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Abstract 

 
Visual navigation and three-dimensional (3D) scene 

reconstruction are essential for robotics to interact with the 
surrounding environment. Large-scale scenes and critical 
camera motions are great challenges facing the research 
community to achieve this goal. We raised a pose-only 
imaging geometry framework and algorithms that can help 
solve these challenges. The representation is a linear 
function of camera global translations, which allows for 
efficient and robust camera motion estimation. As a result, 
the spatial feature coordinates can be analytically 
reconstructed and do not require nonlinear optimization. 
Experiments demonstrate that the computational efficiency 
of recovering the scene and associated camera poses is 
significantly improved by 2-4 orders of magnitude. This 
solution might be promising to unlock real-time 3D visual 
computing in many forefront applications. 
 
 

1. Introduction 
 
A visual imaging system maps the 3D real world onto a 

two-dimensional image camera plane. One essential task of 
computer vision research is to recover a 3D scene and the 
camera poses at which the images were taken. As noted by 
Marr [1], humans perceive the real world through two main 
processes: image feature correspondence, followed by the 
computation and understanding of the 3D scene. The 
reverse-imaging process of recovering the scene and the 
associated camera poses from a set of images, known as 
bundle adjustment (BA), is the backbone of simultaneous 
localization and mapping or structure from motion, and it 
plays a prominent role in computer vision, robotics, and 
digital photogrammetry applications [2-6]. BA is 
essentially an iterative nonlinear optimization with respect 
to 3D feature coordinates and camera poses (sometimes 
including intrinsic camera parameters) [2, 7]; its 
performance h 1 eavily depends on initialization [8-13]. 
However, special but not uncommon camera movements, 
such as collinear or small translations, typically lead to 
                                                           
1 1 Shanghai Key Laboratory of Navigation and Location-based Services, 
School of Electronic Information and Electrical Engineering, Shanghai 
Jiao Tong University, Shanghai, China.  
2 College of Intelligent Science and Technology, National University of 
Defense Technology, Changsha, China.  
† These authors contributed equally to this work.  
* Correspondence to: yuanxin.wu@sjtu.edu.cn, dwhu@nudt.edu.cn. 

abnormal initialization [7, 12, 14, 15]. 
Visual computation efficiency and robustness have been 

long-standing bottleneck problems in 3D computer vision. 
Specifically, the nonlinear optimization of a large-scale BA 
has been facing two challenges [3, 10, 11, 16]: benign 
initialization and fast solution to the normal equation. For 
initialization, an incremental optimization starting from a 
two-view BA can be employed [5, 17], or alternatively, the 
relative poses between any two views can be used as inputs 
for optimally solving first the global rotation and then the 
global translation of each view. There exist several efficient 
and stable global rotation averaging methods [13, 18-23].  

The relative translations can be formulated as 

 ,i j j i jR  t t t  where i j  t t , ,i jt  is a relative 

translation unit vector between the i-th and j-th views, and 

iR  and it  are the global rotation and translation for the i-th 

view, respectively. A direct linear approach by Govindu 
[20] proposed a least-squared solution of global translation 

to the linear system  , 0i j j i jR  t t t  and improved it in 

[24]. Recent global translation averaging methods in [12, 
15, 25-28] aimed to minimize the penalty of 

 ,i j j i jR  t t t  or its variants. Sim and Hartley [28] and 

Moulon et al. [27] formulated the penalty as a L  norm. 

Wilson and Snavely [12] introduced a 1DSfM method, 
which has a one-dimensional preprocessing step to remove 
relative translation outliers and uses a non-convex 
optimization in the squared chordal form. Ozyesil [29] 
pointed out that the L  norm is prone to pairwise 

translation outliers, and provided a robust penalty with a 
least unsquared deviations (LUD) form [15]. Goldstein et 
al. [26] described the penalty by the magnitude of the 
projection of i jt t  on the orthogonal complement of ,i jt  

and minimized it by the alternating direction method of 
multipliers. Zhuang et al. [25] gave a geometric 
interpretation of the above-mentioned works and 
developed a bilinear angle-based translation averaging 
(BATA) method. These methods might suffer from 
collinear motion, parallel rigidity [15], and even the local 
pure rotation motion. Other recent heuristic methods in 
global translation averaging construct different objective 

functions from  ,i j j i jR  t t t .  In [14], a global linear 

method presents a coplanar constraint on triple views. Cui 
[30] added directions of features to the above constraint to 
help deal with collinear motion. The recent work by Liu et 
al. [31] showed that the idea of using feature directions can 
well handle the collinear motion, and presented a linear 
translation form by calculating a non-linear term directly 
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based on ,i jt . Consequently, the accuracy of current global 

translation averaging methods in all the above-mentioned 
works depends on that of relative translation. 

 For a fast solution to the large-scale normal equation, 
the main ideas for the last two decades have been full 
utilization of the inherent sparsity property of the BA 
problem, and the reduction of matrix dimension by the 
Schur complement [3, 11, 32, 33]. There are works 
reformulating the BA problem by using different 
parameterization, such as the parallax angles [11, 31, 34], 
to express 3D feature coordinates. However, the 
high-dimensional parameter space in the BA problem still 
exists. To overcome the memory limit of a computer, the 
BA problem was transformed into a number of small-scale 
inter-connected BA problems and handled by distributed 
computers [8, 10].  

Based on the given feature correspondence, Higgins [35] 
introduced the concept of essential matrix and invented a 
linear eight-point algorithm to recover the two-view pose 
and scene structure. The essential equation defining the 
essential matrix is a simplification of the two-view imaging 
geometry in that it only captures the co-planar relationship 
of the camera baseline and the two projection rays, but 
loses the depth information [2, 7, 35-37]. It was recently 
revealed that the two-view imaging geometry is 
equivalently governed by a pair of pose-only constraints, 
decoupling camera poses from 3D feature coordinates [36]. 

In this paper, we find that the multiple-view imaging 
geometry can be completely represented by camera poses 
and image points, and notably, it is linearly related to 
camera global translations (see Fig. 1). Preconditioned on 
known global rotations, we give a linear global translation 
solution without the need of relative translation that can 
deal with the motions of collinear and local pure rotation. 
This linear translation relationship is found to be 
instrumental in obtaining a nearly optimal initialization for 
the subsequent nonlinear optimization. Over 50 data tests 
on public datasets show that the proposed algorithms have 
considerably eased the challenges of computational 
efficiency and robustness in recovering camera poses and 
the 3D scene structure. 
 

2. Pose-only imaging geometry 
 

2.1. Depth-pose-only constraint 

Consider a 3D feature point  , ,
TW W W Wx y zX  observed 

in n images (or views). For i = 1, 2, …, n, denote by  

Figure 1: Principle of the proposed solution. Multiple-view 
geometry is equivalently represented by poses and image points, 
which is actually a linear global translation constraint. The linear 
constraint enables a linear solution to global translations that is 
theoretically immune to camera collinear movement and local 
pure rotation. 3D feature coordinates are removed from 
optimization in pose-only imaging geometry and can be 
analytically reconstructed from recovered poses. 
 

