
A PORTABLE RESEARCH FRAMEWORK FOR THE

EXECUTION OF JAVA BYTECODE

by

Etienne Gagnon

School of Computer Science

McGill University, Montreal

December 2002

A thesis submitted to McGill University

in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

Copyright c© 2002 by Etienne Gagnon

Abstract

Compilation to bytecode paired with interpretation is often used as a technique

to easily build prototypes for new programming languages. Some languages, includ-

ing Java, push this further and use the bytecode layer to isolate programs from the

underlying platform. Current state-of-the-art commercial and research Java virtual

machines implement advanced just-in-time and adaptive compilation techniques to

deliver high-performance execution of Java bytecode. Yet, experimenting with new

features such as adding new bytecodes or redesigning the type system can be a daunt-

ing task within these complex systems, when new features invalidate assumptions

on which the internal dynamic optimizing compiler depends. On the other hand,

simpler existing Java bytecode interpreters, written purely in high-level languages,

deliver poor performance. The main motivation behind this thesis was to answer the

question: How fast can a portable, easily modifiable Java bytecode interpreter be? In

order to address this question, we have designed and developed the SableVM research

framework, a portable interpreter-based Java virtual machine written in portable C.

In this thesis we introduce innovative techniques for implementing an efficient, yet

portable Java bytecode interpreter. These techniques address three areas: instruction

dispatch, memory management, and synchronization. Specifically, we show how to

implement an inline-threaded engine in the presence of lazy code preparation, without

incurring a high synchronization penalty. We then introduce a logical partitioning of

runtime system memory that simplifies memory management, and a related sparse

interface virtual table design for fast interface-method invocation. We show how to

efficiently compute space-efficient garbage collection maps for verifiable bytecode. We

also present a bidirectional object layout that simplifies garbage collection. Finally, we

i

introduce an improvement to thin locks, eliminating busy-wait in case of contention.

Our experiments within the SableVM framework show that inline-threading [PR98]

Java delivers significant performance improvement over switch and direct-threading,

that sparse interface tables cause no memory loss, and that our map computation

algorithm delivers a very small number of distinct garbage collection maps. Our

overall performance measurements show that, using our techniques, a portable inter-

preter can deliver competitive interpretation performance, and even surpass that of

a less-portable state-of-the-art interpreter on some benchmarks.

ii

Résumé

La compilation en code-octet combinée avec l’interprétation est une technique sou-

vent utilisée pour bâtir des prototypes de nouveaux langages. Certains langages, dont

Java, vont plus loin et utilisent la couche de code-octet pour isoler les programmes

de la plate-forme sous-jacente. Les machines virtuelles de pointe récentes, pour Java,

incluent des compilateurs juste-à-temps avancés et usent de techniques de compilation

adaptables pour offrir une haute performance d’exécution du code-octet Java. Toute-

fois, l’expérimentation de nouvelles caractéristiques, telles l’ajout de nouveaux codes-

octets ou la modification du système de types, peut être une tâche colossale lorsque

ces nouvelles caractéristiques invalident des hypothèses sur lesquelles le compilateur

optimiseur interne dépend. D’autre part, les interpréteurs de code-octet Java plus

simples existants, écrits avec des langages de haut niveau, offrent une faible perfor-

mance. La motivation principale de cette thèse est de répondre à la question : Jusqu’à

quel point un interpréteur de code-octet portable et facilement modifiable peut-il être

rapide ? Pour répondre à cette question, nous avons conçu et développé SableVM, une

machine virtuelle de Java portable, basée sur un interpréteur et écrite en C portable.

Dans cette thèse nous introduisons de nouvelles techniques pour implémenter

un interpréteur de code-octet efficace et portable. Ces techniques couvrent trois

sujets : l’envoi des instructions, la gestion de mémoire et la synchronisation. Plus

spécifiquement, nous montrons comment implémenter un engin linéaire inclusif en

présence d’une préparation paresseuse du code, sans payer un coût élevé de syn-

chronisation. Puis nous introduisons une division logique de la mémoire du système

d’exécution qui simplifie la gestion de mémoire. Nous présentons une conception de

table virtuelle d’interface clairsemée permettant une invocation rapide des méthodes.

iii

Nous montrons comment calculer efficacement des cartes de ramassage de miettes peu

spacieuses pour du code-octet vérifiable. Nous présentons également une disposition

bidirectionnelle des objets qui simplifie le ramassage des miettes. Finalement, nous

introduisons une amélioration aux verrous légers qui élimine l’attente active en cas

de litige.

Nos expérimentations au sein du cadre SableVM montrent qu’une interprétation

linéaire inclusive [PR98] de Java offre une amélioration significative de la performance

par rapport à une interprétation linéaire aiguillée ou directe ; que les tables d’interface

clairsemées ne causent pas de pertes de mémoire et que notre calcul de cartes de ra-

massages de miettes livre un très petit nombre de cartes distinctes. Nos mesures

globales de performance démontrent qu’un interpréteur portable utilisant nos tech-

niques peut fournir une performance compétitive, surpassant celle d’un interpréteur

de pointe moins portable pour certains programmes témoins.

iv

Acknowledgments

This thesis would not be without the support of many other people. First, and

most importantly, I would like to thank my supervisor, Professor Laurie Hendren, for

her unfailing enthusiasm and her indispensable guidance throughout the course of this

doctoral research. Thanks, Laurie, for infecting me with your passion for compilers.

Thanks, also for all your help and support, and for having an open-door policy for

your graduate students!

I would like to thank all the faculty and student members of the McGill Sable

Research Group for their invaluable help discussing and commenting this work. I

would like to thank, in particular, Professor Karel Driesen for providing pointers to

important related work, and for his help in better defining the scope of this project.

I would also like to thank Marc Berndl for his work on investigating inline-threading

problems with gcc. I would like to thank Bruno Dufour for building the scripts

for collecting empirical results and transforming the output into various formats,

including HTML. I would also like to thank John Jorgensen for his invaluable help

with the installation of libraries and other system administration tasks.

I would like to thank the various contributors and users of SableVM for their

help and feedback. I would like to specially thank Grzegorz Prokopski for porting

SableVM to the Debian/Alpha platform, and for his continuing help porting SableVM

other Debian supported platforms. I would also like to thank Archie Cobbs for port-

ing SableVM to the FreeBSD platform, and contributing bug fixes. I would like to

thank Chak Wai So for helping to discover and fix little discrepancies in the garbage

collector, and Brent Fulgham for contributing code for parsing configuration files.

This research wouldn’t have been possible without financial support. I would like

v

to thank my supervisor Laurie Hendren, again, for her financial support. I would

also like to thank FCAR for their graduate studies fellowship. I would like to thank

Hydro-Québec and McGill for their reserved Ph.D. fellowship. I would like to thank

UQÀM for providing me with a dream faculty position even before the end of my

studies.

Finally, sometimes words are not enough. How could I thank enough my wife

Gladys Iodio for all her love, moral support, help, patience, understanding, and so

much more she provided me for all these years? Thanks, thanks, thanks, and more

thanks!

vi

Contents

Abstract i

Résumé iii

Acknowledgments v

Contents vii

List of Figures xii

List of Tables xiv

1 Introduction and Contributions 1

1.1 Introduction . 1

1.1.1 The Java Virtual Machine . 1

1.1.2 The Quest for High Performance 2

1.1.3 Portability . 3

1.1.4 Java Virtual Machine Overview 4

1.2 Research Motivation and Objectives 4

1.2.1 Research Framework . 4

1.2.2 Bytecode Interpreter . 6

1.2.3 Specific Research Objectives 6

1.3 Contributions . 7

1.4 Thesis Organization . 9

vii

2 Fast Instruction Dispatch 10

2.1 Preparation: Reducing Work at Runtime 11

2.1.1 Pure Bytecode Interpretation 11

2.1.2 Precomputing and Aligning Data 12

2.2 Dispatch Types . 13

2.2.1 Switching . 13

2.2.2 Direct-Threading . 14

2.2.3 Inline-Threading . 15

2.3 Inline-Threading Java . 19

2.3.1 Conflict: Laziness and Multi-Threading 19

2.3.2 Getting Longer Inlined Sequences 24

2.3.3 Preparation Sequences . 27

2.4 Experimental Results . 37

2.4.1 Inlined Instruction Sequences Characteristics 38

2.4.2 Performance Measurements 40

2.5 Related Work . 42

2.6 Conclusions . 43

3 Logical Partitioning of Memory 44

3.1 Simplifying Memory Management . 45

3.1.1 The Price of Flexibility . 45

3.2 Logical Memory Partitions . 47

3.2.1 Physical and Logical Partitions 47

3.2.2 Thread-Specific Memory . 49

3.2.3 Class-Loader-Specific Memory 51

3.2.4 Shared Memory . 53

3.2.5 System Memory . 54

3.3 Related Work . 54

3.4 Conclusions . 55

viii

4 Sparse Interface Virtual Tables 57

4.1 Traditional Virtual Table Organization 57

4.1.1 Virtual Tables for Single Inheritance 58

4.1.2 Virtual Tables for Interfaces 59

4.2 Sparse Interface Virtual Tables . 61

4.2.1 Basic Implementation . 62

4.2.2 Filling the Holes . 62

4.2.3 Guarding Against Pathological Cases 64

4.3 Experimental Results . 65

4.3.1 Discussion . 65

4.4 Related Work . 67

4.4.1 Selector Table Indexing . 67

4.4.2 Row Displacement Compression 67

4.4.3 Interface Method Table Hashing 68

4.5 Conclusions . 69

5 Bidirectional Object Layout 70

5.1 Traditional Layout . 71

5.2 Bidirectional Object Layout . 71

5.2.1 Tracing Objects . 74

5.3 Experimental Results . 77

5.3.1 Discussion . 78

5.4 Related Work . 78

5.5 Conclusions . 79

6 Space-Efficient Garbage Collection Maps 80

6.1 Type-Precise Garbage Collection Maps 81

6.1.1 The Gosling Property . 82

6.1.2 A Notable Exception: Subroutines 82

6.2 A Simple, yet Efficient Algorithm . 83

6.2.1 The Basic Idea . 83

ix

6.2.2 What is a Subroutine? . 87

6.2.3 Algorithm Description . 89

6.3 Experimental Results . 93

6.3.1 Storage Size . 93

6.3.2 Number of Local Variables . 94

6.4 Related Work . 96

6.5 Conclusions . 98

7 Spin-Lock-Free Thin Locks 99

7.1 Thin Locks . 100

7.1.1 Bacon Algorithm . 100

7.1.2 Onodera’s Proposed Improvement 101

7.2 Eliminating Busy-Wait Without Inflating Objects 102

7.2.1 Modifications to the Lock Operation 103

7.2.2 Modifications to the Unlock Operation 103

7.2.3 Explanations . 104

7.3 Conclusions . 106

8 Portability and Extensibility 107

8.1 Portability of SableVM . 107

8.1.1 System-Specific Files . 107

8.1.2 Architecture-Level Features 108

8.1.3 Limitations of the Current Implementation 109

8.2 Extensibility . 109

8.2.1 Abstraction Levels Using m4 110

8.2.2 Debugging SableVM . 112

8.3 Conclusions . 113

9 Overall Performance Measurements 114

9.1 Test Platform . 114

9.2 Virtual Machines . 115

9.2.1 Interpreters . 115

x

9.2.2 Compiler Systems . 116

9.3 Benchmarks . 116

9.4 Results . 117

9.4.1 Discussion . 119

9.5 Conclusions . 120

10 Future Work and Conclusions 121

10.1 Future Work . 121

10.1.1 SableVM in the Field . 121

10.1.2 Profiling Memory Usage . 122

10.1.3 Investigate Compilation to V-CODE 122

10.2 Conclusions . 122

Appendices

A A Mini SableVM User Guide 124

A.1 Getting and Compiling SableVM . 124

A.2 Customizing SableVM . 125

A.2.1 Advanced Customization . 125

A.3 Running SableVM . 126

A.3.1 Advanced Command-Line Options 127

B Alpha Port Diffs 128

B.1 jni system specific.h . 128

B.2 system.h . 128

B.3 system.c . 129

Bibliography 131

xi

List of Figures

1.1 Java Virtual Machine Overview . 5

2.1 Pure Switch-Based Bytecode Interpreter 11

2.2 Direct-Threaded Interpreter . 14

2.3 Inlining a Sequence . 16

2.4 Inlined Instruction Sequence . 17

2.5 GETSTATIC With and Without Initialization 22

2.6 Two-Values Replacement in Code Array 23

2.7 Branch Instruction With and Without GC Check 25

2.8 Using Signals . 27

2.9 Single-Value Replacement of GETSTATIC 28

2.10 Single GETSTATIC Preparation Sequence 29

2.11 Instruction Implementations . 30

2.12 Full Preparation Sequence . 33

2.13 Inlined Instruction Sequence . 33

2.14 Code Array After First Execution . 34

3.1 Layout of Physical and Logical Partitions 48

4.1 Single Inheritance Virtual Table (VTBL) 59

4.2 Interface Virtual Tables (IVTBL) . 61

4.3 Sparse Interface Virtual Table Layout 63

5.1 Naive Object Layout . 72

5.2 Traditional Object Layout . 73

xii

5.3 Bidirectional Object Instance Layout 75

5.4 Bidirectional Array Instance Layout 76

6.1 Locals Splitting and Reordering . 86

6.2 Seemingly Recursive Subroutine . 87

6.3 Ambiguous Subroutine . 88

6.4 Abstract Interpretation of Some Bytecode Instructions 91

7.1 Contention Example . 104

8.1 Source Code . 111

8.2 Generated Code . 111

8.3 Debugging Session . 112

xiii

List of Tables

2.1 Inlined Sequences (1) . 38

2.2 Inlined Sequences (2) . 39

2.3 Inline-Threading Performance Measurements (1) 40

2.4 Inline-Threading Performance Measurements (2) 41

3.1 Stack Depth . 50

4.1 Sparse Interface Virtual Tables . 65

5.1 Garbage Collection Time . 78

6.1 GC Maps Storage Size . 93

6.2 Local Variable Count . 95

9.1 Comparative Performance: SableVM vs. Interpreters 118

9.2 Comparative Performance: SableVM vs. Compilers 118

xiv

Chapter 1

Introduction and Contributions

1.1 Introduction

1.1.1 The Java Virtual Machine

Over the last few years, Java [GJSB00] has rapidly become one of the most popular

general purpose object-oriented programming languages. The Java language was

designed, from the ground up, to provide platform independence and security. This

is achieved by compiling Java programs into class files which include type information

and platform independent bytecode instructions. On a specific platform, a runtime

system (or virtual machine [LY99]) loads and links class files, then executes bytecode

instructions.

The idea of compiling a language to bytecode instructions and interpreting the

result is not new; it is in fact a relatively common practice used in undergraduate

compiler courses to limit the scope of term projects, and it is used in language research

projects to rapidly prototype systems. Bytecode is also often used as a means to

isolate compiled programs from the underlying platforms, as illustrated by the P-

CODE system for PASCAL [Wir71], and in Caml [Cam] implementations. The Java

programming language pushed this a little further by specifying the bytecode language

as a non-optional core component of the system.

The virtual machine collaborates with a rich standard class library to provide key

1

1.1. Introduction

services to Java programs, including threads and synchronization, automatic memory

management (garbage collection), safety features (array bound checks, null pointer

detection, code verification), reflection, dynamic class loading, and more.

We should note that there exist static compilers that directly compile Java pro-

grams to machine code (e.g. [GCJ, Har, Tob]). Yet, the constraints of static and dy-

namic Java environments are quite different. Our research focuses solely on dynamic

Java execution environments.

1.1.2 The Quest for High Performance

Early Java virtual machines were simple bytecode interpreters. Soon, the quest for

performance led to the addition of Just-In-Time compilers (JIT) to virtual machines,

an idea formerly developed for other object-oriented runtime systems like Smalltalk-

80 [DS84] and Self-91 [CUL89]. JITs range from the very naive, that use templates to

replace each bytecode with a fixed sequence of native code instructions (early versions

of Kaffe [Kaf] did this), to the very sophisticated that perform register allocation,

instruction scheduling and other scalar optimizations (e.g. [ATCL+98,Kra98,SOT+00,

YMP+99]).

JITs face two major problems. First, they strive to generate good code in very

little time, as compilation time is lost to the running application. Second, the code

of compiled methods resides in memory; this increases the pressure on the memory

manager and garbage collector. Recent virtual machines mostly overcome these prob-

lems. The main trend is to use dynamic strategies to find hot execution paths, and

only optimize these areas (e.g. [AAB+00, CLS00, Hot]). HotSpot [Hot, PVC01], for

example, is a mixed interpreter and compiler environment. It achieves high perfor-

mance by dynamically profiling interpreted code to identify hot spots, then compiling

and optimizing them. Jikes RVM [AAB+00, AAC+99], on the other hand, always

compiles methods (naively at first), then uses adaptive online feedback to recompile

and optimize hot methods. These techniques are particularly suited to virtual ma-

chines executing long running programs in server environments. The optimizer can

be relatively slow and consist of a full-fledged optimizing compiler using intermediate

2

1.1. Introduction

representations and performing costly aggressive optimizations, as compile time will

be amortized on the long overall execution time.

1.1.3 Portability

While most Java programs enjoy platform independence, the underlying virtual ma-

chine that provides this independence is itself a program that must interact with low-

level system-specific routines of the host platform. As we have seen in Section 1.1.2,

current state-of-the-art virtual machines include sophisticated full-fledged optimizing

compilers. It is important to design such high-performance systems in a relatively

portable way, as it would be impractical and too costly to completely rewrite such

optimizing compilers for each platform to which the system is ported.

It is thus interesting to note that both the HotSpot and the Jikes RVM virtual

machines implement their optimizing compilers in the Java programming language. In

fact, the Jikes RVM virtual machine goes a step further and is completely implemented

in Java, using a relatively complex mechanism to write a precomputed bootstrapping

image to disk.

But, this does not mean that the HotSpot and the Jikes RVM internal optimizing

compilers are then automatically platform independent: Even though these compil-

ers can theoretically run on any system that provides a Java virtual machine, the

generated optimized code targets a specific platform. So, these compilers are useless

on a platform unless a compiler back-end is developed for that specific platform. In

the case of Jikes RVM, in particular, porting to a new platform requires the porter

to learn about the executable file format of the target platform for generating the

bootstrap image.

So, in summary, even though the most complex parts of modern virtual machines

are usually written in Java, porting to a new platform requires a significant develop-

ment effort.

3

1.2. Research Motivation and Objectives

1.1.4 Java Virtual Machine Overview

Before getting into the details of our research, we present a short overview of the

internal organization of a Java virtual machine. As illustrated in Figure 1.1, the

main components of a Java virtual machine are:

1. Class Loaders: Class loaders are used to dynamically load application and li-

brary classes from a variety of sources such as the local file system and the

network.

2. Native Interface1: The native interface allows the virtual machine to call non-

Java routines in applications and class libraries.

3. Execution Engine: The execution engine is the heart of the virtual machine. It

executes bytecode instructions loaded through class loaders. There exist various

types of execution engines such as interpreters and just-in-time compilers.

4. Memory Manager: The memory manager provides a garbage collected heap for

object instances and manages the memory used to store other internal virtual

machine data structures.

5. Services: This component consists of a collection of sub-components providing

the necessary internal virtual machine support for standard class library features

such as threads and reflection.

1.2 Research Motivation and Objectives

1.2.1 Research Framework

Many academic research projects have limited resources. Sometimes, the human re-

sources dedicated to a project are limited to a single graduate student, or a very

small team of researchers. The development effort required to experiment with some

1The Java Native Interface (JNI) is a standard for dynamically linking Java and non-Java code.

4

1.2. Research Motivation and Objectives

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Applications and Class Libraries

Class Loaders Native Interface (JNI)

Memory Manager

Execution Engine Services

Threads
Reflection

Etc.

Java Virtual Machine

Figure 1.1: Java Virtual Machine Overview

language extensions, in state-of-the-art adaptive Java virtual machine systems, might

involve rewriting key parts of highly sophisticated code optimizers. Such develop-

ment effort can easily be out of reach of a small research team. Even using a simpler

template-based just-in-time compiler might require more development work than a re-

search team would like to invest, due to the requirement of writing assembly language

for each target platform.

One of the main objectives of this research is the development of an openly avail-

able virtual machine suitable for performing research experiments with minimal de-

velopment efforts. In order to achieve this goal, this virtual machine must be easily

extensible, allowing experiments with language modifications and extensions such as

redefining the semantics of arrays, or adding new bytecode instructions for better sup-

porting functional languages. This research framework must also be easily portable

to new platforms with minimal effort, to allow performing experiments on a variety

of systems.

Finally, the virtual machine must also deliver acceptable performance, so that

5

1.2. Research Motivation and Objectives

experiments can be done running real-world applications, not only toy benchmarks.

1.2.2 Bytecode Interpreter

An interpreter-based virtual machine would seem to meet our portability and easy

modification goals. Interpreters written in high-level programming languages have

the following advantages:

• Understanding their internal structure requires a very short learning curve.

• They have easily modifiable source code.

• It is usually possible to trace their internal execution with a debugger. This

helps with learning the system and modifying it.

• High-level languages help increase the portability to other systems, by hiding

low-level details such as the processor instruction set.

The main drawback of interpreter-based systems is that they often deliver poor

performance, due to high instruction dispatch overhead.

Recently, a new technique has been introduced, called inlined-threading [PR98],

that partly eliminates dispatch overhead for a subset of instructions. This technique

has not been tested for Java before. As it looked promising in helping to achieve

our acceptable performance goal, we decided to further investigate the use of this

technique in the context of an interpreter-based Java virtual machine.

1.2.3 Specific Research Objectives

The specific objectives of this research are to:

• design and implement a portable and easily modifiable interpreter-based virtual

machine,

• evaluate the relative performance achievable by a portable interpreter imple-

menting modern and innovative techniques,

6

1.3. Contributions

• research new memory management techniques,

• research new techniques for improving the performance of Java virtual machines,

regardless of their engine type (interpreter, just-in-time compiler, adaptive op-

timizing system), and

• measure the performance of the proposed techniques.

A less formal objective is to keep the framework as simple as possible. As the

development of a standards compliant Java virtual machine implementing the Java

Native Interface (JNI) and the Invocation Interface requires a significant amount of

work, it is important to keep a simple virtual machine design. For example, we have

chosen to implement a simple semi-space copying collector, leaving the development

of more advanced generational techniques to future interested users of the framework.

1.3 Contributions

In this section, we list the contributions of this thesis.

One contribution of this research is of a technical nature. It consists of the research

framework itself. In the course of this research, we have developed the SableVM [Sabb]

research framework, a freely available, portable, flexible, and efficient interpreter-

based Java virtual machine. We think, that the relatively small source-code size

of SableVM (approximately 55,000 lines before macro expansions) and the clarity

and simplicity of its internal design makes it an ideal tool for conducting small to

moderately sized research projects on the Java virtual machine.

SableVM implements 2 kinds of object layout, 3 flavors of threaded interpretation,

provides a choice of using or not using signals to detect some exceptions, has many

embedded debugging features, and can be easily stepped through, at execution time,

using a traditional debugger.

Thus, the contributions of this thesis are:

• The development and public release of the SableVM research framework.

7

1.3. Contributions

• The introduction of innovative techniques to allow inline-threaded interpreta-

tion of Java bytecode, without race conditions or high synchronization costs in a

multi-threaded environment. Our experiments show that inline-threading Java

bytecode offers significant speed improvement over that of traditional bytecode

interpretation.

• The introduction of a logical partitioning of runtime memory that simplifies

memory management. This memory partitioning allows SableVM to use a very

simple semi-space copying collector to manage the Java heap, and to use very

simple partition-specific memory managers for the rest.

• The introduction of a sparse interface method virtual table design that reduces

the cost of interface method invocation to that of a normal virtual method

call. Appropriate for a dynamic loading environment, this design uses a sim-

ple, yet very effective strategy to recycle memory holes in the sparse tables.

Our experimental results show that, on all tested benchmarks and applications,

including an interface-intensive application, no memory loss resulted from the

sparse design.

• The introduction of a simple and fast algorithm to compute space-efficient

garbage collection maps for verifiable bytecode. Our experimental results show

that at most 74 distinct garbage collection maps of a total size of 1,776 bytes

(less than 2Kb) were computed on tested benchmarks, with most benchmarks

requiring between approximately 30 to 40 maps each. The biggest application,

requiring 74 maps, had 39,653 garbage collection checkpoints.

• The introduction of a bidirectional object layout that groups together all refer-

ence fields for simpler garbage collection tracing.

• The introduction of an improvement to thin locks [BKMS98] that eliminates

busy-wait in case of contention, without causing any overhead into the object

layout.

8

1.4. Thesis Organization

• One of our most significant experimental results, that counts as a contribu-

tion, is that a carefully designed, yet simple and portable Java bytecode inter-

preter can achieve competitive performance with a commercial state-of-the-art

less-portable interpreter. More specifically, the inlined-threaded interpreter of

SableVM does deliver competitive performance to the official Java Development

Kit 1.4.0 HotSpot client interpreter, being sometimes faster, sometimes slower.

1.4 Thesis Organization

The remainder of this thesis is structured as follows.

In Chapter 2, we describe the problem of inline-threading Java in the presence

of lazy preparation and multi-threading, and we introduce our preparation sequence

technique to circumvent the problem and increase the length of inlined instruction im-

plementation sequences. In Chapter 3, we motivate and describe a logical partitioning

of runtime memory among various partition-specific memory managers. We explain

how this partitioning simplifies memory management in SableVM. In Chapter 4, we

introduce a sparse interface virtual table design for fast interface-method invocation,

taking advantage of a partition-specific memory manager to recycle memory holes

using a simple and fast algorithm. In Chapter 5, we discuss the traditional layout

of objects in Java and introduce a bidirectional layout for simplifying garbage col-

lection tracing. In Chapter 6 we describe the difficulty of computing precise garbage

collection maps in Java, then we introduce a simple and fast, yet effective algorithm

for computing space-efficient garbage collection maps. In Chapter 7, we introduce an

improvement to thin locks that eliminates busy-wait in case of contention. In Chapter

8, we discuss how portability and extensibility are achieved in SableVM. In Chapter

9 we describe our experimentation setting, and present our overall performance mea-

surements, with comparisons to various other virtual machines. Finally, in Chapter

10, we discuss possible future work and present our conclusions.

