.

Fig. 4 Relations among form-attributes.
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oms that refer directly to the labels rather than to the underlying
geometry. For instance, a standard 120V AC plug is compatible
only with a standard 120V AC outlet.

A second class of incompletely defined form features consists
of parameterized families of partially defined port geometry. For
example, a heat sink port may have form features indicating its
size as a bounding box and its total surface area, but without
specifying the number and exact geometry of the fins. This allows
one to associate the surface area specification with a correspond-
ing behavioral parameter, or use the bounding box for geometric
interference checking. Later, during detail design, the partially
defined form features can be mapped to fully specified CAD
descriptions.

Based on these basic concepts, there exist multiple methods for
describing a single port-attribute relation. Depending on the de-
sign stage, one method may be preferred over another. Consider a
scenario in which an engineer is designing a connection plate that
connects four beams, as is illustrated in Fig. 5. The scenario starts
at ~a! where the connection plate has an aggregate port with four
port elements (M54). When the engineer decides to use bolt
connections for each individual port, he expands the port defini-
tion with multiple form features, one for each of the bolts ~b!;
however, the number of bolts, N, may not be decided until the
detail design stage. To increase the connection’s resistance to mo-
ments, the engineers then decide to combine the bolt connection
with welds, which expands the port declaration into ~c! where
each port is associated with an aggregate-feature ~weld and

bolt form features!. Only during detail design are these form

features further defined into complete, CAD-based geometry

specifications.

Function Attribute Classes. Function attributes describe the

intended use of a port. Functions have been researched exten-

sively, and we therefore leverage the concepts defined by others.

In @35#, product functions are specified as ‘‘verb-object’’ pairs, in

which the function corresponds to the active ‘‘verb,’’ and the flow

corresponds to the ‘‘object.’’ ~Note: The grammatical ‘‘objects’’ in

this paragraph are not to be confused with the object-oriented

‘‘objects’’ in the rest of the paper.! The flow is thus the recipient of

the function’s operation. For example, an electric motor converts

~verb! an electrical energy flow ~object! into a mechanical energy

flow ~object!. Since ports are specifically intended to facilitate the

interaction between a component and its environment, the func-

tions related to ports are limited to interaction functions such as

‘‘transfer’’ ~of energy, material, or signals!, ‘‘connect’’ ~join or

link!, or ‘‘support’’ ~secure and position!. A ~partial! graph of

function attributes for ports is shown in Fig. 6. Multiple of these

function attributes can be combined to describe a single port.

We consider the definition of any ‘‘energy flow’’ to encompass

the static case in which no energy is actually flowing ~e.g., the

‘‘join’’ or ‘‘link’’ interactions identified above!. Each energy flow

can be represented by power conjugate complements: effort and

flow variables @35#. For static interactions, the effort variable is

Fig. 5 Three possible cases of relations between form attributes and ports. „The numbers by the arcs repre-
sent cardinality or multiplicity.…

Fig. 6 Function attributes used in the port ontology.
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zero ~resulting in zero energy flow!, but the flow variable is non-
zero so that the interaction—the transfer of effort—is still ad-
equately characterized.

As in @35#, ‘‘transfer’’ functions are associated with flows of
energy, material, or signal. Using this definition, the ‘‘transfer’’
function attribute can be refined into ‘‘transfer-energy,’’ ‘‘transfer-
material,’’ or ‘‘transfer-signal.’’ The energy flows can be further
refined as electrical, mechanical, and hydraulic, etc. for which
there exist corresponding energy conjugate variables, such as
‘‘voltage’’ and ‘‘current.’’

The ‘‘connect’’ function has two child functions: ‘‘link’’ and
‘‘join.’’ The ‘‘join’’ function connects two ports in a predeter-
mined manner while the ‘‘link’’ function connects two ports
through an intermediary flow @35#. In the context of port connec-
tions, the join function connects two ports directly, while the link
function connects two ports through an intermediary artifact or
model. For example, the shaft-port of the motor is joined directly
to the pulley-port, while two beams are linked using welds or
fasteners. The distinction between these two child functions can
thus be used to determine if any additional models or artifacts are
needed for the connection.