 , ,1
T

i ii x yX  the normalized image coordinate of the 3D 

feature point in the i-th image (or, alternatively, view i), and 
by iR  and it  the global rotation and global translation of 

the camera when taking the i-th image, respectively. The 
projection equation of the 3D feature point WX   for the i-th 
image can be given by [2, 7] 

 1 1
, 1,2,...= ,

i

i

i

W
i iC C

C
iR i n

z z
  XX X t  (1)

where  , ,ii i iC TC C Cx y zX  is the coordinate of the 3D 

feature point in the camera frame corresponding to the i-th 

image, and 0iCz   is the corresponding depth of the 
feature point. For m 3D feature points observed in n images, 
the multiple-view imaging relationship can be represented 
as [2, 7] 

      ,1 1 11
, , , 0w

k i i k ii n k m i nk m
f R

  
   ，

X t X  (2)

where w
kX  is the world coordinate of the k-th 3D feature; 

iR  and it  denote the global rotation and translation of the 

camera when taking the i-th image, respectively; and ,k iX  

is the normalized image coordinate of the k-th 3D feature 
on the i-th image. It is well known that there is a global 
scale ambiguity in recovering camera poses and the 3D 
scene structure. For instance, for any rigid transformation 
R  and t  at a scale  , the projection equation (1) is 

always valid for substitutions i i
TR R R ,  i iR t t t , 

and  W WRX X + t . Therefore, the discussions to 

follow are based on global scale ambiguity awareness. 
Denote by  ,i j  a pair of views consisting of the i-th and 

j-th images. The imaging equation for the view pair  ,i j  

is [2, 7] 
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, ,
j i

C C
j i j i i jz RzX X + t  (3)

where the relative rotation is ,
T

i j j iR R R  and the relative 

translation is  ,i j j i jR t t t . Left multiply the 

antisymmetric matrix j 
  X  on both sides of equation (3), 

, ,
iC

j i j i j i jz R
 

       X X X t  (4)

Taking the magnitude, we get 

 , ,

,

i
j i i j

i
C

i j

j
dz




   
X t

 (5)

where , ,j i j ii j R


   X X . Similarly, left-multiplying the 

antisymmetric matrix ,i j iR


  X  on both sides of equation 

(3) yields 

 , , ,

,

j i j
j

i j

i j i i jC
R

dz



   

X t
 (6)

Combining equations (3), (5), and (6), the pose-only 
constraint for the two-view imaging geometry, called a pair 
of pose-only or PPO constraints [36], is obtained as  

   , ,
, ,

i j i j
j i i jj i i jd d R X X t  (7)

Moreover, it can be proved that the PPO constraint is 
equivalent to the two-view imaging geometry [36]. This 
equivalency is valid even when there is only a pure rotation 
between the two views, namely, in the case of , 0i j  . 

Regarding the l-th image (l ≠ j), the view pair  ,i l  also 

satisfies the PPO constraint 
   , ,

, ,
i l i l

l i i ll i i ld d R X X t  (8)

and 
   , , ii j i l
i i

Cd d z   (9)

We name the relationship in equation (9) as the depth-equal 
constraint of the 3D feature point on the i-th image. Note 
that for all n images, there are 2

nC   PPO constraints and 3
nC  

depth-equal constraints, which contain a great deal of 
redundancy. 

Substitute equation (9) into equation (8), 
   , ,

, ,
i l i j

l i i ll i i ld d R X X t  (10)

Define a set 

 
    , ,

, ,

,

1 ,i
i i i i

D

d d R i n i  
   

 

     X X t
 (11)

which represents a set of constraints that take views   and 

  as the left- and right-base views, respectively. As this is 

related to poses and depths (which are functions of poses) 
only, we name it the depth-pose-only (DPO) constraint set 
for the 3D feature point. Note: It can be proved that the 
DPO constraint set (11) is equivalent to the projection 

equation (1); see Proposition 3 below. That is, For m 3D 
feature points observed in n images, the multiple-view 
imaging relationship (2) can be equivalently expressed in a 
pose-only form 

    ,1 1 1
, , 0i i k ii n k m i n

g R
  

  ，
t X  (12)

According to Proposition 2 below, the two-view PPO 
constraint (7) can be rewritten as a linear form of relative 
translation 

 2
, , , , 3 , 0T T

i j i j i j i j i jj iR I  X b X a t  (13)

By analogy, the multiple-view DPO constraint (11) can 
also be linearly expressed in terms of relative translation 

2 2 2 2
, , , , , , , , , , 0T T
i i i i i iiR                   X a t t X b t  (14)

Alternatively, the above expressions can be readily 
expressed in terms of global translation. In the sequel, 
however, we will present another linear expression of the 
global translation. 

 

2.2. Linear global translation constraint 

 Currently, global rotation initialization algorithms, such as 
the rotation averaging algorithm proposed by Chatterjee 
and Govindu [13], perform fairly well. The remaining 
sub-section attempts to solve global translations 
preconditioned on known global rotations   1i i n

R
 

. 

Left multiply  i 
X  on both sides of the DPO constraint 

(11), 

    ,
, ,0 , 1 ,i i id R i n i 

    


    X X t  (15)

According to Proposition 2 below, 

  , ,,

2
,

=
T

d     


 
a t

 (16)

Substituting equation (16) into equation (15), we show that 
global translations satisfy the following linear 
homogeneous equation 

0, 1 ,iB C D i n i       t t t  (17)

in which 

 
 

 

, ,

2
,

T
i i

i i

B R R

C R

D B C

    

 








  

X X a

X  (18)

If   , 0ii R 
X X  for 1 ,i n i    , then 

0B C D    and equation (17) is always true for any 
global translation.  

For all 3D feature points, denote by  1 , ,
TT T

n t t t  the 

concatenated global translation of n images and rewrite 
equation (17) as 

0 L t  (19)
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where L  is a matrix comprising global rotations and 
normalized image coordinates. It can be proved that 

  3 4rank n L  when there are at least two 3D feature 

points satisfying , 0    (see Proposition 6 below). 

Equation (19) is called the linear global translation (LiGT) 
constraint. Choose view r as the global translation 
reference, namely, 

0r t  (20)

An estimate of global translation t̂  ( rt  removed) can be 

obtained by solving the linear homogeneous equation (19). 
There are two t̂  with opposite signs; however, the right 

one can be readily identified by using equation (16), that is, 
it should satisfy , , 0T

    a t . 