9

Chapter 2

Fast Instruction Dispatch

In this chapter we discuss the core instruction dispatch mechanism of SableVM.

In fact, the SableVM framework offers a choice of 3 different flavors of threaded inter-

pretation with distinct performance-portability tradeoffs1, but we will mainly focus

on the fastest flavor: inline-threading.

In particular, we will introduce the necessary techniques to implement an efficient

inline-threaded interpreter engine, in the presence of lazy code preparation and multi-

threading.

This chapter is structured as follows. In Section 2.1 we discuss how SableVM

differs from pure bytecode interpreters by preparing and aligning bytecodes prior

to execution. Then, in Section 2.2 we describe three existing instruction dispatch

techniques and discuss their efficiency-portability tradeoffs. Next, in Section 2.3 we

discuss the difficulty of applying threaded interpretation techniques in a Java inter-

preter without paying a high synchronization penalty, and introduce techniques to

solve the problem and increase performance. In Section 2.4, we present our exper-

imental results. In Section 2.5 we discuss related work. Finally, in Section 2.6, we

present our conclusions.

1In Chapter 8, we will explain how SableVM avoids source code duplication while permitting easy
debugging of instructions, by implementing abstraction levels using the M4 macro processor.

10

2.1. Preparation: Reducing Work at Runtime

2.1 Preparation: Reducing Work at Runtime

2.1.1 Pure Bytecode Interpretation

Simplicity is usually the main motive behind the usage of a bytecode instruction set

by students and programming language researchers. Targeting stack-based bytecode

instructions greatly simplifies compilation by eliminating the need for performing

register allocation and isolating the compiler developer from low-level system-specific

implementation details such as object-code format. In addition, writing a pure byte-

code interpreter can often be done in a few hours of work (given a simple instruction

set and a knowledgeable programmer).

A typical bytecode interpreter loads a bytecode program from disk using standard

file operations, and stores instructions into an array. It then dispatches instructions

using a simple loop-embedded switch statement, as shown in Figure 2.1.

char code[CODESIZE];
char *pc = code;
int stack[STACKSIZE];
int *sp = stack;

/* load bytecodes from file and store them in code[] */

...

/* dispatch instructions */

while(true) {
switch(*pc++) {
case ICONST_1: *sp++ = 1; break;
case ICONST_2: *sp++ = 2; break;
case IADD: --sp; sp[-1] += *sp; break;
...
case END: exit(0);

}}

Figure 2.1: Pure Switch-Based Bytecode Interpreter

11

2.1. Preparation: Reducing Work at Runtime

2.1.2 Precomputing and Aligning Data

The Java class file format is relatively complex. It includes, among other things, a

constant pool used to store the most complex operands of bytecode instructions such

as strings and class names. Bytecode instructions refer to class pool entries using

a one or two byte immediate operand representing an index into the constant pool.

Yet, Java bytecode instructions have no alignment requirement2.

Modern processors usually have word sized registers, and most of memory hierar-

chy hardware is optimized for accessing aligned words (e.g.: single or multiple word

cache entries, word aligned access to lower memory). Accessing byte-sized data often

results in additional computation or hardware overhead for extracting the appropriate

bits from the enclosing word.

In order to simplify computation, and to reduce run-time overhead, SableVM

does not directly interpret bytecode instructions. Instead, it precomputes an aligned

code array with word elements. Said differently, SableVM translates bytecodes into

wordcodes. In the process, SableVM performs several optimizations such as translat-

ing big-endian multi-byte values into platform-specific words, and eliminating some

constant-pool indirections by inlining values into the code array.

Translating bytecodes also involves making many small adjustments such as re-

computing relative branch targets. SableVM takes this opportunity to precompute a

variety of values such as absolute branch targets, to minimize run-time computation.

SableVM also makes the necessary adjustments to exception and line number tables.

Finally, in order to preserve portability to 32 and 64-bit big and little-endian

systems, SableVM does not assume any particular word size or byte ordering. It

simply uses generic types such as (void *), and the svmt word type (which is defined

in a system-specific header file).

2Exception: The operands of the lookupswitch and the tableswitch instructions include padding
to provide 32-bit aligned jump tables.

12

2.2. Dispatch Types

2.2 Dispatch Types

In this section, we describe three dispatch mechanisms generally used for implement-

ing interpreters and discuss their efficiency-portability tradeoffs. The third mecha-

nism is relatively new, and has been introduced by Piumarta and Riccardi [PR98].

2.2.1 Switching

As we have seen in Section 2.1, simple bytecode interpreters use a loop-embedded

switch statement to dispatch instructions.

This approach has some benefits:

• It is very simple to implement.

• It is a very portable approach, as it requires no platform or compiler-specific

support.

• It requires no special preparation of the bytecode array.

But this approach has performance drawbacks. Dispatching instructions is very

expensive. On every iteration, the dispatch loop fetches the next bytecode, looks

up the associated implementation address in a table, then transfers control to that

address. A typical compilation of the dispatch loop requires a minimum of 3 control

transfer machine instructions per iteration: one to jump from the previous bytecode

implementation to the head of the loop, one to test whether the bytecode is within

the bounds of handled switch-case values, and one to transfer control to the selected

case statement. On modern processors, control transfer is one of the main obstacles

to performance [HP96], so this dispatch mechanism causes significant overhead.

The main drawbacks of this switch-based bytecode dispatch can be summarized

as:

• High dispatch overhead.

• Bytecodes are not aligned, causing additional computation or hardware over-

head.

13

2.2. Dispatch Types

2.2.2 Direct-Threading

An effective technique to reduce dispatch overhead was popularized by the Forth

programming language. This technique has the name of threaded code. Note that

the word thread, in this context, has nothing to do with the concurrent programming

technique (e.g. Java threads, POSIX threads). Among the traditional threaded code

techniques, the most efficient is direct-threading [Ert]3.

Direct-threading improves on switch-based dispatch by eliminating central dis-

patch. This works as follows. In the executable code stream, each bytecode is re-

placed by the address of its associated implementation. Also, at the end of each

bytecode implementation, the code required to dispatch the next opcode is added.

This is illustrated in Figure 2.2.

/* code */

void *code[] = {
&&ICONST_2, &&ICONST_2,
&&ICONST_1, &&IADD, ...

}
void **pc = code;

/* dispatch first instruction */

goto **(pc++);

/* implementations */

ICONST_1: *sp++ = 1; goto **(pc++);
ICONST_2: *sp++ = 2; goto **(pc++);
IADD: --sp; sp[-1] += *sp; goto **(pc++);
...

Figure 2.2: Direct-Threaded Interpreter

Execution proceeds as follows. The code array is initialized. Then the pc program

counter variable is initialized, pointing to the first element of code. Then, dispatch

proceeds by jumping to the address stored in *pc by executing the goto **(pc++);

instruction. The target instruction ICONST 2 is executed, then the next instruction is

3Inline-threading, which we discuss in Section 2.2.3, is a recent technique, and thus does not
count as traditional.

14

2.2. Dispatch Types

again dispatched by a single indirect jump goto **(pc++); , and so on. This effec-

tively eliminates the table lookup and the central dispatch loop. A typical compilation

of this code yields a single control transfer instruction per dispatch.

Direct-threading requires preparation of the code array, as the storage size of

an implementation address (sizeof(void *)) is larger than that of the bytecode it

replaces.

Figure 2.2 uses the label-as-value GNU C extension, but direct-threading can also

be implemented using a couple of macros containing inline assembly.

Advantages of direct-threading:

• It is relatively simple to implement.

• It is directly supported by the widely ported the GNU C Compiler [GCC], yet

also implementable using other compilers.

• It operates on aligned data.

The drawbacks of this approach are:

• Porting to a new platform or compiler might require a little system-specific

assembly programming, if the target compiler is not the GNU C compiler.

• It requires preparation of the code array, prior to executing the code, to convert

bytecodes into wordcodes.

2.2.3 Inline-Threading

The last dispatch mechanism we survey is that of inline-threading [PR98]. This tech-

nique improves on direct-threading by eliminating dispatch overhead for instructions

within a basic block [ASU86].

The general idea is to identify instruction sequences forming basic blocks, within

the code array, then to dynamically create a new implementation for the whole se-

quence by sequentially copying the body of each implementation into a new buffer,

15

2.2. Dispatch Types

then copying the dispatch code at the end. Finally, a pointer to this sequence imple-

mentation is stored into the code array, replacing the original bytecode of the first

instruction in the sequence.

Figure 2.3 displays a simplified example of creation of an instruction sequence

implementation. Figure 2.4 shows the resulting instruction sequence implementation.

Note that Figure 2.4 is only an abstract source code representation of the actual

inlined instruction sequence implementation.

/* Instructions */

ICONST_1_START: *sp++ = 1;
ICONST_1_END: goto **(pc++);

INEG_START: sp[-1] = -sp[-1];
INEG_END: goto **(pc++);

DISPATCH_START: goto **(pc++);
DISPATCH_END: ;

/* Implement the sequence ICONST_1 INEG */

size_t iconst_size = (&&ICONST_1_END - &&ICONST_1_START);
size_t ineg_size = (&&INEG_END - &&INEG_START);
size_t dispatch_size = (&&DISPATCH_END - &&DISPATCH_START);

void *buf = malloc(iconst_size + ineg_size + dispatch_size);
void *current = buf;

memcpy(current, &&ICONST_START, iconst_size);
current += iconst_size;
memcpy(current, &&INEG_START, ineg_size);
current += ineg_size;
memcpy(current, &&DISPATCH_START, dispatch_size);
...
/* Now, it is possible to execute the sequence using: */
goto **buf;

Figure 2.3: Inlining a Sequence

Inline-threading improves performance by reducing the overhead due to dispatch.

This is specially effective for sequences of simple instructions such as ICONST 1 and

IADD, which have a high dispatch-to-real-work ratio.

In [PR98], Piumarta and Riccardi experimented with inline-threading on toy

16

2.2. Dispatch Types

ICONST_1 body: *sp++ = 1;
INEG body : sp[-1] = -sp[-1];
DISPATCH body: goto **(pc++);

Figure 2.4: Inlined Instruction Sequence

benchmarks using a simple bytecode language, and achieved, in one case, 70% of

the speed of an equivalent optimized C program. Experiments within an Objective

Caml bytecode interpreter showed significant speed improvement in some conditions

(depending on benchmarks and platforms tested).

Processor Specific Concerns

Many modern processors have distinct data and instruction caches. On such systems,

an inline assembly function is required in order to ensure that the instruction cache

sees the dynamically created sequence implementations. This instruction is simply

an architecture-specific cache-flush machine instruction, which cannot be expressed

in portable C.

The problem is that newly created sequence implementations are written back by

the processor to its data cache. This data needs to be written back to main memory

before it can be seen by the instruction cache. So, by using this function, we prevent

the disastrous execution of potentially random memory content.

Limitations

Unlike direct-threading, which applies uniformly to all instructions, inline-threading

presents some limitations. Not all instructions can be inlined. These limitations are

mainly caused by relative jumps. As inlined implementations are copied elsewhere

in memory, the target of a relative jump within an implementation might become

invalid.

The following list of instructions cannot be inlined:

• Instructions that contain C function calls, if the C compiler implements the call

as a relative displacement to the processor’s program counter (PC).

17

2.2. Dispatch Types

• Any instruction that causes the C compiler to emit a hidden internal function

call, if this call is implemented as a relative displacement to the PC (e.g. this

happens for long division, on the x86 platform using gcc).

• Any instruction that contains a jump to other than an absolute target address,

or a PC-relative one within the START and END labels of the instruction imple-

mentation.

The most obscure is the third class of instructions. This happens, for example,

on the x86 platform using gcc version 3.1 with optimization on (gcc -O2) for any

instruction that contains conditionals such as: if (condition). It is an inconsistent

behavior that only shows when using specific compiler options. For example, this

limitation does not show for conditionals when using gcc -O0 on the same platform4.

We discovered this third limitation in our experiments. The initial paper by

Piumarta and Riccardi [PR98] did not identify this limitation5 nor the hidden calls

limitation.

In summary, inlinability of an instruction implementation is dependent on the

compiler, platform, and compiler-options used. Thus inline-threading requires a care-

ful testing of each instruction, to discover whether it is inlinable or not, and under

which conditions.

Advantages and Drawbacks

Advantages of inline-threading:

• It completely eliminates dispatch overhead for all but the last instruction of in-

lined sequences, and can yield significant performance improvement over direct-

threading.

• It operates on aligned data.

4Further investigation revealed that this problem is caused by reordering of basic blocks by the
gcc 3.1 optimizer.

5Our tests indicate that this limitation does not show in gcc 2.95, which they used for their
experiments.

18

2.3. Inline-Threading Java

Drawbacks:

• Preparation of the code array requires more work, including basic block identi-

fication.

• It can require one memory cache related inline assembly function on some plat-

forms in addition to having all the requirements of direct-threading.

• Inlined instruction sequence implementations cannot be traced normally using

a debugger (other than at the machine-code level).

• Porting to a new system or compiler requires careful testing of instructions to

assess their inlinability.

2.3 Inline-Threading Java

In the previous section, we described the idea of inline-threading. To our knowledge,

this technique has not been applied to Java interpreters before. In this section, we first

explain the difficulty of applying inline-threading to Java bytecode, then introduce

new techniques that make it possible.

Even though some of the problems and new techniques discussed in this section

also apply to switch and direct-threaded interpreters, we will only focus on inline-

threading to simplify the text.

2.3.1 Conflict: Laziness and Multi-Threading

Lazy Loading and Preparation

In Java, classes are dynamically loaded. The Java Virtual Machine Specification

[LY99] allows a virtual machine to eagerly or lazily load classes (or anything in be-

tween). But this flexibility does not extend to class initialization6. Class initialization

must occur at specific execution points, such as the first invocation of a static method

6Class initialization consists of initializing static fields and executing static class initializers.

19

2.3. Inline-Threading Java

or the first access to a static field of a class. Lazily loading classes has many advan-

tages: it saves memory, reduces network traffic, and reduces startup overhead.

As we have seen, inline-threading requires analyzing a bytecode array to determine

basic blocks, allocating and preparing implementation sequences, and lastly preparing

a code array. As this preparation is time and space consuming, it is advisable to only

prepare methods that will actually be executed. This can be achieved through lazy

method preparation.

Performance Issue

Lazy preparation (and loading), which aims at improving performance, can pose a

performance problem within a multi-threaded7 environment. The problem is that,

in order to prevent corruption of the internal data structure of the virtual machine,

concurrent preparation of the same method (or class) on distinct Java threads should

not be allowed.

The natural approach, for preventing concurrent preparation, is to use synchro-

nization primitives such as pthread mutexes8. But, this approach can have a very high

performance penalty; in a naive implementation, it adds synchronization overhead to

every method call throughout a program’s execution, which is clearly unacceptable,

specially for multi-threaded Java applications.

One-Word Replacement

A clever trick to avoid synchronization on every method call is to put a pointer to a

special preparation method in place of a pointer to the real method to be executed, in

code arrays and virtual tables. The special preparation method uses synchronization

primitives and performs preparation, if it hasn’t been done yet, then finally stores a

pointer to the real method into the calling code array or virtual table9.

7Note that multi-threading is a concurrent programming technique which is inherently supported
in Java, whereas inline-threading is an instruction dispatch technique.

8POSIX Threads mutual exclusive locks.
9As we will explain later, this replacement trick only works if there is a single word to change; if

two or more words are changed, a race condition occurs in absence of explicit synchronization.

20

2.3. Inline-Threading Java

Broken Sequences

In the case of inline-threading the laziness problem is amplified. An important perfor-

mance factor of inline-threading is the length of inlined instruction sequences. Longer

sequences reduce the dispatch-to-real-work ratio and lead to improved performance.

Lazy class initialization mandates that the first call to a static method (or access to a

static field) must cause initialization of a class. This implies (in a naive Java virtual

machine implementation) that instructions such as GETSTATIC must use a conditional

to test whether the target class must be initialized prior to performing the static field

access. If initialization is required, a call to the initialization function must be made.

The conditional and the C function call are, in light of the limitations identified in

Section 2.2.3, potential reasons that can prevent inlining of the GETSTATIC instruc-

tion.

What we would like, is to use the same replacement trick as discussed earlier, using

two versions of the GETSTATIC instruction, as shown in Figure 2.5. But, unfortunately

this does not completely solve our performance problem10.

Even though this technique eliminates synchronization overhead from most func-

tion calls, it inhibits the removal of dispatch code in an instruction which has very

little real work to do. In fact, the cost can be as high as the execution of two additional

dispatches. To measure this, we compare the cost two instruction inline-threaded in-

struction sequences that only differ in their respective use of ILOAD and GETSTATIC

in the middle of the sequence.

Broken Sequence Cost

So, if we had the sequence of instructions ICONST2-ILOAD-IADD, we could build a

single inlined sequence for these three instructions, adding a single dispatch at the

end of this sequence. Cost: 3 × realwork + 1 × dispatch.

If, instead, we had the sequence of instructions ICONST2-GETSTATIC-IADD, we

would not be allowed to create a single inlined sequence for the three instructions.

10Note that, for simplicity, Figure 2.5 implements the integer static field access instruction
GETSTATIC INT variant of GETSTATIC.

21

2.3. Inline-Threading Java

Synchronized GETSTATIC Unsynchronized GETSTATIC

/* Pseudo-code */

GETSTATIC_INIT:

pthread_mutex_lock(...);

/* lazily load class */
...

/* conditional */
if (must_initialize)
{

/* function call */
initialize_class(...);

}

/* do the real work */
*sp++ = class.static_field;

/* replace by fast version */
code[pc -1] =

&&GETSTATIC_NO_INIT;

pthread_mutex_unlock(...);

/* dispatch */
goto **(pc++);

/* pseudo-code */

GETSTATIC_NO_INIT:

/* do the real work */
*sp++ = class.static_field;

/* dispatch */
goto **(pc++);

Figure 2.5: GETSTATIC With and Without Initialization

22

2.3. Inline-Threading Java

This is because, in the prepared code array, we would need to put 3 distinct instruc-

tions: ICONST2, GETSTATIC INIT, and IADD, where the middle instruction cannot be

inlined. Even though the GETSTATIC INIT will eventually be replaced by the more

efficient GETSTATIC NO INIT, the performance cost will remain: 3 × realwork + 3 ×

dispatch.

So, the overhead of a broken sequence can get as high as two additional dispatches.

Two-Values Replacement

In reality, the problem is even a little deeper. The pseudo-code of Figure 2.5 hides

the fact that GETSTATIC INIT needs to replace two values, in the code array: the

instruction opcode and its operand. The idea is that we want the address of the

static variable as an operand (not an indirect pointer) to achieve maximum efficiency,

as shown in Figure 2.6. But this pointer is unavailable at the time of preparation of

the code array, as lazy class loading only takes place later, within the implementation

of the GETSTATIC INIT instruction.

Fast Instruction Code Array

GETSTATIC_NO_INIT:
{

int *pvalue = (pc++)->pvalue;
*sp++ = *pvalue;

}

/* dispatch */
goto **(pc++);

/* Initially */
...
[GETSTATIC_INIT]
[POINTER_TO_FIELD_INFO]
...

/* After first execution */
...
[GETSTATIC_NO_INIT]
[POINTER_TO_FIELD]
...

Figure 2.6: Two-Values Replacement in Code Array

Replacing two values without synchronization creates a race condition. Here is a

short illustration of the problem. A first Java thread reads both initial values, does

the instruction work, then replaces the first of the two values. At this exact point

of time (before the second value is replaced), a second Java thread reads the two

values (instruction and operand) from memory. The second Java thread will thus get

23

2.3. Inline-Threading Java

the fast instruction opcode and the old field info pointer. This can of course lead to

random execution problems.

2.3.2 Getting Longer Inlined Sequences

Before attacking the problem of two-values replacement, we introduce some techniques

to eliminate non-inlinable features from instruction implementations. In other words,

using these techniques, we can eliminate conditionals and function calls from the

body of many instructions. This will increasing the number of inlinable instructions,

leading to the computation of longer inlined sequences, in inline-threaded code.

Type-Specific Instructions

The first technique is to split some bytecode instructions such as GETSTATIC into

multiple type-specific versions. In Java bytecode, there is a single GETSTATIC instruc-

tion to access static fields, yet there are eight primitive field types (boolean, byte,

short, char, int, long, float, and double), and reference types. As reference types are

created dynamically, we consider all reference types as a single type: reference. We

call instructions such as GETSTATIC: overloaded instructions.

When SableVM prepares the code array of a method, it replaces every over-

loaded bytecode by the appropriate type-specific versions such as GETSTATIC INT

and GETSTATIC REFERENCE.

Here is the list of the most important overloaded Java bytecode instructions:

GETSTATIC, PUTSTATIC, GETFIELD, PUTFIELD, NEWARRAY, and ASTORE. Note that we

have included ASTORE in this list as it can operate on both reference and address-type

stack values.

Stop-The-World or Not

A Java virtual machine must provide a garbage collector (GC). SableVM implements

a precise copying stop-the-world garbage collector. A commonly used technique to

stop the world, is for each Java thread to regularly check a flag. This flag is raised

whenever garbage collection is needed.

24

2.3. Inline-Threading Java

To ensure that no thread gets into an arbitrarily long loop without checking for

GC requests, GC checks are usually inserted in backward branch instructions. These

instructions are usually said to be garbage-collection safe.

As SableVM already has to analyze the code to detect basic blocks for inline-

threading, it also takes note of basic blocks which contain bytecode instructions that

include compulsory GC checks. The following bytecode instructions have compul-

sory checks: NEW, NEWARRAY, ANEWARRAY, MULTIANEWARRAY, INVOKESTATIC, INVOKE-

VIRTUAL, INVOKESPECIAL, and INVOKEINTERFACE. Only backward branches to basic

blocks which do not contain such instructions are considered GC check points.

Our technique is thus to provide two implementations for branch instructions: one

with GC check, and one without GC check. This allows us to get an inlinable version

(with no GC check), as shown in Figure 2.7.

GOTO CHECK GOTO (No Check)

GOTO_CHECK:

if (gc_requested)
{

...
}

pc = (*pc)->addr;

/* dispatch */
goto **(pc++);

/* Inlinable */
GOTO_START:

pc = (*pc)->addr;

GOTO_END:

/* dispatch */
goto **(pc++);

Figure 2.7: Branch Instruction With and Without GC Check

Note that a branch instruction determines the end of a basic block, and is thus

always followed by a dispatch. Inlining a branch instruction helps eliminating the

dispatch at the end of the previous instruction.

A nice secondary side effect of only adding checks to a subset of backward branches

is a reduction in the number of GC points, and possibly in the number of GC maps11.

11We discuss garbage collection maps in Chapter 6.

25

2.3. Inline-Threading Java

Load, Link, and Initialize or Not

As we have discussed in Section 2.3.1 and illustrated in Figure 2.5, instruction split-

ting can also be applied to instructions that can cause class loading, linking, and

initialization on their first execution. These instructions include12: LDC STRING, GET-

STATIC *, PUTSTATIC *, GETFIELD *, PUTFIELD *, CHECKCAST, INSTANCEOF, INVOKE-

STATIC, INVOKEVIRTUAL, INVOKESPECIAL, INVOKEINTERFACE, NEW, ANEWARRAY, and

MULTIANEWARRAY.

Note that we have not yet addressed the two-values replacement problem that

results from this splitting.

Using Signals

An additional technique to increase the length of inlinable instruction sequences is to

eliminate explicit checks for NULL values.

This can be done in a portable manner using POSIX signals and ISO C long

jumps. This NULL check technique is relatively well known, and in used in other

virtual machines such as Kaffe [Kaf]. The idea is to setup a signal handler to trap

segmentation faults, then to remove explicit NULL checks from the code. NULL

pointers cause segmentation faults which are trapped by the signal handler, which in

turns resumes normal execution using a siglongjmp() call.

The advantage of signal-based NULL checks is that, in absence of NULL pointers,

a check costs 0 machine instructions. The drawback is that signals can be very

expensive, as they seldom are the most optimized part of Operating Systems.

In the context of an inline-threaded interpreter, signal-based NULL checks carry

the additional advantage of eliminating a conditional.

This is useful for instructions such as GETFIELD, as shown in Figure 2.8.

12Overloaded instructions are first split into type-specific versions.

26

2.3. Inline-Threading Java

Without Signals With Signals

GETFIELD_NO_INIT:
{

int *instance =
(pc++)->instance;

int offset = (pc++)->offset;

if (instance == NULL)
{
/* throw exception */
...

}

*sp++ = instance[offset];
}

/* dispatch */
goto **(pc++);

/* inlinable! */
GETFIELD_NO_INIT_START:
{
int *instance =

(pc++)->instance;
int offset = (pc++)->offset;

*sp++ = instance[offset];
}

GETFIELD_NO_INIT_END:

/* dispatch */
goto **(pc++);

Figure 2.8: Using Signals

2.3.3 Preparation Sequences

Problems and Incomplete Solution

Our two most important problems left, at this point, are two-values replacement, and

shorter sequences caused by the slow preparation version13 of instructions such as

GETSTATIC, as explained in Section 2.3.1.

Of course, there is a simple solution to two-values replacement that consists of

using indirection in the fast version of instructions, as shown in Figure 2.9. Note how

this implementation differs from Figure 2.6; in particular the additional fieldinfo

indirection. This simple solutions comes at a price, though: that of an additional

indirection in a very simple instruction. Furthermore, this solution does not solve the

shorter sequences problem.

