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Deutsche Zusammenfassung

Die Netzwerkforschung ist ein aufstrebendes und sehr aktuelles Forschungsge-
biet welches unterschiedliche Disziplinen wie Mathematik, Physik, und Sozi-
ologie miteinander verkniipft. Konzepte der Netzwerktheorie haben Eingang
in die Analyse vieler Forschungsfragen gefunden sodass sich Methoden stetig
weiterverbreiten und neue entwickelt werden. Trotz des hohen Bekanntheits-
grades ist das Erforschen von Netzwerken noch eine junge Disziplin sodass
es noch an vielen grundlegenden Theorien fehlt. Dieser Mangel fiihrt dazu,
dass einige Konzepte nicht klar definiert sind und die Anzahl an existierenden
Methoden zur Analyse von Netzwerken untiberschaubar zu sein scheint.

In dieser Arbeit wird konkret das Konzept der Zentralitditsmessung in Net-
zwerken behandelt. Bei der Analyse eines Netzwerks ist in vielen Féllen die
(strukturelle) Wichtigkeit von Knoten oder Akteuren von Interesse. Neben
naiven Ansidtzen wie dem Knotengrad wurden im Laufe der Zeit viele kom-
plexe Mafie konzipiert, welche auf unterschiedlichen graphentheoretischen
Modellen begriindet sind. Ein bekanntes Beispiel ist der PageRank, welcher die
Basis fiir Suchmaschinen bildet. Die Vielfalt stellt eine grofie Herausforderung
dar, ein angemessenes Maf3 fiir spezifische Forschungsfragen auszuwéhlen.
Die Auswahl begriindet sich daher meistens auf dem “Trial-and-Error-Prinzip’,
d.h. es werden verschiedene Mafle getestet und verglichen um ein zufrieden-
stellendes Resultat zu erreichen. Obwohl in der Literatur bereits viel zur Ab-
grenzung des Konzepts beigetragen wurde, fehlt es weiterhin an theoretischen
Grundlagen und Richtlinien fiir die Zentralitdtsmessung.

Die vorliegende Arbeit beginnt mit der Einfiihrung des Zentralitédtsbegriffs
sowie der Darlegung der genannten Méngel. Speziell wird auf einen Anwen-
dungsfall in der Biologie eingegangen. In einer bekannten Studie tiber Protein
Interaktionsnetzwerke wurde gezeigt, dass die Sterblichkeit von Proteinen
mit Zentralititsmafien nachgewiesen werden kann. Was zunachst mit der An-
wendung des Knotengrads begann, kulminierte in einer Jagd nach dem Maf}
welches am stédrksten mit der Sterblichkeit von Proteine korelliert. Im Gegen-
satz zur Literatur wird in dieser Arbeit die Schliissigkeit des proklamierten
Zusammenhangs hinterfragt. Eine Reanalyse der urspriinglichen Studie deckt
statistische Unstimmigkeiten auf, welche den beschriebene Zusammenhang
stiarker erscheinen lassen als tatsdchlich beobachtet werden konnte. Eine bre-
iter angelegte Studie mit verschiedenen Datensitzen zeigt, dass der Zusam-
menhang zwischen Zentralitdtsmafien und Sterblichkeit stark Daten abhéngig
ist und generell schwankende Resultate aufweist.

Im weiteren Verlauf wird eine neue Konzeptualisierung der Zentralitditsmessung
vorgeschlagen. Es wird argumentiert, dass Zentralitét nicht als Auffinden von
Mustern in Daten durch maschinelles Lernen, sondern als Konzept der Mess-
theorie behandelt werden sollte. Eine zentrale Rolle spielt dabei der Begriff
der Dominanz in Netzwerken. Ein Knoten der zu den selben Knoten und
moglicherweise zusétzlichen benachbart ist als ein anderer, dominiert diesen
Knoten. Es wird gezeigt das die geldufigsten Zentralitdtsmafle diese sogenan-



nte Nachbarschaftsinklusionsordnung erhalten, d.h. der dominierende Knoten
immer mindestens den gleichen Rang in der induzierten Rangfolge hat. Im
Zuge der Beweisfithrung werden einige relevante Schritte der Zentralititsmessung
vereinheitlicht. Die Herleitung indirekter Beziehungen, welche auf graphen-
theoretischen Modellen beruhen, wird anhand von algebraischen Strukturen,
den Halbringen, gefiihrt. Diese Vereinheitlichung ermoglicht es, Bedingun-
gen aufzustellen welche indirekte Beziehungen erfiillen miissen um die Nach-
barschaftsinklusionsordnung zu erhalten. Des Weiteren wird ein neuer all-
gemeiner Ansatz zur Netzwerk Analyse, der Positionsansatz, angewandt um
Zentralitat als Positionsvergleich von Akteuren zu charakterisieren.

Der restliche Verlauf ist den Auswirkungen dieser Rekonzeptualisierung gewid-
met. Eine wichtige Rolle spielt dabei die Klasse der eindeutig geordneten
Graphen. Ist die Nachbarschaftsinklusionsordnung vollstindig, induzieren
alle Zentralititsmafie die selbe Rangfolge und wiirden daher in empirischen
Situationen widerspriichliche Erklarungen liefern. Im Umkehrschluss bedeutet
dies, je weiter entfernt ein Netzwerk von einer vollstindigen Ordnung ist,
desto unterschiedlicher kénnen die Rangfolgen von ZentralititsmafSen sein.
Diese Beobachtung wird verwendet um die Korrelation zwischen unterschiedlichen
Zentralitdtsmaflen zu untersuchen. Im Gegensatz zum allgemeinen Konsens in
der Literatur, dass Korrelation abhédngig von der Definition der Mafle ist, wird
gezeigt, dass die Korrelation abhingig vom Abstand zum néchstliegenden
vollstindig geordneten Graphen ist. Je geringer der Abstand, desto hoher die
Korrelation.

Den Abschluss der Arbeit bildet eine Diskussion tiber die Anwendbarkeit des
neuen Zentralitdtskonzepts in empirischen Studien und der Verallgemeinerung
der Dominanz in Netzwerken. Anhand kleiner synthetischer Netzwerke wer-
den neue Formen der Dominanz erarbeitet und das Beispiel aus der Biologie
wird wieder aufgegriffen um Indizien gegen den beschriebenen Zusammen-
hang zu sammeln.
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CHAPTER ].

Introduction

“The role of mathematics in empirical science is puzzling, mysterious, and in my
opinion has defied rational explanation.”
— Narens, 1981

One of the founding fathers of sociology, Auguste Comte, envisioned it to be
the science unifying all scientific disciplines [49]. Although this ambitious aim
was never achieved, some of his ideas lived on and helped forming sociology
as is. One of his main ideas was to divide the study of social systems into the
study of social statics and social dynamics. In the words of Comte,

“The statical study of sociology consists in the investigation of the laws of
action and reaction of the different parts of the social system.” [49, p. 457]

When dealing with the components of a social system, Comte refused to see
individuals as atomic elements, since “the scientific spirit forbids us to regard
society as composes of individuals.” [49, p. 502]. In his view, social systems can
only be studied by looking at society in terms of relations among individuals.
He thus offered a complementary view on social sciences to the classical atom-
istic approach of Thomas Hobbes [99]. Early sociologists adopted Comte’s
structural perspective to study the patterning of social connections trying to
specify different kinds of social ties in different social systems [76].

The most explicit use of a structural perspective can be found in the work of
Georg Simmel, who argues that “society exists where a number of individuals
enter into interaction.” [176, p. 23]. The structural perspective in sociology
prevailed and with Moreno’s development of sociometry [139], the groundwork
was laid for a new subfield of sociology, called social network analysis [76].

Contrasted to an atomic view of entities in a social system, the network per-
spective draws attention to the dyadic domain, the relations among entities or
actors. More importantly, these relations are not disjoint but intertwined and
most certainly dependent on each other. A simple example is given by a set
of individuals, the friendship relations among them and the associated phe-
nomenon of ‘the friend of my friend is also my friend’. Network analysts seek
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to uncover the patterning of ties (i.e. relations) in which actors are embedded
and try to explain why those patterns arise and interpret their consequences.
Networks offer a new perspective to tackle complex problems beyond the
scope of traditional methodology such that social network analysis has now
advanced from a subfield of sociology to network science, a maturing field of
its own [40]. Since networks arise in many different contexts (‘Networks are
everywhere’), the network paradigm has become scientifically relevant across
disciplinary boundaries. This inherent interdisciplinary and the prospect of sig-
nificant advances are the compelling forces that draw more and more scientific
areas towards network science.

Network scientific studies with promising results exist in many areas. In-
dividuals are connected through at most five acquaintances, known as the six
degrees of separations or the small-world effect [137,196], obesity spreads via direct
and indirect social ties [43], your friends have more friends than you do [70]
accompanied with preferential attachment or ‘the rich get richer’ phenomenon
of networks [9], and the strength of weak ties [90] to name a few studies that
made their way to popular science. Networks, as it seems, are taking over the
scientific landscape.

One of the key concepts in network science is network centrality. Centrality
seeks to provide the answer to the question of who (or what) is important in
a network depending on the underlying process forming the network and the
empirical phenomenon in question. In a nutshell, an actor in a network is more
central if he or she has better relations, where the definition of better relations
depends on the conceptualization of structural importance.

Applications of centrality range from simple problems like ‘who is the
most popular individual?’ in a friendship network to more complex tasks as
‘which infected individual should be targeted to prevent the spread of a disease
most efficiently?’. Early applications of centrality date back to the work of
Moreno in the 1930s and although many researchers have contributed since
then to a better understanding of centrality, its theoretical foundations mostly
remain nebulous. Network analysts have differing interpretations of what
constitutes a central position in a network and the number of methods to
determine structural importance has drastically increased. The vast amount of
methods poses various difficulties in empirical research, such as identifying
a suitable approach, which most often culminates in trial-and-error efforts
probing different methods until a satisfactory result is obtained.

In this thesis, we aim for a re-conceptualization of network centrality with a
more solid theoretical basis which is additionally more accessible in empirical
research.

The first part of this thesis deals with the current conception of centrality
based on real valued functions. In Chapter 3, commonly used centrality indices
are presented and several attempts to conceptualize network centrality are dis-
cussed. We also conjecture about a novel framework for centrality indices by
means of spectral decompositions. We end the chapter by some illustrative ex-
amples to motivate later theoretical considerations. Chapter 4 is then dedicated
to applications of centrality in empirical research. Working through historical
advances, we discuss potential weak points of the current state which are ex-
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amined extensively in Chapter 5 with a well known application of centrality
in systems biology.

The second part comprises the main contributions of this thesis. We dis-
cuss centrality in the context of the theory of measurement in Chapter 6 and
motivate an alternative approach based on positions in networks. The consid-
erations in Chapter 6 lead to a re-conceptualization of centrality by a form of
dominance in networks. This approach is formally introduced in Chapter 7. In
the course, we introduce a general framework to derive indirect relations in
graphs with the algebraic structure of semirings. In Chapter 8, we present a
class of graphs which are uniquely ordered, i.e. all centrality indices induce
the same ranking of nodes. This class is used to explain correlations among
centrality indices in Chapter 9. Chapter 10 is devoted to applications of our the-
oretical results. We derive further forms of dominance in graphs and illustrate
how the concepts of dominance can be used in empirical work. We investi-
gate a set of small graphs and also reconsider the application of centrality in
systems biology with newly developed methods.

In Chapter 11 we give final concluding remarks and discuss the provided
contributions.

Parts of the thesis have already been published or presented at various confer-
ences.

Results of Section 5.3 are submitted [171].

Results of Section 5.5 are published in [170].

Results of Chapter 7 are submitted [173].

Partial Results of Chapters 7 to 9 are published in [172].

Results of Chapter 9 have been presented at the Sunbelt Conference 2014.






CHAPTER 2

Preliminaries

MATHEMATICAL CONVENTIONS

We use common notations for the set of natural and real numbers, where IN =
{1,2,...}and Ny = {0, 1, 2,...}. The set of all positive real numbers including
zero is denoted as Ry .

Matrices are generally denoted with capital letters and an entry (i, ) of a
matrix A is addressed by A;;. The identity matrix I is defined as

[ 1 u=vo
7710 otherwise.
For general diagonal matrices D € R™" we use the shorthand notation
diag(Dn, Dzz, ey Dnn)'

Vectors are expressed in bold lowercase letters where the ith entry of a
vector x is either addressed with x; or x(7). The all ones vector of length  is
denoted as 1,,. We define | = lnlz to be the all ones matrix.

GRAPH THEORY

Throughout the thesis we will make use of standard graph-theoretic nota-
tions [27,195].

GRAPHS. A graphisan ordered tuple G = (V(G), E(G)) consisting of a set
of nodes or vertices V(G) = {v1, va,..., vy} withn = |V| and a set E(G) =
{e1, ez, ..., em} with m = |E| of edges or ties. In empirical settings, we also
refer to nodes as actors and entities and edges as relations or ties among actors.
Vertices are denoted in subscript notation v; where i € {1,..., n} if they are
treated as sequences. Otherwise we use i, j, u, v, sand t to denote specific
vertices. Edges are commonly referred to in set notation providing the par-
ticipating vertices. If the graph is clear from the context, we use V and E for
simplicity.
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A graph is called undirected if the edge set consists of unordered pairs, i.e.

E={{uv}:uveV}C <Z>

If {u,u} ¢ E for all u € V and multiple edges between two vertices are forbid-
den, we speak of a simple graph. The density of an undirected simple graph is
given by

p(G) = @

Other notions of graphs stem from different conceptualizations of the edge
set. A graph is directed if edges are ordered tuples, i.e.

E={(uv):u,veV}CVxV.

A graph is weighted if there is a function w : E — R assigning weights to the
edge set. The tuple G = (V, E, w) then describes a weighted graph.

In the main part of this thesis, we will only deal with simple undirected
and unweighted graphs which we simply refer to as graphs for brevity.

Two vertices u and v are said to be adjacent if {u,v} € E. The neighborhood
of a vertex u is the set of all adjacent vertices, i.e. N(u) = {v : {u,v} € E}
and N[u] = N(u) U {u} its closed neighborhood. The degree d, of a vertex
u is defined as the cardinality of its neighborhood. The degree sequence of a
graph is then defined as d(G) = [dy,dy,...,d,]. Henceforth, we assume that
this sequence is ordered non-increasingly, i.e. d; > -+ > d,,.

GRAPH STRUCTURES. Asubgraph H = (V(H),E(H))of G = (V(G),E(G))
is a graph where V(H) C V(G) and E(H) C E(G). A subgraph H is called
induced if for all u,v € V(H) it holds that {u,v} € E(H) <= {u,v} € E(G).

An induced subgraph H is a clique if it is complete, i.e. {u,v} € E(H) for
all u,v € V(H). Cliques with n vertices are denoted by K,,. An independent set
I C V(G) induces a subgraph H = (I, E(H)), where E(H) = Q.

A graph is called a split graph if its vertex set V can be partitioned into
V = CU I, such that C induces a clique and I induces an independent set.

A graph is called bipartite, if its node set can be divided into two disjoint
independent sets V7 and V3, i.e. V = V; UV, and edges only connect vertices in
V1 to vertices in V5. Other notable (sub)graph structures and their denotation
used in this thesis are shown in Figure 2.1.

T>_<T T_T T T T
o—e o—eo o—eo ° °
Ky Cy Py 2K,

FIGURE 2.1: Examples for simple graph structures.
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MATRICES. The connectivity of a graph can be represented by an adjacency

matrix A, where
1 {u,v} €E
Auv = .
0 otherwise.

The adjacency matrix of a graph G is symmetric and irreducible if G is undi-
rected and connected and therefore has real eigenvalues with a set of orthonor-
mal eigenvectors. The spectral decomposition of A is given by

A= XAXT,

where A = diag(A1, Ag, ... A,) is the diagonal matrix of eigenvalues with
A1 > Ay > ... > Ay, and X = [x X2 ...x,] are the corresponding eigenvec-
tors.

The spectral gap is commonly defined as the difference between the princi-
pal and the second largest eigenvalue, i.e. [A; — A;|. In the course of this thesis
we make use of the fraction Ay /A4 to limit the spectral gap on the interval [0, 1].
The fundamental weight w; of an eigenvector x; is defined as

w; = ixi(]')
=

and w is the vector of all fundamental weights [189].
Another matrix associated with graphs is given by the Laplacian matrix L.
Its entries are defined as

dy, u=v
Liw=4-1 {u,v}€E
0 otherwise.

TRAJECTORIES AND DISTANCES. A walk of length k € IN in a graph G is
defined as an alternating sequence

v, {v0, 01}, v1, {v1,02}, -+, Ok—1, {Vk—1, 0k}, Uk

of k + 1 nodes and k edges. A walk is called a trail if all edges are pairwise
distinct. A walk with vy = s and v = t is called (s, t)-walk. A walk is closed if
09 = Uk.

The number of (s, t)-walks of certain lengths can be calculated by powers
of the adjacency matrix, i.e. the entry [A¥]; gives the number of (s, t)-walks of
length k [87]. Any (s, t)-walk can also be thought of as a random walk. Starting
at vertex s, one of its neighbors is chosen uniformly at random and the random
process is continued with the chosen vertex until the destination f is reached.