The purpose of defining the semantics of port functions in a
detailed fashion is to enforce compatibility and guide the selection
of appropriate ~and compatible! form features. For a connection
between two ports to be compatible it is necessary that the ports
have the same function and that, for ‘‘transfer’’ ports, also the flow
types are the same. As will be shown later in the LEGO example,
a detailed functional description of a port can also guide the se-
lection of form features stored in a design repository.

Behavior Attribute Classes. Ports can also refer to behavior.
Since the intended behavior of ports is to transfer energy, material
or signals ~see section on function attribute classes!, their behavior
can be described by a set of two or more variables characterized
as either flow or effort, similar to the power conjugate comple-
ments identified in @35#. However, unlike the function and form
characteristics of ports, the behavior is not an intrinsic character-
istic of the port. The amount of energy or material transferred
through a port is not determined solely by the behavior of the port,
but by the behavior of the entire system of which the port is part.
To determine the values of a port’s flow and effort quantities, it is
necessary to link together the behavioral models of all the com-
ponents of the entire system and its environment, and to evaluate
~i.e., simulate! this combined model.

This is where the behavior attributes in the ontology play a role.
For each component, one needs to identify which variables in its
behavioral model correspond to the exchange of energy, material
or signals through a given port. These variables are the interface

of the component’s behavioral model. Recent object-oriented
modeling languages, such as VHDL-AMS @36# or Modelica @37#,
define modular simulation models with interfaces consisting of
connectors ~or ports!. By associating these connectors with the
corresponding ports through behavior attributes, one can derive
from the port connections which model connections to establish.
This will be illustrated in the LEGO example.

As in bond-graphs @14#, the model connectors represent not a
single variable but a set of flow and effort variables. When intro-
ducing a connection, the modeling software will automatically
introduce equations that correspond to Kirchhoff’s voltage and
current laws, indicating that the effort variables are equal and flow
variables add up to zero. In the mechanical domain, there are two
conflicting conventions in use for effort and flow. In bond-graph
modeling @14#, flow corresponds to velocity and effort to force; in
object-oriented simulation modeling ~Modelica, VHDL-AMS!,
the opposite convention is used (flow→force; effort→velocity).
Both conventions are acceptable as long as they are applied con-
sistently. We use the flow→force convention because it maintains
the property that, in a connection, the effort variables are equal
and the flow variables add up to zero @38#.

Figure 7 illustrates a taxonomy of behavior attributes based on
the Modelica standard library @39#. Each behavior attribute refers
to a specific behavioral model for the component of which the
port is part. Within this model instance, the behavior attribute
refers to a specific connector. The behavior attribute also carries
the type of that connector so that the type compatibility can be
verified when establishing connections. Even when a modeling
language other than Modelica is used a similar type taxonomy and
connector to port mapping can be established. Often the types of
connectors are identical but have been given different names.
Within OWL, such classes can be related to each other through the
property owl:equivalentClass.

Port-Attribute Properties. In addition to concepts, ex-
pressed as classes, ontologies also contain relationships, expressed
as properties. Several relations between attributes have already
been introduced in the previous section ~Figs. 4–7!. In general,
relationships between ports and attributes can be expressed in ^S P
O& triple form, where S stands for the subject domain, P for the
predicate ~relation!, and O for the object range. Thus, ^port has-
attribute attribute& denotes a relation between a port and an
attribute.

However, it would be confusing to use the same OWL property,
‘‘has-attribute,’’ to define the relationships between all possible
ports and attributes. The semantics of the relationships can be
captured more precisely using the owl:subPropertyOf construct.
Specific categories of relationships, such as has-function, has-

Fig. 7 Partial behavior attributes used in the port ontology.
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form-feature, and has-behavior-connection, can be accurately la-
beled as sub-properties of general has-attribute relationship. As
illustrated in Fig. 8, the has-function property can be used to refer
to any function attribute or its sub-classes, such as transfer or
transfer-signal.

