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Traditional portfolio theory uses probability theory to analyze the uncertainty of financial market. *e assets’ return in a portfolio
is regarded as a random variable which follows a certain probability distribution. However, it is difficult to estimate the assets
return in the real financial market, so the interval distribution of asset return can be estimated according to the relevant
suggestions of experts and decision makers, that is, the interval number is used to describe the distribution of asset return.
*erefore, this paper establishes a portfolio selection model based on the interval number. In this model, the semiabsolute
deviation risk function is used to measure the portfolio’s risk, and the solution of the model is obtained by using the order relation
of the interval number. At the same time, a satisfactory solution of the model is obtained by using the concept of acceptability of
the interval number. Finally, an example is given to illustrate the practicability of the model.

1. Introduction

Portfolio selection refers to the way in which investors al-
locate a certain proportion of their wealth to a number of
different assets so as to spread risks among multiple assets
and obtain some stable returns. Markowitz [1] created the
classic portfolio theory in 1952, which laid the foundation of
modern finance. In this theory, the covariance of all the
securities in the portfolio was required, which was a con-
siderable amount of calculation at that time, but difficult to
achieve in practical application. *erefore, later, scholars
constantly proposed improved optimization methods and
thus put forward new portfolio models (e.g., [2–5]). In 1963,
the capital asset pricing model (abbreviated as CAPM)
proposed by Sharp [2] divided risks into systematic risks and
nonsystematic risks on the basis of the model proposed by
Markowitz. Markowitz [3] proposed a semivariance model.
Mao [4] and Swalm [5] used the risk that the uncertain
return is lower than the expected return to measure the
investment risk and established the mean-semivariance
portfolio selection model. In 1991, Konno and Yamazaki [6]
proposed the absolute deviation risk function and con-
structed a mean-absolute deviation portfolio optimization
model. Since then, scholars have also proposed many

portfolio optimization models based on different risk
measures, such as semiabsolute deviation model [7], value-
at-risk (VaR) model [8–11], and conditional value-at-risk
(CVaR) model [12]. Since eachmeasure of risk performs best
in its own area and not necessarily in others, it is still up in
the air whether there is a single measure of risk that is best
for all portfolios [13, 14]. In this paper, we will use the
semiabsolute deviation absolute risk function to measure the
risk of the portfolio.

Uncertainty exists everywhere, and scholars use various
methods to study it [15–21]. Traditional portfolio theory uses
probability theory to analyze the uncertainty in the financial
market. However, due to the nonrandom factors such as
social, economic, political, psychological, and other factors
existing in the real financial market, other technologies are
needed to deal with the uncertainty, such as possibility
theory and fuzzy set theory. Possibility theory is an im-
portant theory of fuzzy sets that was first proposed by Zadeh
[22] and developed by Dubois and Prade [23] (see [24–27],
for more details). Portfolio models based on theory of
possibility have been fruitful (see [28–35]). In these possi-
bilistic portfolio selection models, it is assumed that the
possibility distribution of asset return in the portfolio is
known, but in reality, it is often not so. *e interval number
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is a relatively simple fuzzy number, which is easy for experts
and decisionmakers to estimate the interval number of fuzzy
parameters in a certain precision range on the basis of
comprehensive analysis of the influence of various factors.
So far, there have been many reports using interval number
theory to study portfolio selection, such as literature [36–42].

Lai et al. [37] gave the noninferior solutions of linear
programming problems with interval coefficients. In [38],
Ida regarded the portfolio problem with interval and fuzzy
objective function coefficients as a kind of multiobjective
problem containing uncertainty and gave its optimistic and
pessimistic solutions. Giove et al. [39] established a portfolio
model by taking securities’ price as the interval variable and
solved the model by using the minimax regret method.
Bhattacharyya et al. [40] constructed a mean-variance-
skewness portfolio model using interval numbers and used a
hybrid intelligent algorithm (HIA) to solve the model. Liu
[41] used an interval number to represent the expected
return of an asset. According to the concept of mean-ab-
solute deviation function, a pair of two-level portfolio model
was constructed, and the upper and lower bounds of in-
vestment returns in the portfolio selection problem were
calculated. Based on the semiabsolute deviation risk function
proposed by Mansini and Speranza [43], a mean-semi-
absolute deviation portfolio selection model with respect to
the interval number will be established.*e order relation of
the interval number is very important for obtaining the
solution of the model, so the order relation of the interval in
[44] will be used to obtain the solution of the constructed
model. At the same time, the satisfactory solution of the
model is given according to the acceptability [45].