A pathis a walk where all vertices are pairwise distinct. A path that connects
s and t with a minimal number of edges is called a shortest path or geodesic and
the length of a shortest (s, t)-path is defined as the distance between s and ¢,
denoted by dist(s, t).

Two (s, t)-paths are vertex disjoint if the set of intermediary vertices does
not overlap. Similarly, two (s, t)-paths are edge disjoint of the edge sets of the
paths do not overlap.
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A graph is connected if there exists a path between all pairs of vertices.
Otherwise, the graph is disconnected and is composed of several connected
components.

ORDER RELATIONS

A binary relation = on a set /' is defined as a subset of the Cartesian product of
N, ie. =C N x N.If (a,b) €= we say that a and b are related by =. Instead
of (a,b) € = and (a,b) ¢ = we commonly use infix notation a > b and
a # b. Two elements a,b € N are called comparable if a = b or b = a (or both)
holds. Otherwise they are incomparable. Some important properties of a binary
relation 3= over a set \V are given in Table 2.1.

property  definition

complete all pairs comparable
reflexive a = aholds foralla ¢
irreflexive a 3= aholds fornoa € N/
symmetric a>b <= bi=aforalla,be N
anti-symmetric a>b — b aforalla,be N
transitive ax=b A bx=c = ax=cforalla, b, ce N

TABLE 2.1: Properties of binary relations.

A binary relation is called a preorder if it is reflexive and transitive. A pre-
order is also referred to as a partial ranking. A complete preorder is called a
weak order or ranking.

An equivalence relation is a symmetric preorder. We usually denote an equiv-
alence relation by ~. The equivalence class of an element a € N is defined as
[a] = {be N : a~ b}. The set of all equivalence classes in N w.r.t. ~ is de-
noted by N/ . Two important equivalence relations on graphs are described
in the following.

STRUCTURAL EQUIVALENCE. Two vertices u, v € V are structurally equiv-
alent, if their neighborhoods are identical, i.e. N(1) = N(v), denoted by
u ~ v [30]. A similar form of equivalence is, e.g. given by N[u] = N[v].

AUTOMORPHIC EQUIVALENCE. A more general notion of equivalence is
given by automorphic equivalence. Two vertices u, v € V are automorphic
equivalent if there exists an automorphism 77 : V. — V with 7(u) = v,
denoted by u ~ v. It holds that structural equivalence implies automor-
phic equivalence.

The notation = is reserved for a special binary relation among vertices of a
graph. Commonly we denote a binary relation with >. Its definition is either
given explicitly, or it is obvious from the context.
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CHAPTER 3

The Concept of Network Centrality

“There is certainly no unanimity on exactly what centrality is or its conceptual
foundations, and there is very little agreement on the proper procedure for its
measurement.”

— Freeman,1979

3.1 CENTRALITY INDICES

The purpose of network centrality is to identify important actors or a general
importance ranking in a network. Importance by means of network structures
gives rise to the term structural importance, contrasted to a perceived individual
importance. Structural importance arises from network topological properties
alone, whereas individual importance can potentially be any external attribute
of actors comprising a network. Structural importance is determined by so
called measures of centrality, commonly defined in terms of indicesc : V — R
interpreted as

c(u) > c(v) <= uis more central than v .

Throughout this thesis, we use measure of centrality, centrality measure and
centrality index interchangeably for mappings ¢ : V — R which determine
structural importance.

Since the meaning of structural importance is by no means unambiguous, a
vast amount of different indices exist (cf. Figure 3.1). In addition, any mapping
¢ : V — R induces a ranking of the vertices, but not every such ranking might
represent a plausible concept of structural importance. Several possibilities to
narrow down the number of feasible indices are presented in Section 3.2.

In the following, we introduce some of the standard, or most commonly
used measures of the literature, their variants and formal connections among
them. At this point, we restrict ourselves to the graph-theoretic notations. The
intuition behind indices and their general applicability are discussed in more
detail in Section 3.2. Additionally, we only present the definitions for undi-
rected graphs. However, most of the indices can be transferred to directed

11
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FIGURE 3.1: Stylized table of centrality indices from the literature.
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networks and other graph classes like ego networks [132], hypergraphs [26, 67],
affiliation networks [69], and weighted graphs [152] or to quantify centrality of
edges [110]. Further, there exist notions of group centrality which quantifies the
centrality of subsets of nodes [68]. We also do not discuss methods to standard-
ize or normalize scores as well as the concept of graph centralization [75,195].
For details of any of the mentioned concepts, please refer to the corresponding
literature.

REMARK. Although centrality is defined by real valued mappings, we effectively
only deal with the induced rankings in the majority of applications and the actual
scores play a secondary role. The scale of measurement is discussed in depth in the
second part of the thesis. For now it suffices to note that we can alter certain definitions
of indices, e.g. by dropping scaling factors or constants, without altering the induced
rankings.

DEGREE CENTRALITY is the most simple form of a centrality index. It is
defined as

cg(u)=dy, .

Degree centrality is a purely local measure since it only depends on the direct
neighborhood of a vertex. A simple application example is popularity in friend-
ship networks, i.e. “‘who has the most friends?’. It is among the only indices that
can be directly applied, since it does not require any form of transformation,
e.g. calculating shortest paths.

BETWEENNESS CENTRALITY was introduced by Freeman [74] and An-
thonisse [6], based on Shimbel’s stress centrality [175]. Shimbel assumes that
the number of shortest paths containing a node u is an estimate for the amount
of ‘stress’ the node has to sustain in a network. In this sense, the more shortest
paths run through a vertex the more central it is. Formally, stress centrality is
defined as
Cstress(”) = Z O'(S/t|u) ’
steV

where o(s, t|u) is the number of shortest paths from s to t passing through u.
By convention, we set o (s, t{u) = 0if u € {s,t}. Instead of the absolute num-
ber of shortest paths, betweenness centrality quantifies the relative number of
shortest paths passing through a vertex u. This relative number is given by

o(s, tu)

5(s, tu) = o5,

where 0 (s, t) is the total number of shortest paths connecting s and ¢. If s = ¢
we set 0(s,t) = 1. The expression d(s, t|u) can be interpreted as the extent to
which u controls the communication between s and t and is also referred to as
shortest path dependency of s and t on u [34]. Betweenness can thus be defined

as
cp(u) =) 6(s,tlu).

steV

13
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We can further break down the definition by defining a dyadic dependency of a
sender s on a broker u as

=) (s tu). (3.1)

teV

The betweenness of a broker u is then given as the sum over all possible senders

s, 1.e.
=Y (slu).
seV

The interpretation of betweenness is not only restricted to communication.
More generally, betweenness quantifies the influence of vertices on the trans-
fer of items or information through the network with the assumption that it
follows shortest paths. Many different variants of shortest path betweenness
have been proposed to incorporate additional assumptions, e.g. the specific lo-
cation of a vertex 1 on a shortest (s, t)-path or its length. Some of these variants
are given in the following.

(i) proximal source:  cps(u) = Y (s, tu) - Ays
s, teV
(ii) proximal target: cpe(u 2 S(s, tu) - Ayt
s,teV
(iii) k-bounded distance: cp (1) = Y 5(s, t|u) Laist(s 1)<k
steV
. O(s, tlu)
(iv) length-scaled: Cpa(u
& sgV dist(s, t)
. dist(s,u)
v) linearly-scaled: cpr (u o(s —_—
(@) y S;V dist(s,t)

where

0 otherwise.

1 dist(s,t) <k
lldist(s,t)gk =

Details of these variants can be found in [35]. Other variants of the general
betweenness concept rely on different assumptions of transfer in networks
besides shortest paths.

A measure by means of network flow was defined by Freeman et al. [79].
The authors assume information as flow and assign to each edge a non-negative
value representing the maximum amount of information that can be passed
between the endpoints. The aim is then to measure the extent to which the
maximum flow between two vertices s and ¢ depends on a vertex 1. Denote by
f(s,t) the maximum (s, t)-flow w.r.t. constraints imposed by edge capacities
and the amount of flow which must go through u by f(s, t|u). Similarly to
shortest path betweenness, flow betweenness is then defined as

Zfst|u

steV



Chapter 3. The Concept of Network Centrality

The value of f(s, t|u) can be determined by erasing u from the graph G. Denot-
ing with f(s, ) the maximum (s, t)-flow in the resulting graph G — u, it holds
that f(s, t|u) = f(s,t) — f(s,t).

The index was introduced as a betweenness variant for weighted networks
but can be readily applied to unweighted networks. In the case of simple undi-
rected and unweighted networks, the maximum (s, f)-flow is equivalent to the
number of edge disjoint (s, t)- paths and f(s, f|u) is the minimum number of
such paths u lies on [72].

Yet another variant was proposed by Newman [144]. His random walk be-
tweenness calculates the expected number of times a random (s, t)-walk passes
through a vertex u, averaged over all s and t. Newman shows, that his variant
of betweenness can also be calculated with a current-flow analogy by viewing
a graph as an electrical network. Random walk betweenness is then equiva-
lent to the amount of current that flows through u averaged over all s and ¢.
Thus, his measure is also known as current flow betweenness. Details and formal
definitions of his versions can be found in [38,144].

All variants of betweenness can be described in a more general form con-
sidering a flow of information analogy. Depending on the assumption of how
information is ‘flowing’ between a sender s and a target t, the set P(s, t) con-
tains all possible information channels to transmit the piece of information.
This set might contain all shortest (s, t)-paths if the information has to be trans-
mitted as fast as possible or all random (s, t)-walks when the delivery time
does not play any role. Basically any kind of trajectory on a graph can be
thought of as an information channel. The set P(s, t|u) contains all information
channels where the vertex u is in a position to control the information flow.
For shortest path betweenness, u is in a controlling position if he is part of
an information channel and for proximal target betweenness if it presents the
information to the target . In the former case P(s, t|u) comprises all elements
of P(s,t) that contain u as an intermediary and in the latter all elements that
contain the edge {u, t}. Again, the position of control could be defined as any
location on a trajectory. A measure of relative betweenness is then defined with
aggregation rules over the two specified sets, commonly the fraction of their
cardinalities. This fraction can also be weighted according to specified rules,
e.g. as in length scaled betweenness. Aggregating over all possible sources and
targets, we can define a generic betweenness index as

Chg(u) = Y m ~w(s,t),

s, teV

where w(+) is the weighting function. Table 3.1 shows the presented between-
ness variants categorized by information channels and position of control.

Many other variants are possible, e.g. k-betweenness mentioned in [32],
where P(s,t) is the set of all (s, t)-paths of length at most k.

CLOSENESS CENTRALITY was first mentioned in the work of Bavelas [14]
and later formally defined by i.a. Sabidussi [169]. It is defined as the reciprocal
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Information channels Position of control Weighting Index

P(s,t) P(s, tlu) w

shortest paths any intermediary 1 cp(u)
any intermediary pr ( i) Cpg (1)
any intermediary L;llsstt((s t)) cpr(u)
any intermediary Laist(s 1)<k cpr (1)
first intermediary 1 Cps (1)
last intermediary 1 cpe (1)

edge disjoint paths any intermediary 1 cr(u)

random walks any intermediary 1 Crwp (U

TABLE 3.1: Categorized measures of existing betweenness measures.

of the sum of the distances of a vertex to all other nodes in the network, i.e.

1
Y dist(u,t)

teV

ce(u) =

Vertices in a network are thus considered more central if they have a small total
distance to all other vertices in the network. By definition of graph-theoretic
distances, closeness is ill-defined on unconnected graphs. A close variant ap-
plicable to both connected and unconnected graphs is given by

) = ) i) dzst

This variant was proposed by various researcher. Among the first are Gil-
Mendieta & Schmidt who refer to it as power index [85]. Rochat later introduced
it as harmonic closeness [165].

It has long been suggested, that closeness and betweenness are dual to each
other. Brandes et al. [37] show that

Yo op(u) =Y (dist(s,t) —1) = Y (cc(s) "' —1).

ueV steVv seV

Therefore, betweenness is a redistribution of aggregated closeness values (or
vice versa). Additionally, it holds that

Y 6(s, tlu) =dist(s,t) — 1

ueV

and thus
(ce(s) ™ =(n—1)= Y o(s|u).
ueV
The proofs and further theoretical considerations can be found in [37]. Defining
a matrix M with entries M, = 6(s|u), we observe that betweenness is defined
as column sums and closeness as row sums, illustrating a form of duality
between the two measures.
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As in the case of betweenness, many different variations of closeness have
been proposed, mostly to correct for the fact that the ‘classical” closeness is not
properly defined on unconnected networks. Valente & Foreman [187] intro-
duce integration as an index which measures how well a vertex is integrated in
a network. It is defined as

_ Yiey(diam(G) + 1 — dist(u,t))
N n—1

Cii’lt (u> 7
where diam(G) = maxg ey dist(s,t) is the diameter of the graph. Since the
diameter is a constant, we can omit it from the calculations without altering the
induced ranking. The same holds for the denominator. We can thus redefine

integration as
Cint(u) = — ) dist(u,t),
tev
which yields a ranking close to harmonic closeness and on connected graphs
also as the classical closeness. Although integration purports to measure the
integration of a node in a graph, it effectively measures the same as closeness
in terms of rankings.

Many other variants of closeness exist, e.g. random walk closeness [151],
which can also be found in [110]. However, these variants are not vital for
the remainder of the thesis.

A variant of particular importance in the upcoming parts of the thesis was
defined by Stephenson & Zelen [180]. Their information centrality is based on
counting all paths between two vertices and the edge overlap among these
paths. Having all paths at hand, a matrix is formed that contains the lengths
of all paths on the diagonal and the overlap on the off diagonal entries. This
matrix is inverted and a harmonic mean of each row is formed.

The authors interpret this procedure from an information-theoretic point
view. They argue that the information content of a path is inversely propor-
tional to the length of a path and the edge overlap represents a covariance
among paths.

Stephenson & Zelen show, that the calculations actually do not have to be
performed explicitly but can be derived by inverting a matrix C = (L + )71,
where L is the Laplacian matrix and | the matrix of all ones. With the matrix
C, information centrality equates to

T—zR)‘l

Cinf(u) = <Cuu + 1

where . ;
T - Z C'UU al‘ld R - Z Cuv .
v=1

v=1

By definition of the Laplacian matrix, we observe for the matrix B = L + ] that

n
Y Biw=n VueV
v=1

17
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holds, implying for its inverse C = B~! that
1

Z Cuv = — Vu € V .
n

The term T_HA is thus a constant for all vertices in the network and we can
define information centrality to be

1
Cinf(u) = Cuu 7

without altering the induced ranking.

The interpretation of the index is not straightforward and its underlying in-
tuition is commonly not understood. Brandes & Fleischer offer an explanation
with a current-flow analogy [38]. The index can be interpreted as the harmonic
mean of the effective resistance towards a vertex u. Hence, information cen-
trality can also be referred to as current-flow closeness.

EIGENVECTOR CENTRALITY was introduced by Bonacich [24] and is part
of the category of feedback centralities. Measures in this class assume that the
centrality of a node is conditional on the centrality of its neighbors. Nodes are
highly central if they are connected to other highly central nodes. If we define
the centrality of a vertex as the sum of the centrality scores of its adjacent
vertices, we obtain
ce(u) = Z Aupce(v) .
veV

The centrality scores can be calculated by solving the system of equations
y = Ay, which, however, only has a solution if det(A — I) = 0. Instead, we
solve the eigenvalue problem Ajy = Ay, where the principal eigenvalue is
chosen since the entries of its associated eigenvector have the same sign. The
solution is therefore given by the eigenvector x; and eigenvector centrality is
thus defined as

ce(u) = x1(u).

The principal eigenvector can also be computed with the power iteration by
repeatedly multiplying A to an arbitrary vector by until convergence, i.e.

Ay ko

U
Since an entry [AX],, is the number of (1, v)-walks of length k, eigenvector
centrality of a node u can also be seen as the limit proportion of walks of the
same length starting at u.

Results of eigenvector centrality on graphs with poorly connected dense
clusters are difficult to interpret. In this case, the eigenvector will draw most
of the weight to one cluster and conceal the actual importance of nodes. The
index is thus best applied to graphs with a core-periphery structure. Ideally, the
vertex set of a graph can be partitioned into two subsets, one inducing a clique
(the core) and the other an independent set (the periphery). The eigenvector
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x1 then puts the majority of weight as anticipated to the core. To measure how
close a graph is to this idealized structure, we can use Everett & Borgatti’s
p-measure [31], defined as

p= Z AupCiCo,
ueV

where ¢, € [0,1] is the coreness of a node. The larger p is the more concentrated
is the graph and so, closer to an ideal core-periphery structure. When dealing
with unconnected graphs, eigenvector centrality should be calculated for each
component separately and then scaled by the size of the component.