13We mean: the version which does all necessary first execution preparation work, such as class
loading, linking and initialization.

27

2.3. Inline-Threading Java

Fast Instruction with Indirection Code Array

GETSTATIC_NO_INIT:
{

int *pvalue =
(pc++)->fieldinfo->pvalue;

*sp++ = *pvalue;
}

/* dispatch */
goto **(pc++);

/* Initially */
...
[GETSTATIC_INIT]
[POINTER_TO_FIELD_INFO]
...

/* After first execution */
...
[GETSTATIC_NO_INIT]
[POINTER_TO_FIELD_INFO]
...

Figure 2.9: Single-Value Replacement of GETSTATIC

The Basic Idea

Instead, we propose a solution that solves both problems. This solution consists of

adding preparation sequences in the code array.

The basic idea of preparation sequences is to duplicate certain portions of the code

array, leaving fast inlined-sequences in the main copy, and using slower, synchronized,

non-inlined preparation version of instructions in the copy. Single-value replacement

is then used to direct control flow appropriately.

Single-Instruction Preparation Sequence

Preparation sequences are best explained using a simple illustrative example. We con-

tinue with our simplified GETSTATIC example14. We assume, for the moment, that the

GETSTATIC is preceded and followed by non-inlinable instructions, in the code array.

An appropriate instruction sequence would be MONITORENTER-GETSTATIC-MONITOR-

EXIT, as neither monitor instruction is inlinable.

Figure 2.10 illustrates the initial content of a prepared code array containing the

above 3-instructions sequence. The GETSTATIC preparation sequence appears at the

end of the code array.

The initial content of the code array is as follows. After the MONITORENTER, we

14We assume the reader has noticed that in reality, our GETSTATIC example is implementing the
type-specific GETSTATIC INT overloaded version.

28

2.3. Inline-Threading Java

Original Bytecode Initial Content of Code Array

...

...
MONITORENTER
GETSTATIC
INDEXBYTE1
INDEXBYTE2
MONITOREXIT
...
...

...

...
[MONITORENTER]*

OPCODE_1: [GOTO]*
[@ SEQUENCE_1]

OPERAND_1: [NULL_POINTER]
NEXT_1: [MONITOREXIT]*

...

...
SEQUENCE_1: [GETSTATIC_INIT]*

[POINTER_TO_FIELDINFO]
[@ OPERAND_1]
[REPLACE]*
[GETSTATIC_NO_INIT]
[@ OPCODE_1]
[GOTO]*
[@ NEXT_1]

Opcodes followed by a * are instructions.

Figure 2.10: Single GETSTATIC Preparation Sequence

insert a GOTO instruction followed by two operands: (a) the address of the GETSTATIC

preparation sequence, and (b) an additional word (initially NULL) which will even-

tually hold a pointer to the static field. At the end of the code array, we add a

preparation sequence, which consists of 3 instructions (identified by a *) along with

their operands.

Figure 2.11 shows the implementation of four instructions: GOTO, REPLACE, GET-

STATIC INIT, and GETSTATIC NO INIT. Notice that in the preparation sequence, the

GETSTATIC NO INIT opcode is used as an operand to the REPLACE instruction.

We used labels (e.g. SEQUENCE 1:) to represent the address of specific opcodes. In

the real code array, absolute addresses are stored in opcodes such as [@ SEQUENCE 1].

Here is how execution proceeds. On the first execution of this portion of the code,

the MONITORENTER instruction is executed. Then, the GOTO instruction is executed,

reading its destination in the following word. The destination is the SEQUENCE 1

label, or more accurately, the GETSTATIC INIT opcode, at the head of the preparation

sequence.

29

2.3. Inline-Threading Java

GETSTATIC INIT GETSTATIC NO INIT

GETSTATIC_INIT:
{

fieldinfo_t *fieldinfo =
(pc++)->fieldinfo;

int **destination =
(pc++)->ppint;

pthread_mutex_lock(...);

/* lazily load and initialize
class, and resolve field
if not already done */

...

/* store field information
in code array */
*destination =
fieldinfo->pvalue;

/* do the real work */
*sp++ = *(fieldinfo->pvalue);

pthread_mutex_unlock(...);
}

/* dispatch */
goto **(pc++);

GETSTATIC_NO_INIT:

/* skip address */
pc++;

{
int *pvalue =

(pc++)->pvalue;

/* do the real work */
*sp++ = *pvalue;

}

/* dispatch */
goto **(pc++);

GOTO REPLACE

GOTO:

{
void *address =
(pc++)->address;

pc = address;
}

/* dispatch */
goto **(pc++);

REPLACE:

{
void *instruction =

(pc++)->instruction;
void **destination =

(pc++)->ppvoid;

*destination =
instruction;

}

/* dispatch */
goto **(pc++);

Figure 2.11: Instruction Implementations

30

2.3. Inline-Threading Java

The GETSTATIC INIT instruction then reads two operands: (a) a pointer to the

field information structure, and (b) a destination pointer for storing a pointer to the

resolved static field. It then proceeds normally, loading and initializing the class,

and resolving the field, if it hasn’t yet been done15. Then, it stores the address of

the resolved field in the destination location. Notice that, in the present case, this

means that the pointer-to-field will overwrite the NULL value at label OPERAND 1.

Finally, it executes the real work portion of the instruction, and dispatches to the

next instruction.

The next instruction is a special one, called REPLACE, which simply stores the

value of its first operand into the address pointed-to by its second operand. In this

particular case, a pointer to the GETSTATIC NO INIT instruction will be stored at label

OPCODE 1, overwriting the former GOTO instruction pointer. This constitutes, in fact,

our single-value replacement.

The next instruction is simply a GOTO used to exit the preparation sequence. It

jumps to the instruction following the original GETSTATIC bytecode, which in our

specific case is the MONITOREXIT instruction.

Future executions of the same portion of the code array will see a GETSTA-

TIC NO INIT instruction (at label OPCODE 1), instead of a GOTO to the preparation

sequence. Two-values replacement is avoided by leaving the GOTO operand address in

place. Notice how the implementation of GETSTATIC NO INIT in Figure 2.10 differs

from the implementation in Figure 2.6, by an additional pc++ to skip the address

operand.

Some Explanations

Our single-instruction preparation sequence has avoided two-values replacement by

using an extra word to permanently store a preparation sequence address operand,

even though this address is useless after initial execution.

This approach adds some overhead in the fast version of the overloaded instruction;

that of a program-counter increment, to skip the preparation sequence address. One

15Each field is only resolved once, yet there can be many GETSTATIC instructions accessing this
field. The same holds for class loading and initialization.

31

2.3. Inline-Threading Java

could easily question whether this gains any performance improvement over that of

using an indirection as in Figure 2.9. This will be answered by looking at longer

preparation sequences.

The strangest looking thing is the usage of 3 distinct instructions in the prepa-

ration sequence. Why not use a single instruction with more operands? Again, the

answer lies in the implementation of longer preparation sequences.

Full Preparation Sequences

We now proceed with the full implementation of preparation sequences. Our objective

is two fold: (a) we want to avoid two-values replacement, and (b) we want to build

longer inlined instruction sequences for our inlined-threaded interpreter, for reducing

dispatch overhead as much as possible.

To demonstrate our technique, we use the three instruction sequence: ICON-

ST2-GETSTATIC-ILOAD.

Figure 2.12 shows the initial state of the code array. The content of the dynam-

ically constructed ICONST2-GETSTATIC-ILOAD inlined instruction sequence, as well

as some related instruction implementations are shown in Figure 2.13. Finally, the

content of the code array after first execution is shown in Figure 2.14.

This works similarly to the single-instruction preparation sequence, with two

major differences: (a) the jump to the preparation sequence initially replaces the

ICONST 2 instruction, instead of the GETSTATIC instruction, and (b) the REPLACE in-

struction stores a pointer to an inlined instruction sequence, overwriting the GOTO

instruction.

Here is how execution proceeds in detail. On the first execution of this portion of

the code, the GOTO instruction is executed. Its destination is the ICONST 2 opcode,

at the head of the preparation sequence.

Next, the ICONST 2 instruction is executed. Next, the GETSTATIC INIT instruc-

tion reads two operands: (a) a pointer to the field information structure, and (b) a

destination pointer for storing a pointer to the resolved static field. It then proceeds

normally, loading and initializing the class, and resolving the field, if it hasn’t yet

32

2.3. Inline-Threading Java

Original Bytecode Initial Content of Code Array

...

...
ICONST_2
GETSTATIC
INDEXBYTE1
INDEXBYTE2
ILOAD
INDEX
...
...

...

...
OPCODE_1: [GOTO]*

[@ SEQUENCE_1]
OPERAND_1: [NULL_POINTER]

[INDEX]
NEXT_1: ...

...

...
SEQUENCE_1: [ICONST_2]*

[GETSTATIC_INIT]*
[POINTER_TO_FIELDINFO]
[@ OPERAND_1]
[REPLACE]*
[ICONST2-GETSTATIC-ILOAD]
[@ OPCODE_1]
[ILOAD]*
[INDEX]
[GOTO]*
[@ NEXT_1]

Opcodes followed by a * are instructions.

Figure 2.12: Full Preparation Sequence

ICONST2-GETSTATIC-ILOAD Inlined Instruction Sequence

SKIP body : pc++;
ICONST_2 body : *sp++ = 2;
GETSTATIC_NO_INIT body: {int *pvalue = (pc++)->pvalue;

*sp++ = *pvalue;}
ILOAD body : {int index = (pc++)->index;

*sp++ = locals[index];}
DISPATCH body : goto **(pc++);

SKIP GETSTATIC NO INIT

SKIP_START:

*pc++;

SKIP_END:

/* dispatch */
goto **(pc++);

GETSTATIC_NO_INIT_START:
{
int *pvalue = (pc++)->pvalue;
*sp++ = *pvalue;

}

GETSTATIC_NO_INIT_END:

/* dispatch */
goto **(pc++);

Figure 2.13: Inlined Instruction Sequence

33

2.3. Inline-Threading Java

...

...
OPCODE_1: [ICONST2-GETSTATIC-ILOAD]*

[@ SEQUENCE_1] (skipped)
OPERAND_1: [POINTER_TO_FIELD] (for GETSTATIC)

[INDEX] (for ILOAD)
NEXT_1: ...

...

...
SEQUENCE_1: [ICONST_2]*

[GETSTATIC_INIT]*
[POINTER_TO_FIELDINFO]
[@ OPERAND_1]
[REPLACE]*
[ICONST2-GETSTATIC-ILOAD]
[@ OPCODE_1]
[ILOAD]*
[INDEX]
[GOTO]*
[@ NEXT_1]

Opcodes followed by a * are instructions.

Figure 2.14: Code Array After First Execution

been done. Then, it stores the address of the resolved field in the destination loca-

tion. Finally, it executes the real work portion of the instruction, and dispatches to

the next instruction.

The next instruction is a REPLACE, which simply stores a pointer to the dynami-

cally inlined instruction sequence ICONST2-GETSTATIC-ILOAD at label OPCODE 1, over-

writing the former GOTO instruction, and performing a single-value replacement.

Next, the ILOAD instruction is executed. Finally, the tail GOTO exits the preparation

sequence.

Future executions of the same portion of the code array will see the ICONST2-GET-

STATIC-ILOAD instruction sequence (at label OPCODE 1), as shown in Figure 2.14.

Notice that the inlined implementation of GETSTATIC NO INIT in Figure 2.13 does

not add any overhead to the fast implementation shown in Figure 2.6.

Thus, we have achieved our goals. In particular, we have succeeded at inlining an

instruction sequence, even though it had a complex two-modes (preparation / fast)

34

2.3. Inline-Threading Java

instruction in the middle, while avoiding two-values replacement. All of this with

minimum overhead in post-first execution of the code array.

Detailed Preparation Procedure

Preparation of a code array, in anticipation of inline-threading, proceeds as follows:

1. Instructions are divided in three groups: inlinable, two-modes-inlinable (such

as GETSTATIC), and non-inlinable.

2. Basic blocks (determined by control-flow and non-inlinable instructions) are

identified.

3. Basic blocks of inlinable instructions, without two-modes-inlinable instructions,

are inlined as explained in Section 2.3.

4. Every basic block containing two-modes-inlinable instructions causes the gen-

eration of an additional preparation sequence at the end of the code array, and

the construction of a related inlined instruction sequence.

The construction of a preparation sequence proceeds as follows:

1. Instructions are copied sequentially into the preparation sequence.

• Inlinable instructions and their operands are simply copied as-is.

• The preparation version of two-modes-inlinable instructions is copied into

the preparation sequence, along with the destination address for resolved

operands.

2. A REPLACE instruction with appropriate operands is inserted just after the last

two-modes-inlinable instruction.

3. A final GOTO instruction with appropriate operand is added at the end of the

preparation sequence.

35

2.3. Inline-Threading Java

The motivation for adding the replace instruction just after the the last two-

modes-inlinable instruction, is that it is the earliest safe place to do so. Replacing

sooner could cause the execution (on another Java thread) of the fast version of an

upcoming two-modes instruction before it is actually prepared. Replacing later can

also be a problem, specially if some upcoming inlinable instruction is a conditional

(or unconditional) branch instruction. This is because, if the branch is taken, then

single-value replacement will not take place, forcing the next execution to take the

slow path16.

The construction of an inlined instruction sequence containing two-modes-inlinable

instructions proceeds as follows:

1. The body of the SKIP instruction is copied at the beginning of the sequence

implementation.

2. Then, all instruction bodies are sequentially copied.

3. Finally, the body of the DISPATCH instruction is copied at the end of the sequence

implementation.

Note that a single preparation sequence can contain multiple two-modes instruc-

tions. Yet, on the fast execution path, there is a single program-counter increment

(i.e. SKIP body) per inlined instruction sequence.

Adjusting Exception and Line Number Tables

Implementing preparation sequences involves many little details related to computa-

tion of absolute addresses. We will only discuss briefly of the trickiest issue, that of

exception handling within preparation sequences.

Java class files include exception tables which determine the flow of control when

exceptions are thrown. Each entry in an exception table specifies: (a) an instruction

16Multiple executions of the same preparation sequence is allowed, but suffers from high dispatch
overhead. It can happen in the normal operation of the inline-threaded interpreter as the result of
an exception thrown before single-value replacement, while executing a preparation sequence.

36

2.4. Experimental Results

range using a start and end offset in the bytecode array, (b) a catch reference type

(or any), and (c) an exception handler address (an offset in the bytecode array).

When an exception happens, the exception table of the currently executing method

is searched sequentially for a matching entry. Order does matter, as there might be

more than one matching entry in the table, yet the first one must be chosen. If a

matching entry is found, execution resumes at the specified exception handler address.

If none is found, the current stack frame is popped, and the process is repeated

recursively.

The consequence is that, in the presence of preparation sequences, exception tables

require some additional preparation work. An entry in the exception table might

specify a range of instructions which contains two-modes instructions. As preparation

sequences are added to the end of the code array, we have modified the structure of an

exception table entry to include two ranges: one range in the lower part of the code

array, and one range in the preparation part of the code array. To process exceptions,

the modified exception table is simply searched sequentially for a matching entry, as

usual, with the difference that the program counter must be within one of the two

ranges for an entry to match.

An identical modification is applied to line number table entries, which are used

to report line numbers in exception stack traces.

2.4 Experimental Results

We have implemented 3 flavors of threaded interpretation in the SableVM framework:

switch-threading, direct-threading and inline-threading. Switch-threading differs from

simple switch-based bytecode interpretation in that it is applied on a prepared code

array of word-size elements. All of the techniques introduced in this chapter are in use

within the inline-threaded interpreter engine. Some of the techniques are also in use

within the switch-threaded and direct-threaded engines, including single-instruction

preparation sequences, to avoid the problem of two-values replacement.

The test environment and choice of benchmarks is discussed in Chapter 9. In

37

2.4. Experimental Results

summary, we have performed our experiments on a Pentium IV based workstation,

running SPECjvm98 benchmarks and two object-oriented applications: Soot version

1.2.317 and SableCC version 2.17.318.

2.4.1 Inlined Instruction Sequences Characteristics

Table 2.1 shows a first set of measurements. The main objective of these measure-

ments was to quantify the proportion of inlinable instructions, within bytecode arrays,

and to measure the average length of inlined sequences.

benchmark methods instr. (bc) seq. inl. instr. ins./s.

compress 411 (41) 16,886 (30,901) 4,238 12,263 (73%) 2.9
db 461 (40) 18,283 (34,255) 4,804 13,083 (72%) 2.7
jack 689 (49) 33,695 (62,791) 9,095 23,678 (70%) 2.6
javac 1,238 (38) 47,484 (101,027) 12,169 33,415 (70%) 2.7
jess 892 (31) 27,220 (52,985) 7,331 19,025 (70%) 2.6

mpegaudio 581 (81) 47,145 (76,509) 11,449 34,405 (73%) 3.0
mtrt 588 (38) 22,628 (42,037) 5,896 15,833 (70%) 2.7

raytrace 583 (39) 22,531 (41,863) 5,876 15,758 (70%) 2.7
soot 3,475 (30) 104,781 (223,557) 29,259 67,030 (64%) 2.3

sablecc 1,701 (29) 49,923 (93,335) 13,602 32,723 (66%) 2.4

Table 2.1: Inlined Sequences (1)

Our measurements were made only on methods that were actually executed. As

SableVM prepares methods lazily (on first execution of a method), we collected our

measurements at runtime, just after the preparation of methods. Thus the shown

numbers are preparation time numbers.

Columns of Table 2.1 contain respectively: (a) the name of the executed bench-

mark, (b) the number of prepared methods, and the average number of instructions

per method in parentheses, (c) the total number of instructions of prepared meth-

ods, and the total number of bytecodes of these instructions in parentheses, (d) the

total number of inlined sequences of all prepared methods, (e) the total number of

17http://www.sable.mcgill.ca/soot/
18http://www.sablecc.org/

38

2.4. Experimental Results

inlined instructions, and the percentage of inlined instructions over the total number

of instructions, and (f) the average number of instruction per inlined sequence.

Note that the number of instructions and bytecodes are different quantities; a sin-

gle instruction can consist of multiple bytecodes representing the instruction opcode

and operands.

In our measurements, the average length of inlined instruction sequences lies be-

tween 2.3 and 3.0. The ratio of inlined instructions is between 66% and 73% of all

instructions.

Table 2.2 shows additional characteristics of inlined sequences. The main objective

of these measurements was to quantify the memory requirement for storing inlined

sequences, and identify the longest sequence in terms of number of instructions and

inlined implementation size.

benchmark seq. distinct seq. max.ins./s. max.size/s.

compress 4,238 850 (156K) 41 1,686
db 4,804 900 (155K) 22 999
jack 9,095 1,174 (213K) 22 1,090
javac 12,169 2,200 (426K) 25 999
jess 7,331 1,312 (234K) 22 999

mpegaudio 11,449 1,293 (251K) 85 3,469
mtrt 5,896 1,175 (198K) 32 1,362

raytrace 5,876 1,165 (196K) 32 1362
soot 29,259 2,906 (574K) 54 2,076

sablecc 13,602 1,484 (277K) 22 999

Table 2.2: Inlined Sequences (2)

Columns of Table 2.2 contain respectively: (a) the name of the executed bench-

mark, (b) the total number of inlined instruction sequences of all prepared methods,

(c) the number of distinct inlined instruction sequences, (d) the highest number of

instructions within a single inlined sequence, and (e) the biggest implementation size

(in bytes) of a single inlined sequence.

SableVM saves space by allocating a single copy for each distinct inlined instruc-

tion sequence. This proves very effective, specially for bigger benchmarks. For the

Soot benchmark, in particular, SableVM does not use additional storage space for

39

2.4. Experimental Results

over 90% of inlined instruction sequences. The total size of genuine inlined instruc-

tion sequences is 574K. If we divide this storage size by the total number of inlined

instructions (67,030), found in Table 2.1, we find that, on average, less than 9 bytes

of implementation code is required per instruction in the Soot benchmark.

2.4.2 Performance Measurements

We have performed execution time measurements with SableVM (within the test

environment described in Chapter 9), to measure the efficiency of inline-threading

Java, using our techniques.

In a first set of experiments, we have measured the relative performance of the

switch-threaded, direct-threaded and inline-threaded engines. Results are shown in

Table 2.3. To do these experiments, three separate versions of SableVM were com-

piled with identical configuration options, except for the interpreter engine type. In

particular, the usage of signals to trap NULL pointer exceptions was turned on in all

three versions.

benchmark switch-threaded direct-threaded inline-threaded
(sec.) (sec.) (sec.)

compress 317.72 281.78 (1.13) 131.64 (2.41) (2.14)
db 132.15 119.17 (1.11) 87.64 (1.51) (1.36)
jack 45.65 46.78 (0.98) 38.16 (1.20) (1.23)
javac 110.10 105.24 (1.05) 89.37 (1.23) (1.17)
jess 74.79 68.12 (1.10) 53.57 (1.40) (1.27)

mpegaudio 285.77 242.90 (1.18) 136.97 (2.09) (1.77)
mtrt 142.87 115.34 (1.24) 100.39 (1.42) (1.15)

raytrace 166.19 134.06 (1.24) 113.55 (1.46) (1.18)
soot 676.06 641.96 (1.05) 548.13 (1.23) (1.17)

sablecc 40.12 36.95 (1.09) 26.09 (1.54) (1.41)

Table 2.3: Inline-Threading Performance Measurements (1)

Columns of Table 2.3 contain respectively: (a) the name of the executed bench-

mark, (b) the execution time in seconds using the switch-threaded engine, (c) the

execution time in seconds using the direct-threaded engine, and the speedup over the

switch-threaded engine in parentheses, and (d) the execution time in seconds using

40

2.4. Experimental Results

the inline-threaded engine, and the speedup over both switch-threaded and direct-

threaded engines respectively in parentheses.

The Inline-threaded engine does deliver significant performance improvement. It

achieves a speedup of up to 2.41 over the switch-threaded engine. The smallest

measured speedup, over the fastest of the two other engines on a benchmark, is 1.15

on the mtrt benchmark, where it also delivers a speedup of 1.42 over the slower engine.

It is important to note that the switch-threaded engine already has some advan-

tages over a pure switch-based bytecode interpreter. It benefits from word alignment

and other performance improving features of the SableVM framework. So, it is likely

that the performance gains of inline-threading over pure bytecode interpretation are

even bigger than those measured against switch-threading. In Chapter 9, we mea-

sure the relative performance of SableVM against a naively implemented bytecode

interpreter.

In a second set of tests, we measured the speed of the inlined-threaded engine when

using signal-based NULL pointer detection and when using explicit NULL checks.

Results are shown in Table 2.4.

benchmark explicit signal-based speedup
NULL checks NULL checks

(sec.) (sec.)
compress 166.41 131.64 1.26

db 92.10 87.64 1.05
jack 39.85 38.16 1.04
javac 91.29 89.37 1.02
jess 56.51 53.57 1.05

mpegaudio 145.31 136.97 1.06
mtrt 96.02 100.39 0.96

raytrace 109.23 113.55 0.96
soot 606.86 548.13 1.11

sablecc 28.04 26.09 1.07

Table 2.4: Inline-Threading Performance Measurements (2)

Columns of Table 2.4 contain respectively: (a) the name of the executed bench-

mark, (b) the execution time in seconds using the inline-threaded engine and explicit

NULL checks, (c) the execution time in seconds using the inline-threaded engine and

signal based NULL pointer detection, and (d) the speedup achieved by signal-based

41

2.5. Related Work

detection over explicit checks.

Note that using signal-based checks can help eliminate up to two dispatches within

an instruction sequence, by making an instruction inlinable. The drawback is that

signals are costly, so if NULL pointer exceptions effectively happen, the performance

of an application can be negatively affected.

Our performance measurements show that using signal-based detection can yield

significant speedup (up to 1.26 on compress), but can also reduce performance (a

penalty of 4% on mtrt and raytrace).

2.5 Related Work

The most closely related work to the work of this chapter is the work of I. Piumarta

and F. Riccardi in [PR98]. We have already discussed the inline-threading technique

introduced in this paper in Section 2.3. Our work builds on top of this work, by

introducing techniques to deal with multi-threaded execution environments, and inline

two-modes instructions.

Inline-threading, in turn, is the result of combining the Forth-like threaded inter-

pretation technique [Ert] (which we have already discussed in Section 2.2.2) with the

idea of template-based dynamic compilation [APC+96, NHCL98]. The main advan-

tage of inline-threading over that of template based compilation is its simplicity and

portability.

A related system for dynamic code generation is that of vcode, introduced by D.

Engler [Eng96]. The vcode system is an architecture-neutral runtime assembler. It

can be used for implementing just-in-time compilers. It is in our future plans to

experiment with vcode for constructing an architecture-neutral just-in-time compiler

for SableVM, offering an additional choice of performance-portability tradeoff.

Other closely related work is that of dynamic patching. The problem of poten-

tial high cost synchronization costs for concurrent modification of executed code is

also faced by dynamically adaptive Java systems. In [CLS00], M. Cerniac et al. de-

scribe a technique for dynamic inline patching (a similar technique is also described

42

2.6. Conclusions

in [IKY+00]). The main idea is to store a self-jump (a jump instruction to itself)

in the executable code stream before proceeding with further modifications of the

executable code. This causes any concurrent thread executing the same instruction

to spin-wait for the completion of the modification operation.

Our technique of using explicit synchronization in preparation sequences and single

value replacement has the marked advantage of causing no spin-wait. Spinning can

have, in some cases, a highly undesirable side effect, that of almost dead-locking the

system when the spinning thread has much higher priority than the code patching

thread. This is because, while it is spinning, the high priority thread does not make

any progress in code execution and, depending on the thread scheduling policy of

the host operating system, might be preventing the patching thread from making

noticeable progress.

