
 Open access Journal Article DOI:10.1109/TII.2016.2532118

A Portable Implementation on Industrial Devices of a Predictive Controller Using
Graphical Programming — Source link

Silviu Folea, George Mois, Cristina I. Muresan, Liviu Miclea ...+2 more authors

Institutions: Technical University of Cluj-Napoca, Ghent University, Anglia Ruskin University

Published on: 18 Feb 2016 - IEEE Transactions on Industrial Informatics (IEEE)

Topics: Control theory, Visual programming language and Model predictive control

Related papers:

 Design and implementation of a linear predictive controller system

 Hardware implementation of a pipeline fuzzy controller and software tools

 Implementation of generalized predictive control (gpc) for a real-time process control using labview

Constrained Model Predictive Control on a Programmable Automation System Exploiting Code Generation:
Practical Considerations

 Universal tool for estimation of programmable logic controllers processing power

Share this paper:

View more about this paper here: https://typeset.io/papers/a-portable-implementation-on-industrial-devices-of-a-
zwtw4fjlb7

https://typeset.io/
https://www.doi.org/10.1109/TII.2016.2532118
https://typeset.io/papers/a-portable-implementation-on-industrial-devices-of-a-zwtw4fjlb7
https://typeset.io/authors/silviu-folea-p1ck6vvanw
https://typeset.io/authors/george-mois-3f48bd3ek7
https://typeset.io/authors/cristina-i-muresan-3xsny6942d
https://typeset.io/authors/liviu-miclea-7xe81yt5e8
https://typeset.io/institutions/technical-university-of-cluj-napoca-3cc8060c
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/institutions/anglia-ruskin-university-2bqkyfur
https://typeset.io/journals/ieee-transactions-on-industrial-informatics-1gm33xe8
https://typeset.io/topics/control-theory-3tznv960
https://typeset.io/topics/visual-programming-language-ers99bhu
https://typeset.io/topics/model-predictive-control-3w3echht
https://typeset.io/papers/design-and-implementation-of-a-linear-predictive-controller-hfenwgjgak
https://typeset.io/papers/hardware-implementation-of-a-pipeline-fuzzy-controller-and-40ney5jm1a
https://typeset.io/papers/implementation-of-generalized-predictive-control-gpc-for-a-1hktslfzaa
https://typeset.io/papers/constrained-model-predictive-control-on-a-programmable-1jx31cojqr
https://typeset.io/papers/universal-tool-for-estimation-of-programmable-logic-47evcysx6o
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-portable-implementation-on-industrial-devices-of-a-zwtw4fjlb7
https://twitter.com/intent/tweet?text=A%20Portable%20Implementation%20on%20Industrial%20Devices%20of%20a%20Predictive%20Controller%20Using%20Graphical%20Programming&url=https://typeset.io/papers/a-portable-implementation-on-industrial-devices-of-a-zwtw4fjlb7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-portable-implementation-on-industrial-devices-of-a-zwtw4fjlb7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-portable-implementation-on-industrial-devices-of-a-zwtw4fjlb7
https://typeset.io/papers/a-portable-implementation-on-industrial-devices-of-a-zwtw4fjlb7

736 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 2, APRIL 2016

A Portable Implementation on Industrial
Devices of a Predictive Controller Using

Graphical Programming
Silviu C. Folea, Member, IEEE , George Moiş, Member, IEEE , Cristina I. Muresan,

Liviu Miclea, Member, IEEE , Robain De Keyser, and Marcian N. Cirstea, Senior Member, IEEE

Abstract—This paper presents an approach for develop-
ing an extended prediction self-adaptive controller employ-
ing graphical programming of industrial standard devices
for controlling fast processes. For comparison purposes,
the algorithm has been implemented on three differ-
ent field-programmable gate arrays (FPGAs) chips. This
paper presents research aspects regarding graphical-
programming controller design, showing that a single
advanced control application can run on different targets
without requiring significant program modifications. Based
on the time needed for processing the control signal and
on the application, one can efficiently and easily select
the most appropriate device. To exemplify the procedure,
a conclusive case study is presented.

Index Terms—Benchmark testing, field-programmable
gate arrays (FPGAs), predictive control, real-time systems.

I. INTRODUCTION

P
REDICTIVE control has been used successfully in con-

trol applications in all fields of industrial activity, a fact

that has triggered an increasing interest in the methodology dur-

ing the last decade. The choice for predictive control, rather

than other modern control concepts, is based on some series of

important benefits such as its intuitive principles, performance-

oriented design parameters, the ability to handle nonlinearities,

and its capability of taking into account various constraints

(such as actuator constraints, safety constraints, and quality

constraints). Typically, predictive control has been used in

the control of slow dynamics processes, such as thermal and

Manuscript received July 21, 2015; revised November 13, 2015;
accepted January 26, 2016. Date of publication February 18, 2016;
date of current version March 29, 2016. This work was supported
by the Romanian National Authority for Scientific Research National
Council for Development and Innovation - Executive Agency for Higher
Education, Research, Development and Innovation (CNDI-UEFISCDI)
under Project PCCA 155/2012. Paper no. TII-15-1090.