Google’s PageRank is undoubtedly one of the most famous adaptations of
eigenvector centrality for directed graphs [153]. It is defined as

)= ¥ o,

veEN"(u) d;’r

where N~ (u) is the incoming neighborhood of u, d; the out-degree of v and
« a damping factor, commonly set to 0.85. Although PageRank is attributed to
the work of Page & Brin, an equivalent index was already introduced in 1990
by Friedkin & Johnson [82,83].

A feedback centrality dating back to 1953 was introduced by Katz [103].
Similarly to eigenvector centrality, all walks emanating from a node u are
summed up but longer walks are penalized by an attenuation factor «. For-
mally, Katz status is defined as

Cratz (1) = i Z ‘Xk[Ak}uzw

k=1veV

In order for the series to converge, « has to be chosen such that it is smaller
than the reciprocal of the largest eigenvalue of A. In this case, Katz status can
be calculated with the closed form

crars(u) = | (1= wA) 11,

A close variant is Bonacich’s B-centrality, whose definition also allows for a
negative attenuation factor g [24]. It is given by

Cop() =a Y Y BA e,

k=1veV

u

where « is merely a scaling parameter, such that it can be omitted without
altering the induced ranking. With |B| < )%1, a closed form is given by

cup(it) = [(1—/3A)*1A-1n)h

Katz status and eigenvector centrality can be considered as positive feedback
centralities, since the centrality of a vertex is higher if it is connected to other
vertices with a high centrality score. In contrast, Bonacich’s B-centrality with
a negative B is a negative feedback centrality, since vertices are considered
central, if they are connected to vertices with low centrality score. This kind of
centrality is particularly of interest in bargaining situations since bargaining
power comes from being in a better position than negotiating partners.
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SUBGRAPH CENTRALITY was recently introduced by Estrada & Rodriguez-
Velazquez [66]. It is closely related to eigenvector centrality and Katz status,
since it also involves counting walks. The difference is that only closed walks
are considered and longer walks are inversely weighted by the factorial of their

length, i.e.
4.,

k!

ngk:

cs(u) =

k=0

The weighting by factorials is a convenient choice since it guarantees conver-
gence of the series. Its closed form is given by the matrix exponential, such
that

cs(u) = [e”]
Estrada & Rodriguez-Velazquez also consider variants, where only walks of
even or odd length are summed up, giving rise to odd subgraph centrality and

even subgraph centrality defined as

o [ . [

— uuy
Coe = )

and c¢5 =
= (20! %0 k;)

uu-

uu

(@K

All three measures can also be expressed with the spectral decomposition of
A. With the closed forms

o 42k o 2k+1
cosh(x) = and sinh(x) = S
&) kg(Zk)! ) k;)(2k+1)!

we obtain the following spectral forms of all three subgraph variants:
< A
cs(u) = Z e ijz(u)
j=1
n
Cse(u) = Zcosh()\j)x?"(u)
j=1

Cso(u) = isinh(Aj)x?(u) ,
i=

where x;(u) is the uth entry of the eigenvector x; associated with the eigen-
value )\j. The proof can be found in [66].

A close variant called bipartivity was introduced by the same set of au-
thors [65]. In bipartite graphs, all closed walks have even length, such that a
measure of the ‘bipartiteness’ of a vertex can be defined as

o Cse(u) jgl cosh(2;)}(w)
Cblp(u) - cs(u) - o )
gle !xj(u)
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In a bipartite graph, all vertices have a bipartivity score of 1.

Instead of only considering closed walks, Benzi & Klymko’s total commu-
nicability quantifies all walks starting at a vertex u, with the same weighting
scheme as subgraph centrality [15]. The index can equivalently be defined as
a series, its closed form and in spectral form as

Sy
th(u) — Z Z 0 o
k=0veV
cre(u) = Z [E ]uv
veV
cre(u) = ie)‘f <i xj(v)> xi(u) .
j=1 v=1

Both, subgraph centrality and total communicability also exist in parame-
terized form [16], i.e.

00 k
CE(M) — kgo ['Bi!]uu — [e‘BALm
0o k
s x P v,

veV

where B € R It was shown that the parameterized forms, in the limit cases
of B, interpolate between degree and eigenvector centrality, that is
B—0+ B—roo
cal) = che(w) = o)

ca() ' ) S colw)

holds for all u € V. The proofs can be found in [16].

The concept of indices based on the matrix exponential has also been used
to define a betweenness measure called communicability betweenness [64].

Interpretations for indices based on the matrix exponential for social set-
tings are not straightforward and mainly stem from analogies drawn to physi-
cal processes. According to the authors of total communicability, the weighting
scheme with factorials allows for a physical interpretation by continuous-time
quantum walks. The communicability between nodes s and t represents the
probability that a particle starting from s ends up at t after wandering on a
graph “due to the thermal fluctuation” [64, p. 6]. This thermal fluctuation can
be seen as a form of random noise and thus the particle as an information
carrier in a network.

3.2 CONCEPTUALIZATION OF CENTRALITY INDICES

An immediate restriction imposed on centrality indices from a graph-theoretic
point of view is that they should only depend on the structure of the network.

21
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This implies that structural or, more general, automorphically equivalent vertices
should always be equally central [110]. Little to none, however, is known about
other shared or defining properties of centrality indices such that measures
could be defined arbitrarily. Several attempts have been made to delineate and
break down the space of indices, which are discussed in this section.

Freeman’s Conceptual Clarification

Freeman’s seminal work of 1979 constitutes a first successful effort to establish
a clear concept of network centrality [75]. He recognized the inherent ambi-
guity and tried to resolve conceptual issues. Freeman reduced the already
existing abundance of measures to the following three competing concepts of
centrality using communication in human groups as analogy.

DEGREE asan indicator of communication activity. An actor with high degree
is “in the thick of things” [75, p. 219]. Actors with low degree are seen as
peripheral, isolated from any ongoing communication processes.

BETWEENNESS as indicator for control of communication. A person with
a high betweenness score can influence a group by distorting or with-
holding information that is being transmitted via shortest paths. A low
betweenness score, on the other hand, limits the potential of being influ-
ential.

CLOSENESS as an indicator of efficiency or independence. An actor with a high
closeness score has a low distance to all other actors, so that he or she
does not depend on others as intermediaries for information. Being at
long distance to others makes actors more dependent on intermediaries
to obtain information.

For each concept, Freeman states several alternative of the literature, pointing
out that those are “often unnecessarily complicated” [75, p. 220], “absolutely
unintelligible from any theoretical perspective whatever” [75, p. 220] or “tend
to add unnecessary and confusing complications that make them difficult to
interpret” [75, p. 225]. Having these statements in mind and looking at the pre-
sented indices which mostly emerged after his work, it becomes apparent that
his efforts were not thoroughly acknowledged. His work is mainly perceived
as the introduction of degree, betweenness and closeness as centrality indices.

Axiomatization of Centrality Indices

The objective of an axiomatization should be to understand and to describe as
completely as possible the implications of a list of properties, i.e. the axioms.
Historically, many disciplines profited and substantially advanced by introduc-
ing axiomatic systems to a common problem. The Von Neumann-Morgenstern
utility theorem in decision making [140], Arrows impossibility theorem in social
choice theory [8] and axiomatic systems for bargaining theory [166], to name
just a few outside the scope of modern and ancient mathematics.
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Numerous attempts have been made to formalize the concept of central-
ity by introducing a system of axioms. Ideally, a combination of axioms de-
scribes the behavior of centrality indices to an extent that facilitates interpreta-
tive statements about centrality rankings and aids in the selection of indices.
Sabidussi’s [169] seminal work appears to be the first along these lines, and
many others have followed [20,109,116,146,147,168,188].

The different approaches mostly follow similar guidelines. Axioms are cho-
sen to be desirable, or intuitively plausible properties of indices under graph
transformations such as adding or switching edges, e.g. adding an edge to a
vertex should never decrease its centrality score [169]. Axiomatic approaches
under this premise are typically restrictive, i.e. the investigation of whether
indices are valid according to the axioms often only leaves a few possibilities
(cf. Table 3.2), demonstrated with simple counterexamples [108].

Sabidussi [169] Ruhnau [168] Landherr [116] Boldi [20]

degree yes no no no
betweenness no yes no no
closeness no no no no
eigenvector no yes no no
Katz status no ? yes no
harm. closeness no no no yes

TABLE 3.2: Axiomatic systems and whether indices fulfill all axioms.

Although axiomatic systems seem to be well-defined, it does not suffice to
justify the exclusive focus on indices fulfilling those. As the literature shows,
there are many ideas about intuitive plausible that favor different indices, yet
none are general enough to encompass the concept as a whole. This impedes
general theorems about network centrality and sometimes only shifts the focus
from the definition of indices to the definition of axioms.

Centrality indices generally behave very inconsistent under edge transfor-
mations so that finding a common ground of how scores change is virtually
impossible. As we have pointed out before, however, actual scores do not play
a role in applications. We could allow for score variations as long as it does not
alter the ranking. Therefore, if we seek for an axiomatic system it should focus
on the induced rankings instead of the function values.

After all, some axiomatizations may well serve as representational theorems
of certain groups of indices [3,109].

Classification of Indices

The classification of indices is more conceptually oriented. It provides terminol-
ogy and intuition to reason about the features embodied in centrality indices
and relates formal definitions with substantive motivations. Mentionable work
in this line are the frameworks provided by Borgatti [28] and Borgatti & Ev-
erett [32].
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BORGATTI'S FRAMEWORK is based on network flows. He argues that cen-
trality indices measure different kinds of traffic flowing through a network
which can be categorized along two key dimensions. The kind of trajectory
the traffic follows (shortest paths, walks, etc.) and its dyadic diffusion mech-
anism (parallel duplication, serial duplication, or transfer). Simple examples
are described in the following.

TRANSFER OF MONEY. A banknote is passed around randomly within an
economy. It does not follow prescribed routes and can easily move sev-
eral times between two individuals. In graph-theoretic terms, the ban-
knote traverses the network via walks. Since it is additionally indivisible,
the dyadic diffusion process is a transfer.

Gossip. Typically, gossip is told to various individuals but one at a time
confidentially. The story can thus be familiar to many people at the same
time. Unlike a banknote, it usually does not traverse the same edge twice
but can reach an individual several times via different edges. It thus
follows trails in the network and it diffuses with a serial duplication.

PACKAGE DELIVERY. A package should be delivered in the fastest way
possible. In a network of roads as edges and intersections as nodes, the
driver selects the shortest rout possible to its destination. Therefore, the
package is transferred via shortest paths.

Borgatti uses additional examples and simulates these processes to determine
which centrality index models it the best. His resulting categorization of in-
dices can be found in Table 3.3. Borgatti notes that although indices are distinct,

Parallel Serial Transfer
duplication duplication

Geodesics Closeness Closeness
Betweenness
Paths Closeness
Degree

Trails Closeness
Degree

Walks Closeness
Degree
Eigenvector
Katz status

TABLE 3.3: Flow processes and centrality by Borgatti [28].

they quantify similar outcomes in terms of network flow and many of the con-
sidered flow process are not covered by any index. In particular the ones he
considered the most important, gossip and infection, are not summarized by
any existing index.
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BORGATTI & EVERETT'S FRAMEWORK is purely based on graph-theoretic
notions. They show that the assessment of a nodes involvement in the walk

structure of a graph is a unifying property of several indices. They identified

four dimensions which can be used to distinguish between centrality indices:

the considered walk type (e.g. geodesic or edge disjoint), the walk property

(volume or length), the walk position (radial or medial, see also Figure 3.2) and

the summary type (e.g. aggregation or mean). The classification according to

walk position and property is given in Table 3.4.

LN,

.\\ 4 >
radial medial

FIGURE 3.2: Illustration of walk positions.

Radial Medial

Volume degree betweenness
eigenvector
Katz status

Length closeness
information

TABLE 3.4: Walk involvement and centrality by Borgatti and Everett [32].

Both frameworks provide certain guidelines for empirical research and
prove helpful to answer the question ‘which index to choose?” in applications.
Measures that fall in the same category can potentially be used interchangeably
and one can reasonably ask which performs best. However, the frameworks
do not allow for sharp distinctions and provable statements.

A Spectral Framework for Centrality Indices

In Section 3.1, we saw that many indices can be defined in terms of the spectral
decomposition of the adjacency matrix of a graph. From a more general point
of view, any vector in a n-dimensional space can be written as a linear com-
bination of orthogonal vectors that span the space. In the case of graphs, an
orthogonal basis is formed by the eigenvectors X. Each vector y in the space
spanned by X can be written as

n
y =) 1%
j=1

where 7; are real-valued scalars. Let ¢ = (c(u1), c(u2), ..., c(un)) be the
vector of centrality scores of an arbitrary index ¢ : V — R . Since centrality
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indices are defined with the adjacency matrix A, we conjecture that it should
be possible to express ¢ as a linear combination of eigenvectors of A, i.e.

n
Cc = Z rjx]-.
j=1

It remains to determine the coefficients r;. A trivial case is eigenvector central-
ity, where r; = 1and ri =0 foralll <j < mn.

A spectral form for degree is derived in the following. Since degree can be
defined as the row sums of the adjacency matrix, its vector can be written as

cg = A1, = XAX"1, = XAw .
In summation form we have
n
Cj = 2 A]-w]-xj,
j=1
A more general approach is given in the following theorem.

Theorem 3.1. Let f : R™" — R™" be a matrix function defined as a power series
FX) =Y Xk
k=0

Further, let ¢ : V. — R be an arbitrary centrality index. Then, the following statements
hold true.

(i) ¢ = f(A)l, < c(u) = 'fl Fwixi(w)  Vuev
£
(ii) ¢ = diag(f(A)) < c(u) _é fADR@w)  Vuev

Proof. The proof for both statements is straightforward due to the following
known equality [136,150]:

f(A) = F(XAXT) = XF(A)XT .

Therefore,
c=f(A)1, = Xf(A)X"1, = Xf(Aw.

The centrality score for a vertex u is then the uth entry of ¢ and we can write

forallu € V.
For indices based on the diagonal entries we have

diag(f(A)) = diag(Xf(A)XT)
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and thus for the centralities scores it holds that
n
c(u) =Y f(Aj)xF(u)
=1

forallu e V. O

The theorem implies, that if we know the function f for centrality indices,
we can represent them in one of the two described forms. Besides the already
known spectral forms of subgraph centrality and total communicability, we
can also derive a spectral form for Katz status. It holds that

fratz(A) = (I— wA) ™"

The vector of scores is defined as the row sums of the resulting matrix. There-
fore, Theorem 3.1(i) applies and we can write Katz status as

n

1
Cratz (1) = Y ————wix;j(u) .
j:1 1-— 06/\]

The benefit of the spectral representation is that we can compare indices ana-
lytically by how much emphasis is put on individual eigenvectors. For indices
defined as row sums, the weight of the ith eigenvector is given by r; = f(A;)w;.
Since the fundamental weight is independent of the function f, we can solely
focus on f(A;). Figure 3.3 illustrates the functions for degree, Katz status and
total communicability.

1.0-
05-

0.0-

f)/ (M)

05—

>o-

FIGURE 3.3: Weighting functions of eigenvectors for spectral forms of de-
gree(red), total communicability(green) and Katz status(blue). Weights are nor-
malized with the function value of the principal eigenvalue.

Of course, the actual weighting depends on the actual distribution of eigen-
values and is generally not expected to be equidistant as in the considered
example. Yet, we can see that the weighting of Katz status and total communi-
cability is similar so that we expect them to produce similar results in terms of
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vertex rankings. Note that eigenvectors with associated negative eigenvalues
do not play a significant role for these two measures. In contrast, degree puts
negative weights on these vectors.

The example shows the analytic advantages of the spectral forms, however,
we could only derive spectral forms for a small subset of indices. Defining
a function with power series representation for most indices, e.g. between-
ness and closeness, is non-trivial and potentially not possible at all. But we
can establish some analytic connections among indices by means of different
matrices associated with a graph.

The Laplacian matrix with spectral decomposition L = YA(IYT can be
used to derive a spectral representation of degree in diagonal form, i.e.

S

¢y = diag(L) =

\_
i M:
\' N

where the third equality holds since )\SIL) = 0 for all graphs [135].
Another index that can be expressed with the spectrum of the Laplacian is
information centrality. Its vector can be written as

e = diag((L+ )71,

where the inversions must be understood component-wise. Let ZA(B) ZT be
the spectral decomposition of B = (L + J). We can thus write

The eigenvectors and eigenvalues of L and B are closely related by
B L .
)»]():/\](._)1 and zj =y;_ 4 forj=2,...,n

Also AgB) = nand z; = r1, where r € R holds. Since the entries of z; are all
equal, we can omit it from the summation, since it does not alter the rankings.
Thus we obtain

2

n n—1 1
( ]

m}‘ = 2 A(B) ] ;

Observe, that we can now formally compare degree and information centrality
quite easily. We have f;(A;) = A, for degree and fi,r(A;) = 1/A; for the inverse
values of information centrality. We thus expect a very high rank correlation
between the two measures, which we show to be true in Chapter 9.