 
Consequently, according to Propositions 3-5 below, the 

three representations of multiple-view imaging relationship, 
namely (2), (12), and (19), are equivalent. Equation (19) 
expresses the multiple-view imaging relationship as a 
linear constraint. Given global rotations, the LiGT 
constraint (19) enables a linear solution to global 
translations, which is proved to be theoretically immune to 
camera collinear movement and local pure rotation. 
Certainly, the accuracy of the obtained global translations 
would be affected by the quality of the given global 
rotations. If a higher pose accuracy is required, a proposed 
algorithm of pose adjustment (given in Section 3) can be 
used to further refine the camera poses. The 3D feature 
coordinates can be analytically recovered from the camera 
poses. 

 

2.3. Propositions 

Proposition 1.    , ,i j j i
i id d  for view pair  ,i j  

Proposition 2. The depth can be linearly expressed in terms 

of translation, that is,   , ,,

2
,

=
T
i j i ji j

i
i j

d

a t

 and   ,

2
,

, ,
T

i j i j i j
j

i j

d



b t

, 

where  , ,

T
T
i j i j i j jR

 
       a X X X  and 

 , , ,

T
T
i j i j i ji j iR R

 
       b X X X . 

Proposition 3. The DPO constraint set (11)   the 
projection equation (1). 
Proposition 4. The LiGT constraint   the depth-equal 
constraint. 
Proposition 5. The LiGT constraint   the DPO 
constraint. 
Proposition 6. When there are at least two 3D feature 
points with different image points such that 

, , 0R       X X ,  rank 3 4n L . 

 
For a global pure rotation, , 0    for all 3D feature 

points and the LiGT constraint can never generate the right 
global translation; neither can the projection equation, nor 
the DPO constraint. However, as a scenario violating the 
Proposition 6 precondition only occurs theoretically, 
Proposition 6 actually indicates that the global translation 
can almost certainly be solved from the LiGT constraint, 
even under special but common movements such as 
collinear motion or local pure rotation.  

 

3. Pose adjustment 
The gold-standard BA minimizes the reprojection error 

formulated by the projection equation (1). Denoting by i
X  

the error-contaminated normalized image coordinate of a 
3D feature point in the i-th image, the reprojection error is 
usually defined as 

3

BA
i

i i ii T BA
i

    V X X X
e

Y

Y
 (21)

where  BA W
i i iR Y X t  and  3 0,0,1T e . For m 3D 

feature points observed in n images, a reprojection error 
vector BAV  can be formed. The error function in the BA 

minimization can be expressed as 

      ,11 1 1
, , , T

BA BA B
W
k i i k ii nk Am k m i n

R
  

  


，
VX VX t (22)

The corresponding BA minimization problem is formulated 
as [2, 7] 

    11
, ,

arg min
W
k i i i nk m

R
BA

 
X t

 
(23)

As there are typically a large number of 3D features in a 
scene, we can imagine that the equation (23) is a nonlinear 
optimization problem in a high-dimensional parameter 
space. With the DPO constraint set in equation (11), the 
reprojection error for a 3D feature point is given by 

3

PA
i

i i ii T PA
i

    V X X X
e

Y

Y
 (24)

where  ,
, ,i i

PA
i d R 

     X tY  and  ,d  

  is computed 

using the error-contaminated normalized image coordinate. 
For m 3D feature points observed in n images, a 
reprojection error vector PAV  can be formed. The error 

function in the minimization can be expressed as 

    ,1 1 1
, ,i i k ii n k m i

T
PA PA PAn

R
  

  


，
V Vt X  (25)

The corresponding minimization problem is formulated as 

  1
,

arg min
i i i n

A
R

P
t

 (26)
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the unknown parameters of which consist of camera poses 
only. Therefore, it is referred to as pose adjustment (PA) 
throughout the paper. 
 

3.1. Global analytical reconstruction 

The 3D multiple-view scene structure can be analytically 
reconstructed from the obtained camera poses. For a 3D 
feature point, its depth in the left-base view is calculated as 

 ,
,

1

ˆ i

i n
i

W
iz d 



  
 


   
(27)

where ,i  is the weighting coefficient. According to the 

two-view case [36], ,i  is a quality indicator of 

reconstruction, and thus, we take the weighting coefficient 
as , , ,

1
i i i

i n
i

  



  
 


  . Finally, the 3D feature coordinate is 

given by 
ˆW W Tz R    X tX  (28)

The world coordinates of m 3D features observed in n 
images can be represented entirely by camera poses and 
image points as 

      ,1 1 11
, ,w

k i i k ii n k m i nk m
z R

  
    ，

X t X . 

 

3.2. Pose-only algorithm for recovering camera 
poses and the 3D scene 

 

Figure 2:  Flow chart of pose-only algorithm 

 For m 3D feature points and N images (or views). Note 
that all feature points are not necessarily observed in each 
image here.  

Inputs: Global rotations and normalized image coordinates. 
Step 1. Designate a view, say view r, as the reference view. 
Set the constraint 0r t . 

Step 2. For the current 3D feature point WX , select 
left/right-base views using the following criterion 

   ,
1 ,

, arg max i j
i j n

  
 

  (29)

Step 3. Build the matrix L  using equations (17) and (18). 
Step 4. For all 3D feature points, repeat Steps 2-3. Obtain 
the global translation t̂  by solving equation (19). 
Step 5. Identify the right global translation solution using 

, , 0T
    a t . 

Step 6 (Optional). Implement PA to further improve camera 
poses according to equation (26). 
Step 7. Analytically reconstruct all 3D feature coordinates 
using equations (27) and (28). 

The flow chart of the pose-only algorithm is given in Fig. 
2. 
 

4. Experiments 
The experiment was performed on an Ubuntu 18.04.4 

LTS platform, with 128 GB memory and Intel® Xeon(R) 
Platinum 8269CY CPU @ 2.50 GHz, one core. The LiGT 
algorithm was developed based on Spectra and Eigen C++ 
libraries, and the PA algorithm was developed using the 
SparseLM optimization library.  
Two-view relative pose. We utilized the OpenGV library, 
which comprises various common two-view processing 
algorithms [35, 38-41] 
Global rotation. The state-of-the-art libraries of global 
structure from motion (SfM), such as OpenMVG and Theia 
Vision [42], are mainly based on algorithms proposed by 
Chatterjee [19], Hartley [21, 22], and Martinec [43]. 
Comparably, Chatterjee’s newest algorithm [13] has the 
best accuracy and robustness [12, 15] and thus was used to 
provide the global rotation of each view. 
Global translation. Recovering the global translation is a 
key problem in SfM. We compared LUD [15], 1DSfM [12], 
and linearSfM [14] in the Theia Vision library. LUD is 
found to be robust and outstanding, and thus, it is mainly 
shown in real data tests. 
Global optimization. BA is the cornerstone of visual 
geometry computation. Most state-of-the-art libraries 
incorporate the Google Ceres BA [44], although there have 
been a number of studies focused on speeding-up BA, such 
as sBA [3], ssBA [45], and PBA (or PMBA) [11, 31]. This 
study addresses the standard case of the calibrated camera; 
therefore, the Google Ceres BA (version 1.14.0) was taken 
as the benchmark for algorithm assessment. 
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King’s-College 