2.6 Conclusions

In this chapter we have explained the difficulty of using the inline-threaded interpre-

tation technique in a Java interpreter. Then, we introduced new techniques that not

only make it possible, but also effective. At the heart of our techniques is the idea

of preparation sequences, which when combined with other techniques, help increase

the length of inlined instruction sequences and thus reduce dispatch overhead.

We then presented our experimental results, showing that an inline-threaded in-

terpreter engine, implementing our techniques, achieves significant performance im-

provements over that of switch-threaded and direct-threaded engines.

43

Chapter 3

Logical Partitioning of Memory

Memory management is a central issue in the design of a Java virtual machine.

Many of the runtime services provided by the virtual machine have memory man-

agement related requirements: garbage-collected heap, Java stacks, dynamic class

loading, dynamic linking, JNI native references, structures for dynamic dispatch (e.g.

virtual tables), etc.

In this chapter we discuss the organization of memory in the SableVM runtime

environment. In particular, we introduce a logical partitioning of the runtime system

memory which allows the design of simple and flexible, yet effective, partition-specific

memory managers.

This chapter is structured as follows. In Section 3.1, we motivate logical memory

partitioning as a technique for simplifying the internal organization of a Java virtual

machine. In Section 3.2, we introduce our partitioning of the Java runtime memory,

and discuss the related partition-specific memory managers. In Section 3.3 we discuss

related work, and finally in Section 3.4 we present our conclusions.

44

3.1. Simplifying Memory Management

3.1 Simplifying Memory Management

3.1.1 The Price of Flexibility

One of the key features that must be provided by a Java virtual machine is a garbage-

collected heap for object instances. Yet, memory management in the virtual machine

is much broader than simply providing an object heap; the virtual machine must also

explicitly or implicitly manage memory for local and global JNI references, invocation

and native interface data structures, class and array information data structures, fat

locks, inlined instruction implementations (for inlined-threading) or compiled code

(for just-in-time compilation), virtual tables, stacks and many other features.

Among the objectives of the SableVM framework is to be easily modifiable and flex-

ible, allowing the research on memory management techniques. It is thus important

that SableVM be compatible with various garbage collection algorithms, including

precise, mostly-accurate, and conservative moving and non-moving algorithms. Such

flexibility comes at a price.

Single Garbage-Collected Heap

A memory organization that would intuitively seem simple is to allocate all (or most)

memory in the garbage-collected heap. But, many allocated memory sections have

special requirements. For example, virtual tables cannot be allocated in a movable

heap, unless pinning1 is supported by the garbage collector or a complex code patching

process is applied every time a virtual table is moved. But either alternative adds com-

plexity to the virtual machine. Similarly, allocating stack frames on the heap could

increase the pressure on the garbage collector by causing frequent collections, unless

some special care is taken to minimize the pressure (e.g. generational collection or

special treatment for stack frame allocation). In summary, a single garbage-collected

heap comes at the cost of increased complexity of the virtual machine.

1A pinned memory object is left in place by a moving garbage collector.

45

3.1. Simplifying Memory Management

Using malloc() and free()

Another relatively intuitive memory organization is to manage a separate garbage-

collected heap for object instances, and allocate all other memory using the malloc()

C library function. This organization has the advantage of permitting the implemen-

tation of various garbage collection algorithms including the simplest ones such as

copying collection without pinning. But such organization can be expensive in both

space and time. On the space front, the cost is that every allocated memory block

returned by malloc() requires some overhead memory space for storing the block

size (and possibly additional information) in anticipation of future free() calls. As

many allocated blocks are very small (e.g. JNI references are a few words long, and

some class information related memory blocks can be as short as a single word), this

overhead could be significant. On the time front, the costs are that malloc() and

free() calls cause global synchronization2, and that free() calls can get very ex-

pensive when many small blocks are freed successively and incremental aggregation

of freed memory takes place to fight memory fragmentation.

Reducing Complexity and Costs

As we have seen, maintaining a separate garbage-collected heap for object instances

and using malloc() and free() for the rest increases flexibility without adding no-

ticeable complexity to the virtual machine architecture. The main problem related

to that approach is the C library overhead when managing small memory blocks.

malloc() and free() were designed as general purpose memory allocation func-

tions. By studying the typical memory usage of various virtual machine features, we

discover patterns in memory usage. For example, a Java stack always allocates and

frees its top frame. Stack frames are never accessed by other threads (except possibly

by a garbage collection thread). It thus seems wasteful to pay the overhead of a

general purpose memory manager for allocating and freeing stack frames. A similar

analysis can be done of other features.

2Note that the virtual machine must be linked with the multi-threaded version of the C library

46

3.2. Logical Memory Partitions

Therefore, our solution for reducing overhead without increasing system complex-

ity is to partition the Java runtime memory according to usage patterns, and to design

simple partition-specific memory managers that take advantage of usage patterns to

minimize overhead.

3.2 Logical Memory Partitions

We have studied the memory usage behavior of the different virtual machine features,

and identified distinct allocation and release patterns. These patterns offer a natural

partitioning of the runtime memory that we present in this section.

We first draw a clear distinction between physical and logical partitions, then we

introduce each identified partition and discuss its management strategy within the

SableVM framework.

3.2.1 Physical and Logical Partitions

We define a physical partition as a single contiguous segment of virtual memory man-

aged by a single memory manager. In contrast, we define a logical partition as the

subset of virtual memory which is managed by a single memory manager. Memory

in the subset need not be contiguous.

Figure 3.1 illustrates the difference between physical and logical partitions. In the

left side of the figure, we see a partitioning of virtual memory into physical partitions,

each of which is contiguous. In the right side of the figure, we see the physical layout

of a logical partitioning of the same memory. On this side, each logical partition is

not necessarily contiguous. For example, the single Stack logical partition is divided

into three distinct memory segments.

Managing logical partitions, instead of physical ones, is very convenient. It allows

for dynamically creating and deleting partitions, and for growing and shrinking them

without worrying about low-level memory layout details. For increasing the portabil-

ity of the virtual machine, the standard malloc() and free() library functions are

used as low-level primitives by memory managers for allocating and releasing aligned

47

3.2. Logical Memory Partitions

Stack

Garbage Collected Heap

Native References

Class Loading Data

... Other Partitions ...

Physical Partitions

Stack

Native References

Class Loading Data

... Other Partitions ...

Native References

Garbage Collected Heap

Class Loading Data

Stack

... Other Partitions ...

Class Loading Data

Garbage Collected Heap

... Other Partitions ...

Stack

Logical Partitions

Figure 3.1: Layout of Physical and Logical Partitions

48

3.2. Logical Memory Partitions

memory blocks3.

3.2.2 Thread-Specific Memory

Thread-specific memory consists of all memory specifically allocated by the virtual

machine for the internal management of each Java thread.

This memory consists primarily of Java stacks, JNI local reference frames, and

internal structures storing thread-specific data like stack information, JNI virtual

table, and exception status.

This memory exhibits precise allocation and release patterns. Thread-specific

structures have a lifetime similar to their related thread. So, this memory can be

allocated and freed (or recycled) at the time of respective creation and death of the

underlying thread. Stacks do not conceptually suffer from fragmentation, as they

grow and shrink on one side only. This property is shared by JNI local reference

frames.

SableVM Implementation

SableVM allocates thread structures on thread creation but does not release them at

thread death. Instead, it manages a free list to recycle this memory on future thread

creation.

Java stack memory is managed differently. For each thread, an initial stack is

allocated (using malloc()) at the time the thread is created. Then this stack is

expanded (using realloc()) as required by the computation. SableVM never shrinks

the size of a Java stack. It simply frees it on thread death. Initial allocation size and

growth are controlled through runtime parameters. A maximum stack size can be

optionally specified; by default a stack is allowed to grow until memory exhaustion.

Note that all Java stack frame information, in SableVM, is stored relatively (e.g.

offset to previous/next frame, instead of direct address), which enables stacks to be

moved.

3The ANSI/ISO C standard states that malloc() must return aligned memory [SAI+90].

49

3.2. Logical Memory Partitions

The advantage of a stack whose maximum size can only grow, is simpler stack

memory management at method call boundaries. It also simplifies the virtual ma-

chine usage, as the user needs not specify a maximum stack size, which can be difficult

to do for each thread of a multi-threaded application. There’s no need to manage the

potential fragmentation of non-movable stacks. It would be possible to allocate Java

stack frames on the shared garbage-collected Java heap but this would put unneces-

sary additional pressure on the garbage collector, and it would not take advantage of

the highly regular allocation and release behavior of this memory.

Some Measurements

In order to determine compile-time default values for initial stack size and increment,

we have measured the maximum stack depth reached while executing each of the

benchmarks identified in Section 2.4.

Table 3.1 shows our measurements. The deepest measured stack depth is 9612

bytes, which is surprisingly small.

benchmark max. Java stack depth
compress 2740 bytes

db 2740 bytes
jack 3356 bytes
javac 7572 bytes
jess 4756 bytes

mpegaudio 3684 bytes
mtrt 2896 bytes

raytrace 2896 bytes
soot 8408 bytes

sablecc 9612 bytes

Table 3.1: Stack Depth

As the stack size is highly application (and input data) specific, we have cho-

sen to set both compile-time default initial size and increment to 64Kb. Of course,

these values can be overridden using command-line options. SableVM’s stack-related

command-line options are:

• -p sablevm.stack.size.min=SIZE : Minimum size in bytes.

50

3.2. Logical Memory Partitions

• -p sablevm.stack.size.max=SIZE : Maximum size in bytes.

• -p sablevm.stack.size.increment=SIZE : Maximum increment size in bytes.

For example, to set the stack increment size to 32Kb, we would write the following

command:

sablevm -p sablevm.stack.increment=32768 HelloWorld

3.2.3 Class-Loader-Specific Memory

Class-loader-specific memory consists of all memory specifically allocated by the vir-

tual machine for the internal management of each class loader.

This memory consists primarily of the internal data structures used to store class

loaders (except the related java.lang.ClassLoader instances, which are stored in

the garbage-collected heap), classes and methods, and related information. This

includes method bodies in their various forms like bytecode, direct threaded code,

inlined threaded code, and compiled code (in the presence of a JIT). It also includes

virtual tables for dynamic method dispatch.

This memory exhibits precise allocation and release patterns. It is allocated at

class-loading time, and at various preparation, verification, and resolution execution

points. The behavior of this memory differs significantly from other memory in that

once it is allocated, it must stay at a fixed location, and it is unlikely to be released

soon. The Java virtual machine specification allows for potential unloading of all

classes of a class loader as a group, if no direct or indirect references to the class

loader, its classes, and related object instances remain. In such a case, and only if a

virtual machine supports class unloading, all memory used by a class loader and its

classes can be released at once.

Isolating the management of this memory is a distinctive feature of the SableVM

framework.

SableVM Implementation

SableVM manages this memory on a class loader basis. In other words, each class

51

3.2. Logical Memory Partitions

loader has its own related memory manager.

A class-loader memory manager uses malloc() to allocate chunks of memory, and

provides its own allocator for distributing smaller memory fragments. This has many

advantages.

It allows for the allocation of many small memory blocks without the usual cost

of memory space overhead, discussed in Section 3.1.1. Also, memory chunks can be

freed on class unloading without regard for internal sub-allocation, thus significantly

reducing the number of free() calls and the related memory aggregation penalty.

It also allows class parsing and decoding in one pass without memory overhead,

by allocating many small memory blocks. This is usually not possible, as it is not

possible to estimate the memory requirement for storing internal class information

before the end of the first pass. The usual alternatives (in absence of a class-loader

specific memory manager) are to either pay a memory overhead for allocating small

blocks using malloc(), or do 2 passes over the class file; one pass to compute memory

requirements, and the second to extract the information and store it in the allocated

memory. But even then, the second alternative does not solve the problem of many

small allocations which are required to store threaded or compiled code, and other

linking information computed lazily throughout execution.

Finally, and importantly, it allows for irregular memory management strategies:

it makes it possible to return sub-areas of an allocated block to the allocator, if these

areas are known not to be used. We take advantage of this to allocate sparse interface

method lookup tables without losing memory4.

A default chunk size and increment, as well as an optional maximum class-loader

memory size, can be specified on the command-line5. The compile-time default chunk

size and increment have both been arbitrarily set to 1Mb. Note that many applications

only use two class loaders: the special bootstrap class loader6 and the application (or

system) class loader7. For running programs using many user-defined class loaders,

4This will be explained in Chapter 4.
5The options are: -p sablevm.classloader.heap.size.[min|max|increment]=SIZE
6The bootstrap class loader is used to load standard library classes such as java.lang.* and

java.io.*.
7The application class loader is used to load classes found on the classpath.

52

3.2. Logical Memory Partitions

users are encouraged to set default values appropriately.

3.2.4 Shared Memory

Shared memory consists of remaining memory which is explicitly managed by the

virtual machine8.

This memory consists primarily of the object instance heap (which is garbage

collected), global JNI references, and global virtual machine information structures.

The allocation and release behavior of this memory exhibits no specific pattern,

as it is highly application dependent.

This memory is potentially allocated and modified by different threads while ex-

ecuting methods of classes loaded by various class loaders.

SableVM Implementation

SableVM manages the object instance heap separately from other memory. This

provides maximum flexibility for testing various garbage collection algorithms. In

the current version of SableVM, a precise bare-bones copying garbage collector (with

no pinning nor generations) is provided. Chapter 6 will discuss the algorithm to

compute the necessary maps for precise garbage collection. The parameters of the

copying collector provided by SableVM can be controlled using command-line options.

In particular, minimum and maximum heap size, and increment can be specified.

If no maximum is specified, SableVM will potentially grow the heap until memory

exhaustion. SableVM does also shrink the heap. Its algorithm for determining heap

size aims to keep the heap 1/3 full (as suggested in [JL96]).

Most of the remaining memory is simply managed using malloc() and free()

calls. Exceptions to this include global JNI references (and similar small structures)

which have a special memory manager. This manager allocates big memory blocks,

divides them into small JNI reference structures, and manages free lists to avoid

free() memory aggregation overhead.

8This excludes memory which is not explicitly managed by the virtual machine.

53

3.3. Related Work

3.2.5 System Memory

System memory is the remaining memory, on which we have essentially no control.

It consists of the memory used for virtual machine code (i.e. the executable itself),

native stacks, ANSI/ISO C’s heap manager, and dynamically-linked native libraries,

as well as any other uncontrollable memory.

SableVM Implementation

As SableVM is written in portable C, it has no control on the management of this

memory. Assembly and system specific virtual machines can (and should probably)

manage this memory explicitly, in which case it could be classified among the previ-

ously identified partitions. For example, dynamically-linked native libraries would be

classified as class-loader specific memory.

The only attempt to control this memory is the following. SableVM manages its

own Java stacks (one per thread), and it does not use a C function call to implement

Java method calls. Thus, it makes a minimal use of the native C stack. Recursive C

function calls are only possible through native JNI calls9.

3.3 Related Work

The traditional single-threaded runtime memory organization for procedural lan-

guages (C, Pascal, etc.) is as follows. Executable code and constant data segments

are laid out consecutively at lower memory addresses. The remaining space is divided

between the heap, growing bottom up, and the stack, growing top down, with free

space in the middle [ASU86]. For multi-threaded applications, multiple stacks are

required (one per thread). POSIX threads creation parameters include an optional

stack size and assume otherwise an implementation specific default size [NBF96]. A

typical implementation places stacks sequentially (top down) reserving enough space

9A native JNI method is allowed to invoke the virtual machine interpreter which may in turn
call back the JNI native method.

54

3.4. Conclusions

for each stack, and optionally guarding against overflow using a protected page (for

causing a segmentation fault in case of stack overflow).

The most naive virtual machines, like Kaffe [Kaf], implement the simplest ap-

proach to memory management in C by using malloc() for all allocation, and using

a conservative garbage collector for freeing memory. This approach severely limits

potential experimentation with garbage collection techniques. Kaffe provides no sup-

port for precise collection, and also assumes that objects cannot be moved throughout

their life time. This latest assumption allows Kaffe to save some object storage by

using object addresses as hashcode.

Other more elaborate virtual machines, such as Jikes RVM which entirely is writ-

ten in Java, use a single heap to manage all memory [AAC+99], except system memory

used to store the precomputed boot image. This approach would seem attractive, at

first sight, but it has some drawbacks. Firstly, some memory areas, such as JIT

compiled code, cannot be moved in memory, forcing the garbage collector to either

be non-moving or to support pinning. Secondly, this approach does not allow for

irregular memory management where a single allocated block is not contiguous (like

SableVM’s sparse interface tables). Finally, even if a memory block is pinned within

a generational heap, it might still cause some additional work at garbage collection

time. This is unlike SableVM’s class-loader specific memory which is never traced at

garbage collection time, regardless of what garbage collection algorithm is used.

3.4 Conclusions

In this chapter we have identified logical memory partitions exhibiting distinct allo-

cation and release behavior. We have discussed each partition and explained how the

SableVM framework manages memory within it.

We have in particular identified a class-loader specific memory partition. This

memory may not be moved, and it is either never freed or freed all at once on class-

loader destruction. We have explained how SableVM takes advantage of this to sub-

allocate small memory blocks without space overhead. We have briefly mentioned

55

3.4. Conclusions

that SableVM also permits irregular allocation strategies within this partition for

sparse interface virtual tables. Using a specific memory management strategy for

class-loader specific memory is a distinctive feature of the SableVM framework.

Using partition-specific memory managers allows SableVM to be extremely flexible

(it is compatible with various garbage collection algorithms, ranging from the simplest

to the most complex ones). These managers minimize overhead even though they use

relatively simple operational strategies.

56

Chapter 4

Sparse Interface Virtual Tables

In this chapter we introduce a sparse virtual table design that eliminates the over-

head of interface method invocation over that of normal virtual method invocation.

This design takes advantage of class-loader specific memory management1 to recycle

holes in the virtual table using a very simple, yet effective, algorithm. Our exper-

imental results show a 100% recycle rate for sparse virtual table holes, even in the

most interface intensive applications tested.

This chapter is organized as follows. In Section 4.1, we discuss the traditional

organization of virtual tables in Java virtual machines, and discuss related perfor-

mance problems. In Section 4.2, we introduce our sparse virtual table organization.

In Section 4.3, we present our experimental results. In Section 4.4 we discuss related

work. Finally, in Section 4.5, we present our conclusions.

4.1 Traditional Virtual Table Organization

One of the distinctive features of object-oriented programming languages, relative to

procedural programming languages, is virtual function calls (or polymorphic calls).

Efficiently implementing polymorphic calls has been a very active research field. In

[Dri01], K. Driesen surveys most of the implementation techniques that have been

proposed and used in various object-oriented programming languages.

1See Chapter 3.

57

4.1. Traditional Virtual Table Organization

In this section, we present the traditional (and intuitive) organization of virtual

tables for implementing both virtual and interface method calls in Java. In the context

of this thesis, virtual method calls and interface method calls correspond respectively

to the INVOKEVIRTUAL and INVOKEINTERFACE Java bytecode instructions.

4.1.1 Virtual Tables for Single Inheritance

Java is a statically typed language (i.e. all variables have compile-time types), but

its classes are dynamically loaded and linked at execution time. Luckily, the Java

virtual machine specification imposes constraints on loaded classes (and bytecode) to

ensure proper runtime behavior.

Java supports single inheritance of classes. This enables the efficient implementa-

tion of virtual function calls using virtual method tables (or simply: virtual tables).

The virtual table of a class is an array of pointers to methods. Each virtual table

entry points either to the implementation of a method declared in the class itself or

to the implementation of an inherited method that has not been overridden.

The virtual table of a class C is constructed as follows. First, the virtual table

of the parent class P is built2, if it hasn’t already been built3. Then, each virtual

method of class C is assigned a unique offset into the virtual table. Each virtual

method of C that overrides a virtual method of P or any ancestor of P is assigned

the same offset as the overridden method. All other virtual methods are assigned an

increasing offset starting at the maximum offset of inherited methods plus one. The

highest offset determines the size of the virtual table. The virtual table of C is filled

as follows. First it is initialized with the content of the virtual table of its parent P.

Then, for each method of C, a pointer to its implementation is written in the virtual

table at the method’s offset.

Figure 4.1 illustrates the final result. Class Parent declares two methods a() and

b(), which are assigned offsets 1 and 2 respectively. Class Child declares method

a() which overrides method a() of class Parent, and method c() which is assigned

2Unless C is java.lang.Object.
3The rules for dynamic loading and linking in Java are relatively complex. A class can be loaded,

yet not necessarily linked. See [LY99] for details.

58

4.1. Traditional Virtual Table Organization

offset 3.

Class Parent

 void b() {...} }
{ void a() {...} 1{ void a() {...}

Class Child extends Parent

 void c() {...} }

Child VTBLParent VTBL

2 2

1
32

Parent obj = new Child();
obj.a();
obj.b();

1 1

3

Figure 4.1: Single Inheritance Virtual Table (VTBL)

Virtual tables enable virtual method invocation in constant time, requiring a single

indirection. Virtual method invocation proceeds as follows. The offset of the called

method is used to retrieve the method implementation pointer from the virtual table.

The pointer is then dereferenced and the target method executed. In Figure 4.1, the

declaring type of variable obj is used to determine the method offset (a() = 1, b()

= 2), but the actual method lookup is done using the virtual table of the instance

type (which is Child). It is thus important that the offset remains the same for

overridden methods (such as a()).

4.1.2 Virtual Tables for Interfaces

Java supports multiple inheritance of interfaces. The virtual table organization de-

scribed in section 4.1.1 does not work for multiple-inheritance. The problem is that

two distinct interfaces might assign conflicting offsets to method signatures, so when

59

4.1. Traditional Virtual Table Organization

a class implements both interfaces, it can’t determine a unique offset for its methods.

This is illustrated in Figure 4.2. Method a() is assigned offset 1 in interface Father

and method b() is assigned offset 1 in interface Mother. So, the system can’t decide

whether to put a pointer to the implementation of a() or b() at offset 1 in the virtual

table.

Figure 4.2 also illustrates the usual solution to this problem. The idea is to

reserve the normal virtual table for implementing virtual function calls only, and to

build interface virtual tables for implementing interface method calls. A single class

can have many interface virtual tables; one per directly or indirectly implemented

interface. Interface method invocation proceeds as follows. First, the list of interface

virtual tables is searched to find the appropriate interface virtual table, then an

interface-specific method offset is used to lookup the implementation pointer in that

table. For example, in Figure 4.2, to invoke method b() of interface Mother on an

instance of class Child, the list of IVTBL pointers attached to the normal virtual

table of class Child is searched. Then, the Mother-specific offset of method b(),

which is 1, is used to lookup the implementation address of b().

Many approaches are possible for representing the list of interface virtual tables

of a class. One possibility is to use a plain linked list as was done in early versions

of the Kaffe virtual machine. A superior approach is to build an array of pointers

to interface virtual tables at a negative offset of the normal virtual table of a class

as was done in Figure 4.2, then to use an efficient search technique (binary search /

hashing) to find the appropriate interface virtual table.

Performance Issues

There are two performance issues related to using a list of interface virtual tables. The

first and most important issue is that using this technique, the cost of interface method

lookup is not constant. The cost of an interface method lookup grows with the number

of directly and indirectly implemented interfaces of a class. The second problem is

that the cost for searching for an appropriate IVTBL represents an overhead for

interface method calls over normal virtual calls which do not need to perform any

60

4.2. Sparse Interface Virtual Tables

Mother obj = new Child();
obj.b();

interface Father
{ a();
 b(); }

interface Mother
{ void b();
 void c(); }

class Child implements Father, Mother
{ void a() {...}
 void b() {...}
 void c() {...}

1 1
22

2

1

3

Father
Mother

Child VTBL
Child−Father Child−Mother

IVTBLIVTBL

1

2
1
2

???1

Figure 4.2: Interface Virtual Tables (IVTBL)

search to find a virtual table.

4.2 Sparse Interface Virtual Tables

In this section, we introduce a sparse interface virtual table layout that completely

eliminates the usual overhead of interface method lookup over virtual method lookup.

The idea of maintaining multiple interface virtual tables in case of multiple inheri-

tance is reminiscent of C++ implementations [ES90]. But, Java’s multiple inheritance

has a major semantic difference: it only applies to interfaces which may only declare

method signatures without providing an implementation. Furthermore, if a Java class

implements two distinct interfaces which declare the same method signature, this class

satisfies both interfaces by providing a single implementation of this method. (Unlike

Java, C++ allows the inheritance of distinct implementations of the same method

signature).

We take advantage of this important difference to rethink the data structure

61

4.2. Sparse Interface Virtual Tables

needed for efficient interface method lookup. Our ideas are based on previous work on

efficient method lookup in dynamically typed OO languages using of selector-indexed

dispatch tables [Cox87,Dri93,VH94].

4.2.1 Basic Implementation

We assign a globally unique increasing index4 to each method signature declared in

an interface. A method signature declared in multiple interfaces is assigned a single

index. When the virtual table of a class is created, we also create an interface virtual

table that grows down from the normal virtual table. This interface virtual table has a

size equal to the highest index of all methods declared in the direct and indirect super

interfaces of the class. For every declared super interface method, the entry at its

index is filled with the address of its implementation. The execution of invokeinterface

can then proceed similarly and at the exact same cost as an invokevirtual instruction.

The only difference is that interface method offsets are negative, while virtual method

offsets are positive.

In the proposed organization, the interface virtual table is a sparse array of method

pointers (unlike the normal virtual table which is dense). As more interfaces are

loaded, with new interface method signatures (throughout program execution), the

amount of free space in interface virtual tables grows. In fact, the total size of all

interface tables is O(i × m), where i is the total number of interfaces, and m is the

total number of distinct interface method signatures. Most of this space is empty, and

could thus represent a significant loss of memory.