Capturing Knowledge in the Port Ontology: A LEGO

Example

This section illustrates how the basic port ontology introduced
in the previous sections can be used and extended for a specific
application domain: LEGO systems. The focus is specifically on
capturing design knowledge about ports in port axioms. Although
the design of LEGO systems may at first seem like a toy problem,
many of the issues which designers are facing during conceptual
design also exist for LEGO systems. This example therefore pro-
vides a good illustration for how information and knowledge
about ports for a particular application domain can be represented
in the port ontology. It demonstrates first how the port ontology
can be used and extended to represent the semantic knowledge for
LEGO ports, for instance, by introducing specific LEGO form
features. Secondly, it demonstrates how a variety of knowledge
axioms can be defined, for instance, to verify the compatibility of
port connections, and to support the instantiation of behavioral
models for component interactions.

Extending the Port Ontology for LEGO Ports. The ontol-
ogy described in the previous sections provides a basic set of
concepts, attributes and properties for defining ports in general.
This set can be expanded to include abstractions of specific port
types in a particular application domain. For instance, certain

combinations of geometric features that are standardized or occur
frequently in a given application domain can be abstracted as a
specific aggregate form feature. Within the LEGO domain, all
ports are standardized with fixed dimensions and compatible
shapes; it therefore makes sense to define a specific form feature
for each type of geometry. Some of the common ports that have
been identified are illustrated in Fig. 9.

Each of the ports in Fig. 9 can be described not only by a form
feature, but also by an entire graph of attributes and properties. An
example of an attribute graph for the axle port is shown in Fig. 10.
The axle port contains a form-feature attribute, two function at-
tributes, and a behavior attribute. Once defined, the new port,
‘‘LEGO-Axle-Port,’’ can be used to define additional LEGO-
specific axioms, for instance, for port compatibility checking. This
definition can also be saved in a LEGO design repository for reuse
in the future. In the next section, it is illustrated how a designer
can take advantage of such a design repository combined with the
knowledge in the LEGO port ontology.

Supporting Design Refinement Through Subsumption.
Consider the design of a windshield wiper system as introduced at
the beginning of this article ~Fig. 1!. At this early stage of design,
the ports are merely placeholders—an indication that there is a
need for the transfer of energy, material or signals between com-
ponents. During the design process, as the designer makes addi-
tional decisions about the components and their interactions, these
initial placeholders will be gradually transformed into specific
port definitions. In terms of the port ontology, the incremental
decisions of the designer will result in the addition of attributes to
the port definitions, the sub-classing or refinement of attributes, or
the addition of constraints on the attribute values. For instance, in
Fig. 11, the shaft port of the motor is incrementally refined from a
generic port for energy transfer to a port in the shape of a LEGO
axle for the transfer of rotational mechanical energy.

The port ontology plays an important role in this incremental
refinement process: it provides the designer with the knowledge
about valid refinement operations. For instance, the ontology can
provide the designer with a list of valid refinements for the func-
tion ‘‘transfer energy’’ based on the knowledge that the abstract
type energy can be refined into one of many specific energy types
~Fig. 11!: ‘‘energy’’ → ‘‘mechanical energy’’ → ‘‘rotational me-
chanical energy.’’ In combination with a design repository, the
port ontology can also be used to suggest specific solution in-
stances. For example, the transfer of rotational mechanical energy
can be implemented as a LEGO axle port.

The suggestions for refinement and for specific instances can be
obtained through a process called subsumption. In general terms,
subsumption is a deduction mechanism for deciding whether one

Fig. 8 An illustration of relationships between ports and
attributes.