Unfortunately, the spectrum of the Laplacian and the adjacency matrix are
seemingly unrelated. The same holds true for the distance matrix which can be
used for a spectral form of closeness. If a connection would exist, e.g. there is a
function g : R"*" — R"*" such that g(A) = L, we could express all centrality
indices by means of the eigenvalues and eigenvectors of the adjacency matrix.
This would greatly facilitate the formal comparison of indices since we would
have a general framework for all indices and can establish analytic connections
with the respective functions.
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Justification of Indices

In the previous subsections, we introduced several existing approaches to con-
ceptualize network centrality. None of them, however, are generally accepted
ways to define the concept of network centrality. In the absence of a formal
basis, researchers mainly rely on two different methods to justify new indices,
which we briefly discuss here and relate them to the topics covered in this
thesis.

STAR PROPERTY. It appears that the only requirement that is both formally
established and substantively accepted is the star property. In the words of
Freeman,

“A person located in the center of a star is universally assumed to be
structurally more central than any other person in any other position in
any other network of similar size.” [75, p. 218]

This statement is frequently invoked as a justification for newly defined indices.
If an index attains the highest value for the center of a star, it can be considered
as a measure of centrality. The argument is certainly intuitively understand-
able, yet there is no analytic justification that it should universally hold true.
In Chapter 7, we provide a formal substantiation for the star property but also
show that it is not decisive enough to distinguish between well-defined and
contrived indices. We introduce a class of networks in Chapter 8, which serves
the purpose as a benchmark for centrality indices unambiguously.

CORRELATION. When new indices are introduced, most often a correlation
analysis with existing indices is performed. Its motivation is given by a general
consensus in the literature, described by Valente et al.:

“If centralities are not highly correlated, they indicate distinctive mea-
sures, associated with different outcomes.” [186, p. 1]

That is, a weak correlation with existing indices justifies the adoption of the
new index since it measures structural importance on a different, or even new
level. The topic of correlation among centrality indices is revisited in Chapter 9,
where we show that the correlation is only weakly, if at all, related with the
definition of indices and strongly depends on the underlying network struc-
ture.

3.3 ILLUSTRATIVE AND MOTIVATIONAL EXAMPLES

We now have a basic understanding of how centrality is measured and we
have seen that there exists a myriad of different ways for its quantification. We
now go through some small examples to point out differences and similari-
ties among indices and motivate later theoretical explorations. Concentrating
on the four most widely used measures degree, betweenness, closeness, and
eigenvector centrality, we start by investigating induced centers, i.e. the vertex
with the highest score on different graphs.
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Four different conceptualizations of structural importance (number of neigh-
bors, distances, dyadic dependencies and limit proportion of walks) may gen-
erate an expectation of obtaining different centers for each index. The graph
on the right in Figure 3.4 shows that this can indeed be the case.

T ]
¢ o
FIGURE 3.4: Krackhardt’s Kite and a graph with four different centers ac-

cording to degree (D), betweenness (B), closeness (C) and eigenvector centrality

(E)

However, centers can also coincide. The graph in Figure 3.4 on the left,
known as Krackhardt’s Kite, was introduced by David Krackhardt to illustrate
the differences between degree, betweenness and closeness [112]. The three
measures all induce different centers, yet if we add eigenvector centrality to
the analysis, its center coincides with the degree center.

The already mentioned star shaped graphs provide the extreme cases for
coinciding centers since all indices should induce the same center. Extreme
examples for disjoint centers are depicted in Figure 3.5. The left graph is the
vertex minimal graph where all four indices induce a different center whilst
the right graph is edge minimal [39].

The presented small graphs with a restricted set of indices already give a
feeling of what is possible on larger graphs. If we can have four centers with
four indices in a graph with ten vertices, it might well be possible to define
indices in a way that any vertex in a graph, reasonably or not, can be considered
as the most central. The situation gets even more complicated by taking the
whole ranking into account.

Figure 3.6 shows a graph with nine vertices, where the ranking of eleven se-
lected centrality indices is extremely discordant. On the other hand, Figure 3.7
shows a nine vertices graph, with no discordance for all eleven cases.

The former example creates the impression, that any ranking is possible
with the proper index, whereas the latter conveys that there is only one concept
of centrality necessary. Admittedly, both graphs are on the extreme ends and
graphs will generally be ‘somewhere in between’. However, they give rise to
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FIGURE 3.5: Redrawn from [39].(a) vertex and (b) edge minimal graphs with
different centers according to degree (D), betweenness (B), closeness (C) and

eigenvector centrality (E).
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FIGURE 3.6: Graph with extreme discordant rankings for eleven different
centrality indices, depicted as parallel coordinates on the right (ranking from
top to bottom).

several questions. What structural properties of graphs lead to one or the other
extreme? How can we incorporate these properties in the concept of centrality?
These and more theoretical questions are tackled later in the second part of
the thesis. In the following two chapters we first deal with the application of
centrality indices in empirical research.

3.4 DISCUSSION

The literature is flooded with centrality indices and new ones are introduced
on a regular basis. This poses severe problems in empirical research, since
possibilities are endless to pick a suitable measure. Ideally, the substantive
nature of the relations forming the network in question should determine the
appropriate definition of structural importance and so the measure to be used.
That is, none of the introduced indices is superior to others and every mea-
sure can be appropriate for some yet not all questions related to structural
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FIGURE 3.7: Graph with almost unique ranking for eleven different central-
ity indices, illustrated with parallel coordinates on the right (ranking from top
to bottom).

importance. The application of indices should thus be driven by the nature of
the network and the empirical phenomenon in mind. This suggests that the
use of centrality should be seen as a procedure of measurement. Therefore, it is
inevitable to understand what indices are actually measuring. The classifica-
tions presented in Section 3.2 provide guidelines for the most common indices
and confidence for their application. But, as already noted by Freeman in 1979,
many others are mathematically too complex to apply in a non-physical con-
text. Admittedly, many phenomena in nature can be explained by physical
models, e.g. the Navier-Stokes equations describing the motion of fluids, and
even social science make use of methods drawn from physics [179]. In order to
be meaningful, however, the connection of a physical model and an empirical
phenomenon should be evident. It is not immediately obvious, e.g. that par-
ticles wandering on a graph by laws of thermal fluctuation describe a needle
passed around in a drug-user network [16].

In the next chapter, we turn to the actual application of centrality in empir-
ical research. We discuss several important examples from the early stage of
social network analysis and proceed to how centrality is used more recently.



CHAPTER 4

Centrality in Empirical Research

“Triggered by recently available data on large real networks [... ] combined with
fast computer power on the scientist’s desktop, an avalanche of quantitative
research on network structure currently stimulates diverse scientific fields.”

— Bornholdt & Schuster, 2003

4.1 EARLY DEVELOPMENTS AND APPLICATIONS

The foundations for the concept of network centrality were laid in the 1930s
by Moreno’s development of sociometry [139]. In the words of Moreno

“Sociometric explorations reveal the hidden structures that give a group
its form: the alliances, the subgroups, the hidden beliefs, the forbidden
agendas, the ideological agreements, the 'stars’ of the show.” [139]

Moreno studied all kinds of sentiments among individuals within groups and
defined several structures that may arise in this context. Notable structures
for centrality are given in Figure 4.1. His perception of central individuals is
tied to the number of choices, i.e. edges, an individual receives. He defines a
dominating individual, the star, to be an individual who receives at least five
choices.

Although he did not explicitly introduce the term centrality, Moreno was
among the first who made significant contributions for social network analysis
and thus also for centrality.

The original idea of structural centrality was later developed by Bavelas [13,
14] and Leavitt [118] in experiments on communication patterns. Five persons
played a game in which they had to solve a puzzle, where each person is given
a unique piece of information. The participants could transmit information
through predefined communication channels (cf. Figure 4.2) until every person
obtained the solution. The hypothesis was that decentralized communication
given in a circle should be the most efficient structure for solving the problem
and that the centralized wheel should be the least efficient.
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FIGURE 4.1: Redrawn from Moreno’s group structures involving stars [139].
(Left) Two centralized sub-groups with two dominating individuals (white
nodes). (Right) A group in which two dominating individuals are strongly
related, both directly and indirectly.

/\/K\/X

o—eo
Circle Chain Wheel

FIGURE 4.2: Redrawn from Leavitt's communication patterns [118]. While
the circle does not exhibit any centrality feature, the centrality of the white
node increases from the chain towards the wheel.

The results of the experiment, however, were exactly the opposite such that
Bavelas and Leavitt concluded that centralization was the most important as-
pect for organizational communication. The more centralized an organization
is, the better it communicates and performs, at least theoretically. Their concep-
tualization of centrality was based on the distance of each node to all others in
the graph, later formalized as closeness.

Over time, the concept of centrality was applied to research questions be-
yond the scope of communication networks. Pitts investigated the advanta-
geous geographical position of Moscow from a network perspective and its
political fortunes as a consequence thereof [156]. He examined the Russian
trading routes network of the 12th - 13th century with graph-theoretic dis-
tances used as a measure of system effort and Shimbel’s stress centrality. He
found that Moscow can be considered the most central in both measures as
depicted in Figure 4.3. Pitts concluded that this central position may have led
to social and economic advantages associated with the growth of Moscow.

A remarkable centrality study not involving any index was done by Krack-
hardt [113]. Manuel, a new manager in a business unit, implemented some
organizational changes which lead to backlogs in the workflow of the unit.
Looking at the advice seeking network drawn by Krackhardt in Figure 4.4, he
realized the (informal) central position of Nancy and reconstituted some of pre-
vious workflow in collaboration with Nancy. The notable part of the study is
the absence of a quantitative assessment of centrality. One could obviously ar-
gue that Nancy has the highest indegree, or use feedback centrality measures.



Chapter 4. Centrality in Empirical Research

0.06 —

0.04 —

0.02 — oo . .

Fraction of Aggregated Shortest Path Distance
L]

0.00 —

| | | |
0.00 0.03 0.06 0.09
Fraction of Intermediate Node Occurence Rate

FIGURE 4.3: Redrawn from Russian trading routes in the 12th—13th centuries
[156]. (Left) Graph of the trading routes among 39 Russian cities and (Right)
scatterplot of fractions of aggregated shortest path distances and intermediate
node occurrence rate, i.e. stress centrality. The white vertex and circle represent
Moscow.
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FIGURE 4.4: Redrawn from Krackhardt’s hierarchy and advice seeking net-
work [113]. (Left) Formal status hierarchy in a business unit. (Right) Advise
seeking network as an informal status hierarchy. Directed edges according to
‘who do you turn to for work-related questions?’. The network is drawn so
that as many edges as possible point upwards.

But, as Krackhardt explains, “these pictures communicate much more than
any number or statistical results” [113, p. 165]. Additionally, the case study
nicely shows how different structural importance and perceived individual
importance can be.

Over time, centrality indices were more often used as indicators or explana-
tory variables for certain actor attributes. Tsai & Ghoshal hypothesized in a
seminal work that
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“the centrality [betweenness centrality] of a business unit in interunit
social interaction will be positively associated with the level of its perceived
trustworthiness” [185, p. 466].

The association between trustworthiness and betweenness was evaluated by
the correlation of these two actor variables.

Note the different uses of centrality in the study of Pitts and in the work
of Tsai & Goshal. Pitts outlines specific reasons why stress and closeness are
appropriate in his context and argues about their connection to empirical phe-
nomena. Tsai & Ghoshal, on the other hand, purely rely on correlation based
evidence. This correlation approach became prevalent in later studies.

4.2 RECENT DEVELOPMENTS AND APPLICATIONS

The early work on network centrality was reserved for studies in social sciences
and related fields. Towards the end of the 20th century, however, “there was
a revolutionary change in the field” [78, p. 4]. An article about the small-world
effect by Watts and Strogatz [196] and one about scale-free networks by Barabasi
and Albert [9] drew the natural science, specifically physics and biology to
network research and the application of centrality indices. Networks are no
longer exclusively social but rather complex [143].

One of the earliest and also most notable application of centrality in biology
was a study by Jeong et al. of a protein interaction network [101]. They found
that protein lethality can be explained in part by the number of interactions
a protein is involved in. This study led to an exploding number of follow
up studies, where increasingly sophisticated centrality indices were found to
correlate even stronger with protein lethality.

Other applications in biology include metabolic networks [128,192] and
protein folding [190]. The advances in these two research efforts are very much
in line with the aforementioned case. Vendruscolo et al. are among the first to
hypothesize that betweenness centrality is able to pinpoint critical residues in
the folding of proteins [190]. Later, several studies argue that closeness is more
effective in this task [5,42,55].

Ambedkar et al. investigated human protein interactions data to uncover
genes associated with diabetes mellitus [4]. Using 14 different centrality indices,
they report the top 10 genes of all indices as potential drug targets for dia-
betes mellitus. Many others enqueue in this line of research with similar ap-
proaches [111,126,193,205].

In the course of the years, more and more research areas joined the trend of
applying centrality indices to respective research question. In the aftermath of
the financial crises of 2007-08, researchers were concerned with the question
to which extent it is possible to predict systemic risk, i.e. the risk of a default
of the financial system. Battiston et al. were among the first to design an index,
called DebtRank, to identify systemically important financial institutions within
financial networks [12]. Banks are now not only ‘too-big-to-fail’ but also ‘too-
central-to-fail’. Others follow with similar indices, e.g. SinkRank of Soramaki et
al. [177] or the liquidity spreading index of Le6n et al. [120]. Additional applica-
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tions in the financial sector include the building of well-diversified portfolios
to reduce investment risk [159].

Very recently, also cosmic networks “foray into this new arena” of network
science [100, p. 2000]. Centrality indices were applied to an observed galaxy
distribution and Hong & Dey explored whether these tools can be useful for
cosmological and astrophysical studies [100].

4.3 DISCUSSION

The number of applications of centrality in different contexts is ever-expanding
due to the prospect of new insights and hope for the possibility of facilitating
substantial progress. Considering the field of biology, a majority of research
questions can only be answered with time consuming and expensive experi-
ments, which can potentially be simplified through computational efforts. One
of the key applications in biology is the identification of important proteins in
protein interaction networks. The aim is to find potential drug targets to fight
diseases, e.g. the mentioned diabetes mellitus and “if a protein can be consid-
ered in advance as a drug target, the process of drug discovery can be greatly
improved and the cost of experiment can be dramatically reduced.” [126, p. 19].
Applying centrality indices to a protein interaction network can be done with-
out any effort and allows for results in no time.

What is all too often not understood is that network science is not just a
rag-bag of methods but a scientific field by itself [40]. A lot of effort has been
made to formalize concepts for network analysis, yet they are all too often
neglected by researchers outside the field [77] and too much attention is given
to previous anecdotal evidence, although results are promising on first sight.

Many issues are attached to recent studies and the application of central-
ity indices in general. Three crucial points in this context are outlined in the
following.

AVAILABILITY OF DATA. The formation of protein interaction databases
like String [182] Dip [199] and Biogrid [178] simplified the access to mas-
sive amounts of data and potential investigation of protein interaction
networks. This availability, however, involves the risk that we end up
with data-driven hypotheses and/or post hoc theorizing. In the case of pro-
tein interaction data, we have to take several things into account to not
end up with the mentioned fallacies. Interactions among databases are
not consistent since they have different sources, the data contain false pos-
itives, nomenclature issues exist (i.e. different naming schemes among
databases) and the data is incomplete. For these reasons alone, it is not
sufficient to derive results from single datasets without validating them
on others.

On the other extreme, we might be faced with a total lack of data as,
e.g. in the case of banking networks. Financial data is mostly restricted
or highly confidential, such that researchers rely on techniques to pro-
duce networks that are supposed to be similar as the real network [177].
Several models exist to produce random networks, e.g. the Erd6s-Rényi
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model [61,86] for uniform random graphs or the Barabasi-Albert model [9]
for scale-free networks. Although these models possess some features of

real-world networks, they are generally to prescribed to be a decent sub-
stitute of real data and results on these generated data has to be handled

with care.

APPLICABILITY OF CENTRALITY. Network centrality is commonly used

as explanatory, independent, as well as intermediate variable in empir-
ical research. Research hypotheses typically state that the level of some
variable of the network, i.e. vertex attributes like protein lethality or the
risk of default for a bank, is either positively or negatively associated
with some centrality index, constituting a centrality effect. The selection of
a centrality index is usually the weakest part of a research design, as little
reliable knowledge exists that places one index over another. Moreover,
if associations cannot be confirmed empirically, one is at loss. The conse-
quence is that the application of centrality indices all too often culminates
in trial-and-error efforts. A new study uncovers a connection between
a centrality index and an empirical phenomenon and follow up work
engages in a hunt for more effective indices, where choices are purely
made by performance and not with substantiated arguments. Although
the frameworks of Section 3.2 would give some guidelines to reason
about specific choices, the justification is mostly done with an appeal
to common practice by adopting “an “agnostic’ perspective by looking
at some of the common centrality /peripherality measures” [159, p. 2]
or an appeal to authority: “We chose this index because, as Freeman ar-
gued, it is the most suitable centrality measure [...]” [185, p. 469]. If no
suitable index can be found new ones are designed to fit the data or, in ex-
treme cases, hybrid indices are formed with linear combinations “based
on the observation that by using it we constantly obtain better perform-
ing portfolios” [159, p. 7]. This methodology creates the impression, that
applications involving centrality indices are drifting towards the field of
data mining. However, centrality should not be viewed as a data mining
task but rather as a procedure of measurement.