S. C. Folea, G. Moiş, C. I. Muresan, and L. Miclea are with
the Department of Automation, Technical University of Cluj-
Napoca, Cluj-Napoca 400114, Romania (e-mail: Silviu.Folea@
aut.utcluj.ro; George.Mois@aut.utcluj.ro; Cristina.Pop@aut.utcluj.ro;
Liviu.Miclea@aut.utcluj.ro).

R. De Keyser is with the Department of Electrical Energy, Systems
and Automation, Ghent University, Gent 9052, Belgium (e-mail:
Robain.DeKeyser@UGent.be).

M. N. Cirstea is with the Department of Computing and Technology,
Anglia Ruskin University, Cambridge, CB1 1PT, U.K. (e-mail:
Marcian@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2016.2532118

chemical plants [1]. However, more and more model-predictive

control (MPC) applications are directed toward dynamical sys-

tems with fast response times [2]–[4]. Until recently, the main

MPC limitation resulted from the long computational time

needed for performing the optimization. The use of digital

signal processors (DSPs) and field-programmable gate arrays

(FPGAs) led to the reduction of the time needed for solving

the constrained optimization problem with a period of tens or

hundreds of microseconds [5], [6]. The large real-time com-

putational complexity was managed until now using industrial

computers, and this paper presents results especially obtained

from personal computer implementations.

The purpose of this paper is to present an efficient and

robust control solution for fast dynamic systems, using FPGA

devices and the LabVIEW graphical-programming environ-

ment. The motivation for using this solution is based on the

fact that compared to hardware description languages, such as

very high speed integrated circuit hardware description lan-

guage (VHDL), graphical programming is a more user-friendly

configuration environment and offers a very short project-

development time [7], [8]. An application for a dc motor was

chosen for validation and testing purposes. The dc motor sup-

ports a wide range of command rates and of execution time

variations, without being damaged or broken. The particular

application here refers to the control of the dc motor, as a part of

the vacuum pumps used to maintain an efficient thermal isola-

tion in the vacuum jacket of a train of three carbon isotopes

separation columns. The efficiency of the isotope-separation

process, occurring at very low temperatures, is strongly depen-

dent upon a strict operation of these vacuum pumps. These

need to be carefully controlled since a failure of the vacuum

leads to the compromise of the entire separation process [9].

The efficiency of the proposed solution was highlighted by

comparing it to several different implementations, a PC-based

control system, one implemented on a real-time target, and one

on an advanced RISC machine (ARM) microcontroller, all of

them running the controller. Finally, the same predictive-control

algorithm was implemented on three different FPGA chips: a

Virtex-II, a Spartan-6, and a Zynq. The comparison between the

three systems has shown that this type of complex algorithms

can operate on cheaper FPGA chips, such as the Spartan-6

and Zynq, achieving not only the same levels of computational

performance as their more complex and more expensive coun-

terparts but also important power savings. This comparison

1551-3203 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

FOLEA et al.: PORTABLE IMPLEMENTATION ON INDUSTRIAL DEVICES 737

regarding the implementation on various FPGA targets and

microcontrollers represents one of the main contributions and

original elements in comparison to previous research [10],

also including comparative tables and benchmarks for resource

allocation in FPGAs. This paper also presents the diagrams

implemented using LabVIEW.

The choice of using an FPGA instead of a processor-based

solution was motivated by several advantages. FPGAs have

already been used in industrial control systems, being capa-

ble of providing an increased level of performance, while at

the same time reducing the cost, size, and power consumption

of the actual implementation and improving reliability [11]–

[15]. The ever-increasing sophisticated control algorithms can

take advantage of the natural parallelism and increased resource

density of the FPGA chips [16]. Thus, complex architectures,

fully dedicated to the control algorithm to implement, can be

developed [17]. The design and real-time implementation of

control loops running at frequencies above 1 MHz is now

possible with the use of these system-on-chip digital recon-

figurable platforms. Although still more expensive than DSPs

and microcontrollers, they compensate through their compact-

ness, all the building parts of the competitor solutions (CPU,

RAM, bus) being placed inside a single capsule. While DSPs

are aimed at implementing signal-processing applications and

can perform large amounts of computations, FPGA chips offer

higher flexibility levels and transfer the printed circuit board

(PCB) complexity inside the device, on-chip. The work in [18]

presents a systematic comparison between these two technolo-

gies along with their main advantages and drawbacks when

used in control applications. FPGAs also provide the possibility

of in-the-field programming, which allows the addition of other

features to the controller and the implementation of further

data postprocessing algorithms. They can also be dynamically

reconfigured, enabling the controller to adapt to the needs of the

plant. Thus, adaptation to changes in environmental conditions

becomes possible.

A wide range of applications in the field of electrical sys-

tems employ FPGAs [19]–[21]. The authors in [19] developed

a reliable low-complexity reusable digital controller, by using

an FPGA implementation. The work in [20] presents an FPGA-

based adaptive digital PI controller and emphasizes the advan-

tages provided by FPGAs in the control of complex industrial

processes. MPC was addressed for the control of power con-

verters [22] and electric drives [23], FPGA-based solutions

showing good control performance [24], [25].