Fig. 9 The circled areas indicate LEGO-ports: „a… rail-port, „b… stud-port, „c…
circular-hole-port, „d… TECHNIC-stud-port, „e… TECHNIC-tube-port, „f … axle-hole-
port, „g… channel-port, „h… tube-port, „i… friction-pin-port, and „j… axle-port.
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description, D1, is more general than another, D2; that is, whether
D2 logically implies D1 @40#. It is the predominant deduction
mechanism in Description Logics ~DL! @41#. In this case, sub-
sumption can be used to determine parent-child relationships be-
tween ports based on their attributes. For instance, the use of a
LEGO-axle-port, P1, implies the implementation of a port, P2, for
the transfer of rotational mechanical energy. That means that the
port P2 subsumes the port P1. In terms of attributes, this can be
concluded from the fact that the attributes of P2 are a subset of the
attributes of P1. When a designer has defined a port as having the
function ‘‘transfer rotational mechanical energy,’’ the LEGO-axle-
port will be offered as a suggestion for refinement. Since there are
possibly many such suggestions, the subsumption mechanism can
also be used to arrange the suggestions in a hierarchy from most
abstract to most specific. The completeness of this hierarchy will
depend on the number of ports that have been previously defined
in the design repository.

One could argue that the same conclusion about the LEGO-
axle-port could also have been derived from a simple port tax-
onomy. However, taxonomies are based on a fixed order in which
the attributes are considered. For incremental refinement in de-
sign, the use of taxonomies would force a designer to make deci-
sions according to this fixed attribute order. This is an unnecessary
restriction. For instance, in Fig. 12, LEGO ports are organized by
considering either form-attributes or function-attributes first. De-
pending on the situation, either taxonomy could be most appro-
priate for defining design refinements. Using the attribute-based

port ontology, a Description Logic reasoner ~such as RACER @23#
or FaCT @22#! can generate the taxonomy dynamically based on

subsumption.

Compatibility Checking. Beyond the knowledge about pos-

sible refinements of ports, the ontology can also represent knowl-

edge about compatibility of ports. Most LEGO ports can be con-

nected to each other by snapping together compatible male and

female ports. For example, studs ~male ports! at the top of a

LEGO brick snap into tubes ~female ports! at the bottom of an-

other LEGO brick. Some LEGO ports are compatible with mul-

tiple other ports: A cross-shaped axle fits not only into a cross-

shaped hole, but also into a circular hole with the same

circumscribed radius.

The knowledge about compatibility can be included in the on-

tology as compatibility axioms. One way to represent this knowl-

edge would be to list exhaustively every valid combination of
ports; however, such a list would be unmanageably long and very
cumbersome to maintain. A different approach is illustrated in Fig.
13. Here the compatibility axioms relate the attributes of the con-
necting ports. For instance, any port that has a form attribute of
type LEGO-circular-hole-shape is compatible with any port that
has a form attribute of type LEGO-axle-shape or LEGO-pin-

shape. A compatibility axiom at this level of abstraction is most
useful in a domain with a limited set of commonly used port
geometries. In general, one could define compatibility rules based
on complex combinations of detailed form attributes. Compatibil-

Fig. 10 An attribute graph for a LEGO axle port.

Fig. 11 Port refinement through the addition of attributes.
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ity could not only depend on the type of the form features but also
on the values of the parameters defining the feature instances.

It is also possible to define axioms based on partially defined
geometric attributes. For instance, two rotational mechanical ports
can only be connected when their rotation axes are aligned. Even
when no geometry has been defined yet, compatibility axioms
may apply. For instance, during conceptual design, compatibility
constraints often apply to functional attributes: An energy transfer
port can only be connected to an energy transfer port of the same
type.

Interaction Model Associations. A third type of knowledge
that can be included in the port ontology is closely related to port
compatibility rules: interaction model associations. When gener-
ating a simulation model for a system defined as a configuration
of components, one needs to consider not only the simulation

models of the individual components but also the models that

capture the dynamics at the interaction points—the interaction

models. For instance, the behavior of a system consisting of a

LEGO axle rotating in a circular-hole-port of a LEGO brick is

determined not only by the behavior of the axle and the brick, but

also by the interaction between the axle and the brick, i.e., contact

friction.