(Lund dataset, #20) 
Statue-of-Liberty 

(Lund dataset, #37) 
UWO 

(Lund dataset, #40) 
Ystad-Monastery 

(Lund dataset, #44) 

Figure 3: Recovered camera poses and 3D scenes, and reprojection errors of representative data. King’s-College, Statue-of-Liberty, UWO 
and Ystad-Monastery are from the Lund dataset. a, Recovered camera poses and 3D scenes by LiGT, LiGT-PA, LUD, and LUD-BA. Red 
arrows denote cameras; b, reprojection errors for LiGT-PA and LUD-BA as a function of the number of iterations (maximum set at 100) 
performed during the optimization process. The 3D scenes were recovered analytically in LiGT and LiGT-PA, and by traditional 
triangulation in LUD. The squares on each vertical axis denote the reprojection errors of LUD and LiGT when global rotations refined by 
LiGT-PA are used as the input instead.  
 

4.1. Real test performance 

We performed a number of tests on 55 data from the 
Lund and OpenSLAM public datasets [46, 47].  

Figure 3 presents four representative test results of 
King’s College Cambridge, Statue of Liberty, University of 
Western Ontario, and Monastery in Ystad from the Lund 
dataset. The rotation averaging algorithm [13] has the best 
accuracy and robustness [12, 15] and, thus, has been used 

LiGT 

LiGT-PA 

LUD 

LUD-BA 

b. 

a. 
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to provide global rotations. The LiGT algorithm, as well as 
the PA algorithm initialized with the LiGT algorithm 
(LiGT-PA), are compared against state-of-the-art 
counterparts: the LUD algorithm [15], to determine global 
translations, and the Google Ceres BA algorithm [44] 
initialized with the LUD algorithm (LUD-BA). The LiGT 
reprojection error is significantly smaller, by 
approximately two orders of magnitude, than that of LUD. 
The results show that the LiGT 3D scene recovery is very 
close to that of LUD-BA or LiGT-PA, in contrast to the 
LUD result that barely shows the scene outlines. The 
LiGT-PA algorithm, within fewer iterations, leads to a 
reprojection error that is 1-2 orders of magnitude smaller 
than that of LUD-BA. The scene recovery of LUD-BA 
appears to be incomplete (e.g., the Statue of Liberty 
goddess body and the University of Western Ontario wall 
and camera poses). In Fig. 3b, the two squares lying on 
each vertical axis denote the reprojection errors of LUD 
and LiGT when global rotations refined by LiGT-PA are 
used as the input instead. The reprojection errors of LiGT 
are further reduced by 1-2 orders of magnitude, 
approaching those of LiGT-PA. 

The computational costs (in terms of running time and 
memory cost) and the reprojection errors across all 55 data 
tests are summarized in Fig. 4 clockwise in ascending order 
of the number of image points. Compared with LUD-BA, 
LiGT-PA reduces, on average, the running time by 
approximately 25 times and the memory consumption by 
approximately 15 times, whereas LiGT significantly 
reduces the running time by approximately 8,000 times on 
average (140,000 times maximum) and the memory 
consumption by approximately 400 times on average 
(5,000 times maximum). It can be well predicted from the 
clockwise increasing trend in Fig. 4 that the LiGT’s 
computational efficiency advantage will be significantly 
more prominent for larger-scale data. Furthermore, in terms 
of the final reprojection error, LiGT-PA consistently 
outperforms LUD-BA, and notably, the error of LiGT is 

even smaller than that of LUD-BA in several tests. 
 

4.2. Further discussions 

In summary, the 3D scene quality of the LiGT algorithm 
is very close to that of BA and PA. The reprojection error 
profile of all algorithms shows that the LiGT algorithm 
enables faster convergence and smaller reprojection errors 
for optimization in only a few iterations, compared with the 
LUD algorithm. Note that the reprojection errors have been 
regularized uniformly for all algorithms by way of BA’s 
minimization function, using their own estimates of camera 
poses and 3D feature coordinates. In fact, it can be well 
predicted, according to Propositions 3 and 5, that if the 
provided global rotations have high accuracy, the global 
translation solution by the LiGT algorithm would be close 
to optimality. 
LiGT algorithm. It appears that, under such special motions 
as small translation or collinear movement, the LiGT 
algorithm significantly outperforms the LUD algorithm in 
terms of both reprojection error and 3D scene quality. 
Notably, the LiGT’s 3D scene can compete in appearance 
with those of BA and PA; for instance, in the case of 
closed-loop camera motions (#13: Eglise-interior and #38: 
The-Pumpkin). For more complex camera motions (#24: 
Linkoping-Cathedral), the projection error of the LiGT 
algorithm is even smaller than that of LUD-BA, the BA 
algorithm initialized by the LUD algorithm. 
PA algorithm. LiGT-PA generally outperforms LUD-BA 
in terms of both reprojection errors and 3D scene quality. 
The LiGT-PA typically requires only a few iterations to 
reach convergence, and its final reprojection errors are 
smaller than those of LUD-BA (#8: Buddha-temple, #24: 
Linkoping-Cathedral, and #38: The-Pumpkin). 
Collinear motion. Under collinear motions (#8: 
Buddha-temple, #9: De-Guerre, and #36: 
Sri-Veeramakaliamman) or local linear motion (#50: 

 

 
Figure 4: Running time, memory consumption, and final reprojection errors for LiGT, LUD-BA, and LiGT-PA. Arranged clockwise in 
ascending order of the number of image points for all 55 data results. a, Time cost in seconds; b, Memory cost in megabytes; c, 
Reprojection error. 

 

a. b. c. 
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Malaga), the state-of-the-art LUD algorithm for global 
translation is not satisfactory, while the LiGT algorithm 
does not appear to be affected and recovers quality 3D 
scenes that are very close to those of LUD-BA or 
LiGT-PA. 
Local small translation. Special cases exist in the Lund 
dataset where the camera rotates in a fixed location to take 
multiple photos (see, for example, #36: 
Sri-Veeramakaliamman and #37: Statue-of-Liberty in Fig. 
3). These local small translation motions commonly lead to 
unsatisfactory results for the LUD algorithm, but they are 
handled well by the LiGT algorithm.  
Time and memory statistics. The running time excludes 
data file reading and writing. The memory cost is calculated 
using the Intel VTune Profiler [48]. 
 