4.2.2 Filling the Holes

The traditional approach has been to use table compression techniques to reduce

the amount of lost free space [Dri93, VH94]. These techniques work well within

a statically compiled environment. However, they are poorly adapted to dynamic

class loading environments like the Java virtual machine, as such techniques require

4In reality, we use a decreasing index, starting at at -1, to allow direct indexing in the interface
virtual table.

62

4.2. Sparse Interface Virtual Tables

dynamic reorganization of interface virtual tables when new classes and interfaces are

loaded [Dri01].

Our approach differs. Instead of compressing interface virtual tables, we simply

take advantage of our class loader memory manager to return the free space to the

memory manager. The freed memory is then used to store all kinds of class loader

related memory. In other words, we simply recycle the free space of sparse interface

virtual tables within the class loader. The organization of sparse interface virtual

tables is illustrated in Figure 4.3.

Returned to class loader
memory manager

Returned to class loader
memory manager

Increasing

addresses
memory

Increasing

addresses
memory

Traditional
Virtual
Table

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

Class Info Ptr

Method Ptr

Method Ptr

.

.

.

Interface Method Ptr

Interface Method Ptr

+1

+2

...

−3

−8

Method Ptr

Method Ptr

Method Ptr

VTBL Ptr

java.lang.Object methods

class A methods

class X methods

...

Virtual table of class X extends ... extends A, implements Y, Z

Interface
Method
Lookup
Table

Pointer to class information

Sparse

Figure 4.3: Sparse Interface Virtual Table Layout

63

4.2. Sparse Interface Virtual Tables

Class Loader Memory Manager Internals

The internal design of a class loader memory manager is very simple. This memory

manager keeps a constant size array of pointers to free memory blocks (called: free

array). In SableVM, a free array has only 16 entries5.

If it wasn’t for sparse interface tables, a class loader memory manager would only

need an alloc() function; it would not need a free() function6. Usually, a single

pointer is used to manage free space as memory is allocated as a huge block using

malloc() then redistributed incrementally.

But, because of sparse interface tables, a free() function is added which simply

puts pointers to returned blocks into the free array. No memory aggregation takes

place as holes in an interface virtual table cannot be neighboring other freed memory.

If the free array overflows, the pointer to the smallest block is evicted7. alloc()

always takes memory from the smallest, large enough block in the free array.

Our experimental results will show later that this rather simple strategy is quite

effective.

4.2.3 Guarding Against Pathological Cases

As interface usage in most Java programs ranges from very low to moderate, we

could argue that it is unlikely that the free space returned by interface virtual tables

will grow faster than the rate at which it is recycled. However, in order to handle

pathological cases, we also provide a very simple technique, which incurs no runtime

overhead, to limit the maximal growth of interface virtual tables8. To limit this

growth to N entries, we stop allocating new interface method indices as soon as

index N is assigned to an interface method signature. Then, new interface method

signatures are encoded using traditional techniques. The trick to make this possible

is to use different opcodes to encode interface calls9, based on whether the invoked

5This is a compile-time, easily modifiable constant.
6See Chapter 3 for explanations.
7The algorithm can be modified to use a linked list instead of an array to avoid memory loss.
8This is not currently implemented in SableVM.
9See Chapter 2 for instruction encoding techniques.

64

4.3. Experimental Results

method signature has been assigned an index or not. The traditional technique used

to handle overflow can safely ignore all interface methods which have already been

assigned an index.

4.3 Experimental Results

We have experimented with our usual set of benchmarks10 to measure the effectiveness

of the proposed algorithm for recycling holes in the sparse virtual tables. Our results

are shown in Table 4.1.

benchmark inter- clas- byte- sparse ivt holes loss
faces ses code (bytes) (bytes) (bytes)

compress 16 134 30,901 2,552 1,848 (72%) 0
db 17 130 34,255 2,984 2,212 (74%) 0
jack 17 178 62,791 4,436 3,608 (81%) 0
javac 21 269 101,027 3,696 2,844 (77%) 0
jess 20 270 52,985 30,340 28,504 (94%) 0

mpegaudio 24 167 76,509 5,296 4,504 (85%) 0
mtrt 18 155 42,037 3,400 2,520 (74%) 0

raytrace 18 154 41,863 3,400 2,520 (74%) 0
soot 190 794 223,557 211,912 193,328 (91%) 0

sablecc 24 374 93,335 129,340 112,840 (87%) 0

Table 4.1: Sparse Interface Virtual Tables

Columns of Table 4.1 contain respectively: (a) the name of the executed bench-

mark, (b) the number of loaded interfaces, (c) the number of loaded classes, (d) the

total number of prepared bytecodes, (e) the total size of all sparse interface virtual

tables in bytes, (f) the total size of free memory in sparse tables in bytes and as a

percentage value of the total size of sparse interface tables, and finally (g) the total

number of unrecycled memory bytes in sparse table holes.

4.3.1 Discussion

A few noteworthy results are:

10See Chapter 9 for details.

65

4.3. Experimental Results

• Not a single byte of sparse table holes was lost.

• Sparse tables contain much free space: between 72% to 91% on average, in

tested benchmarks.

Our most interface intensive benchmark is Soot which loaded 190 interfaces (this is

much higher than the average number of interfaces loaded by usual Java applications).

Its total sparse interface storage space is around 207Kb, and is smaller than the size

of prepared bytecodes. The size of prepared bytecodes is shown as an indicator of the

total requirement in class loader related memory. In a virtual machine, class loader

memory also includes threaded-code or just-in-time compiled code, as well as various

data structures to store information about classes, interfaces, arrays, methods and

fields. For example, Table 2.2 (of Chapter 2) shows that the memory requirement

for storing the inlined code sequences of the Soot benchmark is 574K, more than 3

times the total size of interface table holes. So, it seems this application could afford

loading yet more interfaces and classes, and keep filling the holes without difficulty.

Of course, there could be some pathological cases, but they are unlikely to happen

in human written code. This is because Java interfaces are of limited use; they do

not provide an implementation for the method they declare. The use of interfaces

is thus usually limited to those cases when single inheritance does not fulfill the

designer’s needs. This is the case with libraries like the Java Collection Framework

(java.util.*).

One should also take into consideration that the size of a sparse interface table

of a class is determined by the highest method index of an interface implemented

by that class. Assuming a total of 1000 distinct interface method signatures were

declared in all interfaces of an application, then the virtual machine is likely to fill

all holes, as long as this class (or the next loaded class) requires more than 4Kb11 of

memory for storing compiled code and other information. As virtual table preparation

happens early in the class linking process, before lazy method preparation, there is

ample opportunity to recycle the memory of holes. We estimate that as long as no

11A little more than sizeof(void *) × 1000.

66

4.4. Related Work

more than a few thousands distinct interface method signatures are declared in an

application, recycling of hole memory won’t be a problem.

4.4 Related Work

As we have said earlier, in [Dri01], K. Driesen surveys most of the implementation

techniques that have been proposed and used for efficiently implementing polymorphic

calls in various object-oriented programming languages. In this section we will discuss

some of the closest work to our sparse interface virtual tables.

4.4.1 Selector Table Indexing

This technique is the simplest way of implementing dynamic method lookup, and is

the basis of our sparse interface tables. It consists of constructing a two-dimensional

table indexed by class and method signature. Both classes and method signatures are

represented by unique, consecutive class or method signature codes. Unfortunately,

the resulting dispatch tables is very large (O(class × signatures)), and very sparse.

Our sparse interface tables breaks this table into disjoint rows. Each row is as

short as its highest non-null entry. Yet, we measured between 72% to 94% free space.

Because of its enormous cost in memory, this technique is not used in real systems.

4.4.2 Row Displacement Compression

Row displacement compression is a technique used to minimize the loss of free space in

selector table indexing two-dimensional dispatch tables. The idea, originally developed

for compressing parsing tables in table-driven parsers [ASU86], is to break the two

dimensional array into rows, then to fit rows into a one-dimensional array, so that

non-empty entries overlap with empty ones.

In fact, slicing the two dimensional array can be done either on a class basis or on

method signature basis. Chapter 4 of [Dri01] discusses why method-signature-based

slicing yields significantly better compression than class-based slicing.

67

4.4. Related Work

The biggest problem of this technique, in the context of Java, is that it is poorly

adapted to dynamic loading environments. Implementing method-signature-based

slicing, to obtain better compression, is particularly challenging in the presence of

dynamic loading. It can require a complete reorganization of the compressed one-

dimensional table when a new interface is loaded that causes a conflict (e.g. two

non-empty entries overlap).

Our approach sidesteps compression by simply recycling memory for storing other

things, and our experimental measurements show that there is an ample amount of

other data to store in the holes of sparse interface tables. Yet, our approach only works

well because it is limited to encoding interface method dispatch tables (thus a limited

number of interfaces and method signatures). On the other hand, row displacement

compression is much more appropriate for statically compiled, dynamically typed OO

languages.

4.4.3 Interface Method Table Hashing

In [ACFG01] B. Alpern et al. propose an efficient interface method invocation for

Java. Their idea is to associate a fixed-size interface method table with each class, then

to use hashing to associate method signatures with interface method table entries.

Hashing collisions are handled using custom-generated conflict resolution stubs.

Their measurements show that this technique cause little overhead for interface

method calls over normal virtual method calls. Yet, there is some overhead. Our

sparse tables completely eliminate this overhead, and are simpler to implement. Fur-

thermore, our technique does not necessitate dynamically generating machine lan-

guage encoded stubs.

Yet, we believe this technique would be best used in conjunction with our sparse

interface tables, to handle overflow in pathological cases (when a very high number

of distinct interface method signatures are declared).

68

4.5. Conclusions

4.5 Conclusions

In this chapter we introduced a sparse interface virtual table design that completely

eliminates the overhead of interface method invocation over normal virtual method

invocation. We proposed a simple algorithm that takes advantage of a partition-

specific memory manager to recycle holes in the sparse tables.

Our experimental results show that this simple technique is highly effective. In

all measured benchmarks, including in the interface-intensive Soot application, no

memory loss resulted from using sparse tables.

69

Chapter 5

Bidirectional Object Layout

The Java heap is by definition a garbage-collected area. A Java programmer has

no control on the deallocation of an object. Garbage collectors can be divided into

two major classes: tracing and non-tracing collectors. Non-tracing collectors (mainly

reference counting) cannot reclaim cyclic data structures, are a poor fit for concurrent

programming models, and have a high reference count maintenance overhead. For

this reason, Java virtual machine designers usually opt for a tracing collector.

There exist many tracing collectors [JL96]. The simplest models are mark-and-

sweep, copying and mark-compact. The common point to all tracing collectors (in-

cluding advanced generational, conservative and incremental techniques) is that they

must trace a subset of the heap, starting from a root set, looking for reachable ob-

jects. Tracing is often one of the most expensive steps of garbage collection [JL96].

For every root, the garbage collector (gc) looks up the type of the object to find the

offset of its reference fields, then it recursively visits the objects referenced by these

fields.

In this chapter we introduce a new bidirectional object layout that groups all

reference fields to allow simple and efficient gc tracing.

This chapter is structured as follows. In Section 5.1, we discuss the traditional

layout for object instances. In Section 5.2, we introduce our bidirectional object

layout. In Section 5.3, we present our experimental results. In Section 5.4 we discuss

related work. Finally, in Section 5.5, we present our conclusions.

70

5.1. Traditional Layout

5.1 Traditional Layout

To provide efficient field access, it is desirable to place fields at a constant offset

from the object header, regardless of inheritance. This is easily achieved in Java

as instance fields can only be declared in classes (not in interfaces), and classes are

restricted to single inheritance. Fields are usually laid out consecutively after the

object header, starting with super class fields then subclass fields, as shown in Figure

5.1. When tracing such an object, the garbage collector must access the object’s class

information to discover the offset of its reference fields, then access the superclass

information to obtain the offset of its reference fields, and so on. As this process must

be repeated for each traced object, it is quite expensive.

There are two improvements that are usually applied to this naive representation.

First, reference fields can be grouped together in the layout of each inherited class.

Secondly, each class can store an array of offsets and counts of reference fields for

itself and all its super classes. This is shown in Figure 5.2. The number of memory

accesses needed to trace an object, in this case, is n (the number of references) +

3 (virtual table pointer, ref offsets pointer, array size) + 2 * array size (each array

element has two values: base offset and reference number). Two nested loops (and

loop variables) are required: one to traverse the array, and one for each array element

(accessing the related number of references).

5.2 Bidirectional Object Layout

We propose a new object layout that further reduces the number of memory accesses

required to trace an object. Our solution is to group all reference fields consecutively.

To maintain the constant offset property, we simply grow objects in both directions,

placing non-reference fields after the object header, and reference fields in front of it.

Figure 5.3 illustrates the layout of object instances. In the object instance layout,

the instance starting point is possibly a reference field. The instance grows both ways

from the object header, which is located in the middle of the instance. References are

placed before the header, and other fields are placed after it. Figure 5.4 illustrates the

71

5.2. Bidirectional Object Layout

Increasing
Memory

Addresses

Reference

Reference

Reference

Reference

Reference

Reference

fields of class C

fields of class B

fields of class A

Instance of class C extends B extends A

Non−Ref Fields

Non−Ref Fields

Non−Ref Fields

Non−Ref Fields

Instance Ptr

Object Header

VTBL Ptr

Thinlock+Other Bits

(a) Naive Object Layout

NULL

Super Class Info Ptr

(size) 2

(offset) 60

(offset) 48

...

Class Info Ptr
Reference

Figure 5.1: Naive Object Layout

72

5.2. Bidirectional Object Layout

fields of class C

fields of class B

fields of class A

Class Info Ptr

NULL

Super Class Info Ptr

(size) 3

...

(number) 2

(offset) 8

(number) 3

(offset) 28

(number) 2

(offset) 48

Instance of class C extends B extends A

Instance Ptr

Object Header

VTBL Ptr

Fields

Reference

Reference

Fields

Reference

Reference

Reference

Fields

Increasing
Memory

Addresses

Reference

Reference

(b) Usual Object Layout

Ref Offsets Ptr

Thinock+Other Bits

Figure 5.2: Traditional Object Layout

73

5.2. Bidirectional Object Layout

layout of array instances. Array elements are placed in front or after the array instance

header, depending on whether the element type is a reference or a non-reference type,

respectively.

The object header contains two words (three for arrays). The first is a lock word

and the second is a virtual table pointer. We use a few low-order bits of the lock

word to encode the following information:

• We set the last (lowest order) bit to one, to differentiate the lock word from

the preceding reference fields (which are pointers to aligned objects, thus have

their last bit set to zero).

• We use another bit to encode whether the instance is an object or an array.

• If it is an array, we use 4 bits to encode its element type (boolean, byte, short,

char, int, long, float, double, or reference).

• If it is an object, we use a few bits to encode (1) the number of reference

fields and (2) the number of non-reference field words of the object, (or special

overflow values, if the object is too big).

We also use two words in the virtual table to encode the number of reference-field

and non-reference-field words of the object if the object is too big to encode this

information in the header.

5.2.1 Tracing Objects

At this point, we must distinguish the two ways in which an object instance can

be reached by a tracing collector. The first way is through an object reference that

points to the object header (which is in the middle of the object). The second way

is through its starting point, in the sweep phase of a mark-and-sweep gc, or in the

tospace scanning of a copying gc. In both cases, our bidirectional layout allows the

implementation of simple and elegant tracing algorithms.

In the first case, the gc accesses the lock word to get the number of references

n (one shift, one mask). If n is the overflow value (big object), then n is retrieved

74

5.2. Bidirectional Object Layout

non−ref fields of class BFields

Reference

Reference
ref fields of class C

Reference

Increasing
Memory

Addresses

Increasing
Memory

Addresses
Reference

Reference ref fields of class B

Reference

Reference

ref fields of class A

non−ref fields of class AFields

non−ref fields of class CFields

Instance Ptr

Object Header

Instance of class C extends B extends A

Instance
Starting

Point

10Thinlock + bits

VTBL Ptr

Figure 5.3: Bidirectional Object Instance Layout

75

5.2. Bidirectional Object Layout

Reference 2

Increasing
Memory

Addresses

Increasing
Memory

Addresses

Size

Reference

Reference

0

1

Array of reference elements

Reference size − 1

Size

Array of primitive elements

elements

size − 1

1
0

...

Object Header

Instance Ptr

Object Header

Instance Ptr

11Thinlock + bits

VTBL Ptr

11Thinlock + bits

VTBL Ptr

Figure 5.4: Bidirectional Array Instance Layout

76

5.3. Experimental Results

from the virtual table. Finally, the gc simply traces n references in front of the object

header.

In the second case, the object instance is reached from its starting point in memory,

which might be either a reference field or the object header (if there are no reference

fields in this instance). At this point, the gc must find out whether the initial word

is a reference or a lock word. But, this is easy to find. The gc simply needs to check

the state of the last bit of the word. If it is one, then the word is a lock word. If it is

zero, then the word is a reference.

So, for example, a copying collector, while scanning the tospace needs only read

words consecutively, checking the last bit. When set to zero, the discovered reference

is traced, when set to 1, the number of non-reference field words (encoded in the lock

word itself, or in the virtual table on overflow) is used to find the starting point of

the next instance.

In summary, using our bidirectional layout, a gc only accesses the following mem-

ory locations while tracing: reference fields and lock word, for all instances (objects

and arrays), and at most three additional accesses for objects with many fields (virtual

table pointer and two words in the virtual table itself).

5.3 Experimental Results

We have experimented with our usual set of benchmarks1 to measure the effectiveness

of the proposed layout. Our results are shown in Table 5.1.

Columns of Table 5.1 contain respectively: (a) the name of the executed bench-

mark, (b) the total garbage collection time using the traditional object layout, (c)

the total garbage collection time using the bidirectional object layout, (d) the total

execution time using the traditional object layout, and (e) the total execution time

using the bidirectional object layout.

1See Chapter 9 for details.

77

5.4. Related Work

benchmark gc (trad.) gc (bidir.) total (trad.) total (bidir.)
(sec.) (sec.) (sec.) (sec.)

compress 0.238 0.238 (1.00) 129.58 131.64 (0.98)
db 0.472 0.479 (0.99) 89.91 87.64 (1.03)
jack 0.115 0.115 (1.00) 39.50 38.16 (1.04)
javac 2.845 2.875 (0.99) 89.45 89.37 (1.00)
jess 0.273 0.276 (0.99) 54.57 53.57 (1.02)

mpegaudio 0.000 0.000 (–) 135.86 136.97 (0.99)
mtrt 1.027 1.029 (1.00) 97.52 100.39 (0.97)

raytrace 0.679 0.683 (0.99) 113.38 113.55 (1.00)
soot 19.943 20.021 (1.00) 552.04 548.13 (1.01)

sablecc 0.172 0.173 (0.99) 26.12 26.09 (1.00)

Table 5.1: Garbage Collection Time

5.3.1 Discussion

Our results show that garbage collection time is not significantly affected by the object

layout, for the tested benchmarks. Yet, object layout seems to have a bigger impact

on the overall running time of applications. In the db, jack, and mtrt benchmarks we

see a difference of 3% or a little more. In absolute value, the difference of execution

time is much bigger than the difference in garbage collection time.

This is probably caused by the indirect effect of the reversed layout reference

arrays. Effectively, reference arrays grow down from the object header. It is thus

quite possible that the change of access order of array elements has some effect on

the data cache.

5.4 Related Work

We now mention some previous related work. The idea of using a bidirectional object

layout (without grouping references) has been investigated [Mye95,PW90] as a means

to provide efficient access to instance data and dispatch information in languages sup-

porting multiple inheritance (most specifically C++). In [Bar88], Bartlett proposed

a garbage collector which required grouping pointers at the head of structures; this

was not achieved using bidirectional structures, though.

78

5.5. Conclusions

5.5 Conclusions

In this chapter we introduced a bidirectional object layout which groups reference

fields at the start of object instances. Such a layout simplifies garbage collection

tracing.

Our experimental results show that using a bidirectional object layout causes no

significant change to the execution time of garbage collection, yet it can sometime

affect the overall benchmark execution time, probably due its impact on cache be-

havior.

This experiment illustrates the simplicity of implementing and testing various

research data structures in SableVM.

79

Chapter 6

Space-Efficient Garbage Collection Maps

The Java virtual machine specification has a feature that makes computing type-

precise root sets difficult for type-precise garbage collection; it allows local variables

to have subroutine-call-sequence-specific types. Existing algorithms for computing

garbage collection maps of local variables and operand stack locations are relatively

complex, full-blown data-flow analyses, and the resulting maps are relatively spacious

(10% to 20% of code size) [ADM98, SLC99]. In this chapter we introduce a simple

algorithm that computes space-efficient stack and local variable maps for type-precise

garbage collection.

This algorithm is best suited for simple or small Java virtual machines, as it

reduces (a) the complexity of map computation, and (b) map storage space.

On the other hand, this algorithm does not perform a live-variable analysis for

reducing unreclaimed garbage, and it can add a little runtime overhead to some

method calls.

This chapter is organized as follows. In Section 6.1, we discuss the difficulty of

computing type-precise garbage collection maps in Java. In Section 6.2, we introduce

our algorithm. In Section 6.3, we present our experimental results. In Section 6.4 we

discuss related work. Finally, in Section 6.5, we present our conclusions.

80

6.1. Type-Precise Garbage Collection Maps

6.1 Type-Precise Garbage Collection Maps

The objective of garbage collection is to reclaim space consumed by objects that will

not be used again. Precisely computing the set of objects that will be reused, at a

certain point of program execution, is an undecidable problem, as program execution

flow can depend on external data entry. Garbage collection algorithms compute,

instead, the set of objects which are reachable from a root set, and recycle memory

used by unreachable objects.

There are two main approaches to computing root sets. One approach is to com-

pute a precise root set which includes all local and global reference variables. The

second approach, called conservative, treats all local and global variables (regardless

of their type) as potential roots.

Whether precise or conservative garbage collection is best suited for an envi-

ronment or an application is still debated among researchers. The objective of the

SableVM framework is to permit as much experimentation as possible. In that goal,

it needs to support both types of garbage collection.

Supporting conservative garbage collection is simple. The only requirement is

not to hide pointers to objects in memory using arithmetic operations (e.g. xor). A

conservative garbage collector analyzes the content of an ambiguously typed variable

to detect whether the stored value looks like a valid object reference. If it does, the

garbage collector assumes it likely is a reference and acts accordingly. A conservative

garbage collector can potentially retain more garbage, but practice has showed this

not to be significant [BW88]. The simplicity of providing an ambiguous root set makes

it possible to easily plug a general-purpose conservative collector into a system.

Supporting precise collection, on the other hand, proves to be more difficult, as a

type-precise root set should be provided to the garbage collector. Usually, as is the

case in the SableVM framework, precise garbage collection is only allowed to happen

at predetermined execution points. At these gc locations, a map (usually encoded as

a bit array) is provided to the garbage collector to distinguish between reference and

non-reference variables.

81

6.1. Type-Precise Garbage Collection Maps

6.1.1 The Gosling Property

As Java classes are dynamically loaded and can originate from an untrusted source,

the Java virtual machine specification includes a bytecode verifier and states the rules

for ensuring that no executed bytecode program cause memory corruption or other

harm to the virtual machine.

Java bytecode is stack-based. For example, the a = b + c; Java statement is

typically compiled to iload 1 ; iload 2 ; iadd ; istore 0 .

The Java virtual machine imposes strict constraints on bytecode. In particular, the

Gosling property states that, using a simple data-flow analysis, it should be verifiable

that the stack size of a bytecode instruction is constant and that the type of each

local variable and stack location is appropriate, regardless of the path taken to reach

that instruction. A more precise definition of all virtual machine constraints is given

in the Java virtual machine specification [LY99].

But, unfortunately, the Java designers allowed for one exception to the Gosling

property.

6.1.2 A Notable Exception: Subroutines

Java bytecode includes two special instructions: jsr and ret, that were mainly intro-

duced for implementing the finally construct of the Java programming language.

The jsr instruction jumps to an address (specified as operand), and pushes a return

address value on the operand stack. The ret instruction jumps to the address found

in the local variable specified as operand. The code included within the target of a

jsr instruction and its ret statement is usually called a subroutine1.

To allow for the asymmetrical treatment of the return address, other bytecode

instructions are allowed to swap and duplicate address values on the operand stack,

and the astore instruction is allowed to pop a return address and store it into a local

variable, so that it can later be used as operand to a ret instruction.

The rules for bytecode verification contain an explicit exception to the Gosling

1Unlike real subroutines, this code uses the same local variables and operand stack as the calling
method. No Java stack frame is pushed or popped on execution of jsr and ret instructions.

82

6.2. A Simple, yet Efficient Algorithm

property, allowing a local variable to hold a call sequence specific type within a sub-

routine, as long as this variable is neither read or written within the said subroutine.

This highly complicates the computation and storage of stack maps, as whether

a local variable stores a reference value or not is dependent on the execution path

to reach an instruction. To further complicate the problem, no traces are left on

the operand stack or in local variables that clearly determine the jsr call sequence

that lead to the execution of an instruction. So, a simple bit array encoding is not

sufficient for local variable gc maps, within subroutines.

6.2 A Simple, yet Efficient Algorithm

The problem that we faced, when designing SableVM was that in order to precisely

compute gc maps, we would have to encode a complete data flow analysis. As gc

maps are even required for code loaded using the bootstrap class loader, this data flow

analysis would have to be written in C, the implementation language of our virtual

machine. Furthermore, simple bit array gc maps would not have been sufficient.

The complexity of existing algorithms for computing precise gc maps motivated

our research for a simpler algorithm.

6.2.1 The Basic Idea

While bytecode verification is an important part of a commercial virtual machine, it

is not necessarily as important within a research framework. Yet, existing algorithms

to compute precise gc maps do most of the verification work.