This paper is structured as follows. Section II describes the

extended prediction self-adaptive control (EPSAC) principles,

while Section III shows the steps completed for finalizing the

EPSAC design and the methodology used for the FPGA imple-

mentation. Then, Section IV provides information regarding the

details of the hardware and of the software setup. The testing

and validation of the proposed solution along its performance

evaluation are synthesized in the Section V, and finally, the

concluding remarks are outlined in Section VI.

II. EPSAC CONTROL PRINCIPLES

The EPSAC methodology is a typical member of the model-

based predictive-control (MBPC) family. MBPC is a type of

control which uses an online process model (in the control com-

puter) for calculating predictions of the future plant output and

for optimizing future control actions. The two key principles of

MBPC consist in the explicit online use of the process model

for forecasting the process output at future time instants and in

the calculation of an optimal control action based on the min-

imization of a cost function [26]. The principle of the EPSAC

control, presented in [26], is based on the minimization of the

error between the specified reference trajectory and a future

predicted process output. A cost function having the form

N2
∑

k=N1

[r(t+ k/t)− y(t+ k/t)]
2
+ λ

Nu−1
∑

k=0

[∆u(t+ k/t)]
2

(1)

will be minimized. The design parameters of the cost function

are N2—the maximum prediction horizon, Nu—the control

horizon, N1—the minimum prediction horizon, λ—the weight

parameter, y(t)—the (measured) process output, u(t)—the pro-

cess input, and r(t)—the reference trajectory. The control

signal in (1) is given by

∆u(t+ k/t) = u (t+ k/t)− u (t+ k − 1/t),with (2)

∆u(t+ k/t) ≡ 0, for k ≥ Nu. (3)

For minimizing (1), the choice of N2 and N1 plays an impor-

tant role, as well as the estimation of the process output, y(t),
over the prediction horizon N1 to N2. In the EPSAC approach,

the prediction of the process output is done based on previous

measurements of the process output and input signal, as well as

some future values of the input signal.

For predicting the output, the generic model in (4) can be

used

y(t+ k/t) = x(t+ k/t) + n(t+ k/t) (4)

where x(t) represents the process model output, while n(t) is

the process/model disturbance.

To predict the process output y(t), x(t+ k|t) is computed

based on an existing model of the process, while n(t+ k|t) is

predicted using filtering techniques.

Assuming the process model for a single-input-single-output

system is given by

x(t) =
B(q−1)

A(q−1)
u(t) (5)

the output model x may be predicted k samples ahead using

previous values of the process model and of the control input

u, considering that polynomials B(q−1) and A(q−1) in (5) are

fully known.

The algorithm for computing the control signal required to

minimize (1) uses also the concepts of free and forced response

y(t+ k/t) = yfree(t+ k/t) + yforced(t+ k/t). (6)

The component yfree(t+ k/t) can be easily computed using

(4), by simply putting u(t/t) = · · · = u(t+N2 − 1/t) =
u(t− 1). The component yforced(t+ k/t), however, is the effect

738 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 2, APRIL 2016

Fig. 1. Pseudo-code of the EPSAC control algorithm.

of a sequence of step inputs. In matrix notation, yforced may be

computed as

⎡

⎢

⎢

⎢

⎢

⎣

yforced(t+N1/t)
yforced(t+N1 + 1/t)

.....

.....
yforced(t+N2/t)

⎤

⎥

⎥

⎥

⎥

⎦

= G ·

⎡

⎢

⎢

⎣

∆u(t/t)
∆u(t+ 1/t)

...
∆u(t+Nu − 1/t)

⎤

⎥

⎥

⎦

= G ·U

(7)

where G =

⎡

⎢

⎢

⎢

⎢

⎣

gN1
gN1−1

gN1+1 gN1
... ...

...

...
gN2

gN2−1 ... gN2−Nu+1

⎤

⎥

⎥

⎥

⎥

⎦

and the parame-

ters gk are the coefficients of the unit step response. Using

matrix notation, replacing the result in (7) into (6) gives

Y = Yfree +Yforced=Yfree +G ·U. (8)

The cost function in (1) can be written in matrix notation as

(R−Y)T(R−Y) + λUT
U

= [(R−Yfree)−GU]T[(R−Yfree)−GU] + λUT
U.

(9)

Minimizing (9) with respect to U leads to the optimal

solution

U
∗ = (GT

G+ λ I)
−1

G
T(R−Yfree). (10)

The first element, ∆u(t/t), in U* is then used to update the

control signal

u(t) = u(t− 1) + ∆u(t/t). (11)

The procedure is then repeated at the next sampling instant,

when u(t+ 1) is computed based on the new measurement

y(t+ 1). A pseudo-code of the EPSAC algorithm is given in

Fig. 1.

III. EPSAC DC MOTOR CONTROLLER

The EPSAC-predictive algorithm can be used for controlling

various types of electrical systems [22], [27]. The dc motor

provided the possibility of building a flexible stand for run-

ning the tests and of achieving rapid performance comparisons.

Fig. 2. System block diagram.

Fig. 3. Experimental data for process identification—speed rises.

Fig. 4. Experimental data for process identification—speed decreases.

This is just a case study for testing and for validating the

FPGA-based implementation, which clearly demonstrates that

the EPSAC-predictive controller can be used in a wide range

of applications. The block diagram of the system, including

the controller, the driver, the signal-processing module, the

dc motor, and the load implemented using a generator and a

controlled resistive load, is presented in Fig. 2.