5. Conclusion 
This study presents a pose-only representation for the 

multiple-view imaging geometry and discovers that it is 
linearly related to camera translation by the LiGT 
constraint. The proposed LiGT algorithm not only 
produces the global translation efficiently and accurately 
but, together with the PA algorithm, can further enhance 
the accuracy and robustness (for example, to critical 
camera motions) of recovering the camera pose and 3D 
scene structure. This work is believed to significantly 
reduce the efficiency and robustness challenges 
encountered in 3D vision computation. In applications 
where global rotations can be provided accurately, 
nonlinear optimization processes may not be required for 
camera poses and the 3D scene structure. Consequently, the 
computational cost would be mitigated by several orders of 
magnitude, hopefully opening a door to future lightweight 
3D visual computation on personal devices or microchips. 
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FIG. 1 | REPRESENTATIVE RESULTS OF THE LUND/OPENSLAM DATASETS. 1 
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#9: De-Guerre (Lund) 

   
#13: Eglise-interior (Lund) 

   
#24: Linkoping-Cathedral (Lund) 

   
#36: Sri-Veeramakaliamman (Lund) 

   
#38: The-Pumpkin (Lund) 

   
#50: Malaga (OpenSLAM) 
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The charts in the first column show the reprojection errors for LiGT-PA and LUD-BA as a function of 1 

the number of iterations performed during the optimisation process. Charts in the remaining four col-2 

umns show the recovered 3D scenes by LUD, LUD-BA, LiGT, and LiGT-PA, respectively. The 3D 3 

scenes were recovered analytically in LiGT and LiGT-PA, and by traditional triangulation in LUD. 4 

The LiGT algorithm enables faster convergence and smaller reprojection errors for PA, and is very 5 

close to BA and PA in 3D scene quality. Note that there are collinear motions in #8: Buddha-temple, 6 

#9: De-Guerre, and #36: Sri-Veeramakaliamman, local linear motion in #50: Malaga, and local small 7 

translation in #36: Sri-Veeramakaliamman. 8 
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FIG. 2 | OTHER RESULTS OF THE LUND DATASET.  1 

#1: West-Side-gardens LUD LUD-BA LiGT LiGT-PA

  
#2: Alcatraz-courtyard 

  
#3: Alcatraz-water-tower 

  
#4: Barcelona 

  
#5: Basilica-di-San-Petronio 

  
#7: Buddha 

  
#10: Doge’s-Palace   

  
#11: Door  
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#12: Eglise LUD LUD-BA LiGT LiGT-PA

  
#14: Filbyter   

  
#15: Fine-Arts   

  
#16: Fort-Channing-gate   

  
#17: Golden-statue   

  
#18: Goteborg   

  
#19: GustavIIAdolf   

  
#21: Kronan  

  
     
     



Q. CAI ET AL.:  EQUIVALENT CONSTRAINTS FOR TWO-VIEW GEOMETRY  


 

#22: Lejonet LUD LUD-BA LiGT LiGT-PA 
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#26: Nijo   
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#29: Park-gate   
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#31: Porta-San-Donato LUD LUD-BA LiGT LiGT-PA 

  
#32: Round church   

  
#33: Smolny   
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#43: Vasa LUD LUD-BA LiGT LiGT-PA 

  
#45: Yueh_Hai_Ching_Temple 

  

1 

The charts in the first column show the reprojection errors for LiGT-PA and LUD-BA as a function of 2 

the number of iterations performed during the optimisation process. Charts in the remaining four col-3 

umns show the recovered 3D scenes by LUD, LUD-BA, LiGT, and LiGT-PA, respectively. The 3D 4 

scenes were recovered analytically in LiGT and LiGT-PA, and by traditional triangulation in LUD.5 
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FIG. 3 | OTHER RESULTS OF THE OPENSLAM DATASET.  1 
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#55: Village LUD LUD-BA LiGT LiGT-PA

 

1 

2 

The charts in the first column show the reprojection errors for LiGT-PA and LUD-BA as a function of 3 

the number of iterations performed during the optimisation process. Charts in the remaining four col-4 

umns show the recovered 3D scenes by LUD, LUD-BA, LiGT, and LiGT-PA, respectively. The 3D 5 

scenes were recovered analytically in LiGT and LiGT-PA, and by traditional triangulation in LUD. 6 
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TABLE 1 | TIME COST 1 

# 
data 

(Lund) 
cams pts obs 

time 
(LiGT)

time 
(LiGT-

PA) 

iteration 
(LiGT-

PA) 

time 
(LUD-BA)

iteration 
(LUD-BA) 

time ratio
(LiGT-

PA/LiGT)

time ratio
(LUD-

BA/LiGT)