An Important Assumption

In order to simplify the algorithm, we decided to make the reasonable assumption that

the code for which we would compute gc maps would be verifiable. In other words, if

verification was applied to this code, it would succeed. We say that it is a reasonable

assumption, as code loaded by the bootstrap class loader is usually shipped with a

virtual machine, and can thus be pre-verified. Other code, loaded through system

83

6.2. A Simple, yet Efficient Algorithm

and user class loaders written in Java, can be analyzed at link time by a verifier also

written in Java2.

Splitting Locals

Given the verifiable code assumption, we can devise a relatively simple algorithm

which takes advantage of the type precision of most Java bytecode instructions to

determine the type of local variables and stack locations.

In order to eliminate the path-specific property of local variable types, we identify

all local variables which are used to store both reference and non-reference values.

Then we split each of the identified local variables into two local variables: one which

only stores reference values, and one which only stores non-reference values. The

proposed splitting can cause an increase in the number of local variables of a method,

but it greatly simplifies the computation of gc maps.

Single Locals Map

One of the most important consequences of the splitting of local variables is that,

after splitting, a single local-variable gc map is required per Java method.

This can potentially save much memory, as otherwise, a local variable gc map

would be required at every gc check point3.

A side effect of using a single local map per method is that some reference lo-

cal variables will need to be initialized to null on method entry. This is because

the garbage collector would not know otherwise that the content of an uninitialized

reference local variable is garbage.

2Linking of code loaded by the bootstrap class loader cannot easily depend on executing other
Java code (chicken-egg problem).

3Some virtual machines do a lazy computation of gc maps in an attempt to reduce storage
space [SLC99].

84

6.2. A Simple, yet Efficient Algorithm

Grouping References

The storage of local variable gc maps can be further reduced by grouping all non-

parameter local variables4. Doing so allows for encoding the map in two parts: a bit

array for formal parameter local variables, and a single integer value indicating the

number of non-parameter reference local variables.

Reducing the size of the bit array makes it more likely that other methods will use

an identical bit array. This is useful to reduce memory consumption, when memoizing

bit maps, as we explain later.

Also, having a single number for non-parameter locals simplifies the initialization

of reference local variables. Parameter variables need not be initialized (they already

hold a value provided by the caller), so a simple loop can be used to initialize the

remaining non-parameter reference to null on method entry.

Operand Stack Maps

We also need to compute operand stack gc maps. One such map must be computed

for every gc check point5.

Luckily, many operand stack maps are small. For example, the operand stack is

usually empty on branch instructions. Also, the bit array needs to be only as big as

the highest index of a reference value on the stack.

Having a small (or an empty) bit array increases the opportunities for sharing

stack maps across different locations.

Memoization

As the reader might have guessed by now, we maintain, in SableVM, a central repos-

itory of bit array gc maps. This repository is implemented as a splay tree6, ordered

by size and bit content.

4The formal parameters of a methods are mapped as the first local variables of a method frame.
5Backward branch instructions, method calls, and allocation instructions.
6A splay tree is a binary tree with caching property: the last accessed node is always made root

of the tree. The amortized cost for n tree operations is O(n log n).

85

6.2. A Simple, yet Efficient Algorithm

Example

Figure 6.1 illustrates the splitting and reordering of local variables. In this example,

we assume there are no method parameters. First, the algorithm analyses locals usage.

Then it splits locals which are used to store both reference and non-reference values.

Then it reorders locals, assigning lowest numbers to reference variables. Finally, the

bytecode is rewritten to use the newly assigned local variable numbers. Note how

local 0 becomes local 1, and local 1 becomes locals 0 and 2.

Original Bytecode

ICONST_M1
ISTORE_0
ACONST_NULL
ASTORE_1
ILOAD_0
ISTORE_1

Locals Usage

Local 0: non-ref ⇒ no splitting.

Local 1: ref and non-ref ⇒ must be split.

Locals Splitting and Reordering

Local 0: non-ref = 1

Local 1: ref = 0, non-ref = 2

New Bytecode

ICONST_M1
ISTORE_1
ACONST_NULL
ASTORE_0
ILOAD_1
ISTORE_2

Figure 6.1: Locals Splitting and Reordering

86

6.2. A Simple, yet Efficient Algorithm

6.2.2 What is a Subroutine?

Now that we have exposed our main ideas, and before we give a detailed algorithm

description, we need to discuss the subroutine problem.

The Java language specification motivates the existence of the jsr and ret in-

structions by explaining their use for implementing the try {...} finally {...}

Java construct.

But, the verification rules governing the use of jsr and ret are stated in terms of

bytecode instructions, not in term of Java programming language constructs.

So, in the context of bytecode (which is not necessarily generated by a Java

compiler), the concept of subroutine becomes more difficult to grasp. In fact, the

wording used in the Java language specification is ambiguous.

This is best explained using some examples. Figure 6.2 illustrates a case where,

in the course of a data-flow analysis, two jsr instructions to the same target are seen,

without a ret instruction between them (in the control flow). The problem is that

the Java virtual machine states that subroutines may not be recursively called. Yet,

this example passes verification successfully (using the reference virtual machine by

Sun Microsystems).

Second JSR
to L1
without RET
in between!

 jsr L1
 ...
L1:...
 ifeq L3
L2:athrow
L3:...
 ret
L4:jsr L1
 ...

Exception Table
From L1 to L3 handler is L4

1

2

Figure 6.2: Seemingly Recursive Subroutine

By analyzing this example further, we discover that a subroutine may be exited

87

6.2. A Simple, yet Efficient Algorithm

through exceptional control flow, such as the explicit athrow instruction, in our ex-

ample. But, the problem remains: how can the data-flow analyzer determine whether

a subroutine is exited or not, when taking an exceptional control flow?

In order to investigate this question, we have modified our example a little. We

replaced the second jsr instruction by a return instruction (which ends a method).

The result is illustrated in Figure 6.3.

 jsr L1
 ...
L1:...
 ifeq L3
L2:athrow
L3:...
 ret
L4:return
 ...

Exception Table
From L1 to L3 handler is L4

Is this
statement
part of the
subroutine?

Ambiguous Subroutine

Figure 6.3: Ambiguous Subroutine

This segment of code is legal and it is again accepted by the reference virtual

machine verifier. In this example, the return instruction could as well be within the

subroutine (return may be called from within a subroutine), or it could be outside

the subroutine. In either case, the verification constraints would be met. So, from a

pure bytecode point of view, the boundaries of subroutines are ambiguous!

We should note that it is possible to write valid Java programs that generate code

which is similar to our examples, using loops and nested try-finally and try-catch

constructs.

So, to avoid pitfalls, we shall avoid using the ambiguous concept of subroutines

when describing our algorithm7.

7In order to prevent recursion, a data-flow analyzer can simply invalidate all copies of the target

88

6.2. A Simple, yet Efficient Algorithm

6.2.3 Algorithm Description

We now give a precise description of our simple algorithm to compute gc maps. We

remind the reader of the requirement that analyzed bytecode must be verifiable in

order for our algorithm to work.

Data Structures

Our algorithm consists, in fact, of a simplified data-flow analysis, where each state-

ment is only analyzed once. This data-flow analysis simulates the execution of byte-

code instructions on an abstract method frame. The abstract method frame has an

operand stack and local variables that can only hold integer values. Integer values

stored in local variables and stack locations have the following meaning:

• -2: non-reference value

• -1: reference value

• 0 or more: start offset of a subroutine

One important difference between the abstract interpretation done by our data-

flow analyzer and real execution is the treatment of the jsr instruction. The real

instruction pushes the address of the return address on the stack. Our data-flow

analyzer pushes the subroutine start offset on the stack, instead.

In addition, a global structure using a few bits of storage for each local variable

is required. It records whether a local variable has been used to store reference,

one-word-non-reference, and/or two-words-non-reference8 values.

Another structure stores instruction specific data. For example, it records whether

the stack operand to an astore instruction is a reference value or a return address.

Of course, as we said earlier, bit array gc maps are memoized using a global splay

tree.

return address, stored in local variables and on the operand stack, when executing a ret instruction.
8The operand stack must also handle 64-bit long and double values.

89

6.2. A Simple, yet Efficient Algorithm

Data Flow Analysis

A simple work-list algorithm is used. Initially, the first bytecode instruction of the

analyzed method is pushed into the work-list. On each iteration, an instruction is

retrieved from the work-list, its execution simulated within the abstract environment,

then the instruction is marked as done. Then, all successor instructions (determined

by regular and exceptional control flow) which are not done nor already in the work-

list, are added to the work-list. The algorithm execution continues until the work-list

is empty.

This algorithm only analyzes each statement once. This is sufficient, as the verifi-

ability of analyzed bytecode ensures that the stack layout we compute the first time

an instruction is seen is valid and would be the same regardless of execution path.

The abstract interpretation applied to the 200 bytecode instructions is fairly in-

tuitive, except for the jsr and ret instructions which we will discuss in more details

later. This interpretation consists of pushing or popping integer values on or off the

stack, and updating appropriately the global local variable bits and the instruction

specific data. Figure 6.4 shows the pseudo code of the abstract interpretation for a

few bytecode instructions.

We will not describe in details how to analyze each of the 200 bytecode instruc-

tions. Instead, we invite the reader to look at our implementation which can be found

in the file src/libsablevm/prepare code.c of SableVM [Sabb].

The only special treatment is the handling of jsr and ret instructions. The idea

is that in order to put the instruction following a jsr on the work-list, the operand

stack layout (and size) of the related ret instruction must be known. As the data-flow

analyzer might not yet know whether there is a related ret instruction or not, jsr

simulation proceeds as follows:

1. The jsr target address (or more precisely: offset) is pushed onto the abstract

operand stack.

2. If the target instruction has a related ret instruction on record, the operand

stack of this related instruction is used in conjunction with the current local

90

6.2. A Simple, yet Efficient Algorithm

#define NON_REF (-2)
#define REF (-1)

case ACONST_NULL or NEW
{
/* push a reference on stack */
stack[stack_size++] = REF;

}

case ISTORE_3 or FSTORE_3
{
local_bits[3].used_as_nonref = true;
stack_size--;

}

case LSTORE_3 or DSTORE_3
{
local_bits[3].used_as_64bit = true;
stack_size -= 2;

}

case ASTORE_3
{
if (stack[--stack_size] >= 0)
{

/* there’s a jsr offset on the stack */
local_bits[3].used_as_nonref = true;
instruction->operand_is_jsr_offset = true;

/* save the jsr offset in the appropriate local */
locals[3] = stack[stack_size];

}
else
{

/* there’s a reference on the stack */
local_bits[3].used_as_ref = true;

}
}

case IADD, ISUB, FADD, FSUB, MONITORENTER,
MONITOREXIT, or POP

{
/* one 32-bit value popped */
stack_size--;

}

Figure 6.4: Abstract Interpretation of Some Bytecode Instructions

91

6.2. A Simple, yet Efficient Algorithm

variable layout as an environment9 for adding the instruction following the jsr

on the work-list.

3. If the target instruction doesn’t have a related ret instruction on record, the

instruction following the jsr is added to a pending-list in the target instruction

record.

Simulation of the ret instruction proceeds as follows:

1. The address of the related jsr target is retrieved from the specified local vari-

able.

2. This ret instruction is recorded as related to the jsr target instruction on

record.

3. All instructions on the related jsr target pending-list are added to the work-list,

with an appropriate environment.

Operand Stack Maps

Operand stack gc maps are computed at each gc check point as the related instruction

is processed.

In order to simplify garbage collection, pointers to the operand stack gc maps are

always stored in the code array10 at pc - 1 , where pc is the program counter value

seen by the garbage collector.

Locals Splitting and Reordering

Once the data-flow analysis is finished, local variables are split according to their us-

age. Non-parameter local variables are reordered after splitting so that all reference

locals are first and contiguous. Finally, bytecode instructions are updated appropri-

ately, and local variable gc map information is stored in the method structures.

9This simulates the exception to the Gosling property.
10See Chapter 2.

92

6.3. Experimental Results

6.3 Experimental Results

We performed two sets of experiments. The first set of experiments measured the

total storage size for computed gc maps. The second set of experiments measured the

increase in number of local variables caused by variable splitting. We have performed

our experiments with our usual set of benchmarks11.

6.3.1 Storage Size

The storage size of a single garbage collection map is composed of splay tree related

fields and a bit array. There are 5 splay tree related fields per map: parent, left, and

right pointers, bit array length, and bit array pointer. This takes a total of 20 bytes

of storage overhead per gc map on the Linux/x86 platform. Our measurements are

shown in Table 6.1.

benchmark maps maps size check methods total size
points (bytes)

compress 27 644 bytes 5,016 411 22,352
db 28 668 bytes 5,433 461 24,244
jack 33 788 bytes 9,752 689 42,552
javac 71 1,700 bytes 15,449 1,238 68,448
jess 43 1,028 bytes 8,804 892 39,812

mpegaudio 37 884 bytes 8,679 581 37,924
mtrt 43 1,028 bytes 6,849 588 30,776

raytrace 43 1,028 bytes 6,819 583 30,636
soot 74 1,776 bytes 39,653 3,475 174,228

sablecc 43 1,028 bytes 15,545 1,701 70,012

Table 6.1: GC Maps Storage Size

Columns of Table 6.1 contain respectively: (a) the name of the executed bench-

mark, (b) the total number of garbage collection maps for prepared methods, (c) the

total storage size (including overhead) for all garbage collection maps, (d) the total

number of garbage collection check points in prepared methods, (f) the number of

prepared methods, and (f) the total storage size related to gc maps.

11See Chapter 9 for details.

93

6.3. Experimental Results

The total size includes the size of gc maps, the size of a per check-point 32-bit

pointer, and the size of a per method 32-bit integer.

Discussion

We were very pleasantly surprised by the small number of distinct garbage collection

maps. Even in the biggest benchmark, Soot, which contains near 40,000 check points,

a total of only 74 distinct maps are computed. The total storage space for these maps

is less than 2Kb, most of which is memoization data structure overhead.

The following factors helped in reducing the number of distinct garbage collection

maps. First, we do not compute check point specific maps for local variables, only

method-specific maps. Also, local variable bit arrays are limited to formal parameters

of methods; all non-parameter locals are grouped and a single integer is needed to

map them.

Even the total storage size numbers are quite low. Most of this space is used to

store a pointer to the gc map at pc - 1 . For our biggest benchmark, the total

storage size is only 170Kb.

Given the small number of distinct gc maps, the total storage could be dramat-

ically reduced by using, at check points, a single byte of storage instead of a full

pointer, indexing into a global table of gc maps (allowing for up to 255 maps + one

value for overflow). The per method integer could also be stored using fewer bytes.

Yet, we do not think any of this necessary, given the small total size of storage and

the complexity of storing single bytes in aligned code arrays.

6.3.2 Number of Local Variables

In our second set of experiments, we measured the increase in the number of local

variables. Our first results were unexpected; they indicated a reduction in the number

of local variables, for many benchmarks. Suspecting a discrepancy in our code, we

verified our code, but it seemed sound. This prompted us to investigate the problem.

We quickly discovered the cause of the reduction in number of local variables: our

algorithm gets rid of dead local variables.

94

6.3. Experimental Results

In other words, some of the Java compilers used to compile the bytecode of our

benchmarks and class libraries do emit bytecode which does not use all the local

variables indicated by the max locals value of the code attribute of methods. We used

the Jikes [Jik] compiler for compiling the class libraries and the Soot and SableCC

benchmarks. We do not know which compiler was used to compile the SPECjvm98

benchmarks.

So, we decided to also measure the increase in the number of live local variables.

Our results are shown in Table 6.2.

benchmark bytecode locals increase live locals increase

compress 1,092 -7 (-0.6%) 1,056 29 (2.7%)
db 1,260 -9 (-0.7%) 1,212 39 (3.2%)
jack 1,771 -6 (-0.3%) 1,703 62 (3.6%)
javac 4,040 44 (1.1%) 3,750 334 (8.9%)
jess 2,225 2 (0.1%) 2,063 164 (7.9%)

mpegaudio 1,663 -11 (-0.7%) 1,606 46 (2.8%)
mtrt 1,648 -12 (-0.7%) 1,593 43 (2.7%)

raytrace 1,636 -12 (-0.7%) 1,582 42 (2.7%)
soot 8,517 60 (0.7%) 7,663 914 (11.9%)

sablecc 3,711 18 (0.5%) 3,303 426 (12.9%)

Table 6.2: Local Variable Count

Columns of Table 6.2 contain respectively: (a) the name of the executed bench-

mark, (b) the total number of local variables of prepared methods (before splitting),

(c) the increase in local variables after splitting, expressed in absolute value and

percentage, (d) the total number of live local variables of prepared methods (be-

fore splitting), and (c) the increase in live local variables after splitting, expressed in

absolute value and percentage.

Discussion

While we think that Java compilers should be fixed not to generate dead local vari-

ables, a virtual machine must nonetheless execute verifiable bytecode generated by

any compiler.

We expected an increase in the number of local variables, due to splitting. The

95

6.4. Related Work

raw result values (including dead variables) did not indicate a significant increase or

reduction in the total number of variables.

We think that measurements on live variables are better indicators of the side

effects of our proposed algorithm, as most modern virtual machines include just-in-

time compilers or adaptive optimizers that most likely ignore dead local variables.

So, when we measure the effect of splitting on live local variables, we notice a

more significant increase in the number of local variables, as expected. In the bigger

benchmarks, the increase reaches up to 13%.

The noticeable increase in number of local variables could be an important factor

to consider before adopting our algorithm in a high-performance system, as more

local variables could lead to higher register pressure. Furthermore, developers of

high-performance systems likely have the resources to implement more complex gc

map computation algorithms.

6.4 Related Work

There has been much research done on various technique for garbage collection. In

[JL96], R. Jones and R. Lins review most of the literature on the subject. In this

section, we simply review related work specifically on computing gc maps in the Java

virtual machine.

In [ADM98], O. Agesen et al. introduced a data flow analysis over a reduced type

lattice to compute stack maps and record local variable usage conflicts in subroutines.

Their technique records precise conflict information:

• ref-uninit: The local variable holds a reference value in some call sequence, and

is uninitialized on another.

• ref-nonref: The local variable holds a reference in some call sequence, and a

non-reference value on another.

• ref-nonref-uninit: The local variable holds a reference in some call sequence, a

non-reference value on another, and is uninitialized on another.

96

6.4. Related Work

Using this information, their technique then splits only those local variables involved

in ref-nonref and ref-nonref-uninit conflicts. Also, the bytecode is modified to add

null initialization to local variables involved in ref-uninit and ref-nonref-uninit con-

flicts. In the paper, O. Agesen et al. do not explicitly address the details of handling

long and double types.

This technique is more precise than the technique introduced in this chapter as

it minimizes the number of split local variables, and only initializes a subset of non-

parameter reference local variables. But, on the other hand, this technique is more

complex to implement, as it requires a full data-flow analysis, and it potentially

requires more storage space for stack maps. Unfortunately, the paper does not report

the total storage size related to stack maps. They did say that they do not compress

(or memoize) stack maps.

Another interesting result of this paper, is that adding liveness analysis has no

significant impact on the size of reachable objects in heap for most benchmarks.

The only exception to this was in a benchmark specifically constructed to challenge

garbage collectors.

In [SLC99], Stichnoth et al. introduce a technique to support garbage collection

at every instruction, instead of at specific garbage collection check points. Their

technique requires a full data flow analysis. They use an original technique to deal

with the jsr/ret problem. Instead of splitting variables and rewriting the bytecode,

they use a gc-time recursive recovery technique to deduce the type (and liveness) of

variables. Their rationale for supporting garbage collection at every instruction is

that it reduces latency in multi-threaded applications (yet they have not reported

any timings to support this conjecture), and a simpler design for the virtual machine.

We dispute both of these reasons, in the context of their technique.

We think that the latency of reaching a gc check point is negligible, as long as a

checkpoint is present in every loop iteration. In [ADM98], O. Agesen computed that

there is a gc check point every 7.9 bytecodes on average.

We also think that the difficulty of computing the type of variables at garbage

collection time outweighs, by far, the difficulty of specializing back-branches in code

arrays. The constant-time (per branch instruction) overhead of specializing branches

97

6.5. Conclusions

is paid only once, at method preparation time, while the overhead of type recovery

(linear worst case, in the size of method) must be paid at every garbage collection.

This paper also proposes a rather complex encoding of gc maps to compress them.

This compression uses Huffman encoding to store the delta of each instruction, and

uses sequential bit streams to store gc maps, so that no bit is wasted. All this encoding

increases the complexity of garbage collection, as bit streams must be decoded for

each inspected method frame on the Java stack.

Interestingly, the paper reports absolute values for the size of compressed gc maps.

Specifically, it reports a total size of 22,920 bytes for the compress benchmark (com-

pared to 22,352 in SableVM) and 93,385 bytes for the javac benchmark (compared to

68,448 bytes in SableVM). It should be noted that SableVM’s gc maps are accessed

in constant time using a pointer at pc - 1 which accounts for most of the total

storage space. The storage size for gc maps alone, in SableVM, is less than 2Kb for

the javac benchmark. In contrast, using Stichnoth’s technique, retrieving a gc map

is a complex, non-constant-time operation.

6.5 Conclusions

In this chapter we have introduced a simple and effective technique to compute space-

efficient gc maps. By assuming that it is fed verifiable bytecode, the algorithm per-

forms a simple analysis of bytecode to compute stack maps and split local variables

according to their usage. Storage space is reduced by reordering local variables in

methods, and using a single local variable map per method.

This technique is best suited to simpler virtual machines, and might not be appro-

priate for more complex high-performance virtual machines, unless additional analysis

is done to reduce initialization overhead and local variable splitting (using an analysis

similar to [ADM98]).

Our experimental results show that the number of distinct gc maps computed by

our algorithm is very low. In our biggest benchmark, which has near 40,000 check

points and 3,475 methods, only 74 distinct bit maps were necessary.

98

Chapter 7

Spin-Lock-Free Thin Locks

The Java virtual machine, in collaboration with the standard libraries, provides

a multi-threaded execution environment to Java programs. Synchronization between

threads is provided through recursive mutual-exclusive locks (called monitors in the

Java virtual machine specification [LY99]). The bytecode instruction set specifically

includes the MONITORENTER and MONITOREXIT instructions which respec-

tively acquire and release a lock. Also, methods can be declared synchronized, causing

the virtual machine to automatically acquire a lock on method entry and release it on

method exit. Locks are associated with object instances; more precisely, every object

instance has its own lock which can be acquired and released by running threads.

Most of the Java standard library classes and methods are thread-safe. In other

words, these classes and methods make an extensive use of synchronization to protect

internal data in multi-threaded programs.

To fully implement the semantics of the recursive locks of Java, a naive imple-

mentation would include a POSIX mutex, a POSIX condition variable and an integer

recursion count into every object instance. This would add at least three words to ev-

ery object instance. To significantly reduce this overhead, early Java virtual machine

implementations used a global hash table to store lazily-created locks. On every lock

and unlock operation, the global hash table is accessed to retrieve the lock associ-

ated with the object instance under synchronization. To preserve the integrity of the

hash table, a global lock must be acquired and released on every access. This global

99

7.1. Thin Locks

synchronization causes significant execution overhead.

To improve the efficiency of the lock and unlock operations, various approaches

were developed, such as the use of thread-local lock caches to reduce the number

of costly global synchronization operations. In 1998, a very elegant algorithm was

introduced by D. Bacon (and then improved by T. Onodera), to eliminate the need

for a global hash table. Its main idea is to add a bimodal lock word in every object

instance. The two modes of a lock are: thin and fat. In the thin mode, no additional

storage is required for the lock. In the fat mode, the lock word contains the address

of a full lock structure (mutex, condition variable and recursion count)1. The state

of the lock word is indicated by its most significant bit; when this bit is set, the lock

word is in the fat mode.

In this chapter we introduce an improvement to Onodera’s bimodal field locking al-

gorithm [OK99], which is a modified version of Bacon’s thin lock algorithm [BKMS98]

without busy-wait transitions from thin to fat mode.

This chapter is structured as follows. In Section 7.1 we discuss the related work,

namely Bacon and Onodera’s algorithms. In Section 7.2, we introduce our improve-

ments to eliminate Bacon’s algorithm busy-wait without adding storage overhead to

object instances as does Onodera’s solution. Finally, in Section 7.3, we present our

conclusions.

7.1 Thin Locks

7.1.1 Bacon Algorithm

Bacon’s thin lock algorithm can be summarized as follows. Each object instance has

a one word lock in its header2. To acquire the lock of an object, a thread uses the

compare-and-swap atomic operation to compare the current lock value to zero, and

replace it with its thread identifier. If the lock value isn’t zero, this means that either

1More precisely, the lock word includes the index in some data structure of the full lock, as not
enough bits are available in the lock word to store an address.

2This is a simplified explanation of the algorithm. In reality, only 24 bits of that word are used
for locking on 32 bit systems. 8 bits remain free for other uses. Refer to [BKMS98] for details.

100

7.1. Thin Locks

the lock is already inflated, in which case a normal locking procedure is applied, or

the lock is thin and is already acquired by some thread. In the latter case, if the

owning thread is the current one, a nesting count (in the lock word) is increased.

If the owning thread is not the current one, then there is contention, and Bacon’s

version of the algorithm busy-waits, spinning until it acquires the lock. When the

lock is finally acquired, it is inflated3. Unlocking non-inflated locks is simple. On

each unlock operation, the nesting count is decreased. When it reaches 0, the lock

word is replaced by zero, releasing the lock.

The advantages of this algorithm are that a single atomic operation is needed

to acquire a thin lock in absence of contention, and more importantly, no atomic

operation is required to unlock an object4.

Performance Improvements

Due to the thread-safe nature of the Java libraries, even single-threaded Java ap-

plications may spend a significant portion of their execution time performing useless

synchronization. In [BKMS98], Bacon measured that replacing a normal heavy-weight

implementation of Java monitors by thin-locks yields a median speedup of 1.22 and a

maximum speedup of 1.7 on a set of real programs, which is a significant performance

improvement.