*e rest of this paper is organized as follows. In Section
2, we will do some preliminary work and give the basic
concepts and some notations that will be used later. In
Section 3, the portfolio selection model construction and the
solution of the model will be introduced in detail. To obtain
the solution for the interval-valued programming model, the
order relation and the acceptability of interval numbers are
used to transform the model into a general programming
model. Section 4 provides a numerical example to illustrate
the proposed approach. Section 5 provides the conclusion.

2. Preliminaries

In this paper, concepts and operations related to interval
numbers will be used. *is section will briefly review the
relevant concepts.

Definition 1 (see [46]). Given two interval numbers a �
[a− , a+] and b � [b− , b+] and a real number λ, then

(i) a ± b � [a− ± b− , a+ ± b+].

(ii) λa �
[λa− , λa+], for λ≥ 0,
[λa+, λa− ], for λ< 0.{

*e interval number is a special fuzzy number whose
membership function takes value 1 over the interval and 0
anywhere else, as discussed in detail by Hansen [47] and
Alefeld and Herzberger [46]. *e operations related to in-
terval numbers are as follows.

Definition 2 (see [48–50]). Let a � [a− , a+] and b � [b− , b+]
be two interval numbers. We define the order relation ≤
between a and b as

(1) a≤ b if and only if m(a)≤m(b),
(2) a< b if and only if a≤ b and a≠ b,

(1)

where m(a) � (1/2)(a− + a+) is the midpoints of the in-
terval numbera.

Specifically, if a+ ≤ b− , then the inequality relationship
a≤ b is optimistic and satisfactory. On the contrary, if
a+ > b− , the inequality relationship a≤ b is pessimistic and
satisfactory.

Definition 3 (see [51]). Given a � [a− , a+] and b � [b− , b+],
then λ(a≤ b) � (m(b) − m(a))/(ω(b) + ω(a)) is the ac-
ceptability of a≤ b, where m(a) and ω(a) are the midpoints
and radius of the interval number a, respectively.

*e notations used in this article are given below:

pkt0: the opening price of the k thsecurity at period t

pktc: the closing price of the k th security at period t

rkt: (pktc − pkt0)/pkt0 � the return of asset k at period t

T: the total periods

rk: (1/T)∑Tt�1 rkt � the return of asset k

rf: the return of the risk-free asset

xk: the percentage of assets that are invested in k

wt(x): the portfolio’s risk at period t

W(x): the portfolio’s risk

R: the portfolio’s return

3. Model Foundation

Let us consider a market consisting of a riskless assets and n
stocks. As usual, we assume that there are no costs or taxes
on trading, all assets are infinitely divisible, and short sales is
not allowed.

*us, the portfolio’s return R can be written as

R � ∑n
k�1

xkrk + rf 1 − ∑n
k�1

xk . (2)

To set up a portfolio selection model, the following
values need to be given.

First is the expected return of the portfolio’s return R̃.
*e expected return on security k is r̃k � [rk, �rk]. *us, R̃

is given by

R̃ � ∑n
k�1

rk, �rk xk + rf 1 − ∑n
k�1

xk . (3)

Secondly, the risk of the portfolio is as follows.
As mentioned in Section 1, there is no single risk

measure that is best for all portfolios, so the risk in this paper
will be measured by the semiabsolute deviation function.
*e semiabsolute deviation of the portfolio in period t can be
calculated as follows:
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wt(x) � min 0,∑n
k�1

rkt − rk( )xk 
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣ � max 0,∑n
k�1

rk − rkt( )xk , t � 1, 2, . . . , T. (4)

*e risk of the portfolio is given by (1/T)∑Tt�1 wt(x). So,

W(x) �
1

T
∑T
t�1

min 0,∑n
k�1

rkt − rk( )xk 
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
�
1

T
∑T
t�1

max 0,∑n
k�1

rk − rkt xk  , max 0,∑n
k�1

�rk − rkt( )xk  

�
1

T
∑T
t�1

∑nk�1 rk − rkt xk + ∑nk�1 rk − rkt xk
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2