AVAILABILITY OF TOOLS. The effortless application of centrality indices

is due to the vast amount of tools available to perform network analysis.
UCINET!, Gephi?, visone?, Pajek* and CentiBiN, a software specifically
for biological networks [102], all offer the possibility to apply various
indices on networks with a single click. Many indices are defined for
connected and unweighted (or otherwise limited classes of) networks,
but implementations often output results for networks outside of this
scope. Studies need to check carefully whether results obtained from
such analyses are meaningful.

Ihttps://sites.google.com/site/ucinetsoftware/home
’https://gephi.org/

Shttp://visone.info/
“http://mrvar.fdv.uni-1j.si/pajek/
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The preceding points should not be seen as a taunt of the current state of
research connected to centrality but rather address some deficiencies inherent
in the concept. Due to the non-existence of a prevailing definition for centrality,
the degrees of freedom are high enough to permit any kind of explorations
under the pretext of the concept.

We substantiate our allegations by examining the role of centrality in pro-
tein interaction network in its entirety in Chapter 5. We use this application as
a prime example to emphasize current problems since it includes instances of
all three categories.
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CHAPTER 5

Centrality in Protein Interaction
Networks

“The most highly connected proteins in the cell are the most important for its
survival”
—Jeong et al., 2001

FIGURE 5.1: Protein interactions in a cell of Saccharomyces cerevisiae.
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5.1 INTRODUCTION

A remarkable example for the seemingly successful application of centrality in-
dices can be found in the area of systems biology in discriminating proteins by
means of their importance for a cell’s survival. Identifying proteins which are
essential for the survival of a cell with experiments is a time consuming and
expensive process. However, it is a necessity for drug design against diseases
since the knock-off of essential proteins (henceforth also referred to as lethal
proteins) causes death for a cell [46]. Thus, it truly sounds appealing to support
this procedure by applying network analytic methods on the protein interac-
tion network (PIN) to determine structural features shared by lethal proteins.
In a seminal work by Jeong et al., it was indeed found that the lethality status
of a protein can be partially explained by the number of interactions with other
proteins [101]. That is, the higher the degree of a protein, the higher the proba-
bility it causes death of the cell if knocked-off. The study was performed on a
PIN of Saccharomyces cerevisiae (a form of yeast), which is often used as a model
organism, since it is easy to cultivate. The findings led to an exploding number
of follow up studies claiming an even stronger associations between lethality
and different centrality indices and terms like a centrality-lethality hypothesis
and sometimes even a centrality-lethality rule are proclaimed [97].

Comparative studies of existing indices were conducted [62, 63] or new
ones were introduced and specifically designed to correlate with lethality [123,
194]. A different line of research even tried to combine indices in various ways.
Del Rio et al. show, that the correlation can be significantly improved by com-
bining two centrality indices [54]. Chua et al. introduce a probabilistic ap-
proach combining the results of several indices [44]. They use a supervised
technique, i.e. they train and determin the relative importance of each method
according to a set of known lethal proteins. Others make use of a random forest
approach [154].

Although it was already conjectured in [101], that similar outcomes can be
expected for PINs of various organisms, only a few studies dealt with other
organisms like Drosophila melanogaster (fruitfly) and Caenorhabditis elegans (a
worm) [93]. In a recent study, Raman et al. review the centrality-lethality hy-
pothesis across PINs of 20 different organisms [162]. Using a bootstrapping
approach, they show that degree and betweenness centrality of lethal proteins
are significantly higher than the network average. In contrast, closeness cen-
trality was found to be less indicative of lethality.

There exist some debates from a biological point of view concerning the
data consistency, i.a. false positive lethal proteins impairing the reliability of
the results [97,206]. The high correlation between degree and lethality could
well be due to a sampling bias towards lethal proteins. That is, if a specific
protein is found to be lethal, it is more likely that this protein is analyzed for
interactions rather than a non-lethal protein [52]. Others argue that it is not
possible to identify lethal proteins with the network structure alone [125,184],
making methods that combine centrality indices with biological information
(e.g. gene expression data [124,183,204], orthologous information [155]) the
most promising approaches.
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Despite these objections, the validity of the centrality-lethality hypothesis
is widely accepted and considered as a successful application of centrality
measurement. So far there has been little discussion about the reliability of
results and the actual applicability of centrality indices in this domain. This
chapter is devoted to a general discussion about the application of centrality
measurement in PINs. We start with a simple re-analysis of the original study
conducted by Jeong et al. in Section 5.3, pointing towards several shortcomings
and misleading results in the analysis. Due to the importance of S. cerevisiae
as a model organism, we perform a more extensive analysis in Section 5.4
to scrutinize the plausibility of the hypothesis. In Section 5.5, we examine
the conjecture that the results are portable to other organisms and further
demonstrate data dependencies of the results. Our results are summed up in
Section 5.6 with some general remarks on empirical studies performed with
centrality indices.

5.2 MATERIAL AND METHODS

Data for S. cerevisine

Many previous studies used a single instance of the PIN of S. cerevisiae to evalu-
ate an association of lethality with newly defined indices [62,63,204]. However,
there are various instances available through different protein databases and
other resources, offering the opportunity to test the validity of the hypothesis
on a larger sample. We therefore use several versions from different available
sources: two previously used networks by Jeong et al. and Estrada et al. , three
self compiled versions from different protein interaction databases and three
instances from the literature. In all cases, we only consider the biggest com-
ponent of the network. Detailed network statistics are provided in Table 5.1.

Name Proteins Interactions Lethal proteins Source (Version)

Jeong 1870 2277 22% [101]

Estrada 2224 6609 26%  [63]

Dip 2131 4813 31% [199] (01/01/15)
Biogrid 6238 223575 18% [178] (3.2.111)
String 2032 9497 38% [182] (9.0)

LC 1213 2556 44%  [164]

Collins 1004 8319 41% [48]

Y2H 1647 2518 23% [201]

TABLE 5.1: Network statistics of the used PINs of S. cerevisiae.

REMARK. For the re-analysis of [101], we rebuild the network used in the study.
The raw data contain self-interactions, multiple interactions, several components and
isolates, and proteins with an unknown lethality status. In order to replicate the re-
sults of Jeong et al. , we consider the version without loops and exclude proteins with
unknown lethality status from later analysis. In Section 5.4, we then only use the
biggest component.
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Figure 5.2 shows the fraction of overlapping proteins among the eight in-
stances. The network derived from Biogrid includes almost all proteins from
the other networks, yet the overlap is generally very low such that the net-
works provide a broad sample of the complete PIN of S. cerevisiae.

Jeong  0.49 094 0.53 | 0.41 0.55
0.32 | Estrada 099 0.58 0.4 0.36 | 0.33
Dip

0.35 Biogrid = (.33 0.25
0.38 | 0.64 1 Sting  0.54 041 035
049 | 0.73 0.99 091 LC 0.44 0.4
0.33 | 0.79 098 0.83 0.54 Collins 0.33
048 | 045 095 | 043 | 0.29 Y2H

FIGURE 5.2: Fraction of overlapping proteins among the eight PIN instances
of S. cerevisiae. Due to a differing naming convention, the overlap between the
Dip instance and others could not be calculated.

The lethality status for the proteins were obtained from the database of es-
sential genes [203] (v10.0).

Data for Multiple Organisms

The protein interactions of 20 organisms were obtained from the String Database
(version 9.0). The database contains experimentally identified interactions
from published literature as well as computationally predicted interactions.
Each interaction is given a confidence score indicating the probability of an ac-
tual interaction. In contrast to Raman et al. who only used 700 as a lower bound,
we construct eight networks using {600, 650, 700, 750, 800, 850, 900,950} as lower
bounds for the interaction scores for each organism. Again, only the biggest
component of each network is considered. The lethality status for the proteins
were obtained from the database of essential genes [203] (v10.0). Summary statis-
tics of the networks with confidence score 700 are shown in Table 5.2.
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Organism Proteins Interactions Lethal proteins
Abayli 2080 12498 22%
Athaliana 6726 69388 1%
Bsubtilis 2899 20404 7%
Celegans 4744 46877 2%
Dmelanogaster 5251 93660 4%
Ecoli 3686 25843 17%
Fnovicida 1230 7476 27%
Hinfluenzae 1307 8670 40%
Hpylori 1149 7773 23%
Mgenitalium 413 3354 83%
Mpulmonis 474 2955 56%
Mtuberculosis 2845 18206 9%
Paeruginosa 3658 20983 7%
saNCTC 1662 9009 19%
sasaN31 1576 8800 18%
Scerevisiae 5461 105893 20%
Spneumoniae 1425 8387 6%
Ssanguinis 1366 7846 15%
Styphimurium 3249 20635 5%
Vcholerae 2611 15398 16%

TABLE 5.2: Statistics for PINs of 20 organisms with confidence score 700.

Centrality Indices

A vast amount of indices was applied in the context of the centrality-lethality
hypothesis. Since our intention is to draw general conclusions and not to find
the best performing index, we just focus on a subset of indices. Our set con-
tains degree, betweenness, closeness and eigenvector centrality as well as in-
formation centrality, subgraph centrality and bipartivity. The last two have
been reported to be the best performing indices on the Estrada instance of S.
cerevisige [62,63]. Additionally we apply a new measure, the hyperbolic index,
introduced in the following.

Let u be a vertex. On the subgraph induced by N[u], we sum up all closed
walks of even length and weight them decreasingly with their length and ad-
ditionally with its density, i.e. the local clustering coefficient

2 {v;,v;} € E:v;,v; € N(u)
ceoef(u) = 217 JR R ]

which describes the density of the subgraph induced by N(u). Thus, cy,, is
defined as

A[u 2k

Chyp (1) = ccoef (u [ % i
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where Al is the adjacency matrix of the subgraph induced by Nf[u]. This
formula can be simplified in the following way:

[u] 2k
Chyp () = ccoef (u) Z Z A ]

UEN[u] k=

= ccoef (u)

(eA“”m + (e
L >

_UEN[u]

= ccoef(u) | Y cosh(A[“])w]

_veN[u]

The hyperbolic index is mainly used for illustrative purposes and obtaining
surprising results.

Evaluation Methods

Many different evaluation methods have been used to ascertain an association
between centrality and lethality, where the choice is also a matter of interpret-
ing the hypothesis.

The most common approach in the literature is to rank the proteins accord-
ing to a centrality index and calculate the fraction of lethal proteins in the top
x ranked proteins and compare the value with random sampling (henceforth
referred to as top rank approach) [62,63,123,124,125,194,204]. Although a high
fraction within the top ranked proteins suggests that lethal proteins occupy
central positions, there might still be plenty of low ranked lethal proteins which
are neglected. Additionally, we run the risk of cherry picking results by fixing
x at appealing values. Yet this approach is sufficient if we are only concerned
with strategies to sample lethal proteins. Other approaches like comparing
mean values of indices [93] or bootstrap sampling [162] fall in the same class.

A second category comprises methods used in binary classification prob-
lems, i.e. centrality indices are treated as predictors for the lethality status of a
protein. Metrics in this field rely on contingency tables, as depicted in Table 5.3.
These tables are constructed by setting a threshold for accurate predictions
and determining the values of each cell. Used metrics relying on a contin-

actually
lethal non-lethal
lethal | true positive | false positive
non-lethal | false negative | true negative

predicted

TABLE 5.3: Structure of a contingency table.

gency table are mainly accuracy [123,194] and the receiver operating characteristic
(ROC) [93,183,184]. Accuracy is defined as

TP+TN

ACC = TP+FP+FN+TN
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Since accuracy is only determined for one chosen threshold, it suffers from
similar drawbacks as the top rank approach [160]. For illustrative purposes,
we apply Matthew’s correlation coefficient as an alternative to accuracy [134]. It
is defined as

TP x TN —FP x FN

MCC = :
\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

In contrast to accuracy and Matthew’s correlation coefficient, ROC curves
avoid the supposed subjectivity in the threshold selection process by consider-
ing all possible cutoffs. The curve is created by plotting the true-positive rate
(TPR, also known as recall) against the false-positive rate (FPR, also defined as
1-specificity), which are defined as

FP TP

FPR= —~ TPR= — - .
FPrTN TP + EN

To facilitate the interpretation of the curve, the area under the curve (AUC) is
used as a summary statistic. AUC values are bounded between 0 and 1, where a
model that yields a value of 0.5 is no better than randomness and higher (lower)
scores indicate a better (worse) prediction than one could expect by chance. It
is argued that ROC curves are less informative and tend to overestimate the
performance if the class distributions are highly skewed [53]. Since the fraction
of lethal proteins in each considered PIN varies strongly and mostly is quite
small, we here use Precision Recall (PR), as suggested in [53], which is mainly
used in information retrieval [130,161]. In PR space, Recall is plotted against
Precision, which are defined as

TP TP

Recall = m, Prf,’ClSlOl’l = m .

Again, AUC can be used as a summary statistic with similar interpretation as
in ROC space, the difference being that random performance depends on the
total number of lethal proteins. We also make use of separation plots which is
a purely visual method to not solely rely on single value statistics [91]. An
example of its functionality is given in Figure 5.3.

Protein Centrality Value Lethality status

F 0.36 0
C 0.55 0
A 0.81 0

FIGURE 5.3: Example for separation plots. Proteins are ordered according to
centrality scores and color coded according to their lethality status (lethal=1,
non-lethal=0). The ranking is visualized as a colored rectangle, indicating the
position of the lethal proteins from left to right.

47



Chapter 5. Centrality in PINs

48

5.3 RE-ANALYSIS OF ORIGINAL STUDY

The scale-free property

The deductive reasoning of Jeong et al. leading to the results are based on
frequently invoked paradigms about real-world networks. Many man-made
networks, or those that occur naturally in complex systems are said to be scale-
free [9]. Although their is no precise definition of what ‘scale-freeness’ is [22,23],
it is commonly associated with a power-law degree distribution [9]. That is, the
fraction p(x) of vertices in a network having a degree x is approximately given

by

plx) ocx™,
where typically 2 < a < 3 can be observed. Empirical evidence, however,
suggests that the scaling is better described by p(x) o (x + xp,) ™% , since
networks do not follow the power law for small x. Additionally, it is observed
that the scaling for large x is better described with an exponential function

after a cutoff x.. Thus, we can write
x+ Xmin

P(x) o< (x + Xpin) " exp(— X

)

The analysis of the PIN of S. cerevisiae by Jeong et al. naturally starts with the
claim that its degree distribution follows a power law with an exponential
cutoff. This was shown by a partial straight line fit of degree frequencies on a
doubly logarithmic scale with parameters x,,;, = 1, x, = 20 and & = 2.4 (cf.
Figure 5.4 (left)). Beforehand, the degree distribution was condensed into six
data bins to calculate relative frequencies.
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FIGURE 5.4: (left) Chosen illustration for degree distribution by Jeong et
al. (cf. Figure 1b in [101]). Black points show actual frequencies without bin-
ning (gray line). (right) size-rank plot of the degree distribution on a doubly
logarithmic scale.

A more robust way for a visual assessment of the degree distribution is the
size-rank plot as suggested by Li et al. [122]. A straight line fit on a doubly
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logarithmic scale can be a better indicator for a power law degree distribution.
Figure 5.4 shows the size-rank plot of the degree distribution on the right. Its
‘straightness” actually suggests a power law distribution.

Although log-log plots are an accepted justification for scale-freeness, it is
certainly not a statistically sound argument. Especially since various ways of
data binning can be used to overcome low frequency regions in the dataset.
Size and boundary values for data bins are left to the researcher and yield a
high level of arbitrariness, altering the results drastically [122]. Granted, the
analysis was done at the beginning of the ‘power law age’ and more sophisti-
cated methods were not yet at hand.

With the development of new tools, many claims about apparent scale-
free networks could be refuted or are at least highly questionable, e.g. with
a method introduced by Clauset et al. [47]. First, the parameters a and x,;,
are estimated by a method of maximum likelihood. Then, the goodness-of-fit is
determined with the Kolmogorov-Smirnov statistic(KS) and a p-value is calcu-
lated as the fraction of the KS for synthetic data whose value exceed the KS
for the real data. The power law distribution can be ruled out if the p-value is
sufficiently small (p < 0.1). Performing this test, we obtain a = 3.02, X, = 5
and p = 0.44. That is, we can not rule out a power law distribution, neither
visually nor statistically. However, we also do not have enough evidence for a
power law, since we i.a. did not test for other distribution.
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Fragility under targeted attack

A prominent inferred feature of scale-free networks is its ‘robust yet fragile’
nature, prompted by Albert et al. [2]. This property arises from the fact that the
removal of random nodes does not alter the network topology (error tolerance),
yet the removal of highly connected so called hubs disrupts the path struc-
ture significantly leading to an increase in the average shortest path length
(attack vulnerability). The authors go as far as to say that scale-free networks
are the only class of networks that display this error tolerance. Interestingly
they already state that “such decreased attack survivability is useful for drug
design” [2, p. 381]. Jeong et al. use this reasoning on the PIN of S. cerevisiae
and show that the network diameter increases rapidly when highly connected
proteins are removed (cf. Figure 5.5a). Therefore, they deduce that the hub
proteins are most likely lethal. Yet, if we target highly connected lethal and
nonlethal proteins separately, we observe in Figure 5.5b that the network di-
ameter increases more if nonlethal proteins are removed. That is, the network
is actually more fragile to targeted attacks against highly connected nonlethal
proteins.