The CompactRIO embedded system used for implementation

is a reconfigurable control and acquisition system providing

high performance and reliability, and is programmable with

LabVIEW. The device includes a PowerPC real-time controller

running at 400 MHz and an extension module with digital

input–output lines. Three different systems were used, one hav-

ing a chassis with a Virtex-II FPGA, one having a chassis with a

Spartan-6 device, and another one with a Zynq-programmable

system on chip, including a real-time dual core processor

running at 667 MHz.

The special architecture of the embedded system is built

around two chips: the first one, on which a real-time operating

system runs, and the second, the FPGA.

A. Extraction of DC Motor Parameters for Finalizing

EPSAC Design

The EPSAC control strategy implemented in the FPGA has

been tested in the closed-loop trajectory control of a dc motor.

The first step in the FPGA implementation of the EPSAC

FOLEA et al.: PORTABLE IMPLEMENTATION ON INDUSTRIAL DEVICES 739

consists in determining a mathematical model of the process,

i.e., the polynomials A(q−1) and B(q−1) in (5). To determine

these polynomials, experimental identification techniques were

employed.

Figs. 3 and 4 present the experimental data used for identi-

fication of the dc motor model and the output of the identified

process model compared to experimental data, when the speed

increases and decreases, respectively.

The dc motor output is its rotation speed, represented as

experimental data in these figures, while the control input is

the dc voltage supplied to the rotor. Prior to the experiment,

the input voltage supplied was 70%. A step input of +10% was

then applied to the rotor. For decreasing the speed, a −10% step

was applied to the input.

Based on the shape of the step response, a transfer function

was selected to model the process. The gain, as well as the time

constants, is determined through identification techniques.

Using the determined transfer function, the polynomials

A(q−1) and B(q−1) are computed based on a zero-order hold

discretization, considering the sampling time Ts = 0.015 s,

chosen according to Shannon theorem

A(q−1) = 1− 0.94q−1 , B(q−1) = 1.54q−1. (12)

In the EPSAC controller design, the maximum prediction

horizon is chosen for the predicted signal to capture around

60% of the process dynamics [26]. Since there is no process

time delay, the minimum prediction horizon may be chosen

N1 = 1 sample, while N2 = 10 samples, λ = 0, and Nu =
1. With this choice of the prediction horizons, the designed

controller was first tested on the MATLAB simulation envi-

ronment, using the transfer function of the model as the

mathematical representation of the dc motor.

The controller designed and tested in the simulation environ-

ment was further implemented in a FPGA module, using the

guidelines given in Sections IV and V, and employed in the

closed-loop control of the dc motor previously described.

B. FPGA Implementation of EPSAC

This section shows the methodology that can be used for

achieving the FPGA implementation of different types of con-

trol algorithms through graphical programming. The steps that

have to be followed for reaching an optimal implementation

method on the FPGA of the various control methods, realized

using specific analysis and simulation environments, are briefly

described below.

1) Rewriting the code used for simulation in the LabVIEW

environment on the PC or on the real-time target.

2) Program testing using control vectors that were generated

during simulation, for the control and for the controlled

unit.

3) Data conversion from floating-point format to fixed-point

format (FXP) or integer (INT).

4) The comparative testing of the implementations using the

control vectors and the data available in the second step.

5) Go through steps 3 and 4 again until the stationary errors

are acceptable; in the case of this paper, it is assumed that

a small error is acceptable.

Fig. 5. Experimental stand.

The use of MATLAB sequences of code using MathScript

was avoided, because it is not supported on the FPGA target.

IV. HARDWARE AND SOFTWARE SETUP

Setting up the hardware and the software for implementing

real-life control systems can be a troublesome task. On one

hand, the hardware part requires taking into account various

parameters including component compatibility, signal condi-

tioning, placing and routing problems, while on the other hand,

the software part must consider the architecture of the equip-

ment. However, in this case, the software application takes

advantage of the facilities provided by graphical programming

[28]. The following two sections will present how the hardware

and software had been developed in the case of the example

application.

A. Hardware Setup

For interfacing the dc motor, two PCBs have been developed.

The first PCB performs the processing of the signal received

from the speed transducer, implying the amplification of the sig-

nal from the encoder (speed transducer) and signal filtering and

its formatting for obtaining rectangular pulses. The board also

includes the power driver for commanding the motor. The sec-

ond PCB represents the load of the dc motor and consists of a

digitally controlled resistive load. It is, in fact, a motor acting as

a generator, with the same characteristics as the dc motor used,

connected to a controlled resistive load. The stand used for ver-

ification consists in the embedded system, a power supply, the

dc motor, and the components described above (Fig. 5).

B. Software Setup

The FPGA implementation of EPSAC consists of three dif-

ferent while loops: the first loop is used for measuring the speed

of the motor; the second loop is used for generating the PWM

that changes the speed of the motor using a digital output line;

and the third loop represents the main loop, where the control

algorithm is implemented.

The first loop measures the speed of the motor using a digi-

tal input line and can run at different speeds depending on the

sensors that are used. This feature is made possible by includ-

ing a time delay function, the implementation being based on

a sequence of functions, which forces the execution order: two

rising edges determine the time period.