7.1.2 Onodera’s Proposed Improvement

Onodera proposed a technique to eliminate the busy wait in case of contention on

a thin lock, using a single additional bit in each object instance. The role of this

contention bit is to indicate that some other thread is waiting to acquire the current

thin lock. Onodera’s algorithm differs from the Bacon’s algorithm at two points.

First, when a thread fails to acquire a thin lock (because of contention), it acquires a

fat monitor for the object, sets the contention bit, checks that the thin lock was not

3The lock is inflated so that future contention on the same lock won’t cause busy wait.
4Unlike Agesen’s meta-lock algorithm [ADG+99] which requires an atomic operation for unlocking

objects.

101

7.2. Eliminating Busy-Wait Without Inflating Objects

released, then puts itself in a waiting state. Second, when a thin lock is released (e.g.

lock word is replaced by zero), the releasing thread checks the contention bit. If it is

set, it inflates the lock, and notifies all waiting threads5.

An Expensive Bit

The overhead of Onodera’s algorithm over Bacon’s is the contention bit test on un-

locking, a fairly simple operation, and the one bit per object instance. This bit has

the following restriction: it must not reside within the lock word. This is a problem.

It is important to keep the per-object space overhead as low as possible, as Java

programs tend to allocate many small objects. It is now common practice to use 2

word headers in object instances; one word for the virtual pointer, and the second for

the lock and other information. The contention bit cannot reside in either of these

two words (putting this bit in the virtual table pointer word would add execution

overhead to method invocation, field access, and any other operations dereferencing

this pointer). As objects need to be aligned on a word multiple for the atomic

operation to work, this one bit overhead might well translate into a whole word

overhead for small objects. Furthermore, it is likely that the placement of this bit

will be highly type dependent, which complicates the unlocking test.

7.2 Eliminating Busy-Wait Without Inflating Objects

Our solution to the expensive bit problem is to put the contention bit in the thread

structure, instead of in the object instance. This simple modification has the advan-

tage of eliminating the per-object overhead while maintaining the key properties of

the algorithm, namely, fast thin lock acquisition with a single atomic operation, fast

thin lock unlocking without atomic operations, and no busy-wait in case of contention.

To achieve the desired result, we modify Onodera’s algorithm as follows. In

SableVM, each thread has a related data structure containing various information,

5This is a simplified description. Please refer to the original paper [OK99] for details.

102

7.2. Eliminating Busy-Wait Without Inflating Objects

like stack information and exception status. In this structure, we add (a) the con-

tention bit, (b) a contention lock6, and (c) a linked list of (waiting thread, object)

tuples. Then we modify the lock and unlock operation as described in the following

two subsections.

7.2.1 Modifications to the Lock Operation

The lock operation is only modified in the case of contention on a thin lock.

When a thread xt fails to acquire a thin lock on object zo due to contention (be-

cause thread yt already owns the thin lock), then (1) thread xt acquires the contention

lock of the owning thread (yt), and (2) sets the contention bit of thread yt, then (3)

checks that the lock of object zo is still thin and owned by thread yt. If the check

fails, (4a) the contention bit is restored to its initial value, the contention lock is

released and the lock operation is repeated. If the check succeeds, (4b) the tuple (xt,

zo) is added to the linked list of thread yt, then thread xt is put in the waiting state,

releasing the contention lock of thread yt. Later, when thread xt wakes up (because

it was signalled), it repeats the lock operation7.

7.2.2 Modifications to the Unlock Operation

The unlock operation is modified to check the contention bit of the currently exe-

cuting thread. This check is only done when a lock is actually released (as locks are

recursive), after releasing the lock.

When the lock of object bo is released by thread yt, and if the contention bit of

thread yt is set, then (1) thread yt acquires its own contention lock, and (2) iterates

over all the elements of its tuple linked list. For each tuple (xt, zo), if (z0 = bo),

thread xt is simply signalled. If (zo 6= bo), the lock of object zo is inflated8 (if it is

6The contention lock is a simple non-recursive mutex.
7After releasing the contention lock of thread yt that was automatically re-acquired on wake-up

due to POSIX thread semantics.
8Notice that thread yt necessarily owns the lock of object zo, as only one lock (the lock of bo)

has been released by thread yt since it last cleared its contention bit and emptied its tuple list.

103

7.2. Eliminating Busy-Wait Without Inflating Objects

thin), then thread xt is signalled. Finally, (3) thread yt empties its tuple linked list,

clears its contention bit, and releases its contention lock.

7.2.3 Explanations

Our technique is best explained using an example of two threads T1 and T2 executing

the program segments in Figure 7.1. We assume that T1 has succeeded at acquiring

the thin lock of both o1 and o2 (and still owns them) and that T2 tries to acquire

the lock of o1. As it is already owned by T1, there is contention9.

Thread 1 (T1) Thread 2 (T2)

...
synchronized (o1)
{

synchronized (o2)
{

...
/* execution point */
...

}
}
...

...
/* execution point */
synchronized (o1)
{
}
...

Figure 7.1: Contention Example

The goal of our algorithm is to avoid busy-wait in such a situation. Our strategy

is to try to put T2 to sleep while making sure it will be awaked by the thread owning

o1 when either o1 is unlocked or it is inflated.

To avoid any possible deadlock on thread contention locks, our algorithm was

designed so that a thread never acquires more than a single thread contention lock

at any time.

Going to Sleep Safely

We want to put T2 to sleep on the contention lock of the current owning thread of o1,

which is T1. This will be safe if we can guarantee that T1 will effectively awake T2

9To simplify the text, we will say o1 instead of the lock of o1.

104

7.2. Eliminating Busy-Wait Without Inflating Objects

when releasing or inflating o1. To make sure this happens, T2 acquires the contention

lock of T1 and sets its contention bit, then it verifies that T1 still owns o1. If T1 does

effectively still own o1, then we are assured that it will see a raised contention bit

when it later unlocks or inflates o1, thus T2 can safely go to sleep on the contention

lock of T1. If T1 is not the owner anymore, T2 undoes all modifications and repeats

the process with the new owning thread of o1.

One could argue that T2 could end up chasing other threads, but this will only

happen if the scheduling priority of T2 was low enough to let the other threads have

enough time to acquire o1, do their work and release o1 before T2 has time to set the

contention bit and check the thin lock. If this is the case, then the priority of T2 is

low enough as not to starve the system.

Awaking Other Threads

The second part of our algorithm consists of awaking other threads when a lock is

released or inflated.

Our design goal is to keep the unlocking code as simple as possible, to minimize

overhead in the frequently executed unlock operation.

When a thread T1 releases a lock o2, it checks its own thread contention bit.

If it is unset, T1 resumes normal execution, as no other thread is sleeping on its

contention lock. If it is set, T1 acquires its own contention lock, then (a) awakes

all other threads waiting on o2 and (2) inflates all other locks under contention and

currently owned by T1 (such as o1 in our example), and awakes all threads waiting

on these locks. Finally, T1 resets its contention bit and releases the contention lock

and resumes normal execution.

Why not awake a single thread waiting on o2, instead of all of them? Because,

in order for our algorithm to work, the other waiting threads must sleep on the

contention lock of the thread owning o2. As these threads are currently sleeping on

the contention lock of T1, and T1 is not the owner of o2 anymore, they must be

awaked so that they can go to sleep on the contention lock of the new owner of o2.

Why inflate other locks than o2? Because, if T1 did not inflate them, it would

105

7.3. Conclusions

have to keep its contention bit raised, causing higher overhead to all unlock operations

on T1 as long as contention exists on a thin lock owned by T1.

Note that T1 owns its contention lock at the time it resets its contention bit. This

ensures that no other thread will modify it concurrently.

7.3 Conclusions

The technique introduced in this chapter aims to solve a specific problem in an oth-

erwise elegant existing technique for efficiently locking and unlocking objects in a

Java virtual machine. The technique might seem relatively simple, yet it has a sig-

nificant impact on a virtual machine robustness in multi-threaded environments, by

preventing spin-locking on contention. An earlier solution had been proposed, but

it came at a high cost in object storage space, potentially adding a complete word

to object instances. Our solution elegantly avoids object instance inflation by using

thread-specific storage for contention-related data structures.

106

Chapter 8

Portability and Extensibility

In this chapter we discuss the various technical aspects of the SableVM framework.

In particular, we discuss the issues related to portability and extensibility of SableVM.

8.1 Portability of SableVM

In order to write a highly portable virtual machine, we had to be very careful in

our usage of the ISO C language. In particular, we avoided all language features

with implementation-defined, undefined or unspecified behavior [SAI+90]. But unfor-

tunately, efficiently implementing some Java features do require using a few system

dependent features.

We discuss how we isolated all system specific features, then discuss some required

architecture-level features and state some limitations of the current implementation.

8.1.1 System-Specific Files

All system-specific code is isolated in three specific files of SableVM. These files are:

src/libsablevm/include/jni_system_specific.h

src/libsablevm/system.h

src/libsablevm/system.c

107

8.1. Portability of SableVM

They contain the definitions for size-specific integer and floating-point types, as

well as functions to retrieve and set platform-specific header bits (lock-word) of object

instances. They also contain the only two inline assembly functions described later in

this chapter. Porting SableVM to a new platform consists mainly of modifying these

three files.

Porting to Alpha Platform

It only took Grzegorz B. Prokopski, a new SableVM user, less than 24 hours, and

less than 50 lines of commented code to port the framework to the 64 bit Alpha

architecture1. The unified diff is shown in Appendix B. This is quite impressive for

an efficient virtual machine. In fact, most of the work, which consisted of defining the

appropriate typedef declarations for Alpha-specific types, took only a few minutes.

Most of the remaining time was spent in a discussion between Mr. Prokopski and

the author, to explain the need for an assembly-written compare-and-swap atomic

operation, and in waiting for answers on the debian-alpha mailing-list [Deb].

Other Ports

Based on feed-back from users, SableVM is also known to run on the FreeBSD/x86,

Debian/ia64 (Intel’s new Itanium processor), Debian/PowerPC, and Debian/ARM

platforms. The PowerPC processor, in particular, has a different byte ordering than

the Intel x86 processor. All of these ports were done by SableVM users. In all cases,

the diff is short, and it took only a few hours to make the port.

8.1.2 Architecture-Level Features

The main challenge in porting SableVM is that it requires two architecture-specific

instructions, on modern processors, which are not expressible in the C language.

1He did not implement the iflush assembly function required for the inline-threaded engine; but
the direct-threaded and switch-threaded engines worked well within 24 hours of his first attempt at
porting the system.

108

8.2. Extensibility

Compare-And-Swap

The first required architecture-specific instruction is a compare-and-swap operation,

which is sometimes provided as-is by the processor, or must be constructed as a

sequence of processor-specific machine instructions.

This operation is necessary for the operation of thin locks. This instruction is

implemented in the system.c file, and must be adapted for every new platform.

IFlush

Another architecture-specific instruction is required for getting inline-threading to

work on processors with distinct instruction and data caches. This iflush instruction,

described in Section 2.2.3 is unnecessary otherwise (i.e. no inline-threading, or unified

cache).

As usual, this function is also implemented in the system.c file.

8.1.3 Limitations of the Current Implementation

We should mention a limitation of our current implementation related to multi-

processor systems. Correctly and efficiently implementing the Java semantics on mod-

ern multi-processors systems requires the usage of architecture-specific cache-related

instructions. This is because modern multi-processor systems implement various weak

memory models. An investigation of this problem revealed that there are few sim-

ilarities between the various architectures. For example, various architectures have

different semantics for memory barriers. We thus decided to postpone the research

on this issue to future work.

8.2 Extensibility

One of the important goals of our work was to develop an easily modifiable framework.

Yet supporting various interpreter engines and implementing nearly identical features

can lead to code growth and duplication.

109

8.2. Extensibility

To avoid this, many systems use C macros. Unfortunately, the C preprocessor

has many limitations, such as macros cannot generate new macros. Also, while using

complex macros is an effective technique to reduce code growth and duplication (good

for maintenance), it has the marked disadvantage that reading complex macro code

is difficult, and the syntax for multi-line macros is inelegant.

A more unfortunate consequence of using complex macros is the loss of clear

debuggable code, which can be traced through using a debugger, querying for variable

values, etc.

For this reason2, we decided to use the GNU m4 [M4] general purpose macro

processor.

8.2.1 Abstraction Levels Using m4

We developed a set of useful m4 macros. Using the macros, we only need to provide

a single implementation for a bytecode. The macro processor does all the work of

generating multiple versions of this code into separate files.

To compile SableVM, a Makefile first invokes the m4 processor and then invokes

the C compiler on the generated code.

Interestingly, we were able to define m4 macros which look like legitimate C code

to a C indenter program. So, by giving the extension .m4.c to macro files, we are

able to fool text editors to think that the code is actually C code, and thus get C

syntax coloring during development. Another advantage is that we can also apply the

GNU indent program on this source code to get a uniform indentation style across

the application.

For the sample bytecode instruction implementation shown in Figure 8.1, the m4

processor automatically generates many implementations of this code, one of which

is shown in Figure 8.2.

Notice how the generated source code is commented, and appropriate for reading

and debugging.

2After suffering from the difficulty to debug complex C macros in an early implementation of
SableVM...

110

8.2. Extensibility

/*
--
ACONST_NULL
--
*/

m4svm_instruction_head (ACONST_NULL, SVM_INTRP_FLAG_INLINEABLE, 0);

stack[stack_size++].reference = NULL;

m4svm_instruction_tail ();

Figure 8.1: Source Code

/*
--
ACONST_NULL
--
*/

case SVM_INSTRUCTION_ACONST_NULL:
{
env->vm->instructions[instr].param_count = 0;

/* implementation address */
env->vm->instructions[instr].code.implementation = &&START_ACONST_NULL;
env->vm->instructions[instr].inlined_code.implementation =

&&INLINED_START_ACONST_NULL;

/* code size */
env->vm->instructions[instr].inlined_size =

((char *) &&END_ACONST_NULL) - ((char *) &&INLINED_START_ACONST_NULL);

/* can the implementation be relocated? */
env->vm->instructions[instr].flag = SVM_INTRP_FLAG_INLINEABLE;

break;

START_ACONST_NULL:
#ifndef NDEBUG

if (env->vm->verbose_instructions)
{
_svmf_printf (env, stdout,

"[verbose instructions: executing @\%p ACONST_NULL]\n",
(void *) (pc - 1));

}

#endif

INLINED_START_ACONST_NULL:
/* instruction body */

stack[stack_size++].reference = NULL;

END_ACONST_NULL:
/* dispatch */
goto *((pc++)->implementation);

}

Figure 8.2: Generated Code

111

8.2. Extensibility

8.2.2 Debugging SableVM

One interesting aspect of the SableVM framework is that the execution of the virtual

machine can be easily traced using a debugger. The usage of m4 for the generation

of commented source code does really help providing a very accessible, easy to learn

system, as new users need not understand the m4 code; they can simply look through

the commented generated code, and trace it using a debugger.

Figure 8.3 shows a debugging session within the DDD debugger [DDD]. The

IADD bytecode instruction body is being executed within the switch-threaded engine

of SableVM. Notice how the debugger displays the operand stack content on the right

part of the figure, and the value of C local variables value1, value2, and stack size

on the left part. In the bottom part, we see that line 4165 is about to be executed.

Figure 8.3: Debugging Session

Such a precise and clear trace of the execution of a bytecode instruction is not

112

8.3. Conclusions

available to developers working with compiler-based Java virtual machines.

8.3 Conclusions

We have designed SableVM to be portable. As the implementation of some features

are intrinsically platform dependent, we have isolated all the platform-specific source

code in well identified source files.

In order to ensure easy maintenance and extensibility, we have used the GNU m4

macro processor to generate commented code, avoiding source code duplication. We

have, in fact, developed a set of elegant m4 macros which can be conveniently hidden

in otherwise legitimate looking C code.

We do think that the architecture of SableVM achieves our goals of portability

and extensibility.

113

Chapter 9

Overall Performance Measurements

In this chapter we present our overall performance measurements, comparing the

running times of various benchmarks on SableVM and other virtual machines. The

test platform, the virtual machines and the benchmarks discussed in this chapter were

also used for performing experiments in preceding chapters.

This chapter is structured as follows. In Section 9.1, we describe the platform

used in our tests. In Section 9.2, we discuss our choice of comparative Java virtual

machines. In Section 9.3, we discuss our choice of benchmarks. In Section 9.4, we

present our experimental results. Finally, in Section 9.5, we present our conclusions.

9.1 Test Platform

We have performed all our experiments on a single 1.5GHz Pentium 4 based system,

with 1.5 Gb of RAM, 256 Kb of cache memory, and a 7,200 RPM hard disk, running

Debian/Gnu Linux with kernel version 2.4.18. All daemon processes were turned off

during the tests.

All execution time measurements are based on (system + user) time returned

by the GNU time command, and are the average execution time of 3 runs of each

program.

114

9.2. Virtual Machines

9.2 Virtual Machines

In this chapter we compare the performance of SableVM to other virtual machines. We

have chosen two sets of virtual machines to compare with: interpreters and compiler

systems.

9.2.1 Interpreters

Kaffe Interpreter

We have chosen to compare the performance of SableVM with that of the interpreter

of Kaffe virtual machine (version 1.0.7), as it is one of the most popular open-source

virtual machines.

The Kaffe interpreter is a naive Java bytecode interpreter. The designers of Kaffe

did not try to optimize its performance. They devoted most of their time building an

efficient just-in-time compiler. The Kaffe virtual machine does not support precise

garbage collection; instead, it relies on the Boehm-Weiser conservative collector for

C.

JDK 1.4.0 Interpreter

We have also chosen to compare SableVM with a state-of-the-art interpreter. To do

so, we selected the HotSpot Client VM interpreter included within the JDK 1.4.0 for

Linux (build 1.4.0-b92).

This interpreter has to be relatively efficient, as it is used by the mixed mode high-

performance HotSpot engine. It benefits from all the highly sophisticated HotSpot

framework features, including efficient heap allocators and generational collection.

The interpreter is known to be partly coded in assembly language1.

Note: To select the interpreter engine, we used the java -Xint command.

1We cannot assert of this claim, as we have not signed a non-disclosure agreement to get access
to the source code of the system.

115

9.3. Benchmarks

9.2.2 Compiler Systems

Jikes RVM (Baseline, Semi-Space)

We selected the most basic configuration of the Jikes RVM (version 2.1.1 for Linux),

so that we could compare the performance of SableVM’s inline-threaded engine to

that of a simple just-in-time compiler, using a similar semi-space copying garbage

collector.

Open Intel Platform

We also compares SableVM with Intel’s ORP version 1.0.9, pre-packaged for Debian.

We selected ORP as it is another open-source virtual machine using the GNU Class-

path class library. ORP uses a JIT engine, and is written in C++.

Kaffe (JIT3)

We also compared SableVM with the most efficient Kaffe (version 1.0.7) just-in-time

compiler engine, to be fair after comparing SableVM to its slow interpreter engine.

JDK 1.4.0 (Mixed-Mode)

Finally, we compared the performance of SableVM to that of the Client HotSpot VM

(build 1.4.0-b92), in mixed mode execution. This virtual machine is a state-of-the-art

system, aiming at achieving the highest performance in a client environment.

9.3 Benchmarks

We have selected the SPECjvm98 [SPE] benchmarks, as they are widely used for

collecting experimental measurements in research papers on Java virtual machines.

We should note that none of the results shown in this thesis represent official SPEC

performance measurements, as we have not followed the official run rules of the SPEC

committee. We have run unmodified SPECjvm98 programs, but we used custom

wrapper scripts to collect the various measurements.

116

9.4. Results

We have also chosen two benchmarks developed by the Sable Research Group

of McGill University, Soot 1.2.3 [Soo] and SableCC 2.17.3 [Saba], for their highly

object-oriented design, and their use of Java interfaces.

Soot is a bytecode analysis and optimization framework. In our test, we gave the

javac SPECjvm98 benchmark classes as input to Soot2.

SableCC is a compiler generator (or compiler compiler) that generates DFA-based

lexers, LALR(1) table-based parsers, and a complete set of Java classes (source code)

for building and traversing abstract syntax trees. In our tests, we gave SableCC the

grammar of Simple C3 as input4.

9.4 Results

We now present our overall comparative performance measurements. For these tests

we used a version of SableVM with an inline-threaded engine, signal-based null checks,

bidirectional layout, and precise semi-space copying collector. All running times are

expressed in seconds, and are the average CPU time (i.e. user+system time) of three

runs of the benchmarks. For every virtual machine, other than SableVM, we also

show the speedup achieved by SableVM over the measured virtual machine between

parentheses.

Our first set of experiments compared SableVM to other interpreters, namely the

Kaffe interpreter version 1.0.7 and the JDK 1.4.0 HotSpot Client VM interpreter.

Results are shown in Table 9.1.

Our second set of experiments compared SableVM to compiler-based virtual ma-

chines, namely the Jikes RVM (baseline, semi-space), Intel’s ORP virtual machine,

Kaffe’s JIT3 engine, and JDK 1.4.0 HotSpot Client VM (mixed-mode). Results are

shown in Table 9.2.

2Command: java soot.Main -d newClasses --app -W spec.benchmarks. 213 javac.Main
3This grammar can be found on the SableCC web site, along with other grammars.
4Command: java org.sablecc.sablecc.SableCC simplec.sablecc

117

9.4. Results

Kaffe JDK
benchmark SableVM interpreter interpreter

(sec.) (sec.) (sec.)

compress 131.64 1048.35 (7.96) 175.87 (1.34)
db 87.64 364.87 (4.16) 82.82 (0.95)
jack 38.16 307.70 (8.06) 30.46 (0.80)
javac 89.37 405.75 (4.54) 49.94 (0.56)
jess 53.57 297.94 (5.56) 39.25 (0.73)

mpegaudio 136.97 677.88 (4.95) 141.19 (1.03)
mtrt 100.39 351.08 (3.50) 46.67 (0.46)

raytrace 113.55 382.97 (3.37) 45.28 (0.40)
soot 548.13 failed (–) 390.68 (0.71)

sablecc 26.09 failed (–) 26.64 (1.02)

Table 9.1: Comparative Performance: SableVM vs. Interpreters

Jikes Kaffe JDK
benchmark SVM RVM ORP JIT3 1.4.0

(sec.) (sec.) (sec.) (sec.) (sec.)

compress 131.64 43.77 (0.33) 15.22 (0.12) 18.24 (0.14) 19.47 (0.15)
db 87.64 48.88 (0.56) 27.88 (0.32) 41.90 (0.48) 28.86 (0.33)
jack 38.16 24.08 (0.63) 7.01 (0.18) 50.92 (1.33) 6.78 (0.18)
javac 89.37 36.00 (0.40) failed (–) 46.67 (0.52) 15.25 (0.17)
jess 53.57 29.67 (0.55) 6.74 (0.13) 38.56 (0.72) 6.61 (0.12)

mpegaudio 136.97 34.94 (0.26) 6.84 (0.05) 32.82 (0.24) 10.60 (0.08)
mtrt 100.39 20.00 (0.20) 6.73 (0.07) 32.93 (0.33) 5.33 (0.05)

raytrace 113.55 18.90 (0.17) 5.85 (0.05) 31.69 (0.28) 4.51 (0.04)
soot 548.13 483.02 (0.88) failed (–) failed (–) 68.97 (0.13)

sablecc 26.09 19.78 (0.75) failed (–) failed (–) 6.58 (0.25)

Table 9.2: Comparative Performance: SableVM vs. Compilers

118

9.4. Results

9.4.1 Discussion

First, we should stress that comparing different virtual machines on total execution

time is not always very accurate, as the running time of Java applications is often de-

pendent on the efficiency of standard class library code. It would be nearly impossible

to abstract library execution running time out of the total execution time. So, one

must be very careful before drawing conclusions from execution time measurements.

Results in Table 9.1 show that SableVM is significantly faster than a naively

implemented bytecode interpreter. It achieves a speedup ranging from 3.37 to 8.06

over Kaffe’s interpreter engine.

Also, results in Table 9.1 show that SableVM achieves comparable performance

with a state-of-the-art Java interpreter (JDK 1.4.0), by getting a speedup ranging

from 0.40 to 1.34. This is quite an achievement for a relatively simple and highly

portable virtual machine, with a very basic non-generational copying garbage collec-

tor, which does not do any fancy optimizations for exception handling, multi-threaded

heap allocation, and other features.

Of course results in Table 9.2 remind us that SableVM’s engine is clearly an in-

terpreter, not a compiler. For the raytrace benchmark, SableVM is more than 25

times slower than the JDK HotSpot VM Client (mixed-mode). Yet, when compared

with a relatively naive just-in-time compiler engine, such as the Jikes RVM’s baseline

compiler, SableVM achieves a decent comparative performance. On the Soot bench-

marks, it achieves 88% of the performance of Jikes RVM (baseline), and on SableCC,

it achieves 75% of Jikes RVM (baseline).

Also, SableVM performs relatively well (considering it is an interpreter) against

the Kaffe JIT3 engine. In fact, it outperforms it by 33% on the jack benchmark. We

have not identified, at this point, the reason for the bad performance of Kaffe on this

specific benchmark. We do not think it is normal for an interpreter to outperform

a compiler-based virtual machine unless compile-time overhead (and code storage

space) justifies it, which is not the case here (as indicated by the running times of

other compiler-based virtual machines).

For many benchmarks, SableVM achieves more than a third of the performance

119

9.5. Conclusions

of a naive JIT (Jikes RVM). It also achieves 33% or more of the performance Kaffe’s

most efficient JIT for a majority of benchmarks. Given the huge difference in the

complexity of compiler-based systems and a highly-portable interpreter, we think

that the performance of SableVM offers an attractive (portability and simplicity)-

performance tradeoff for doing research within the Java virtual machine.

9.5 Conclusions

Our experimental results show that SableVM largely outperforms a naive Java byte-

code interpreters, and offers comparative performance to a state-of-the-art interpreter

used within a modern mixed-mode adaptive system.