(A) Ilustration by Jeong et al. (B) Targeting lethal/nonlethal proteins.

FIGURE 5.5: Attack tolerance of the network. Increase of the mean shortest
path distance when up to 60 proteins (~ 4%) are removed randomly (grey),
high degree proteins are targeted (red) and high degree lethal (orange) and
nonlethal (black) are targeted.

Highly connected, more likely to be lethal

From the asserted error tolerance, the authors form an analogy for the biolog-
ical process and hypothesize that “[...] on average less connected proteins
should prove to be less essential than highly connected ones” [101, p. 1]. On
average and less essential leave an ample scope on how to interpret and analyze
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this hypothesis. The authors claim a correlation of 0.75 between degree and
lethality and state that

“although proteins with five or fewer links constitute about 93% of the
total number of proteins we find that only about 21% of them are essential.
By contrast, only some 0.7% of the yeast proteins with known phenotypic
profiles have more than 15 links, but single deletion of 62% or so of these
proves lethal” [101, p. 1].

It must be noted that these results were obtained by binning all proteins with
a degree greater than 15 “to produce a more reliable result”(Supplementary
material of [101]). The results itself sound convincing and tempting enough
to constitute a strong association between lethality and degree. However, as
stated before, the binning process can drastically change the nature of the re-
sults. As can be seen on the left in Figure 5.6, the correlation strongly depends
on how we bin high degree proteins. The same holds true for Matthew’s corre-
lation coefficient, which is shown in Figure 5.6 on the right.

56

>15 56 2 >15 :
—0.014

o

FIGURE 5.6: (left) Correlation between lethality and degree when different
data binning for high degree proteins are used. Red value indicates reported
value in [101]. (right) Matthew’s correlation coefficient for the same data bin-
ning procedure. Red value indicates the cutoff used in the original work.

The same issue can be observed in the second test. The share of 21% of
lethal proteins is actually quite close the total percentage of 22% in the total
dataset (cf. Figure 5.7a) and the reported 62% are the highest possible portion
of lethal proteins with high degree (cf. Figure 5.7b). Changing the upper bound
of 15 to higher values would not yield any appealing results.
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(A) % lethal < degree (B) % lethal > degree

FIGURE 5.7: Percentage of lethal proteins in (A) low degree and (B) high
degree proteins with different data binnings for low /high degree.

Statistical Testing

After the last subsection, we constitute that the impression of an effect is mainly
due to the chosen data binning and that other data contracting techniques
would have allowed for different outcomes. The question is, if there is any
plausible statistical evidence for the claimed effect. The possibilities are man-
ifold to (a) interpret the statement ‘the higher the degree the more likely to
be lethal” and (b) choose an appropriate statistical test to analyze a derived
hypothesis. For many statistical tests, we have to assume that the data is nor-
mally distributed. The extreme skewness of the dependent variable (22% lethal
vs. 78% non-lethal) and the independent variable (skewed degree distribu-
tion) thus prevents any test were this assumption has to be made. Also, we
have to assume that the lethality status of the proteins are independent. This
assumption might be reasonable from a statistical but not from a biological
point of view. From now, we tacitly assume independence and try to asses the
centrality-lethality hypothesis with statistical tools.

We first examine if there is any significant difference between the degree
distribution of lethal and non-lethal proteins with a two-sided Wilcoxon rank-
sum test. The resulting test statistic is significant (p = 8.984710) 5o that we
can reject the hypothesis of an equal distribution. Figure 5.8 shows the two
distributions separately.

The Figure displays the skewness of the data quite well. The great majority
of both lethal and non-lethal proteins have a degree less or equal five. As
Jeong et al. already pointed out, these proteins comprise around 93% of the
whole dataset. Figure 5.9 shows the degree distributions with an alternative
representations.

For proteins with a degree less than five we can actually see, that the frac-
tion of lethal proteins gradually increases. However, for higher degree proteins,
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FIGURE 5.8: Degree frequencies of non-lethal (right) and lethal (left) pro-
teins.

FIGURE 5.9: Alternative representation of the degree distribution together
with the fraction of lethal proteins. The area of the circles describe the num-
ber of proteins for given degrees. The orange circles are the number of lethal
proteins per degree.

we do not observe any striking pattern. Since the low degree proteins are the
great majority in the dataset, we can expect that any statistical analysis is bi-
ased towards them. Nevertheless, we assess the posed claim ‘the higher the
degree, the more likely to be lethal’ by means of a regression. We can model
the lethality status of a protein as a binary response variable y where y; = 1 if
protein i is lethal and y; = 0 otherwise. The degree is used as a continuous
explanatory variable d. With a logistic regression, we can estimate the probability
of y based on the variable d, i.e. P(y;|d = d;). The first column in Table 5.4
shows the result of the regression for the whole dataset.
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di >1 di > 2 di >3 di >4 di >5

(Intercept) —1.49**  —1.18"* —0.99*** —0.92*** —0.92***
(0.08)  (0.12)  (0.16)  (022)  (0.27)
degree 0.090*** 0.056** 0.040 0.036 0.036
(0.019)  (0.020)  (0.021)  (0.023)  (0.025)
AIC 1623.24 853.34 525.52 340.37 249.40
BIC 1633.93 862.50 533.59 347.52 255.90
Log Likelihood  -809.62 -424.67 -260.76 -168.19 -122.70
Deviance 1619.24 849.34 521.52 336.37 245.40
Num. obs. 1552 722 419 264 191

) < 0,001, *p < 0.01, *p < 0.05

TABLE 5.4: Results for logistic regression with degree as explanatory and
lethality status as response variable. The name of the models indicate which
proteins were included.

The log-odds for degree are 0.09 and significant (p < 0.001), translating
to an increase in probability of 1.09 that a protein is lethal when degree is
incremented by 1. This actually suggests that the higher the degree, the higher
the probability for a protein to be lethal. However, the increase in probability
is very low and not as convincing the results of Jeong et al. would suggest.
Additionally, if we gradually truncate the data by removing low degree nodes
from the dataset, we observe in columns two to five of Table 5.4 that the effect
gets weaker and even non-significant. As we argued before, this hints at the
mentioned statistical bias. The regression is mainly driven by the first 5 data
points signifying an inflated effect.
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Binary Classification

Besides statistical testing we can also treat the hypothesis as a classification
problem and use ROC and PR to evaluate the performance of degree to detect
lethal proteins. Figure 5.10 shows the ROC and PR curves for the classification.
With an AUC= 0.6 for ROC and AUC= 0.31 for PR (random performance
0.22), degree is not significantly better than a random classifier. The separation
plot additionally reveals how scattered the lethal proteins in ranking induced
by degree are.

1.00 - 1.00 -
075~ 075~
§
Eos0- -5 050 -
= 91
2
[
025- 025-
0.00 - 0.00 -
| | | | | | | | | |
0.00 0.25 0.50 075 1.00 0.00 0.25 0.50 075 1.00
FPR Recall

FIGURE 5.10: (left) ROC and (right) PR curve of the performance of degree
to detect lethal proteins. The gray line indicates random performance and
the orange lines the respective best performance possible. The separation plot
shows the position of lethal proteins (red) in the degree ranking.
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5.4 RESULTS FOR S.CEREVISIAE

Degree Distribution and Attack Tolerance

Figure 5.11 show the degree distribution as a rank sized plot for all eight in-
stances. It can be seen that the PINs are quite distinct from each other. The
distributions are mostly far from being ‘a straight line’, i.e. scale-free.

10 o 1o i 0 100 i 0 100 i 1 10
Degree Degree Degree Degree

FIGURE 5.11: Rank sized plot of degree distribution on a doubly logarithmic
scale for eight PINs of S. cerevisiae. From top left to bottom right the instances
are: Jeong, Estrada, Dip, Biogrid, String, LC, Collins and Y2H.

Table 5.5 additionally shows the parameters for the fitted power law degree
distributions as well as the Kolmogorov-Smirnov statistic with the associated
p-value. The results shows that we can rule out a power law distribution only

Ximin % KS  p-value
Jeong 5 3.03 0.033 0.44
Estrada 14 326 0.047 0.22
Dip 12 375 0.030 0.71
Biogrid 345 394 0.035 0.73
String 34 481 0.046 0.83
LC 11 372 0.044 0.37
Collins 20 2.86 0.059 0.02
Y2H 7 278 0.021 0.91

TABLE 5.5: Statistical test for power law in PINs of S. cerevisiae.

for the Collins data set. As before, the higher p-values do not indicate that the
other datasets contain a power law degree distribution, but only tell that we
can not rule it out.

Figure 5.12 shows the results of the attack tolerance test conducted in Sec-
tion 5.3. Similar to the degree distributions, the results vary among the datasets.
Only the LC dataset shows the anticipated behaviour, i.e. the removal of lethal
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FIGURE 5.12: Attack tolerance test for eight PINs of S. cerevisiae as done in
Figure 5.5. From top left to bottom right the instances are: Jeong, Estrada, Dip,
Biogrid, String, LC, Collins and Y2H.

proteins with a high degree disrupts the network more than the non-lethal
proteins.

AUC and Separationplots

The predictive powers of the used centrality indices are summarized in Fig-
ure 5.13. We can see that the overall performance differs between the eight
instances and generally does not deviate too much from randomness. Differ-

Jeong Estrada Dip Biogrid
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FIGURE 5.13: AUC values for degree, eigenvector centrality, closeness, be-
tweenness, subgraph centrality, bipartivity, hyperbolic index, information cen-
trality for eight instances of the PIN of S. cerevisiae. Orange bars indicate best
performing index and gray bars random classifiers.

ent indices perform best on each network with the hyperbolic index outper-

57



Chapter 5. Centrality in PINs

58

forming others on three instances. However, the AUC values are quite similar
for all indices on each network. To determine the similarity in the rankings of
lethal proteins, we calculated the average correlation of indices on each net-
work using Kendall’s 7. The scores, shown in Table 5.6, indicate only a weak
correlation on all networks. The separation plots of the best performing indices

Jeong Estrada Dip Biogrid
0.45 (0.18) 0.59 (0.16) 0.52 (0.15) 0.71 (0.14)
String LC Collins Y2H

048 (0.23) 0.42(0.20) 0.47 (0.25) 0.51 (0.19)

TABLE 5.6: Mean pairwise Kendall’s T of centrality rankings of lethal pro-
teins. Standard deviation in brackets.

per network are shown in Figure 5.14. Observe that there is a dense region of
lethal proteins at the top of the ranking, however, most lethal proteins seem to
be scattered across the ranking.
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FIGURE 5.14: Separation plots of the best performing index per network.

5.5 RESULTS FOR MULTIPLE ORGANISMS

Figure 5.15 summarizes the performances for the 20 networks with 700 as in-
teraction threshold. In contrast to the results reported in [162], we see that
closeness actually performs better than degree and betweenness in most of the
networks. It must be noted though, that Raman et al. considered disconnected
components as well. However, our reexamination of their results showed, that
they used the ill-defined version of closeness [170]. Similar to the results of S.
cerevisiae, different indices perform best and generally the performance varies
among organisms. Note that eigenvector centrality outperforms the more so-
phisticated walk-based measures subgraph centrality and bipartivity on most
of the networks.

Figure 5.16 illustrates that prediction accuracy depends heavily on the cho-
sen interaction threshold. That is, depending on how we construct the net-
works, different indices yield the best performance.
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FIGURE 5.15: AUC values for degree, eigenvector centrality, closeness, be-
tweenness, subgraph centrality, bipartivity, hyperbolic index, information cen-
trality on 20 different organisms with interaction threshold 700. Orange bars
indicate best performing index and gray bars random classifiers.
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5.6 SUMMARY

In this chapter, we assessed the general plausibility of the proclaimed centrality
effect in PINs of S. cerevisiae and other organisms. Section 5.3 has shown, that
the original reasoning why high degree proteins are more likely to be lethal
does not withstand closer examinations. The chain of arguments is based on
analogies from known facts about networks applied to protein interaction which
are themselves questioned by the literature [22,23,47,122]. Even if we accept
a scale-free and ‘robust yet fragile’ nature of the network, it is still more vul-
nerable to targeted attacks on non-lethal proteins than lethal ones, making
the initial argument unfounded. Apart from that, our re-analysis partially con-
firmed the results in [101], yet they are mostly due to chosen data bins, i.e.
reported data points are the ones that make the case for a centrality effect most
strongly. Our statistical analysis revealed that the seeming effect stems from
the proteins with degree less equal 5. In this subset of the data, we can indeed
observe an increase in lethal proteins, yet the rest of the dataset does not allow
for generalization. The skeweness of the data is the main reason why statistical
tests find an overall positive effect.

In Section 5.4, we reviewed elicited follow up work, which was mainly
concerned with strengthening the association between lethality and centrality
for PINs of S. cerevisige. In contrast to others, we used a larger sample of PINs
and discussed the reliability of results obtained by centrality indices. First, we
have seen that the network topologies differ strongly among the considered
instances such that no general conclusion about its nature, e.g. scale-free or not,
can be drawn. Further, no index has a consistent high association with lethality
across networks. The performance is generally comparable among indices,
yet the best performing index depends on the considered network. Since the
induced rankings of lethal proteins are additionally only weakly correlated, we
can conclude that lethal proteins do not share common structural features, but
instead hold diverse positions within the network. Additionally, the separation
plots of the best performing indices showed how scattered lethal proteins are
across the rankings.

Transferring results to a greater variety of organisms has shown to be futile
in Section 5.5. Reexamination of [162] showed that the results of Raman et al.
are skewed for two main reasons: inappropriate use of a version closeness that
isill-defined on disconnected networks, and restriction to a single threshold for
interactions. Our analyses showed yet again that the performance of centrality
indices are inconsistent with differing best performing index on each organism.
The robustness of results was tested by altering the threshold of considered
interactions for the PINs. Results depended heavily on how the networks are
constructed, such that the best performing index varied even within organisms.

One could certainly argue that our considered set of indices was not suit-
able to draw any considerable conclusions. So far, however, there is no justifi-
cation for the appropriateness of any centrality index in the first place. Several
have been offered [97,206] but neither of them attempts to explain the underly-
ing processes that make proteins in certain network positions more likely to be
lethal than others. In the absence of a substantive theory that justifies a corre-
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sponding centrality concept, choosing an existing or crafting a new index is an
exercise in data fitting. Some measure will necessarily turn out to fit best, yet
they do not offer any substantial explanations. We demonstrated these issues
with the newly defined hyperbolic index. Its definition lacks any biological
appeal and outperformed other measures on three instances of S. cerevisiae.

Without a testable theoretical explanation at hand, hypothesized centrality
effects need to be tested on a large number of networks to gain confidence in
the results. Data-driven hypothesis by means of a single instance can be a useful
way to proceed (cf. [105]), but conclusions have to be drawn with care and are
only informative if underlying data is representative of a sufficient wide class
of cases. For the presented problem, results from a single PIN of an organism
can not be generalized for several reasons; Topologies differ, the set of included
proteins have a small overlap and interactions are not unambiguous. Therefore,
we have to rely on a bigger sample of networks to obtain convincing arguments
for or against conjectured effects.

Although we gathered evidence against the plausibility of the centrality-
lethality hypothesis, we can not refute its validity for the aforementioned rea-
sons. The inconsistent findings suggest that either the effects differ, or the data
are of varying accuracy. We return to the centrality-lethality hypothesis in
Chapter 10 and examine it with newly developed methods.
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CHAPTER 6

Centrality, Measurement and
Positions

“Measurement juxtaposes science and philosophy, because only through measure-

ment does science approach real life.”
— Krebs, 1987

6.1 INTRODUCTION

The first part of this thesis was concerned with the current conception of cen-
trality. We have seen that there is a lack of conceptual clarity and little knowl-
edge about theoretical fundamentals of indices. Especially in recent years, ap-
plications of centrality drifted towards data mining tasks. That is, indices are
used to find patterns in data that potentially can explain certain empirically
observed phenomena. In Chapter 5 we thoroughly investigated one such ap-
plication, the centrality-lethality hypothesis, and showed that this data-driven
approach to network centrality has its drawbacks and limitations.

In this first chapter of the second part, we initiate to view centrality as a
proper procedure of measurement. We present some common tools offered by
theories about measurement and discuss how they can be adapted for network
centrality. We also briefly introduce a novel positional approach to network
analysis recently proposed by Brandes [36]. Comparing position under vary-
ing premises will offer new theoretical insight for centrality indices, which in
turn suggests a new characterization of centrality concepts. The mathematical
evaluation of these considerations in this chapter is done in Chapter 7.