The while loop is specific to LabVIEW FPGA implemen-

tations and is used for representing the continuous operation

mode of the circuit to be realized.

740 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 2, APRIL 2016

Fig. 6. Third loop—EPSAC control with fixed-point data (upper part) and floating-point data (lower part).

The application running on the real-time target implies the

opening of a connection to the FPGA program. The values of

the parameters are set using property and method nodes, while

the measured values are read inside a loop. Data are not trans-

ferred between the real-time target and the FPGA through direct

memory access (DMA) first-in, first-out (FIFO) because only a

small amount is transmitted; only for the graphical representa-

tion of the involved values, the entire control algorithm is being

implemented in the FPGA.

The loop that implements the EPSAC method can be seen in

Fig. 6. The part below the diagonal of the picture shows the vir-

tual instrument (VI) using floating-point values, while the part

above the diagonal shows the program using fixed-point data.

The scope presents some of the special fixed-point functions,

high-throughput multiplication, and addition.

Fig. 6 includes the blocks from Fig. 1, where the pseudo-code

for the EPSAC control algorithm is presented, and the occupied

FPGA resources, listed in Table II.

V. TESTING AND VALIDATION

The testing and validation of the design represent an impor-

tant step in the development of FPGA-based systems and are

usually performed using simulator-specific environments. In

the case of this paper, several benchmark programs were devel-

oped and run on various targets for comparing the computation

performances achieved.

LabVIEW provides functions that access the real-time timers

of the systems that were tested, offering resolutions in the order

of milliseconds, microseconds, or tens of nanoseconds for exe-

cution time or jitter measurement. Special frameworks, inside

which the application could be tested, were developed. In the

end, histograms including the execution time and jitter were

realized for analysis.

First, a comparison between different platforms running the

controller was done: a PC, a real-time controller, an FPGA,

an FPGA including DSP blocks, a dual-core ARM, and an

ARM microcontroller. After this, the different implementation

Fig. 7. Execution time and jitter for all targets (µs).

options offered by the graphical-programming environment in

the case of FPGA devices were studied. In the end, a paral-

lel between the performances offered by three different FPGA

technologies used for implementing the controller was made: a

more expensive, but relatively old Virtex-II device and cheaper

and newer Spartan-6 and Zynq chips. For the first benchmark,

the EPSAC algorithm code was compiled on a PC and run

locally.

In the second test, the benchmark was transferred and run on

the real-time target. For the third set of tests, the benchmarks

ran on the FPGA, and finally, the same program was down-

loaded to a microcontroller. The first limitation of this solution

consists of the data representation. In the case of the simulation

and for the implementations on the PC, on the real-time target

or on the microcontroller, the data are represented on floating

point, double-type. When the FPGA is used, the data represen-

tation is a fixed point, using different formats, such as 14 bits for

the integer word length and 32 bits for the entire word length.

The computational performance differs depending on the

tested platform and the jitter is different from the datasheet

value, depending on the implementation. The results, presented

in Fig. 7, are the maximum reachable values and lead to the

conclusion that the FPGA-based EPSAC controller can be used

for fast dynamic processes.

FOLEA et al.: PORTABLE IMPLEMENTATION ON INDUSTRIAL DEVICES 741

TABLE I
FPGA, DEVICE UTILIZATION

The FPGA target is more than five times faster than the PC,

for the same control-performance parameters. Another impor-

tant parameter tested here is the variation on the loop execution

time (jitter). In the case of the PC, the jitter varies depending

on the tasks that run in parallel with the application at a specific

point of time. The minimum resolution of the function used to

measure the execution time in the case of the FPGA is 25 ns.

For achieving the maximum execution speed, the FPGA pro-

gram includes mathematical operations specially designed for

the FPGA target, allowing the specification of the data represen-

tation and its configuration, for both the input and output. The

difficulty here consists in the computations involving arrays

and in choosing the proper format for the data in fixed-point

representation (integer word length and entire word length).

The use of reentrant or nonreentrant VIs in the control loop

leads to different percentages in the FPGA resource utilization,

in the case of the multiplier blocks, as it can be seen in Table I.

The conclusion that can be drawn from Table I is that it is dif-

ficult to predict which of the methods will always occupy less

hardware resources, but, in general, as can be deduced from the

presented cases, nonreentrant VIs lead to overall implementa-

tions requiring less area, which could be compiled successfully.

Certainly, reentrant VIs lead to FPGA implementations offering

faster execution speeds, as can be seen in this table.

In the case of the Zynq 7010 Artix-7 FPGA, which belongs

to a more recent generation and for which a compiler from the

year 2014 was used, a new situation emerged: the VI could be

compiled only after a part of the VIs were configured experi-

mentally as nonreentrant and the others as reentrant. Here, the

occupied resources are far from the limit, and many possible

configuration cases were obtained. The execution time repre-

sents a median value when compared with the one in the other

cases, where the other two types of FPGAs were used and

where all the VIs were set up to be either reentrant or nonreen-

trant. Other types of implementations on Artix-7 FPGA were

not possible to be compiled due to an increase of the number of

slices or DSP48s multipliers above the maximum limit.