,
∑nk�1 �rk − rkt( )xk + ∑nk�1 �rk − rkt( )xk∣∣∣∣ ∣∣∣∣

2




�
1

T
∑T
t�1

wt(x), �wt(x)[ ],

(5)

where

wt(x) �

∑nk�1 rk − rkt xk + ∑nk�1 rk − rkt xk
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣ 
2

,

�wt(x) �
∑nk�1 �rk − rkt( )xk + ∑nk�1 �rk − rkt( )xk∣∣∣∣ ∣∣∣∣( )

2
.

(6)

*erefore, a portfolio selection model based on risk-
return trade-off can be established:

minW(x),

s.t. R̃≥ μ,∑n
k�1

xk ≤ 1, 0≤ lk ≤xk ≤ hk, k � 1, 2, . . . , n,


(7)

where μ is a minimum threshold at which investors can
tolerate the expected rate of return on their portfolio and set
μ � [μ− , μ+] and lk and hk represent, respectively, the lower
and the upper bounds on investment in asset k,
k � 1, 2, . . . , n.

As can be seen from equations (3) and (5), equation (7)
can be transformed into

minW(x) �
1

T
∑T
t�1

wt(x), �wt(x)[ ],

s.t. ∑n
k�1

rk, �rk xk + rf 1 − ∑n
k�1

xk ≥ μ− , μ+[ ],

∑n
k�1

xk ≤ 1,

0≤ lk ≤xk ≤ hk, k � 1, 2, . . . , n.



(8)

*e solution of model (8) is equivalent to the following
equation:

max �W(x) � − W(x) � −
1

T
∑T
t�1

wt(x), �wt(x)[ ],

s.t. ∑n
k�1

rk, �rk xk + rf 1 − ∑n
k�1

xk ≥ μ− , μ+[ ],

∑n
k�1

xk ≤ 1,

0≤ lk ≤ xk ≤ hk, k � 1, 2, . . . , n.



(9)

From Definition 1, we can have

max �W(x) �
1

T
∑T
t�1

− �wt(x), − wt(x)[ ],

s.t. ∑n
k�1

rk, �rk xk + rf 1 − ∑n
k�1

xk ≥ μ− , μ+[ ],

∑n
k�1

xk ≤ 1,

0≤ lk ≤xk ≤ hk, k � 1, 2, . . . , n.



(10)

*is is an interval-valued linear programming problem.
For the solution method of interval-valued linear pro-
gramming, scholars have carried out a lot of research and put
forward some solutions. For example, Yoon [52] proposed
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the error analysis method. Bryson and Mobolurin [53]
proposed the linear programming method. Romelfangerf
et al. [54] studied the solution method of linear program-
ming with the interval number as the coefficient of objective
function. Liu and Iwamura [55] transformed interval
number linear programming into a two-objective pro-
gramming problem:

max �W(x) � −
1

T
∑T
t�1

�wt(x),

max �W(x) � −
1

T
∑T
t�1

wt(x),

s.t. ∑n
k�1

rk, �rk xk + rf 1 − ∑n
k�1

xk ≥ μ− , μ+[ ],

∑n
k�1

xk ≤ 1,

0≤ lk ≤xk ≤ hk, k � 1, 2, . . . , n.



(11)

Chankong and Haimes [56] transformed the above-
mentioned two-objective programming problem (13) into
the following parameter programming problem:

max �W(x) �
1

T
∑T
t�1

− (1 − b)�wt(x) − bwt(x)[ ],

s.t. R̃≥ μ− , μ+[ ],∑n
k�1

xk ≤ 1, 0≤ lk ≤xk ≤ hk, k � 1, 2, . . . , n.


(12)

*e solution of model (12) is also the solution of the
following model:

minH(x) �
1

T
∑T
t�1

(1 − b)�wt(x) + bwt(x)[ ],

s.t. R̃≥ μ− , μ+[ ],∑n
k�1

xk ≤ 1, 0≤ lk ≤xk ≤ hk, k � 1, 2, . . . , n.