Often the component interaction models are trivial and corre-

spond to Kirchhoff’s voltage and current laws. For instance, most

electrical connections can be modeled with sufficient accuracy by

setting the voltages equal ~Kirchhoff’s voltage law! and making

the currents add up to zero ~Kirchhoff’s current law!. Similarly, a

rigid mechanical connection can be modeled by setting the veloci-

ties of the components equal and making the forces/torques add

up to zero. In most object-oriented modeling languages, these

trivial interaction models correspond to the default port-

connections and can therefore be omitted @37#. However, in gen-

eral an algebraic, differential algebraic or even a partial differen-

tial equation model is needed to describe the physical phenomena

taking place at the area of interaction.

The knowledge needed to decide which interaction models are

applicable for a given port connection can be included in the port

ontology. To establish the association between a port connection

and an interaction model, a connection class is used. Each con-

nection class contains templates for the ports that may be con-

nected and a list of applicable interaction models. One can think

of the port templates as the context in which the model is appli-

cable; that is, the port templates define the necessary and suffi-

cient attributes:

• Sufficient: the interaction models apply for any combination

of ports that subsume the templates ~i.e., are children of the

templates!
• Necessary: if any of the attributes in the templates are re-

moved, the models no longer apply.

For instance, Fig. 14 shows a connection class for gear interac-

tions. The class contains only one model ~a connection class with

multiple models is possible only if all the models have the exact

same context, which is not very common!. This model ~an ideal

gear reduction! is applicable for all gear pairs as is captured in the

context, the two port templates. The necessary and sufficient at-

tributes for each of the ports specify that each port must have the

form of a gear with a given number of gear teeth, and each port

must be linked to a rotational connector. In addition to the two

port templates, the connection class also defines the associations

between the model and the two connected ports.

An example of how such connection classes can be used is

provided in Fig. 15. For each of the components, there is a corre-

sponding behavioral model. The behavioral models are connected

based on the port connections in the configuration graph. Most of

the port connections do not require an explicit interaction model

because the default connection ~corresponding to Kirchhoff’s

laws! captures the interaction behavior adequately. The interaction

between the two gear ports results in the instantiation of a gear

interaction model. Based on the connection class in Fig. 14, this

would be a model called ‘‘Ideal Gear Ratio.’’ However, it is likely

that other interaction models also satisfy the particular port con-

text. For instance, there could exist a very high-level model that

defines the interaction behavior in terms of power ~e.g.,

Power– in5Power– out) and does not require knowledge of the

number of teeth of the gears. Since its port templates would be

subsumed by the more detailed port templates in Fig. 14, it would

automatically be applicable to any two ports for which the ‘‘Ideal

Gear Ratio’’ model applies.

The knowledge captured in the connection classes does not al-

low us to decide which of the ~possibly many! interaction models

is most appropriate for a particular system analysis. Answering

Fig. 12 Two „partial… taxonomies of LEGO ports.

Fig. 13 Compatibility axiom for hole-ports.
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that question would require the consideration of many additional
factors, such as the purpose of the analysis, the required accuracy,
and the available computing resources.

Summary and Discussion

In this article, we investigated ports—abstractions often used in
systems design to indicate locations of intended interaction. Al-
though ports had been used previously in the context of engineer-
ing design, they were never considered from all three perspectives
commonly used in design: form, function and behavior. Combin-
ing these three aspects into an integrated, computer-interpretable
representation of ports provides several advantages:

• It allows designers to capture and formalize design decisions
about all aspects of a component’s interface. A port ontology
allows these decisions to be represented in an unambiguous,

computer-interpretable fashion. Although there is bound to be

overlap between port and artifact ontologies—ports are sub-

sets of artifacts—it is still useful to consider a separate ontol-

ogy for ports because ports play such an important role in

systems design. Particularly in the context of collaborative

design—across space and time—it is essential to be able to

communicate unambiguously the decisions that have been

taken by different design teams about the interfaces between

components or sub-systems.