The execution time can be improved by choosing reentrant

VIs and preallocating clones for each instance of the blocks, by

this way instantiating each one of them. In Table I, R stands for

TABLE II
FPGA FUNCTIONS, RESOURCES USED, AND EXECUTION TIMES

reentrant and N-R for nonreentrant VIs. The use of nonreen-

trant subVIs (subroutines) requires less multipliers, but more

other FPGA resources are needed in this case, leading to an

increase in the overall program-execution time. The amount of

occupied resources in the FPGA is specific to the LabVIEW

implementation and can be different than that of a VHDL

implementation.

Furthermore, the area occupied by the controller can differ

depending on the device and software version. However, the

advantage of the approach used in this paper lies in the short

project-completion time [29]. Experiments indicate that the sys-

tem used for algorithm implementation allows clock speeds

between 3 and 40 MHz. Therefore, if the process dynamics per-

mits it, the clock frequency can be decreased, so that power

savings can be achieved. This is also the case of the example

application, where the execution time can be extended without

affecting the control.

Table II presents the resource requirements and the execu-

tion time of some of the functions used in the control algorithm

written in the FPGA. Based on data presented in this table, opti-

mization can be performed regarding the resources in the FPGA

that are used and regarding the execution time.

The blocks presented in Table II can be seen in Fig. 6, and can

be found in the EPSAC implementation and in the algorithm

presented as pseudo-code in Fig. 1.

The operations performed on vectors occupy more FPGA

resources as the ones performed on scalars, and the loops, in

the current case for loops, significantly increase the execution

742 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 2, APRIL 2016

Fig. 8. Comparison between simulation and experimental data—output
amplitude (rot/min).

Fig. 9. Comparison between simulation and experimental data—
input (%).

time. The information in this table allows the user to perform

optimization actions in case the achievement of an application

that requires less FPGA resources is desired, which compiles

faster or which provides shorter execution times. Although dif-

ferent technologies, with release dates separated by several

years, are compared, the differences between the results are rel-

atively small. The reasons for choosing the newer technology,

Spartan-6 or Zynq, consist in the reduced cost and power con-

sumption of the FPGA, but the industrial equipment embedding

these state-of-the-art devices is still expensive.

Two data vectors, one for command and one for speed,

generated through simulations, were used for evaluating the

correctness of the proposed solution. The closed-loop experi-

mental results are presented in Figs. 8 and 9 together with the

simulation results.

The simulated EPSAC controller reaches the new prescribed

setpoint within 0.4 s with no overshoot, while the experimen-

tal results with the FPGA-based EPSAC controller show that a

similar performance is obtained with a settling time of 0.5 s and

zero overshoot. The dc motor rotation speed is given in Fig. 8,

while the corresponding control input, required to drive the dc

motor to its new prescribed position, is presented in Fig. 9.

The validation of the proposed implementation, first on the

PC, then on the real-time target, and finally, on the FPGA,

was made possible by using the data vectors generated through

simulation. The validation step was important, especially for

the FPGA implementation, because additional changes in the

behavior of the controller, caused by the translation from dou-

ble precision data type (DBL) to FXP representation, occurred.

Taking into account the fact that the program compilation time

lasts for approximately 10 min, the simulation of the FPGA

program was also an important action.

Fig. 10. Closed-loop experimental results obtained using three different
motors—output amplitude (rot/min).

Fig. 11. Closed-loop experimental results obtained using three different
motors—input (%).

The behavior of the FPGA-based solution and the robustness

of the controller are emphasized using three different dc motors

from the same power class (Fig. 10). Fig. 11 shows that the

command varies in different ways, because of the differences

between the motors’ parameters.

The execution time and jitter on the targets that were used

are presented in Fig. 7. The execution time of the control loop

(sampling time) in the FPGA or running on the real-time tar-

get has a constant value, 15 ms, while a variation of ±200µs

appears on the real-time target. The PC implementation has

loop execution-time variations, which can reach up to tens of

milliseconds. The performance is higher when the execution

time is shorter, but at the same time, the jitter should be as low

as possible.

In the vast majority of cases, for a numerical control sys-

tem or for a “time critical” process, a better control system is

obtained when the jitter is at its minimum. The PC does not

belong to this category, having a short execution time, but a

rather large jitter value. A jitter value which is hundreds of

times smaller than the value of the execution time does not

affect the control system, but a jitter having the same magnitude

as the execution time negatively affects the entire system.

VI. CONCLUSION

For the case of the EPSAC control strategy, this paper

demonstrates the feasibility of the graphical-programming con-

troller design methodology as a fairly elegant, effective, and

user-friendly method. Different implementations were com-

pared against each other regarding speed, hardware resources,

real-time performance, and programming aspects, under the

following circumstances: graphical-programs portability on

as many industrial standard devices as possible, program

FOLEA et al.: PORTABLE IMPLEMENTATION ON INDUSTRIAL DEVICES 743

scalability providing the possibility of running on resource-

limited and relatively cheap devices or on high-performance

systems. The results show that the FPGA solution offers a

good compromise considering computational speed, hardware-

resource usage, power consumption, and real-time perfor-

mance. These advantages provide the possibility of using pre-

dictive control for fast dynamic processes. The results obtained

justify the use of a graphical-programming environment in

industry for realizing fast synthesis of control algorithms and

for shortening time to market dedicated solutions.