(13)

Because

H(x) �
1

T
∑T
t�1

(1 − b)�wt(x) + bwt(x)[ ]

�
1

T
∑T
t�1

(1 − b)
∑nk�1 �rk − rkt( )xk + ∑nk�1 �rk − rkt( )xk∣∣∣∣ ∣∣∣∣( )

2
+ b

∑nk�1 rk − rkt xk + ∑nk�1 rk − rkt xk
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣ 
2




� ∑n
k�1

(1 − b)ξk + bηk
2T

xk +
1

2
∑T
t�1

(1 − b)
∑nk�1 �rk − rkt( )xk∣∣∣∣ ∣∣∣∣

T
+ b

∑nk�1 rk − rkt xk
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
T




� ∑n
k�1

(1 − b)ξk + bηk
2T

xk +
1

2
∑T
t�1

(1 − b)
ut
T
+ b

vt
T

[ ],

(14)

where

ξk �∑T
t�1

�rk − rkt( ),
ηk �∑T

t�1

rk − rkt ,
ut � ∑n

k�1

�rk − rkt( )xk
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣,
vt � ∑n

k�1

rk − rkt xk
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣,

(15)

then we have

minH(x) �
1

T
∑T
t�1

(1 − b)�wt(x) + bwt(x)[ ],

s.t. ∑n
k�1

rk, �rk xk + rf 1 − ∑n
k�1

xk ≥ μ− , μ+[ ],

∑n
k�1

xk ≤ 1,

0≤ lk ≤xk ≤ hk, k � 1, 2, . . . , n.



(16)
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According to Definition 1, (16) can be transformed into

minH(x) �
1

T
∑T
t�1

(1 − b)�wt(x) + bwt(x)[ ],

s.t. ∑n
k�1

rk xk + rf 1 − ∑n
k�1

xk ,∑n
k�1

rkxk + rf 1 − ∑n
k�1

xk  ≥ μ− , μ+[ ],

∑n
k�1

xk ≤ 1,

0≤ lk ≤ xk ≤ hk, k � 1, 2, . . . , n.



(17)

In order to obtain the solution of (17), the order relation
of the interval number in Definition 2 and (14) can be used to
convert (17) into

minH(x) � ∑n
k�1

(1 − b)ξk + bηk
2T

xk +
1

2
∑T
t�1

(1 − b)
ut
T
+ b

vt
T

[ ],

s.t.
1

2
∑n
k�1

rk xk +∑n
k�1

�rkxk  + rf 1 − ∑n
k�1

xk ≥ 1
2

μ− + μ+( ),

ut +∑n
k�1

�rk − rkt( )xk ≥ 0, t � 1, 2, . . . , T,

ut − ∑n
k�1

�rk − rkt( )xk ≥ 0, t � 1, 2, . . . , T,

vt +∑n
k�1

rk − rkt xk ≥ 0, t � 1, 2, . . . , T,

vt − ∑n
k�1

rk − rkt xk ≥ 0, t � 1, 2, . . . , T,

∑n
k�1

xk ≤ 1,

0≤ lk ≤xk ≤ hk, k � 1, 2, . . . , n.



(18)

*en, (18) is a parameter-planning problem, which can
be solved by Matlab, Lingo, and other software.

Definition 4. *e optimal solution to (18) is called an in-
terval-valued efficient portfolio.
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*e lower bounds of all the interval-valued efficient
portfolios construct the interval-valued lower efficient
frontier. *e upper bounds of all the interval-valued efficient
portfolios construct the interval-valued upper efficient
frontier.

Meanwhile, based on the acceptability, (17) can also be
transformed into

minH(x) �
1

T
∑T
t�1

(1 − b)�wt(x) + bwt(x)[ ],

s.t. λ ∑n
k�1

rk xk + rf 1 − ∑n
k�1

xk ,∑n
k�1

�rkxk + rf 1 − ∑n
k�1

xk  ≥ μ− , μ+[ ] ≥ α,

∑n
k�1

xk ≤ 1,

0≤ lk ≤xk ≤ hk, k � 1, 2, . . . , n,



(19)

where α is the minimum value of acceptability.
According to Definition 3, we can obtain

minH(x) �
1

T
∑T
t�1

(1 − b)�wt(x) + bwt(x)[ ],

s.t.