1 Alcatraz-West-Side-gardens 419 65072 697968 0.418 86.285 84 234.287 101 206.5 560.8 

2 Alcatraz-courtyard 133 23674 321554 0.046 3.880 11 83.217 101 84.1 1803.1 

3 Alcatraz-water-tower 172 14828 169618 0.065 1.314 9 47.975 101 20.3 742.5 

4 Barcelona 177 30367 401584 0.058 3.281 11 134.467 101 57.0 2334.5 

5 Basilica-di-San-Petronio 334 46035 806486 0.218 16.597 23 238.457 101 76.3 1096.4 

6 Basilica-di-SMF 1774 564904 4851293 4.944 608.280 41 2445.910 101 123.0 494.7 

7 Buddha 322 156356 920284 0.113 134.123 68 483.883 101 1184.9 4275.0 

8 Buddha-temple 162 27920 201150 0.050 2.206 14 91.387 101 44.1 1828.8 

9 De-Guerre 35 13477 106440 0.003 0.465 6 3.245 6 145.8 1016.6 

10 Doge’s-Palace 241 67107 820330 0.122 7.332 14 374.276 101 60.2 3070.6 

11 Door 12 17650 140585 0.000 0.434 5 2.516 4 986.6 5723.6 

12 Eglise 85 84792 619743 0.024 2.119 7 192.993 101 87.6 7972.9 

13 Eglise-interior 496 29314 407967 0.339 4.814 11 190.215 101 14.2 561.3 

14 Filbyter 40 21150 53028 0.002 0.915 7 16.131 101 471.1 8305.3 

15 Fine-Arts 281 30723 550028 0.221 3.560 9 18.614 6 16.1 84.2 

16 Fort-Channing-gate 27 23627 149430 0.002 0.590 6 2.915 4 367.7 1816.2 

17 Golden-statue 18 39989 123059 0.001 0.540 7 3.721 6 521.1 3591.9 

18 Goteborg 179 25655 298204 0.059 21.786 39 99.479 101 368.0 1680.3 

19 GustavIIAdolf 57 5813 39015 0.004 0.724 8 0.818 4 176.1 198.9 

20 King’s-College 328 238449 3034113 0.197 104.843 51 1343.690 101 533.2 6833.2 

21 Kronan 131 28371 430408 0.048 2.358 9 142.600 101 49.0 2964.5 

22 Lejonet 368 74423 934344 0.180 7.405 8 290.651 101 41.1 1612.4 

23 LUsphinx 70 32668 148069 0.008 0.850 7 6.016 8 103.1 730.2 

24 Linkoping-Cathedral 538 202737 1810690 0.227 12.291 10 686.701 101 54.2 3026.3 

25 Lund-Cathedral 1206 159055 2322955 5.021 40.305 15 1540.220 101 8.0 306.7 

26 Nijo 19 7348 31123 0.001 0.224 7 0.833 5 216.1 804.3 

27 Nikolai 98 37857 332239 0.015 1.580 7 6.467 4 108.8 445.6 

28 Orebro 761 53857 1322851 1.455 11.391 9 51.795 5 7.8 35.6 

29 Park-gate 34 9099 65889 0.003 0.383 7 1.423 5 140.8 523.6 

30 Plaza-de-Armas 240 26969 519049 0.143 5.365 15 215.965 101 37.6 1513.7 

31 Porta-San-Donato 141 25490 265347 0.049 7.032 19 79.139 101 142.8 1606.7 

32 Round-church 92 84643 629033 0.029 2.213 7 141.120 101 76.2 4856.0 

33 Smolny 131 51115 827085 0.039 3.093 7 24.593 6 79.2 629.7 

34 Sri-Mariamman 222 56220 467301 0.078 4.223 11 140.022 101 54.3 1799.8 

35 Sri-Thendayuthapani 98 88849 1010965 0.026 5.050 10 31.216 6 191.7 1184.6 

36 Sri-Veeramakaliamman 157 130013 951427 0.052 8.806 19 227.872 101 170.2 4404.9 
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(cams: cameras; pts: 3D points; obs: image point observations.) 1 
 2 
Table 1 lists the running time (in seconds) of LiGT, LiGT-PA, and LUD-BA, respectively, and the iteration times 3 

of LiGT-PA and LUD-BA in the Lund and OpenSLAM tests. The running time ratios of LiGT-PA and LUD-BA with 4 

respect to LiGT are calculated in the two right-most columns and are plotted in Fig. 2. 5 

  6 

37 Statue-of-Liberty 133 49248 203917 0.016 46.854 50 68.954 101 2877.5 4234.7 

38 The-Pumpkin 196 69341 267379 0.065 3.706 10 98.843 101 57.1 1523.2 

39 Thian-Hook-Keng-temple 138 34288 228181 0.031 2.053 12 70.475 101 65.5 2248.9 

40 UWO 691 97326 1324691 0.998 11.158 10 761.110 101 11.2 762.7 

41 University-of-Toronto 77 7087 44562 0.006 0.841 8 5.073 18 143.9 867.8 

42 UrbanII 96 22284 183784 0.013 1.138 7 4.258 5 89.4 334.4 

43 Vasa 18 4249 15544 0.001 0.452 9 0.689 7 483.4 736.8 

44 Ystad-Monestary 290 139951 1514025 0.122 7.916 9 570.254 101 64.9 4673.1 

45 Yueh-Hai-Ching-Temple 43 13774 76314 0.004 0.426 7 20.339 101 97.5 4653.9 

# 
data 

(OpenSLAM) 
cams pts obs 

time 
(LiGT)

time 
(LiGT-

PA) 

iteration 
(LiGT-

PA) 

time 
(LUD-BA)

iteration 
(LUD-BA) 

time ratio
(LiGT-

PA/LiGT)

time ratio
(LUD-

BA/LiGT)

46 College 468 1236502 3107524 0.070 42.023 13 978.974 101 599.9 13975.4 

47 DunHuan 63 250782 597289 0.004 2.425 7 29.736 7 599.4 7348.4 

48 Fake-pile 47 11318 26050 0.002 0.587 10 23.323 101 247.9 9846.2 

49 Jinan 76 1228959 2864740 0.005 22.444 24 764.939 101 4390.8 149647.7 

50 Malaga 170 58404 167285 0.014 79.590 35 97.678 101 5869.9 7204.0 

51 Toronto 13 113685 239279 0.001 0.409 7 95.316 101 536.3 125115.5 

52 Usyd-main-quad 424 227615 1607082 0.210 28.654 22 479.589 101 136.7 2287.9 

53 Vaihingen 20 554169 1201982 0.001 1.584 5 31.824 4 1425.7 28633.9 

54 Victoria-cottage 400 153632 890057 0.102 205.554 100 393.529 101 2023.6 3874.1 

55 Village 90 1849740 4877796 0.007 14.391 8 130.252 4 2114.4 19137.3 
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TABLE 2 | REPROJECTION ERROR 1 