REFERENCES

[1] R. Zhang, A. Xue, and F. Gao, “Temperature control of industrial coke
furnace using novel state space model predictive control,” IEEE Trans.

Ind. Informat., vol. 10, no. 4, pp. 2084–2092, Nov. 2014.
[2] F. Xu, H. Chen, X. Gong, and Q. Mei, “Fast nonlinear model predictive

control on FPGA using particle swarm optimization,” IEEE Trans. Ind.

Electron., vol. 63, no. 1, pp. 310–321, Jan. 2016.
[3] H. Guzman et al., “Comparative study of predictive and resonant con-

trollers in fault-tolerant five-phase induction motor drives,” IEEE Trans.

Ind. Electron., vol. 63, no. 1, pp. 606–617, Jan. 2016.
[4] S. Chai, L. Wang, and E. Rogers, “A cascade MPC control structure for

a PMSM with speed ripple minimization,” IEEE Trans. Ind. Electron.,
vol. 60, no. 8, pp. 2978–2987, Aug. 2013.

[5] M. A. Stephens, C. Manzie, and M. C. Good, “Model predictive control
for reference tracking on an industrial machine tool servo drive,” IEEE

Trans. Ind. Informat., vol. 9, no. 2, pp. 808–816, May 2013.
[6] C. Wang, M. Yang, W. Zheng, J. Long, and D. Xu, “Vibration suppression

with Shaft Torque limitation using explicit MPC-PI switching control
in elastic drive systems,” IEEE Trans. Ind. Electron., vol. 62, no. 11,
pp. 6855–6867, Nov. 2015.

[7] M. Kaminski and T. Orlowska-Kowalska, “FPGA implementation of
ADALINE-Based speed controller in a two-mass system,” IEEE Trans.

Ind. Informat., vol. 9, no. 3, pp. 1301–1311, Aug. 2013.
[8] L. Gomes, E. Monmasson, M. Cirstea, and J. J. Rodriguez-Andina,

“Industrial electronic control: FPGAs and embedded systems solutions,”
in Proc. 39th Annu. Conf. Ind. Electron. Soc. (IECON’13), 2013, pp. 60–
65.

[9] C. I. Muresan, E. H. Dulf, and R. Both, “Comparative analysis of different
control strategies for a train of cryogenic 13C separation columns”, Chem.

Eng. Technol., vol. 38, pp. 619–631, 2015.
[10] S. Folea, G. Mois, C. I. Muresan, L. Miclea, R. De Keyser, and M. Cirstea,

“Implementation of an extended prediction self-adaptive controller using
LabviewTM ,” in Proc. 13th Int. Conf. Ind. Informat. (INDIN’15), Jul.
22–24, 2015, pp. 883–888.

[11] M. Ricco, P. Manganiello, E. Monmasson, G. Petrone, and G. Spagnuolo,
“FPGA-based implementation of dual kalman filter for PV MPPT appli-
cations,” IEEE Trans. Ind. Informat., doi: 10.1109/TII.2015.2462313.

[12] E. Monmasson, L. Idkhajine, and M. Naouar, “FPGA-based controllers,”
IEEE Ind. Electron. Mag., vol. 5, no. 1, pp. 14–26, Mar. 2011.

[13] E. Jamshidpour, P. Poure, and S. Saadate, “Photovoltaic systems relia-
bility improvement by real-time FPGA-based switch failure diagnosis
and fault-tolerant DC–DC converter,” IEEE Trans. Ind. Electron., vol. 62,
no. 11, pp. 7247–7255, Nov. 2015.

[14] M. Shahbazi, P. Poure, S. Saadate, and M. R. Zolghadri, “FPGA-based
reconfigurable control for fault-tolerant back-to-back converter without
redundancy,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3360–3371,
Aug. 2013.

[15] E. Monmasson and M. Cirstea, “Guest editorial special section on indus-
trial control applications of FPGAs,” IEEE Trans. Ind. Informat., vol. 9,
no. 3, pp. 1250–1252, Aug. 2013.

[16] L. Idkhajine, E. Monmasson, and A. Maalouf, “Fully FPGA-based
sensorless control for synchronous AC drive using an extended
Kalmanfilter,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3908–3918,
Oct. 2012.

[17] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and
M. W. Naouar, “FPGAs in industrial control applications,” IEEE Trans.

Ind. Informat., vol. 7, no. 2, pp. 224–243, May 2011.
[18] C. Sepulveda, J. Munoz, J. Espinoza, M. Figueroa, and F. C. Baier,

“FPGA v/s DSP performance comparison for a VSC-based STATCOM
control application,” IEEE Trans. Ind. Informat., vol. 9, no. 3, pp. 1351–
1360, Aug. 2013.

[19] A. Dinu, M. N. Cirstea, and S. E. Cirstea, “Direct neural-network
hardware-implementation algorithm,” IEEE Trans. Ind. Electron., vol. 57,
no. 5, pp. 1845–1848, May 2010.

[20] J. Rodriguez-Araujo, J. Rodriguez-Andina, J. Farina, F. Vidal, J. Mato,
and M. A. Montealegre, “Industrial laser cladding systems: FPGA-based
adaptive control,” IEEE Ind. Electron. Mag., vol. 6, no. 4, pp. 35–46, Dec.
2012.