The performance of SableVM is largely inferior to that of modern adaptive sys-

tems, but it is not too far from the performance of a naive just-in-time compiler

on some large benchmarks. Overall, SableVM offers, in our view, a very attractive

(portability and simplicity)-performance tradeoff.

120

Chapter 10

Future Work and Conclusions

In this last chapter we discuss future work on SableVM and present our overall

conclusions. This chapter is structured as follows. In Section 10.1, we discuss various

future research avenues, and in Section 10.2, we present the overall conclusions of this

thesis.

10.1 Future Work

10.1.1 SableVM in the Field

The first part of our future work has already started. It consists of releasing SableVM

publicly, gathering feedback from the research community, and establishing new re-

search and development collaborations.

We hope to further develop the already started collaboration between the SableVM

and the GNU Classpath projects for building stable and robust Java virtual machine

and libraries.

We also seek to attract other research projects to merge their work within the

SableVM framework, when possible, to reduce duplication of effort. We think that

our work on building a robust Java virtual machine research infrastructure can benefit

them, and free them to concentrate their development efforts only on their specialized

parts.

121

10.2. Conclusions

We also hope to attract graduate students to work specifically on improving parts

of SableVM by implementing existing and innovative techniques. For example, the

current heap allocator of SableVM is rather naive, and uses a global lock on every

object instance allocation. Improving SableVM’s allocator is a suitable project for

early graduate courses, covering garbage collection and memory management.

10.1.2 Profiling Memory Usage

A longer term project is to build a complete memory profiling framework, in SableVM,

as a tool for both researchers and Java developers to better understand memory usage

in Java programs.

10.1.3 Investigate Compilation to V-CODE

Our experimental results have shown, without any doubt, that SableVM’s interpreter

engine does indeed perform as an efficient interpreter, but that it is often much slower

than just-in-time and adaptive engines.

Even though achieving the absolute highest performance is not the main goal of

our research, we would like to investigate the performance we could achieve by adding

a retargetable compiler engine, based on V-CODE [Eng96]. This would provide a new

level of performance-portability tradeoff to users of the SableVM framework.

10.2 Conclusions

In this thesis, we have introduced the SableVM research framework. The objective

of our research was to design and implement a portable and easily modifiable virtual

machine that could be used for research on various aspects of Java bytecode execution.

We also wanted to evaluate the performance achievable by such a portable system.

More specifically, in this thesis we introduced a preparation sequence technique to

allow the efficient implementation of an inline-threaded interpreter engine in a multi-

threaded environment. Then we introduced a logical partitioning of the runtime

122

10.2. Conclusions

memory of a Java virtual machine that greatly simplifies memory management, and

opens interesting opportunities for further optimizations. One such optimization, that

we also introduced, is the implementation of sparse interface virtual tables, without

memory loss. Our technique takes advantage of the class-loader specific memory

manager to recycle the memory holes in the sparse tables. We also introduced a

simple technique for computing space-efficient maps for precise (or type-accurate)

garbage collection. Then we introduced a bidirectional layout that simplifies garbage

collection tracing, and we introduced a technique to eliminate spin locking from thin

locks.

Our experimental results showed that inline-threading Java code yields signifi-

cant performance improvement over both traditional switch based interpretation and

direct-threaded interpretation. They also showed that our simple technique for recy-

cling sparse interface table holes is highly effective, resulting in no memory loss across

all our tests. Our results showed that our technique for computing gc maps builds

very few distinct bit maps, only 74 maps for near 40,000 gc check points (approxi-

mately 1 bit map per 535 check points). This algorithm, though, causes an increase

of up to 13% in the number of live local variables due to splitting. Our measurements

showed that the object layout has no significant impact on garbage collection time,

but can sometimes affect total execution time of benchmarks positively or negatively.

Finally, our overall comparative performance measurements showed that a highly-

portable, simple-to-modify virtual machine implementing the techniques proposed in

this thesis can achieve comparable performance to a state-of-the-art interpreter-based

virtual machine, and is significantly faster than a naively implemented Java bytecode

interpreter. They also revealed that, while such an interpreter greatly under-performs

high-performance adaptive systems, it still offers an acceptable performance relative

to naive just-in-time compilers.

The portability of SableVM was demonstrated by the simplicity of porting it to

other platforms. In particular, porting SableVM to the Debian/Alpha system took

less than 24 hours and less than 50 lines of code.

123

Appendix A

A Mini SableVM User Guide

This appendix lists a minimal set of commands to get SableVM up and running.

A.1 Getting and Compiling SableVM

SableVM can be downloaded from [Sabb]. The full distribution consists of three

compressed tar archives:

• sablevm-x.y.z.tar.gz1 : This file contains the source code of the SableVM

virtual machine.

• sablevm-class-library-x.y.z.tar.gz: This file contains the source code of

the Java class libraries developed by the GNU Classpath project, slightly mod-

ified for SableVM.

• sablevm-native-library-x.y.z.tar.gz: This file contains source code of the

native C implementations of native class library methods, developed by the

GNU Classpath project.

Here are the steps to compile and install SableVM:

1. Download the three files of the distribution.

1x.y.z stands for the version number.

124

A.2. Customizing SableVM

2. Uncompress the sablevm-x.y.z.tar.gz file.

3. Read the README file.

4. Follow instructions in the INSTALL file.

A.2 Customizing SableVM

The procedure, for customizing and recompiling the SableVM virtual machine (not

its class libraries) is the standard GNU procedure:

$ cd sablevm-x.y.z
$./configure --help
... /* many options shown */
$./configure [options]
$ make clean
$ make
$ make install

Here are the SableVM specific configuration options:

--enable-debugging-features
Add compiler and runtime checks

--disable-signals-for-exceptions
Do not use signals to detect some exceptions
(NullPointerException, ArithmeticException, etc.)

--with-gc=TYPE Use given garbage collector (none,copying)
--with-obj-layout=TYPE Use given object layout (bidirectional,traditional)
--with-threading=TYPE Use given interpreter threading flavor

(inlined,direct,switch)

A.2.1 Advanced Customization

Within the configure.ac file, there are two options which can be enabled by un-

commenting the appropriate line2.

dnl *** uncomment if you want to insert a magic value in every object instance for debugging ***
dnl AC_DEFINE(MAGIC,1,put "SableVM" in every instance)

dnl *** uncomment to print some statistics on VM exit ***
dnl AC_DEFINE(STATISTICS,1,print statistics on VM exit)

2The line-comment delimiter is: dnl.

125

A.3. Running SableVM

The first option is very helpful for debugging garbage collectors, as it causes

SableVM to insert a magic value in every object instance header, and to check that

this value is not corrupted at key points, such as when a reference is pushed on the

operand stack, or when garbage collection is done.

The second option adds various counters in SableVM and causes it to write a set

of statistics to the standard output at the end of its execution.

A.3 Running SableVM

As long as the SableVM executable is located in one of the directories on the PATH,

it can be started by simply typing:

$ sablevm --help
Usage: sablevm [OPTION]... CLASSNAME [ARGUMENT]...
-c, --classpath="PATH" set class path
-p, --property="NAME=VALUE" set system property
-v, --verbose enable all verbose options
-q, --quiet disable all verbose options
-s, --verbose-class enable verbose class loading
-S, --no-verbose-class disable verbose class loading
-g, --verbose-gc enable verbose garbage collection
-G, --no-verbose-gc disable verbose garbage collection
-j, --verbose-jni enable verbose JNI
-J, --no-verbose-jni disable verbose JNI
-y, --copyright display copyright
-Y, --no-copyright do not display copyright
-L, --license display license information and exit
-V, --version display version information and exit

Help options:
-?, --help Show this help message
--usage Display brief usage message

$ sablevm HelloWorld
Hello world!
$ sablevm --classpath=hello2.jar HelloWorld2
Hello again, world!
$

By default, SableVM searches for application classes in the package directory tree

rooted at the current user directory. The --classpath option can be used to explicitly

specify a set of directories and *.jar archives to be searched. This parameter does

not affect the search and loading of bootstrap classes.

126

A.3. Running SableVM

A.3.1 Advanced Command-Line Options

Advanced command-line options can be specified through the --property option.

System properties are used to specify the various parameters of internal SableVM

modules, such as the garbage collector. The list of recognized system properties vary

depending on the features compiled into SableVM.

The current list of supported system properties is:

sablevm.boot.class.path:
bootstrap class lookup directory

sablevm.boot.library.path:
bootstrap native library lookup directory

sablevm.stack.size.min
sablevm.stack.size.max
sablevm.stack.size.increment:
stack parameters

sablevm.classloader.heap.size.min
sablevm.classloader.heap.size.max
sablevm.classloader.heap.size.increment:
class loader memory parameters

#if defined (_SABLEVM_NO_GC)

sablevm.heap.size:
maximum heap size

#elif defined (_SABLEVM_COPY_GC)

sablevm.heap.size.min
sablevm.heap.size.max
sablevm.heap.size.increment:
heap parameters

#endif /* defined (_SABLEVM_NO_GC) */

#if !defined(NDEBUG)

sablevm.verbose.methods
sablevm.verbose.instructions:
verbose execution trace

#endif

Example:

sablevm --property="sablevm.verbose.methods=true" HelloWorld

Additional system properties can be easily created using m4 macros in the file

src/libsablevm/vm args.m4.c.

127

Appendix B

Alpha Port Diffs

This appendix lists the unified diffs diff -u of the SableVM port to the Debian

GNU/Linux operating system on the Alpha processor.

B.1 jni system specific.h

--- src/libsablevm/include/jni_system_specific.h 6 Aug 2002 10:27:22 -0000 1.3
+++ src/libsablevm/include/jni_system_specific.h 15 Aug 2002 04:48:53 -0000 1.4
@@ -8,15 +8,17 @@

u = unsigned intger, s = signed integer, f = float, d = double
8,16,32,64 = 8 bits, 16 bits, ...
So, "u8" means an 8 bits unsigned integer. */

+
+/* alpha and i386 are identical here */
+
-#if (defined (__i386__) && defined (__GNUC__))
+#if ((defined (__alpha__) || defined (__i386__)) && defined (__GNUC__))

#define JNICALL
#define JNIEXPORT

B.2 system.h

--- src/libsablevm/system.h 6 Aug 2002 10:27:22 -0000 1.3
+++ src/libsablevm/system.h 15 Aug 2002 04:48:53 -0000 1.4
@@ -48,7 +48,7 @@

*/

-#if (defined (__i386__) && defined (__GNUC__))
+#if ((defined (__alpha__) || defined (__i386__)) && defined (__GNUC__))

/* "inline" is now an official keyword since the latest C standard (1999).
So, it is a reasonable assumption to expect a target compiler to

@@ -63,19 +63,36 @@
*
* I guess that on most architectures, an "unsigned int" is a "word".

128

B.3. system.c

*/
+
+#if defined (__i386)
+
typedef _svmt_u32 _svmt_word;

#define SVM_WORD_SIZE 4 /* size in bytes */
#define SVM_WORD_BIT_COUNT 32 /* size in bits */

-/* FFI specific types */
-#define ffi_type_float32 ffi_type_float
-#define ffi_type_float64 ffi_type_double
-
/* see comments at the head of this file */
#define SVM_ALIGNMENT 4
#define SVM_ALIGNMENT_POWER 2 /* 2 ^^ SVM_ALIGNMENT_POWER == SVM_ALIGNMENT */
#define SVM_PAGE_SIZE 4096
+
+#elif defined (__alpha__)
+
+typedef _svmt_u64 _svmt_word;
+
+#define SVM_WORD_SIZE 8 /* size in bytes */
+#define SVM_WORD_BIT_COUNT 64 /* size in bits */
+
+/* see comments at the head of this file */
+#define SVM_ALIGNMENT 8
+#define SVM_ALIGNMENT_POWER 3 /* 2 ^^ SVM_ALIGNMENT_POWER == SVM_ALIGNMENT */
+#define SVM_PAGE_SIZE 8192
+
+#endif
+
+/* FFI specific types */
+#define ffi_type_float32 ffi_type_float
+#define ffi_type_float64 ffi_type_double

/* Does ">>" behaves as a "signed" or "unsigned" shift when
applied to a signed argument? I personally think that the C

B.3 system.c

--- src/libsablevm/system.c 6 Aug 2002 10:27:22 -0000 1.3
+++ src/libsablevm/system.c 15 Aug 2002 05:17:13 -0000 1.5
@@ -5,7 +5,33 @@

* modification of SableVM. *
* */

-#if (defined (__i386__) && defined (__GNUC__))
+#if ((defined (__alpha__) || defined (__i386__)) && defined (__GNUC__))

/*
--
@@ -33,19 +59,45 @@
_svmh_compare_and_swap (volatile _svmt_word *pword, _svmt_word old_value,

_svmt_word new_value)
{
+ /* Yes, some inline assembly source code... Unfortunately, this
+ cannot be expressed in C. */
+
+#if defined (__i386__)

/* On the ia32, cmpxchgl has a side effect. When swapping fails,
the following variable contains the value that is currently in
*pword (presumably different from old_value). */

_svmt_word current_value;
_svmt_u8 result;

- /* Yes, some inline assembly source code... Unfortunately, this
- cannot be expressed in C. */
+/* *INDENT-OFF* */

__asm__ __volatile__ ("lock\n\t"

129

B.3. system.c

"cmpxchgl %3, %1\n\t"
"sete %0"
:"=q" (result), "=m" (*pword), "=a" (current_value)
:"r" (new_value), "m" (*pword), "a" (old_value)
:"memory");

+/* *INDENT-ON* */
+#endif
+
+#if (defined (__alpha__))
+ register _svmt_word result, tmp;
+
+/* *INDENT-OFF* */
+ __asm__ __volatile__ ("1: mb\n\t" /* make sure */
+ " ldq_l %1,%4\n\t" /* load *pword into tmp (reg,<= mem) */
+ " cmpeq %1,%5,%0\n\t" /* result = (*pword == tmp) */
+ " beq %0,3f\n\t" /* nothing to do if they differ(0) - jump away */
+ " mov %3,%1\n\t" /* copy tmp<=new so that we don’t lose it */
+ " stq_c %1,%4\n\t" /* *pword = new_value (reg,=> mem) */
+ " beq %1,2f\n\t" /* store could fail! (%1 overwritten!) */
+ " mb\n\t" /* make sure */
+ " br 3f\n\t" /* were done */
+ "2: br 1b\n\t" /* goto "again" */
+ "3: nop"
+ :"=&r" (result), "=&r" (tmp), "=m" (*pword)
+ :"r" (new_value), "m" (*pword), "r" (old_value));
+/* *INDENT-ON* */
+#endif

return result ? JNI_TRUE : JNI_FALSE;
}

130

Bibliography

[AAB+00] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.

Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,

V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.

Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan,

and J. Whaley. The Jalapeño virtual machine. IBM Systems Journal,

39(1):211–238, October 2000.

[AAC+99] Bowen Alpern, Dick Attanasio, Anthony Cocchi, Derek Lieber, Stephen

Smith, Ton Ngo, and John J. Barton. Implementing Jalapeno in Java. In

Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages & Applications (OOPSLA‘99), vol-

ume 34.10 of ACM Sigplan Notices, pages 314–324. ACM Press, Novem-

ber 1999.

[ACFG01] Bowen Alpern, Anthony Cocchi, Stephen Fink, and David Grove. Ef-

ficient implementation of Java interfaces: Invokeinterface considered

harmless. In Proceedings of the OOPSLA ’01 conference on Object Ori-

ented Programming Systems Languages and Applications, pages 108–124.

ACM Press, 2001.

[ADG+99] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y. S. Ra-

makrishna, and Derek White. An efficient meta-lock for implement-

ing ubiquitous synchronization. In Proceedings of the Conference on

131

Bibliography

Object-Oriented Programming, Systems, Languages, and Applications,

pages 207–222. ACM Press, November 1999.

[ADM98] Ole Agesen, David Detlefs, and J. Eliot Moss. Garbage collection and

local variable type-precision and liveness in Java virtual machines. In

Proceedings of the ACM SIGPLAN ’98 conference on Programming lan-

guage design and implementation, pages 269–279. ACM Press, 1998.

[APC+96] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers,

and Brian N. Bershad. Fast, effective dynamic compilation. In Proceed-

ings of the ACM SIGPLAN ’96 conference on Programming language

design and implementation, pages 149–159. ACM Press, 1996.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,

techniques, and tools. Addison-Wesley Longman Publishing Co., Inc.,

1986.

[ATCL+98] Ali-Reza Adl-Tabatabai, Micha l Cierniak, Guei-Yuan Lueh, Vishesh M.

Parikh, and James M. Stichnoth. Fast, effective code generation

in a Just-in-Time Java compiler. In Proceedings of the ACM SIG-

PLAN ’98 Conference on Programming Language Design and Imple-

mentation, pages 280–290. ACM Press, 1998.

[Bar88] Joel F. Bartlett. Compacting garbage collection with ambiguous roots.

Technical Report 88.2, Digital – Western Research Laboratory, 1988.

[BKMS98] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano.

Thin locks: Featherweight synchronization for Java. In Proceedings of

the ACM SIGPLAN’98 Conference on Programming Language Design

and Implementation (PLDI), pages 258–268. ACM Press, June 1998.

[BW88] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an un-

cooperative environment. Software Practice and Experience, 18(9):807–

820, 1988.

132

Bibliography

[Cam] The Caml Language.

URL: <http://caml.inria.fr/>.

[Cla] Classpath.

URL: <http://www.classpath.org/>.

[CLS00] Micha l Cierniak, Guei-Yuan Lueh, and James N. Stichnoth. Practicing

JUDO: Java under dynamic optimizations. In Proceedings of the ACM

SIGPLAN ’00 Conference on Programming Language Design and Imple-

mentation, pages 13–26, Vancouver, British Columbia, June 2000. ACM

Press.

[Cox87] B. Cox. Object-Oriented Programming: An evolutionary Approach.

Addison-Wesley, 1987.

[CUL89] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of

SELF a dynamically-typed object-oriented language based on proto-

types. In Proceedings of the Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA), volume 24, pages 49–

70. ACM Press, October 1989.

[DDD] The Data Display Debugger.

URL: <http://www.gnu.org/software/ddd/>.

[Deb] Debian-Alpha Mailing-List.

URL: <http://lists.debian.org/debian-alpha/>.

[Dri93] Karel Driesen. Selector table indexing & sparse arrays. SIGPLAN

Notices: Proc. 8th Annual Conf. Object-Oriented Programming Sys-

tems, Languages, and Applications, OOPSLA, 28(10):259–270, Septem-

ber 1993.

[Dri01] Karel Driesen. Efficient Polymorphic Calls. Kluwer Academic Publish-

ers, 2001.

133

Bibliography

[DS84] Peter Deutsch and Alan M. Schiffman. Efficient implementation of the

Smalltalk-80 system. In Conference Record of the Eleventh Annual ACM

Symposium on Principles of Programming Languages, pages 297–302.

ACM Press, January 1984.

[Eng96] Dawson R. Engler. Vcode: a retargetable, extensible, very fast dy-

namic code generation system. In Proceedings of the ACM SIGPLAN

’96 conference on Programming language design and implementation,

pages 160–170. ACM Press, 1996.

[Ert] Anton M. Ertl. A portable Forth engine.

URL: <http://www.complang.tuwien.ac.at/forth

/threaded-code.html>.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference

Manual. Addison-Wesley, December 1990.

[FM99] Stephen N. Freund and John C. Mitchell. A formal framework for the

Java bytecode language and verifier. In Proceedings of the Conference on

Object-Oriented Programming, Systems, Languages, and Applications,

pages 147–166. ACM Press, 1999.

[GCC] The GNU Compiler Collection (GCC).

URL: <http://gcc.gnu.org/>.

[GCJ] The GNU Compiler for Java (GCJ).

URL: <http://sources.redhat.com/java/>.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-

guage Specification Second Edition. Addison-Wesley, 2000.

[Har] Harissa.

URL: <http://www.irisa.fr/compose/harissa/harissa.html>.

134

Bibliography

[Hot] HotSpot.

URL: <http://java.sun.com/products/hotspot

/whitepaper.html>.

[HP96] John L. Hennessy and David A. Patterson. Computer architecture (2nd

ed.): a quantitative approach. Morgan Kaufmann Publishers Inc., 1996.

[IKY+00] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Ko-

matsu, and Toshio Nakatani. A study of devirtualization techniques for a

Java Just-In-Time compiler. In Proceedings of the conference on Object-

oriented programming, systems, languages, and applications, pages 294–

310. ACM Press, 2000.

[Jik] Jikes.

URL: <http://oss.software.ibm.com/developerworks

/opensource/jikes/>.

[JL96] Richard Jones and Rafael Lins. Garbage collection: algorithms for au-

tomatic dynamic memory management. Wiley, 1996.

[Kaf] Kaffe.

URL: <http://www.kaffe.org/>.

[Kra98] Andreas Krall. Efficient JavaVM Just-In-Time compilation. In Proceed-

ings of the 1998 International Conference on Parallel Architectures and

Compilation Techniques (PACT ’98), pages 205–212. IEEE Computer

Society Press, October 1998.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifica-

tion. Addison-Wesley, second edition, 1999.

[M4] The GNU m4 Macro Processor.

URL: <http://www.gnu.org/software/m4/m4.html>.

135

Bibliography

[Mye95] Andrew C. Myers. Bidirectional object layout for separate compilation.

In OOPSLA ’95 Conference Proceedings: Object-Oriented Programming

Systems, Languages, and Applications, pages 124–139. ACM Press, Oc-

tober 1995.

[NBF96] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads

programming. O’Reilly & Associates, Inc., 1996.

[NHCL98] Francois Noel, Luke Hornof, Charles Consel, and Julia L. Lawall. Au-

tomatic, template-based run-time specialization: Implementation and

experimental study. In Proceedings of the IEEE Computer Society In-

ternational Conference on Computer Languages 1998. IEEE Computer

Society Press, April 1998.

[OK99] Tamiya Onodera and Kiyokuni Kawachiya. A study of locking objects

with bimodal fields. In Proceedings of the 1999 ACM SIGPLAN Con-

ference on Object-Oriented Programming, Systems, Languages & Ap-

plications (OOPSLA‘99), volume 34.10 of ACM Sigplan Notices, pages

223–237. ACM Press, November 1999.

[PR98] Ian Piumarta and Fabio Riccardi. Optimizing direct threaded code by se-

lective inlining. In SIGPLAN ’98 Conference on Programming Language

Design and Implementation, pages 291–300. ACM Press, June 1998.

[PS91] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type

Inference. In Proceedings of the OOPSLA ’91 Conference on Object-

oriented Programming Systems, Languages and Applications, pages 146–

161. ACM Press, November 1991.

[PVC01] Michael Paleczny, Christopher Vick, and Cliff Click. The Java HotSpot

server compiler. In Proceedings of the Java Virtual Machine Research

and Technology Symposium (JVM-01), pages 1–12, Berkley, USA, April

2001. USENIX Association.

136

Bibliography

[PW90] William Pugh and Grant Weddell. Two-directional record layout for

multiple inheritance. ACM SIGPLAN Notices, 25(6):85–91, June 1990.

[Saba] SableCC, The Sable Research Group Compiler Generator.

URL: <http://www.sablevm.org/>.

[Sabb] SableVM.

URL: <http://www.sablevm.org/>.

[SAI+90] Herbert Schildt, American National Standards Institute, International

Organization for Standardization, International Electrotechnical Com-

mission, and ISO/IEC JTC 1. The annotated ANSI C standard: Ameri-

can National Standard for Programming Languages C: ANSI/ ISO 9899-

1990. Osborne/McGraw-Hill, Berkeley, California, USA, 1990. ISBN

0-07-881952-0.

[SLC99] James M. Stichnoth, Guei-Yuan Lueh, and Micha l Cierniak. Support for

garbage collection at every instruction in a Java compiler. In Proceedings

of the ACM SIGPLAN ’99 conference on Programming language design

and implementation, pages 118–127. ACM Press, 1999.

[Soo] Soot: A Java Optimization Framework.

URL: <http://www.sable.mcgill.ca/soot/>.

[SOT+00] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito,

K. Ishizaki, H. Komatsu, and T. Nakatani. Overview of the IBM Java

Just-In-Time Compiler. IBM Systems Journal, 39(1):175–193, 2000.

[SPE] SPECjvm98 Benchmarks.

URL: <http://www.spec.org/osg/jvm98>.

[Tob] Toba.

URL: <http://www.cs.arizona.edu/sumatra/toba/>.

137

Bibliography

[VH94] Jan Vitek and R. Nigel Horspool. Taming message passing: Efficient

method look-up for dynamically typed languages. In Object-Oriented

Programming, Proceedings of the 8th European Conference ECOOP’94,

volume 821 of Lecture Notes in Computer Science, pages 432–449.

Springer, July 1994.

[VHK97] Jan Vitek, R. Nigel Horspool, and Andreas Krall. Efficient type inclusion

tests. In OOPSLA ’97 Conference Proceedings: Object-Oriented Pro-

gramming Systems, Languages, and Applications, pages 142–157. ACM

Press, October 1997.

[VRCG+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. Soot - a Java bytecode optimization frame-

work. In Proceedings of CASCON ’99, pages 125–135, 1999.

[Wir71] N. Wirth. The design of the PASCAL compiler. Software Practice and

Experience, 1(4):309–333, 1971.

[YMP+99] Byung-Sun Yang, Soo-Mook Moon, Seongbae Park, Junpyo Lee, Se-

ungIl Lee, Jinpyo Park, Yoo C. Chung, Suhyun Kim, Kemal Ebcioğlu,

and Erik Altman. LaTTe: A Java VM Just-In-Time compiler with fast

and efficient register allocation. In Proceedings of the 1999 Interna-

tional Conference on Parallel Architectures and Compilation Techniques

(PACT ’99), pages 128–138. IEEE Computer Society Press, October

1999.

138