∑nk�1 rk xk + ∑nk�1 �rkxk + 2rf 1 − ∑nk�1 xk( ) − μ− + μ+( )
∑nk�1 �rkxk − ∑nk�1 rk xk  − μ+ − μ−( )

≥ α,

∑n
k�1

xk ≤ 1,

0≤ lk ≤xk ≤ hk, k � 1, 2, . . . , n.


(20)

*us, a satisfactory solution of the model is obtained,
and an acceptable efficient portfolio is obtained.

4. Numerical Example

In order to illustrate the practicality of this model, we select
five securities and one risk-free asset from the Chinese stock
market for investment. Annual data from 2016 to 2020 were
selected. Table 1 shows the expected return.

Let the risk-free asset be a treasury bond. We use the
one-year treasury bond rate as the return rate of the riskless
asset. So, we get the return on risk-free asset r � 2.8% if the
lower bound of the investment ratio xk must be
l � 0.01, 0.03, 0.01, 0.01, 0{ } and the upper bound h �
0.3, 0.4, 0.1, 0.5, 0.3{ }.

Table 2 shows the effective portfolios of model (18) with
different μs when b � 0.1. Figure 1 gives some efficient
portfolios for model (18).

As can be seen from Table 2,

(1) *e lower limit of the minimum expected return rate
remains unchanged. With the increase of the upper
limit, the investment proportion of S5 will increase
first. When the investment proportion of S5 reaches
its upper limit, the investment proportion of S1 will
be increased again.

(2) As the minimum expected return rate increases, so
does portfolio risk.

(3) When the minimum expected return rate increases
to a certain value, the model will have no feasible
solution.

Parameter b is the risk preference coefficient.*e larger b
is, the more investors are inclined to avoid risk; the smaller b
is, the more investors are inclined to risk. As can be seen
from Table 3, b reflects investors’ risk preference. *e bigger
b is, the less risk the portfolio is and the more cautious the
investor is. Figure 2 also reflects the relationship between
portfolio risk and the risk preference coefficient b.

Model (19) presents the acceptable solution of the
portfolio model based on the acceptability. *e upper and
lower limits of the portfolio are given as h �
0.3, 0.4, 0.2, 0.5, 0.3{ } and l � 0.01, 0, 03, 0.01, 0.01, 0{ },
respectively, and Tables 4 and 5, respectively, show the
acceptable solution of model (20) and the risk of the
portfolio for different μswhen α � 0.1 and α � 0.2.

As can be seen from Table 4,

(1) With the increase of μ, the investment proportion of
S3 increases first. When μ increases to a certain

Table 1: *e expected return of the five securities.

Code r̃k � [rk, �rk]

S1 [− 0.557, 0.341]
S2 [− 0.170, 0.306]
S3 [− 0.381, 0.953]
S4 [− 0.316, 0.258]
S5 [− 0.503, 0.156]

6 Mathematical Problems in Engineering



extent, the investment proportion of S3 reaches the
upper limit of investment, and then, the investment
proportion of S2 increases.

(2) When μ increases to a certain extent, the model will
have no feasible solution. When the acceptability of
the expected return rate of the portfolio is not less
than μ is 0.1, the proportion of risky assets invested
will continue to increase as μ increases, and so will
the risk of the portfolio. Since α � 0.1, when μ
reaches a certain level, the risk of the portfolio will no
longer increase, and the investment proportion of
risky assets will not change, that is, a part of the
capital must be invested in the risk-free assets.

It can be seen from Table 5 that the law is similar to that
in Table 4.

By comparing Tables 4 and 5, it can be found that when μ
is set to the same value, α is larger, the objective function
value is larger, and the investment proportion of risky assets
is also higher. *at is to say, the greater the acceptability of
the expected return rate of the portfolio is less thanμ, the
greater the risk of the portfolio and the higher the pro-
portion of risky assets’ investment.