[21] A. Oliveri et al., “Two FPGA-oriented high speed irradiance vir-
tual sensors for photovoltaic plants,” IEEE Trans. Ind. Informat., doi:
10.1109/TII.2015.2462293.

[22] Amin, R. T. Bambang, A. S. Rohman, C. J. Dronkers, R. Ortega, and
A. Sasongko, “Energy management of fuel cell/battery/supercapacitor
hybrid power sources using model predictive control,” IEEE Trans. Ind.

Informat., vol. 10, no. 4, pp. 1992–2002, Nov. 2014.
[23] S. Vazquez et al., “Model predictive control: A review of its applications

in power electronics,” IEEE Ind. Electron. Mag., vol. 8, no. 1, pp. 16–31,
Mar. 2014.

[24] A. Damiano, G. Gatto, I. Marongiu, A. Perfetto, and A. Serpi,
“Operating constraints management of a surface-mounted PM syn-
chronous machine by means of an FPGA-based model predictive control
algorithm,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 243–255, Feb.
2014.

[25] Z. Ma, S. Saeidi, and R. Kennel, “FPGA Implementation of model predic-
tive control with constant switching frequency for PMSM drives,” IEEE

Trans. Ind. Informat., vol. 10, no. 4, pp. 2055–2063, Nov. 2014.
[26] R. D. Keyser, “Model based predictive control,” in UNESCO

Encyclopaedia of Life Support Systems (EoLSS), vol. 83. Oxford, U.K.:
Eolss Publishers Co Ltd, 2003, article 6.43.16.1, ISBN 0 9542 989
18-26-34.

[27] C. S. Lim, N. A. Rahim, W. P. Hew, and E. Levi, “Model predictive con-
trol of a two-motor drive with five-leg-inverter supply,” IEEE Trans. Ind.

Electron., vol. 60, no. 1, pp. 54–65, Jan. 2013.
[28] T. Orlowska-Kowalska and M. Kaminski, “FPGA implementation of the

multilayer neural network for the speed estimation of the two-mass drive
system,” IEEE Trans. Ind. Informat., vol. 7, no. 3, pp. 436–445, Aug.
2011.

[29] A. Hace and M. Franc, “FPGA implementation of sliding mode control
algorithm for scaled bilateral teleoperation,” IEEE Trans. Ind. Informat.,
vol. 9, no. 3, pp. 1291–1300, Aug. 2012.

Silviu C. Folea (M’07) received the B.Sc.
and Ph.D. degrees in control systems from
the Technical University of Cluj-Napoca, Cluj-
Napoca, Romania, in 1995 and 2005, respec-
tively.

He is currently an Associate Professor
with the Department of Automation, Technical
University of Cluj-Napoca. His research interests
include embedded and reconfigurable systems,
data acquisition systems, wireless sensor net-
works, and graphical programming.

George Moiş (M’08) received the B.Sc.
and Ph.D. degrees in control systems from
the Technical University of Cluj-Napoca,
Cluj-Napoca, Romania, in 2008 and 2011,
respectively.

He is currently a Lecturer with the
Department of Automation, Technical University
of Cluj-Napoca. His research interests include
embedded system design, digital design, and
wireless sensor networks.

Cristina I. Muresan received the B.Sc.
and Ph.D. degrees in control systems from
the Technical University of Cluj-Napoca,
Cluj-Napoca, Romania, in 2007 and 2011,
respectively.

She is currently a Lecturer with the
Department of Automation, Technical University
of Cluj-Napoca. Her research interests include
modern control strategies, such as predictive
algorithms, fractional order control, time delay
compensation methods, and multivariable

systems.

744 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 2, APRIL 2016

Liviu Miclea (M’00) received the Ph.D. degree in
automatic systems from the Technical University
of Cluj-Napoca, Cluj-Napoca, Romania, in 1995.

He is currently a Professor in the Department
of Automation with the Technical University
of Cluj-Napoca. His research interests include
design for testability, automatic testing, computer
aided design, distributed systems, agent sys-
tems, cyber-physical systems (CPSs), and cloud
computing.

Robain De Keyser received the M.Sc. degree
in electromechanical engineering and the Ph.D.
degree in control engineering from Ghent
University, Gent, Belgium, in 1974 and 1980,
respectively.

He is currently a Senior Professor of Control
Engineering with the Faculty of Engineering,
Ghent University. His research interests include
model-predictive control, auto-tuning and adap-
tive control, modeling and simulation, and sys-
tem identification.

Marcian N. Cirstea (M’97–SM’04) received the
M.Eng. degree in electrical engineering from
the Transilvania University of Brasov, Brasov,
Romania, in 1990, and the Ph.D. degree in digi-
tal control of power converters from Nottingham
Trent University, Nottingham, U.K., in 1996.

He is currently a Professor of Industrial
Electronics and Head of the Department of
Computing and Technology with Anglia Ruskin
University, Cambridge, U.K. He was previously
at De Montfort University, Leicester, U.K. He has

authored over 135 works in this field and has delivered a number of inter-
national tutorials/presentations. His research interests include digital
controllers for power electronics.

Dr. Cirstea was the recipient of the prestigious award of the Doctor
Honoris Causa title by the Transilvania University of Brasov in January
2016.