# Data (Lund) cams pts obs 
initial reprojection error end reprojection error 

LiGT-BA&PA LUD-BA&PA LiGT-BA LUD-BA LiGT-PA LUD-PA 

1 Alcatraz-West-Side-gardens 419 65072 697968 2.478 162.351 0.103 3.180 0.134 0.127 

2 Alcatraz-courtyard 133 23674 321554 0.379 6.032 0.035 0.033 0.044 0.044 

3 Alcatraz-water-tower 172 14828 169618 0.147 4.539 0.012 0.225 0.016 0.016 

4 Barcelona 177 30367 401584 0.579 118.330 0.047 0.388 0.060 0.060 

5 Basilica-di-San-Petronio 334 46035 806486 3.382 20.403 0.156 0.173 1.130 0.198 

6 Basilica-di-SMF 1774 564904 4851293 15.214 6844.949 0.789 11.563 0.911 0.857 

7 Buddha 322 156356 920284 46.615 188.014 0.408 6.306 3.701 2.505 

8 Buddha-temple 162 27920 201150 0.209 46.621 0.024 0.454 0.031 0.031 

9 De-Guerre 35 13477 106440 0.007 8.086 0.003 0.003 0.004 0.004 

10 Doge’s-Palace 241 67107 820330 1.191 111.959 0.112 2.518 0.129 0.263 

11 Door 12 17650 140585 0.004 1.081 0.002 0.002 0.003 0.003 

12 Eglise 85 84792 619743 0.259 27.713 0.011 0.028 0.016 0.016 

13 Eglise-interior 496 29314 407967 0.541 39.318 0.070 0.450 0.080 0.081 

14 Filbyter 40 21150 53028 0.025 1.498 0.001 0.012 0.002 0.002 

15 Fine-Arts 281 30723 550028 0.353 1.636 0.084 0.084 0.104 0.105 

16 Fort-Channing-gate 27 23627 149430 0.008 0.209 0.002 0.002 0.003 0.003 

17 Golden-statue 18 39989 123059 0.007 0.349 0.002 0.002 0.003 0.003 

18 Goteborg 179 25655 298204 0.329 18.969 0.041 0.077 0.050 0.051 

19 GustavIIAdolf 57 5813 39015 0.002 0.159 0.001 0.001 0.001 0.001 

20 King’s-College 328 238449 3034113 13.880 2493.362 0.396 18.496 0.343 94.881 

21 Kronan 131 28371 430408 0.194 72.943 0.031 0.293 0.037 0.037 

22 Lejonet 368 74423 934344 3.582 270.539 0.110 2.467 0.132 3.316 

23 LUsphinx 70 32668 148069 0.015 0.923 0.005 0.005 0.007 0.007 

24 Linkoping-Cathedral 538 202737 1810690 1.547 232.937 0.125 2.051 0.147 0.197 

25 Lund-Cathedral 1206 159055 2322955 4.586 3294.693 0.311 97.377 0.399 67131.299

26 Nijo 19 7348 31123 0.003 0.095 0.001 0.001 0.001 0.001 

27 Nikolai 98 37857 332239 0.027 1.000 0.008 0.008 0.011 0.011 

28 Orebro 761 53857 1322851 2.458 53.101 0.128 0.128 0.157 0.157 

29 Park-gate 34 9099 65889 0.004 0.038 0.001 0.001 0.002 0.002 

30 Plaza-de-Armas 240 26969 519049 2.828 20.451 0.103 0.144 0.126 0.126 

31 Porta-San-Donato 141 25490 265347 1.220 70.170 0.031 0.229 0.049 0.039 

32 Round-church 92 84643 629033 0.402 10.276 0.019 0.145 0.026 0.026 

33 Smolny 131 51115 827085 0.780 2.819 0.084 0.084 0.098 0.098 

34 Sri-Mariamman 222 56220 467301 0.455 94.694 0.056 0.657 0.070 0.070 

35 Sri-Thendayuthapani 98 88849 1010965 1.916 16.567 0.081 0.081 0.118 0.119 

36 Sri-Veeramakaliamman 157 130013 951427 11.596 201.514 0.154 1.227 0.127 0.255 

37 Statue-of-Liberty 133 49248 203917 1.393 172.478 0.014 0.747 0.017 0.035 

38 The-Pumpkin 196 69341 267379 0.128 92.353 0.020 0.661 0.025 0.025 
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39 Thian-Hook-Keng-temple 138 34288 228181 2.936 35.184 0.129 0.758 0.050 0.493 

40 UWO 691 97326 1324691 3.058 819.236 0.132 28.172 0.158 3.152 

41 University-of-Toronto 77 7087 44562 0.006 0.566 0.001 0.007 0.001 0.001 

42 UrbanII 96 22284 183784 0.149 1.569 0.005 0.005 0.007 0.007 

43 Vasa 18 4249 15544 0.009 0.360 0.001 0.001 0.001 0.001 

44 Ystad-Monastery 290 139951 1514025 1.951 474.913 0.162 1.704 0.191 0.190 

45 Yueh-Hai-Ching-Temple 43 13774 76314 0.160 1.802 0.010 0.019 0.007 0.007 

# 
data 

(OpenSLAM) 
cams pts obs 

initial reprojection error end reprojection error 
LiGT-BA&PA LUD-BA&PA LiGT-BA LUD-BA LiGT-PA LUD-PA 

46 College 468 1236502 3107524 0.531 33.728 0.079 0.246 0.138 0.138 

47 DunHuan 63 250782 597289 0.013 48.234 0.003 0.003 0.005 0.005 

48 Fake-pile 47 11318 26050 0.002 13.747 0.001 0.492 0.001 0.010 

49 Jinan 76 1228959 2864740 0.005 49.547 0.002 0.002 0.003 0.003 

50 Malaga 170 58404 167285 0.229 10.404 0.027 0.606 0.150 0.227 

51 Toronto 13 113685 239279 0.001 290.775 0.000 0.232 0.001 0.000 

52 Usyd-main-quad 424 227615 1607082 107.747 879.497 2.485 15.537 3.206 3.217 

53 Vaihingen 20 554169 1201982 0.001 1.133 0.001 0.001 0.001 0.001 

54 Victoria-cottage 400 153632 890057 19.258 170.191 1.273 12.691 1.621 1.626 

55 Village 90 1849740 4877796 0.005 0.377 0.002 0.002 0.003 0.003 

 1 
Table 2 lists the initial and the final reprojection errors of four optimisation algorithms: LUD-BA, LUD-PA, LiGT-2 

BA, and LiGT-PA. Note that their initial reprojection errors are exactly those of the corresponding initialisation al-3 

gorithms. The reprojection errors have been regularised uniformly, for all algorithms, by way of BA’s minimisation 4 

function, using their own estimates of camera poses and 3D feature coordinates. The reprojection errors are partly 5 

plotted in Fig. 2. In fact, we tested and found that all algorithms of LUD, 1DSfM, LinearSfM, and OpenMVG are 6 

generally consistent under normal scenarios, but LUD performs the best under abnormal scenarios. Therefore, only 7 

LUD is compared with LiGT here. The reprojection error columns are given colour backgrounds for clear comparison 8 

and, in the same colour region, the bold-faced numbers indicate that the reprojection errors brought about by LiGT 9 

and LUD are different by over one order of magnitude. 10 

 The reprojection error of LiGT is over one order of magnitude smaller than that of LUD in most test data, and 11 

even better than those of LUD-BA/PA in #20: King’s-College, #25: Lund-Cathedral, and #48: Fake-pile. 12 

 For all test data, the reprojection errors of LiGT-BA/PA are consistently superior to those of LUD-BA/PA. 13 