5. Conclusions

*is paper takes the assets return as the interval number and
uses the semiabsolute deviation function of the interval
number tomeasure the portfolio’s risk.*erefore, a portfolio
selection model with mean-semiabsolute deviation based on
the interval number is constructed. In this model, firstly, the
lower bound of the investors’ expected rate of return is also
regarded as an interval number, which can better grasp
investors’ psychology and measure investors’ expected
return rate. Secondly, when solving the semiabsolute devi-
ation portfolio selection model, a parameter which can
reflect investors’ risk preference is introduced, and this

Table 2:*e investment proportion and risk for different μs in (18)
when b � 0.1

μ S1 S2 S3 S4 S5 Risk ∑5
k�1 xk

[0.04, 0.04] 0.010 0.030 0.010 0.010 0.118 0.036 0.178
[0.04, 0.05] 0.010 0.030 0.010 0.010 0.153 0.042 0.213
[0.04, 0.06] 0.010 0.030 0.010 0.010 0.187 0.048 0.247
[0.04, 0.07] 0.010 0.030 0.010 0.010 0.221 0.054 0.281
[0.04, 0.08] 0.010 0.030 0.010 0.010 0.256 0.060 0.316
[0.04, 0.09] 0.010 0.030 0.010 0.010 0.290 0.066 0.350
[0.04, 0.10] 0.054 0.030 0.010 0.010 0.300 0.080 0.404
[0.04, 0.11] 0.116 0.030 0.010 0.010 0.300 0.097 0.466
[0.04, 0.12] 0.178 0.030 0.010 0.010 0.300 0.114 0.528
[0.04, 0.14] 0.300 0.030 0.010 0.220 0.300 0.182 0.860
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Figure 1: Some efficient portfolios for model (18).

Table 3: *e investment risk for different bs in (18).

b Risk b Risk

0 0.190 0.55 0.107
0.1 0.182 0.6 0.097
0.2 0.134 0.7 0.086
0.3 0.128 0.8 0.078
0.4 0.115 0.9 0.056
0.5 0.109 1.0 0.045
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Figure 2: *e scatter diagram of portfolio risk and the risk
preference coefficient b.

Table 4: *e investment proportion and risk for different μs with
α � 0.1 in (20).

μ S1 S2 S3 S4 S5 Risk ∑5
k�1 xk

[0.03, 0.03] 0.010 0.030 0.034 0.010 0.010 0.028 0.094
[0.03, 0.04] 0.010 0.030 0.058 0.010 0.010 0.040 0.118
[0.03, 0.05] 0.010 0.030 0.081 0.010 0.010 0.052 0.141
[0.03, 0.06] 0.010 0.030 0.105 0.010 0.010 0.063 0.165
[0.03, 0.07] 0.010 0.030 0.128 0.010 0.010 0.075 0.188
[0.03, 0.08] 0.010 0.030 0.152 0.010 0.010 0.087 0.212
[0.03, 0.09] 0.010 0.030 0.175 0.010 0.010 0.098 0.235
[0.03, 0.10] 0.010 0.030 0.199 0.010 0.010 0.110 0.259
[0.03, 0.11] 0.010 0.293 0.200 0.010 0.010 0.157 0.523

Table 5: *e investment proportion and risk for different μs with
α � 0.2 in (20).

μ S1 S2 S3 S4 S5 Risk ∑5
k�1 xk

[0.03, 0.03] 0.010 0.030 0.067 0.010 0.010 0.044 0.127
[0.03, 0.04] 0.010 0.030 0.099 0.010 0.010 0.052 0.159
[0.03, 0.05] 0.010 0.030 0.131 0.010 0.010 0.076 0.191
[0.03, 0.06] 0.010 0.030 0.163 0.010 0.010 0.092 0.223
[0.03, 0.07] 0.010 0.030 0.195 0.010 0.010 0.108 0.255
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parameter can reflect investors’ risk preference more intu-
itively. Finally, an application of the portfolio diversification
problem is given by using a portfolio consisting of 5 risky
assets and 1 risk-free asset. *e results show that the in-
troduced risk preference parameter can well reflect the in-
vestors’ attitude to risk, and the lower bound of the expected
return rate of this method is more elastic. *e model can be
used more widely and can describe the expected return rate
of investment portfolio and the investors’ attitude to risk
more flexibly [56].
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