• The semantic knowledge captured in a port ontology can also

support the incremental refinement of design decisions as

they relate to component interactions. Based on subsumption,

one can retrieve from a design repository those port defini-

tions that contain all the attributes of the existing ports. Any

port definition that subsumes the current port is a refinement;

that is, it may be derived from the current port by taking

additional design decisions. Such refinements, retrieved from

a repository and organized in a taxonomy, provide the design-

ers with possible design alternatives from which to choose.

Other refinements that are not limited to component interac-

tions, such as the refinement of the function of component as

a whole, require a broader ontology that encompasses the

entire component and are not supported by the current port

ontology.

• A second type of design knowledge that can be included in

the port ontology is port compatibility knowledge. When two

ports are connected they should satisfy certain compatibility

criteria. When this compatibility knowledge is included in the

ontology, a computer-based support tool could verify compat-

ibility between ports when different design teams make

changes to the interface between the sub-systems that they

are designing.

• Finally, a third type of knowledge in the port ontology sup-

Fig. 14 A connection class for gear interactions. An empty box indicates a wild-card.

Fig. 15 A simple LEGO system configuration with a corre-
sponding behavioral model „as modeled in Modelica….

Journal of Computing and Information Science in Engineering SEPTEMBER 2004, Vol. 4 Õ 215

Downloaded 28 Apr 2011 to 131.180.81.145. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ports interaction model instantiation. The dynamic interaction
between two ports needs to be modeled in an interaction
model. Associating models to particular combinations of port
types can be accomplished through a ‘‘connection’’ class in
which associations are established between the behavioral
variables in port templates and the behavioral variables in the
corresponding interaction model. Associations between port
parameters and interaction model parameters are also estab-
lished.

Design refinement, compatibility checking and interaction
model instantiation have all been demonstrated using an ontology
for LEGO systems. Although this article provided a basic frame-
work for representing port information and knowledge in a port
ontology, this ontology is far from complete and needs to be fur-
ther expanded in several directions:

• Since ports can be used to characterize interactions in almost
any application domain and from any perspective, the amount
of knowledge necessary to characterize all such ports is
enormous—well beyond the scope of a single article, a thesis,
or even a career. The purpose of this article is to establish the
basic structure for formalizing such knowledge with the un-
derstanding that this basic structure needs to be filled in and
expanded to include the specific knowledge about a given
application domain—as was illustrated for LEGO systems.

• Ports provide a natural interface demarcating sub-systems
within a system, and they facilitate the negotiation of inter-
face constraints among different design teams. However, for
some aspects of the design problem, ports need to be consid-
ered within the context of the artifacts of which they are part.
For instance, the functions defined in ports are related to the
overall functionality of the system. In the example of a wind-
shield wiper, the motor transforms electrical energy into me-
chanical energy and must, therefore, also have ports for trans-
ferring the electrical energy in and the mechanical energy out;
every energy flow serving as an input or output to the main
function of the artifact must be associated with a correspond-
ing port.

• An ontology, as introduced in this article, requires a special-
ized graphical user interface to be used by designers. Al-
though possible, it is not convenient to create the instances of
ports, attributes and connections using a text editor. Ontology
editors, such as Protégé @42#, may provide an intermediate
solution during development, but ultimately a specialized
software tool will need to be developed.

• The reasons for developing this ontology are to improve the
capture of design decisions, to facilitate the communication
of these decisions among disparate teams of designers, and to
enable computer support and possibly automation of these
design tasks. The validation of whether this ontology satisfies
these goals will require further development of the computer
tools that make use of the ontology followed by controlled
experiments to verify improvements in the productivity of
designers and in the quality of the designed systems. Within
the scope of this article, the validation was limited to a proof-
of-concept illustration in the context of LEGO systems.
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