6.2 MEASUREMENT THEORY

What we have learned thus far is that there is not one concept of centrality,
but different competing operational definitions, i.e. indices translating the con-
cept into measurement of some kind. Evidently, being central in a network is
ambiguous with many different interpretations. This is not necessarily bad to
begin with if we compare the concept to measurement procedures in general.
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Considering two individuals A and B which can be measured according
to different physiological quantities, e.g. height and weight. Person A may be
heavier than B but B might well be taller. There is no intrinsic physiological
ordering of A and B, yet they are comparable by means of some observable
empirical structure, depending on what we want to measure. As trivial this
example sounds, as tedious was laying the basics of measurement ultimately
leading to the understanding we have today [57,58]. According to the represen-
tational theory of measurement (RTM), measurement may be regarded as

“[...] the construction of homomorphisms (scales) from empirical rela-
tional structures of interest into numerical relational structures that are
useful.” [114, p. 9]

In the received interpretation of RTM, it is assumed that we are given an em-
pirical relational structure (ERS) together with an numerical relational structure
(NRS). The ERS is defined as a tuple (X, R, 0), where X is a set of objects, R
is a set of relations among the objects in X and there exists an order relation
= among those. A closed operation (mostly a concatenation) on X’ is given by
o. The NRS is defined as the tuple (R, >, +), with the conventional definition
of 4+ and > on the real numbers. The base set X’ can be measured if we can
formulate a representation theorem.

Theorem 6.1 (Representation Theorem). Let (X, R, o) be an ERS with an order re-
lation =€ R and (R, >,+) a NRS. A mapping ¢ : X — R is called a representation
of X in R if it is a homomorphism, i.e. forall x,y € X

xzy = ¢(x) = ¢(y)
holds.

Note that the existence of such a homomorphism is i.a. guaranteed if >= is a
weak order [33]. The exact characterization of the type of scale a measurement
procedure yields is then given by a uniqueness theorem.

Definition 6.2 (Uniqueness). Let (X, R, o) be an ERS with an order relation =€ R,
(R,>,+) a NRS and ¢ : X — R a homomorphism. A transformation ¢ — ¢’ is
permissible if and only if ¢ and ¢’ are both homomorphisms into the same NRS.

A distinction is commonly made between nominal, ordinal, interval and
ratio scales [181]. Representation and uniqueness are two of the key concepts
for RTM. Other more philosophical concerns deal with meaningfulness [141], e.g.

‘which assertions about measurement make sense?’, and validity [1], e.g. ‘does a

homomorphism measure what it is supposed to measure?’. RTM thus provides
a well-founded theoretical basis for formulating hypotheses and performing
tests under the premise of measurement.

Although it is well established, the concept is occasionally debated and
extended [98, 145]. One such extension is conjoint measurement (CM), where a
concatenation operation on X is not defined and objects are evaluated accord-
ing to product sets [33]. That is, the base set of the ERS is given by a n-ary
Cartesian product X = X; x X, x -+ X X;; and = is a binary relation on this
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product set. Similar to RTM, the intention is to build a numerical representa-
tions of »= and study its uniqueness. A family of representations of CM are
additive value functions defined as

n

X =y <= Zvi(x,') > Zvi(yi) , (6.1)
i=1 i=1

where x,y € X and v; : X; — R are partial value functions. Many situations in
decision theory involve the study of binary relations on product sets, e.g. in
multiple criteria decision making [202] and decision under uncertainty [71].

We here consider a small decision problem taken from Hammond et al. to
illustrate tools of CM for later references [95].

PROBLEM. A consultant is faced with the task to rent new office space. There are five
locations to choose from, all meeting a number of requirements. For the final decision, he
compares the location according to five distinct characteristics (or attributes): commute
time (X1, in minutes), ease of access (Xp, percentage of clients in the close area), level
of service offered (X3, scale with three levels: 3(everything available), 2 (telephone
and fax) and 1 (no facilities)), size of office (X4, in square feet) and monthly cost (Xs,
in dollars). The preferences for each attribute are independent from others and well-

X1 X Xz Xy X5

a 45 50 3 800 1850
b 25 80 2 700 1700
c 20 70 1 500 1500
d 25 85 3 950 1900
e 30 75 1 700 1750

TABLE 6.1: Evaluation of the five locations on the five considered attributes.

defined. The consultant prefers lower values for X1 and X5 and higher values for X5,
X3 and Xy4. His task is now to find the best location among the five alternatives by
evaluating them with the given values on the five attributes in Table 6.1.

For simplicity, we assume that X; and X5 are scaled such that higher values
are preferred. Further, we can describe Table 6.1 as a two dimensional variable
x € R>?, where x;; is the value of attribute j for alternative i.

Before applying any advanced tools of CM, we can compare the alternatives
by a concept of dominance [33].

Definition 6.3. Let x € R™™ describe a decision problem with n alternatives and m
attributes equipped with a binary relation >. Further, let u and v be two alternatives.
If xyj > xyj holds forall j € {1,..., m}, then u dominates v denoted by u = v.

It is pretty clear that dominated alternatives are no option for a final choice
in any decision problem and can thus be omitted. Generally, only a small
fraction of alternatives will meet the condition of Definition 6.3, e.g. the only
case of dominance in our example is b = e eliminating e. To further narrow
down the choices we can make use of the even swaps technique [104]. The
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goal of even swaps is to create pseudo dominated alternatives by assessing
trade offs, i.e. what gain in a attribute i can compensate for a loss in j. Say, for
alternative d, we would forgo 100 square meters if it reduces the cost by 100
Dollar each month. Alternative d dominates a2 under this circumstances and a
can thus be eliminated. By repeatedly applying this strategy we will ultimately
end up with a single alternative as our preferred choice.

Although the even swaps technique is simple and seems obvious, it comes
with several disadvantages. First, trade offs are defined from a purely sub-
jective perspective and are not further substantiated. Second, the technique
becomes infeasible for decision problems with a multitude of alternatives and
attributes and the appearance of a new alternative or attribute would require
to reset the process again. Last, the technique only provides us with the most
preferred option and does not yield any form of preference ranking.

Therefore, we generally rely on the additive value function model in or-
der to solve decision problems as above. By defining reasonable partial value
functions, we can quantify all choices and obtain a preference ranking that can
be used for the final decision. An important property for well defined func-
tions is that the dominance relations should be preserved. That is, a dominated
alternative should not become more preferable than its dominator. Defining
appropriate partial value functions in general is not a trivial task. The process
of building these functions is explained in greater detail in [33].

6.3 CHARACTERIZING CENTRALITY VIA POSITIONS

In this section, we discuss centrality in the context of measurement. We relate
it to concepts introduced in the last section and point towards differences and
similarities. Afterwards, we briefly introduce positions in networks and how
they can be used to assess centrality.

Centrality and Measurement

Compared to the thorough investigation of measurement of RTM and CM,
very little attention has been drawn to develop a well-founded procedure of
measurement in networks such that centrality almost seems like an ad hoc
concept. We briefly discuss four key issues of measurement in the context of
centrality.

REPRESENTATION. We could define an ERS as the graph G = (V,E), ie.
X =V and E C R. However, a concatenation operation on V is missing
since we can not combine vertices directly in a rational way. Further, we
do not evaluate centrality according to attributes but on relations among
actors. In a broader sense, the set of alternatives and attributes coincide.
Concatenations on E are well-defined by extending direct relations to
trajectories like walks and paths to obtain new relations. This derived
relations can be subsumed in R together with E.

UNIQUENESS. The scale of measurement of centrality indices is an interval
scale. We can not say that a vertex is twice as central as another but more
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importantly, the centrality scores themselves are more or less meaning-
less and do usually not play any role in empirical studies. Even if scores
are normalized it is not justifiable to say a vertex with a betweenness
of 1 is twice as ‘between’ as a vertex with betweenness 0.5. We thus do
not lose any information if we weaken the scale to ordinal particularly
because we are only concerned about ranking the vertices.

MEANINGFULNESS. The term meaningfulness describes concepts that are
“relevant to the underlying measurement situation” [141, p. 31]. Rele-
vance is very loosely defined, since it is not obvious what characteristics
describe a satisfactory meaningfulness concept. If a procedure of mea-
surement can be considered meaningful, independent of its conception,
we can draw inferences based on the measurement results leading to
valid conclusions. Applying indices haphazardly to networks does cer-
tainly not lead to valid conclusions, no matter what meaningfulness cor-
responds to. Meaningful results can only be obtained by a certain amount
of preparatory work. Some phenomena might be directly transferable
into measurement in networks. With the help of e.g. the classification of
indices in Section 3.2, a suitable index can be chosen and we are able to
draw valid conclusions afterwards. Other phenomena, however, might
not be directly measurable. Taking the example of perceived trustwor-
thiness of individuals in a communication network [185]. No centrality
indices can measure the level of trustworthiness, but indirect the social
process that leads to a high level of trust. In order to do so, we have to
identify this process and translate it into graph-theoretic notion. Say, a
person can be considered trustworthy if many others seek their advice
or communicate frequently with them. This process would translate into
degree centrality. If the underlying process can not be identified, we are
unable to define an appropriate measurement procedure and are at risk
to fall for anecdotal evidences.

VALIDITY. Itis safe to say that validity is the major concern in measurement.
One of few who recognizes the problem of validity in the context of
centrality is Friedkin. In one of his seminal works, he states that

“[...] measures that have been derived from a social process can
only be meaningfully applied to situations in which the social process
occurs.” [81, p. 1480]

Meaningfully equates to validly in this context. He defined three mea-
sures which are specifically designed to fit three different social processes
and are only valid in the respective context [81]. We have seen in Chap-
ters 4 and 5 that validity of measures is often tested by correlation with
empirically observed phenomena. As we have already argued, this is not
enough to justify the appropriateness of indices. Going back to our intro-
ductory example, we might observe a correlation between body weight
and height, yet this does not justify the use of a weighting scale to de-
termine body height. The question is, if the assumed order or effect we
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intend to measure is actually inherent in a network or just inferred by
the application of centrality indices.

REMARK. Validity is not the same as reliability. A measure that is always
off by a constant factor is reliable but not valid. Reliability is thus the extent to
which a measure yields similar results consistently. We will see in Chapter 9
that some centrality indices can not even be considered reliable due to numerical
inconveniences.

Especially the considerations about representation show that the methods de-
scribed in the last section can not readily be applied to networks since the
prerequisites are different. However, we can observe several similarities which
will be explored in the following subsection. Our goal is not to develop a
profound theory of measurement for network centrality, but use analogies to
motivate a new characterization of centrality using network positions.

Networks and Positions

We can define a dyadic variable holding direct relations among n actors with

e 1 iand jrelated
70 otherwise,

and thus containing the actual network data. A graph can then be used as a
visual representation of x. Note that we now make a distinction between net-
works and graphs instead of using the terms interchangeably as done before.
Additionally, we use N as the set of actors and denote D = N x N as the
dyadic domain, i.e. we say x € RP, where R is an ordered value range.

The variable x constitutes our observation obtained from an experiment,
study or other empirical efforts. We are, however, usually not merely inter-
ested in these direct relations among actors, but rather in indirect ones. These
relations can be manifold, ranging from distances to dyadic dependencies and
others that are e.g. used in the context of centrality indices. All kinds of indi-
rect relations can be derived from x by a yet unspecified function 7(x). The
obtained network 7(x) is a transformation of our observed network data with a
different set of relations. Figure 6.1 illustrates the points made with an example
network and distances as derived relations.
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observation transformation
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FIGURE 6.1: Illustration of different dyadic variables. Distances can be de-
rived from the direct relations x by a function 7(x). Dots on the diagonal
indicate, that ‘self’ relations are not allowed. The gray row marks the position
of vg for both relations. A graph is used to represent the direct relations.

The value range of x and dist(x) are weakly ordered, i.e. a present relation is
better than an absent one and lower distances are preferred.

The ith row of these networks, can be seen as the position of actor i within
the network. It describes how he or she relates to all other actors. It is a gener-
alization of positions in social space, i.e. Blau space [17,18], adding a relational
dimension.

This definition of a network position leaves out a lot of formalities and pre-
liminary considerations of the newly introduced positional approach to network
analysis [36]. Positions serve as a unifying approach to several network related
questions, like

o centrality via ordering of positions,

e roles via equivalences of positions,

o cohesion via similarity of positions, and

e micro and macro structure via aggregations of positions.

The positional approach not only unifies methods but also suggests new ones
from alternative instantiations. Giving a more detailed description is out of
scope for this thesis but can be found in [36]. In the following, we focus on the
comparison of positions in order to obtain (partial) centrality rankings. In the
following, the position of an actor i in a network x is denoted by pos(i|x).
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Comparing Positions

Recall that we considered an actor to be more central than another if he or
she has better relationships. In the context of positions, we thus want to as-
sess whether an actor has a preferable position relative to others. Similar to
decision making tasks we can argue about preferable positions by pairwise
comparisons with a notion of positional dominance similar to Definition 6.3.

Definition 6.4. Let x € RP describe a network where the value range R is ordered
by >. Further, let u,v € N. If xut > Xyt holds for all t € N, then the position of u
dominates v’s position denoted by pos(u|x) = pos(v|x).

Note that we commonly exclude {u, v} from the comparison of u and v.
This can be done without altering results, since x,;, = x4, and x,;, as well as
Xyo are undefined in symmetric and simple networks. If pos(u|x) = pos(v|x)
and pos(v|x) = pos(u|x) holds, then actor u and v occupy equivalent positions,
denoted by pos(u|x) ~ pos(v|x).

The positional dominance relations of the example in Figure 6.1 for both
networks are given in Figure 6.2. Observe, that the dominance relations in x

x|V1 V2 U3 U4 U5 Ug U7 Vg Vg U011 dist(x)|v1 vy v3 Vg U5 Vg V7 Vg Vg V10 U1
U1 7 F 22} = =

02| = 7 < 0= = <

CZY SRR il = <

vl 77 ul = o

U5 =< vs <

% = 6 =

vy = = = vy > = =
U8 = 77 vg < =
U9 F F Vg = =
010 X < =S & V10 < < =< =
i < s s 7 11 <X < < =

FIGURE 6.2: Dominance relations of the networks given in Figure 6.1. An
entry ‘=" in cell (i, j) indicates that actor i dominates actor j.

and dist(x) are exactly the same. That is, dist(x) preserves the dominance of
the observed relations. This observation is of particular interest for theoretical
considerations in the next chapter.

As for the decision making problem, we are, however, still left with many
incomparable pairs of actors since positional dominance only yields a partial
ranking. We therefore need further considerations to obtain a complete ranking
by quantification of positions.

The usual approach to centrality is to aggregate the position of an actor

with indices, i.e.
cc(u) =Y T(X)ut,
{ut}eD

and we say

cr(u) > cr(v) = pos(u|t(x)) is better than pos(v|T(x)).
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Tacitly, however, we then assume that relations are additive. Although this
seems natural it is not a straightforward assumption for any relation. Establish-
ing additivity took much effort in other fields, e.g. psychology [197] and social
sciences [163,198], but has not yet been thoroughly discussed for relations in
networks and it is mostly seen as given due to its simplicity.

A further assumption is the homogeneity among all actors. When relations
are summed up, all relations are treated as equal and are not further differen-
tiated. In our example network, the actors 4 and 7 both have three direct rela-
tions and would be considered equally central according to degree centrality.
Imagine, however, the network represents the result of a survey in a company,
where employees were asked to name the best performing staff members!. It
surely makes a difference if an employee is named by a manager instead of
a janitor. If actor 1 represents a manager and actor 9 a janitor, we would con-
clude that 4 is performing better than 7. The same reasoning can be applied
to any other derived relation, e.g. when the network represents locations and
connections among those. Being at short distance to a supermarket is generally
more beneficial than being close to a prison. Therefore, a present ordinal actor
attribute should not be neglected and provides additional useful information
for centrality measurement.

Depending on the presence or absence of additivity and homogeneity, we
have different possibilities to compare positions. If additivity and homogeneity
can not be assumed, we are left with positional dominance for pairwise com-
parisons. On the bright side, we do not necessarily have to consider indirect
relations 7(x) at all if

pos(ulx) = pos(v|x) = pos(u|t(x)) = pos(v|t(x))

holds true.
If relations are non-additive but actors are homogeneous, we can define a
second form of dominance.

Definition 6.5. Let x € RP be a network where the value range R is ordered by
>. Further, let u,v € N If there exists an automorphism 7t : N' — N such that
Xyn(t) = Xot holds for all t € N, then the position of u dominates v’s position under
the total homogeneity assumption denoted by pos(u|x) =, pos(v|x).

Obviously, positional dominance implies dominance under homogeneity,
pos(ulx) = pos(vlx) = pos(ulx) = pos(v]x)

but not vice versa.