  14 
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TABLE 3 | SCATTERING DEGREE OF RECONSTRUCTED 3D POINTS  1 

# Data (Lund) LiGT LiGT-BA  LiGT-PA LUD LUD-BA LUD-PA 

1 Alcatraz-West-Side-gardens 0.430 3.391 0.335 1.998 96.705 0.530 

2 Alcatraz-courtyard 0.242 4.780 0.179 0.494 1.238 0.172 

3 Alcatraz-water-tower 0.343 0.547 0.272 0.737 104.230 0.272 

4 Barcelona 0.082 0.063 0.063 0.244 22.787 0.063 

5 Basilica-di-San-Petronio 0.182 3.085 0.127 0.436 6.590 0.127 

6 Basilica-di-SMF 1.084 4.641 14.976 99.594 36.779 18.901 

7 Buddha 0.001 0.460 0.001 0.003 6.882 0.001 

8 Buddha-temple 0.210 0.165 0.166 0.626 136.659 0.166 

9 De-Guerre 0.058 0.055 0.055 0.209 0.055 0.055 

10 Doge’s-Palace 0.428 2.275 0.337 4.448 4018.160 1.189 

11 Door 0.030 0.030 0.030 0.072 0.030 0.030 

12 Eglise 0.124 0.078 0.078 0.342 1.904 0.078 

13 Eglise-interior 0.704 0.558 0.556 1.997 62.421 0.556 

14 Filbyter 0.221 0.160 0.160 2.359 31.924 0.160 

15 Fine-arts 0.369 0.283 0.285 0.526 0.283 0.285 

16 Fort-Channing-gate 0.020 0.018 0.018 0.042 0.018 0.018 

17 Golden-statue 0.057 0.044 0.044 0.110 0.044 0.044 

18 Goteborg 0.124 0.096 0.096 0.342 13.864 0.096 

19 GustavIIAdolf 0.037 0.036 0.036 0.059 0.036 0.036 

20 King’s-College 0.132 4.272 0.084 5.292 339.921 0.203 

21 Kronan 0.215 0.179 0.181 0.790 118.725 0.181 

22 Lejonet 0.120 0.082 0.083 0.341 32.606 0.095 

23 LUsphinx 0.066 0.058 0.058 0.116 0.058 0.058 

24 Linkoping-Cathedral 0.037 0.027 0.027 0.111 8.586 0.027 

25 Lund-Cathedral 0.048 0.034 0.034 0.163 15.314 0.055 

26 Nijo 0.073 0.066 0.066 0.124 0.066 0.066 

27 Nikolai 0.038 0.035 0.035 0.072 0.035 0.035 

28 Orebro 0.210 0.171 0.171 0.396 0.171 0.171 

29 Park-gate 0.050 0.048 0.048 0.069 0.048 0.048 

30 Plaza-de-Armas 0.189 1.752 0.116 0.361 15.202 0.116 

31 Porta-San-Donato 0.102 0.059 0.059 0.205 5.844 0.059 

32 Round-church 0.047 0.029 0.029 0.147 10.633 0.029 

33 Smolny 0.240 0.179 0.180 0.338 0.179 0.180 

34 Sri-Mariamman 0.152 0.116 0.118 0.399 111.891 0.118 

35 Sri-Thendayuthapani 0.441 0.348 0.355 0.776 0.348 0.355 

36 Sri-Veeramakaliamman 0.364 2.162 0.238 0.879 39.661 0.249 

37 Statue-of-Liberty 0.032 0.408 0.020 0.078 21.858 0.021 

38 The-Pumpkin 0.012 0.009 0.010 0.048 14.942 0.010 

39 Thian-Hook-Keng-temple 0.161 16.660 0.089 0.439 561.589 0.102 

40 UWO 0.201 0.143 0.144 8.108 244.222 0.207 

41 University-of-Toronto 0.138 0.112 0.110 0.415 0.172 0.110 

42 UrbanII 0.107 0.087 0.088 0.140 0.087 0.088 

43 Vasa 0.047 0.041 0.041 0.097 0.041 0.041 

44 Ystad-Monestary 0.209 0.139 0.145 0.813 60.364 0.145 

45 Yueh-Hai-Ching-Temple 0.241 2.758 0.187 0.419 10.771 0.187 

 2 
Table 3 lists the 3D point-scattering phenomenon for the Lund dataset, quantified by the average distance (unit: 3 

meter) of each recovered 3D feature point from its nearest neighbour. This table is plotted in Fig. 4, clockwise, in 4 
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ascending order of the number of image points. 1 

 2 

  3 
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Test Results of 1DSfM Dataset  1 

 2 
Figure 4 presents the reconstruction result of seven data and Table 4 summarizes the number of reconstructed views 3 

and tracks. Both Theia and the pose-only solution use their default parameters throughout the tests, if not explicitly 4 

stated. Their successful rates of Theia and are 3/7 (algorithm crashed in four data) and 6/7 (poor result in one data, 5 

Ellis Island), respectively. Specifically, they are both successful in Montreal Notre Dame and Notre Dame with com-6 

parable reconstruction quality. Note that the reprojection errors do not completely accord with the quality of recon-7 

struction is very likely due to the remaining outliers. It should be noted that LiGT-BA performs not well in Fig. 4, as 8 

the outlier-handling pipeline of the pose-only solution keeps a large number of point observations of small ,   (as 9 

shown in Table 4, the reconstructed track number by the pose-only solution is about two times that by Theia), which 10 

is problematic to the bundle adjustment taking 3D feature coordinates as optimizing parameters. While those point 11 

observations of small ,   are removed, the LiGT-BA performance is significantly improved, and LiGT and LiGT-12 

PA are less affected, as shown in Fig. 5 with Notre Dame. In contrast, the final BA of Theia performs quite well 13 

because the point observations of small ,   are removed as well in its outlier-handling pipeline. 14 

For all data that the pose-only solution is successful, LiGT is very close to the optimization algorithms in reconstruc-15 

tion quality. The reason that LiGT-BA performs unsatisfactorily throughout the test is owed to the same above-men-16 

tioned reason. 17 

Regarding the data of Ellis Island, the pose-only solution performs not well by the default parameter, but can be 18 

improved when those 3D points with track length smaller than 3 are removed, as shown in Fig. 6. 19 

 20 
 21 
 22 
 23 
   24 
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FIG. 4 | REPRESENTATIVE RESULTS OF THE 1DSFM DATASET. 1 
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Both Theia and the pose-only solution use their default parameters throughout the tests. Their success-1 

ful rates of Theia and are 3/7 (algorithm crashed in four data) and 6/7 (poor result in one data, Ellis 2 

Island), respectively. The reprojection errors are calculated by BA and PA, respectively.  3 

 4 

  5 
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FIG. 5 | NOTRE DAME RESULT BEFORE AND AFTER PARAMETER TUNING.  1 

Data Opt. Iteration LiGT LiGT-PA LiGT-BA Theia 

Notre Dame 

  

*Notre Dame 

 
 

 2 

When those point observations of small ,   are removed, the LiGT-BA performance is significantly 3 

improved, and LiGT and LiGT-PA are less affected. 4 

 5 

 6 

 7 

 8 

  9 
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FIG. 6 | ELLIS ISLAND RESULT BEFORE AND AFTER PARAMETER TUNING.  1 

Data Opt. Iteration LiGT LiGT-PA LiGT-BA Theia 

Ellis Island 
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 2 

By removing 3D feature points of tracking length smaller than 3, the Ellis Island result of the pose-3 

only solution is improved. 4 

 5 

 6 

 7 

  8 
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TABLE 4 | NUMBER OF ESTIMATED VIEWS AND TRACKS BY THEIA AND POSE-ONLY SOLUTION 1 

Data Method 
# Estimated 

views 
# Input 
views 

# Estimated 
tracks 

# Input 
tracks 

Montreal Notre Dame 
Theia 458 

474 
141181 

337088 
Pose-only 458 275223 

Notre Dame 
Theia 546

553 
228676 

587692 Pose-only 547 519423 
*Notre Dame Pose-only 546 218241 

Alamo 
Theia -

627 
-

318946 
Pose-only 584 287774 

NYC Library 
Theia -

376 
-

180176 
Pose-only 351 151783 

Piazza del Popolo 
Theia -

354 
-

98253 
Pose-only 340 81370 

Tower of London 
Theia -

508 
-

295360 
Pose-only 477 267961 

Ellis Island 
Theia 233

247 
10746 

108795 Pose-only 226 78189 
*Ellis Island Pose-only 225 13591 

*parameter-tuned tests 

 2 

 3 
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