Dominance under total homogeneity can be checked by sorting the rela-
tionship values non-increasingly and comparing them front to back. The result
for our example is shown in Figure 6.3. In contrast to positional dominance,
we do not observe a connection between dominance in x and dist(x), which
also holds true for any 7(x). For our observed network x we have a complete

I This will most certainly not result in a symmetric network, since answers are unlikely to be
reciprocated. The example just serves as an illustration.
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x|V1 V2 U3 Vg Us Ug U7 Vg Vg V10011 dist(x)|v1 vy v3 vy V5 Vg V7 Vg V9 V1o VY1
U1 Fh Fh Fh Fh Fh Fh Fh Sh Fh Fh 141 FhoEh S <n S Fh Fh
v | < Zn =<n <h <n <n n Sn Fh Fn v | < oS Sk < <k S <h Se <n
U3 | Sk 7h Sk Sh Sk Sk Sk Sh Sk FhFh 03 [ = Sh Sk Sk =<k <k Sk Sk Sk
V4 |Fn Fh Fh Fh Fh Fh Fh ShoFh Fh vy | Fp Fr R FhoFh FhFh
Us | Sk Fh Fh Sh <h <k 7h h Fh Fh U5 Fh Fh <h Fh Fh
V6 | Fh Fh Fh Fh Fh Fh Fh Sk Fh Fh Ve |Fn Fn FR Fh Fh Fh Fh
V7 |Fh Fh Fh Fh Fh Fh Fh Sh Fh Fh vy |'=h Fh FR Fh Zh Fh Fh
U8 |Sh Fh Fh Sk Fh Sh Sk Sh Fh Fh vg FhoEh =<h <n <n Fh Fh
V9 | Fp Fh Fh Fh Fh Fh Fh Fh Fh Fh V9 |Fn Fh Fh Fh Fh
010 |k #h 7h Sk <k <k Sk <k Sk Zh V10 | Sk Fh Fh <k S Sk Sk Sk <h Zh
V11 |k Fh Fh Sk <k < S Sk Sk Fn V11 | <X Fn ER Sh Sh S S Sk Sk ER

FIGURE 6.3: Dominance relations under total homogeneity of the networks
given in Figure 6.1. An entry “>=,” in cell (i, j) indicates that actor i dominates
actor j under the total homogeneity assumption.

ranking of positions,

pos(vg|x) = pos(v1|x) ~ pos(vy|x) ~ pos(ve|x) ~ pos(vy|x)
= pos(vs|x) ~ pos(vs|x)
= pos(v2|x) ~ pos(vs|x) ~ pos(vig|x) ~ pos(v11]x).

The ranking naturally coincides with degree centrality, since the value range
of x is dichotomous. For derived networks 7(x) with a larger value range, we
do not necessarily expect a complete ranking such that we still need further
methods if we need a complete ranking.

In cases where additivity can be assumed but not homogeneity, we gener-
ally need more specifications about inhomogeneities to compare positions.

The considerations about additivity and homogeneity are summarized in
Table 6.2.

actors
Q homogeneous inhomogeneous
;§ additive | ¢: N — Ry ?
® non-additive =h =

TABLE 6.2: Comparing positions with different assumptions about additivity
and homogeneity.

Note that when additivity is assumed, it is always possible to rank actors
completely. Constructing the ranking, however, must be done with caution.
Figure 6.1, showed that there are incomparable pairs of actors even under total
homogeneity according to distance. Yet by applying closeness centrality, we
obtain a complete ranking. We might thus run the risk of inferring a ranking
which is not intrinsic to a network.

In the case of non-additivity we are mostly left with a partial ranking. How-
ever, there are special cases where we can obtain a complete ranking. One such
case is discussed in depth in Chapter 8 and others in Chapter 10.
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Assuming additivity and homogeneity involve a high amount of arbitrari-
ness when it comes to the quantification of centrality in terms of indices, yet
in the absence of theories about both properties we have to keep relying on
them. However, this chapter indirectly provided us with some new theoreti-
cal insights about centrality indices. By comparing positions with positional
dominance, we obtained

pos(u|x) = pos(v|x) == pos(u|dist(x))) = pos(v|dist(x))) == cc(u) > cc(v).

In the upcoming part we generalize this statement to a larger class of indirect
relations 7(x), i.e.

pos(ulx) = pos(v]x) = pos(u|t(x))) = pos(v|t(x))) = cr(u) = cz(v).

We could now proceed by showing that the implications hold for indi-
vidual relations separately, yet this would prevent us from drawing general
conclusion. In contrast, we show that the statement holds for a large class of
transformations T obtained from indirect relations defined by specific alge-
braic structures, such that we can derive conditions for the preservation of
dominance. The upcoming chapter will deal with these formalities.
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CHAPTER 7

Re-Conceptualizing Network
Centrality

“Ideally, measures should grow out of advanced theoretical efforts; they should
be defined in the context of explicit process models. Before such models can be
developed, however, a certain amount of conceptual specification is necessary;”

— Freeman, 1979

7.1 FORMAL DEFINITIONS AND TERMINOLOGY

In this section, we define the basic concepts and set up some standard notation
and terminology outlined in the previous chapter.

Networks

So far we have addressed network centrality from a graph-theoretic perspec-
tive, i.e. undirected graphs G = (V, E). However, graphs are merely a represen-
tation of underlying network data.

Definition 7.1. A network is a mapping x : D — R (or vector x € RP) assigning
values in a range R to dyads from an interaction domain D C N x N comprised of
ordered pairs of nodes N.

Undirected graphs are thus representations of a dichotomous network on
the interaction domain D = (N x N)\ {(i,i) : i € N'} with valuerange R =
{0,1}, where the values represent the presence or absence of relationships. In
general, however, there are no restrictions put on the value range such that it
can be any set of numbers (e.g. R), intervals (e.g. [0, 1]), or any other kind of
objects (e.g. timestamps).

To facilitate distinction and comparison we assume the existence of a pre-
order < on R. This preorder is either bounded from below by a special element
0 € Rwith0 < aforalla € R or from above by oo € R for all a € R. The dis-
tinction is made such that larger values represent more beneficial relationships
or smaller values represent less costly relationships.
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In the upcoming parts, we focus on dichotomous networks where self
relations are forbidden, i.e. x € BP where B = {0,1}, D = (N x N)\
{(,i) : i€e N}and xj; = xj; foralli # j € N.

Neighborhood-Inclusion Preorder

Definition 6.4 introduced positional dominance as a binary relation in net-
works x. If actor u’s position dominates the position of v in x, we say

pos(u|x) = pos(v|x).

Domination was also used for indirect relations 7(x), however, we here focus
on the domination in x and under which circumstances it is preserved by 7(x).
We thus simplify our notation by

pos(u|x) = pos(v|x) < u = v.

The induced preorder of domination is the core element of the upcoming parts.
In graph-theoretic terms, it translates to the well-studied neighborhood-inclusion
or vicinal preorder for undirected and unweighted graphs [19,129].

Corollary 7.2. Let G = (V, E) be the simple undirected graph representing a network
x. Then
u=v < N[u] 2 N(v).

An example of neighborhood-inclusion is depicted in Figure 7.1. In the
following, we use positional dominance and neighborhood-inclusion inter-
changeably, keeping in mind that the former is actually more general.

FIGURE 7.1: Illustration of neighborhood-inclusion. The neighborhood of
vertex v is completely contained in the closed neighborhood of u.

Semirings

Most of the definitions in this section are adapted from Gondran & Minoux [88],
Batagelj [10] and Mohri [138].

Definition 7.3. An algebraic structure (R, ®, ®,0, T) on a set 'R is a semiring if
and only if

(i) (R,®,0) is a commutative monoid with a neutral element 0.
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1. YabeR: ad®dbes

2.Va,beR: ad®b=bda

3.VaeR: 0@a=ad0=a

4. Va,b,ceR: ad(bdc)=(adb)dc

(i) (R, ®,1) is a monoid with neutral element 1.

1. Va,beR: aGbeR
2.VaeR: 10a=a0l=a
3. Va,bceR: a®(boGc)=(a®b)oc

(iii) © distributes over ©
(iv) 0is an annihilator for ©: Yae R: a®0=00a=0

The binary relation @ is called aggregation and © concatenation. If both bi-
nary operations and neutral elements are understood, we denote the semiring

simply by R. A concatenation a ©® b can conveniently be written as a juxtapo-

sition ab and a ® a as a?.

Definition 7.4. Let (R, ®,®,0,1) be a semiring and
aY =00ad...0d (VaeR).
An element a is k-closed ifa(k) = gk+1),
It is easy to prove by induction that
a € Rk-closed = a®) =g+ (v1 >1).
holds.

Definition 7.5. Let (R, ®,®,0,1) be a semiring. For k-closed elements a € R, the
closure operation a* is defined as

(e}
7 =@d =a®
1=0

and the strict closure operation as

a=a®a".
An important property of semirings for our context is monotonicity.

Definition 7.6. Let (R, ®,®,0,1) be a semiring and > a preorder over R. The
semiring is monotonic if the following statements hold for all a,b,c € R:

(i) (a>b) = (adc>bDc)
(ii)) (a>b) = (a@c>bec)
(iii) (a>b) = (cOa>cOb)
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A semiring is strictly monotonic if

(i) (a>b) = (adc>bdo)
(ii)) (a>b) = (@©c>boc)
(iii) (a>b) = (c@a>cOb)

Monotonicity requires that the set R is preordered, which is guaranteed if
R C R assuming the natural order. However, it is not necessarily unambigu-
ous when R is multidimensional. Monotonicity could be defined component-
wise or after any form of aggregation.

Formal Power Series and Centrality

A formal power series can be loosely defined as a power series in which questions
of convergence are ignored by using indeterminates as variables [149]. We can
write a formal power series as

o
Y Xk,
k=0

where X is an indeterminate and v = ()}, is a sequence of real numbers
indexed by the natural numbers. An example of formal power series are gener-
ating functions. The main purpose of formal power series is to study properties
of the sequences .

Centralities relying on counting walks can be described as a formal power
series of the weighting factors (yx);> . Assuming we are given the sequence
of (s, t)-walk counts of lengths k > 0

0 12 k
wWet = [Wep, Wy, Whtyevny Weps -2,

we can calculate the respective indirect relations by an infinite scalar product

')/r wst Z 'kast

where ()2, are the weighting factors of a walk based centrality index. Ex-
amples for such sequences are

(i) eigenvector: vy =10,1,1,1,..]

(ii) subgraph:  y=1[1,1,1/2,...,1/k!,.. ]
(iif) Katz: v =1[0,a,42, txk,. ]

(iv) Bonacich: v=1[0,1,8,B%....85,.. ]
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7.2 SEMIRINGS FOR INDIRECT RELATIONS

Walks and Paths

Although indirect relations in networks rely on different graph-theoretic con-
cepts, they can all be derived in a similar fashion with the notion of walks and
paths. A walk of length k € IN is defined as an alternating sequence

io, {io, i1}, i1, {iv,in}, -+, Gk—1, {ik—1, 0k}, ik

of k + 1 nodes and k dyads. For brevity, we only consider the sequence of dyads
from now on. Dyads are unordered, since we only consider undirected graphs,
i.e. symmetric networks. Note the slight notational adjustment from edges to
dyads. A walk can be any sequence of dyads of the above kind and does not
necessarily have to be realizable in the graph, in contrast to the definition given
in Chapter 2. Other trajectories like (s, t)-walks, closed walks and paths are
adjusted in the same way. We define the set of all possible (s, t)-walks of length

k to be DX, and D¥ = (J, 4 r D, Correspondingly, we define Ds(f) and D) for
walks of length at most k, and D}, and D* for walks of arbitrary length.

Indirect Relations from Path Algebras

The value range of symmetric dichotomous networks x € B? permits a semir-
ing structure (B, max, min,0,1) which can only be used to derive reachability
as an indirect relation. In order to obtain further relations, we therefore have to
map the network into a suitable value range and additionally have to include
the set {(i,i) : i € N'} for numerical conveniences. These two steps can be
described in terms of a monomorphism.

Definition 7.7. Let x € BP be a symmetric network on the interaction domain
D=WNxN)\{(i,i): i€ N}and (R,®,®,0,1) be a semiring. Let g1 : B —
B U {-} be an injective function with

1 (s,t)eDAxg=1

xl = X =
st gl( st) {0 (S,t) ED/\xst -0

and g : BU{-} — R be a function with

Yst xg =1
g2(x;t) =<0 xl; =0
1 X, =

The network y = g(x) € RP with g = ¢ 0 g1 is the monomorphic transformation
of x in R.

The function g is necessary in order to distinguish absent and undefined
relations. Note that the network y = g(x) does not yet hold a new relation but
rather transfered the observed network into an extended interaction domain
with differing value range.
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TABLE 7.1: One dimensional semirings for indirect relations

Relation R ) ® 0 1 order
reachability B \Y; A 0 1 >
shortestpath Ry min + oo 0 <
longest path Ry, max + o 0 >
max. reliability  [0,1] max x o 1 >
max. capacity RJ max min 0 oo >

Since the monomorphically transformed network y = g(x) permits a semir-
ing structure (R, @, ®,0,1), we can first extend y € RP to walks P € D* by
concatenation

y(P)= O vi-

(i,j)eP
Afterwards, we aggregate over the set of walks applying the closure operator

va= P y(P).

PeDy,

IfR C Ra“ holds, we directly obtain a new relation 7(x)s; = yi,. Some
one-dimensional semirings are given in Table 7.1 together with the respective
order relation.

However, many relations of interest in the context of centrality can not be
derived from a one-dimensional semiring. The following definition gives a
suitable semiring in order to derive dyadic dependencies and can be found

in [10].
Definition 7.8. Let (]Rar x Ny, >) be a preordered set where > is an adapted lexicographical order
defined as

(a,i) > (bj) <= a<b V (a=b Ni>]j). (7.1)
Then, (]RO+ x INo, @, ®, (c0,0), (0, 1)) is called the geodetic semiring with concatena-
tion

(a,i) © (b,j) = (a+b,i-j)

and aggregation

i a<b
(a,1) ® (b, ]) = (min(a,b),{i+j a-b}) .
j a>b

The monomorphic transformation of a network x in the geodetic semiring
is given by

(1L,1) () €D A xg =1
Yst = (00,0) (S, HED A x4=0
0,1) (s,t) ¢D.
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Then, an element
Yor = (dist(y)st, o (y)st),

of the strict closure comprises the distance and the number of shortest paths
between s and t. The geodetic semiring is monotonic with the lexicographic
order given in Equation (7.1), however, it is not strictly monotonic in ¢. Con-
siderc < a < b€ Rfandj < i < k € Ny. Then (a,i) > (b,j) but
(a,i) ® (¢, k) = (¢, k) = (b,]) & (¢, k).

In order to obtain dyadic dependencies from the strict closure y*, we have
to define a mapping into the real numbers. To do so, we need the following
Lemma.

Lemma 7.9. Let y* € (Ry,No)?, where y?, = (dist(y)st, o(y)st). It holds that

(s i) = Wi Wi dist(y)si +dist(y)ie = dist(y)s
I 0 otherwise.

With Lemma 7.9, we can define a function

oy T (Ff 1) s £
5(y*)si:{ ) (i,t>ev<(y)” )

0 s =1.

where 14 (i) is a Kronecker delta-esque function defined as

0 otherwise,

, 1 dist(y)si + dist(y)ie = dist(y)st
lst(l) =

such that 7(x) = é(y*) yields the desired relation.

Semirings for indirect relations do not necessarily have to be of finite di-
mension. The following definition introduces a non finite semiring which can
be used to derive walk counts of arbitrary length.

Definition 7.10. Let (Q), >) be the preordered set of all sequences & = (& )2, with
ax € R for all k € IN and binary relation > defined as

ko ko
CKZ‘B — Zockz Z‘Bk Vko € WNo. (7.2)
k=0 k=0

Then (Q),®,®,[0,0,0,...],[1,0,0,...]) is called the semiring of infinite sequences
with concatenation

k
a® B = [aoPo, a1Po + aoP1, a2fo +a1p1 +aoBz, .-, Y &k j, -]
j=0
and aggregation

a®ﬁ:[a0+ﬁ0/ 0‘14‘,51, Déz-i—ﬁz,...].
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The monomorphic transformation of a network x in ) is given by

[0,1,0,...] (s,t) €D A xs=1
Yst = ¢10,0,0,...] (s,t) €D A x4 =0
[1,0,0,...] (s,t) & D.

and the strict closure by
0 -1 k
Yot = [wsp, Wy, - .., Wy, - ]
where w¥, is the number of (s, t)—walks of length k. To derive a relation used
for walk based indices, we have to project the walk sequence into the real
numbers with the previously defined infinite scalar product, i.e.

T(%)st = (1, Yst)s

where 7 is a weighting sequence of a walk based index. Additional specifica-
tion might be necessary if i.a. only closed walks are considered as for subgraph
centrality.

We conclude this section with an important semiring to enumerate specific
paths or walks in network [88].

Definition 7.11. Let Q € Df.‘t and P € D]’Yt. P and Q are k-similar, denoted by
P o<y Q, if they only differ in the first dyad.

Let Q € DX with P = (i,iy), (i1,12), ..., (i,i), ..., (ix_1,t). Awalk P € D;f;’ with
P = (i, i), (i,i141), - - -, (ix_1,t) is called an l-contraction of P, denoted by P t>; Q.

Abusing set theoretic notation, we will address the overlap of two k-similar
walks Pand Q by PN Q.

Definition 7.12. Let (P (D*),>) be a preordered set with binary relation > defined
as

Wi>W; = VQeW; FPeW,;: (Q=PVQ>1P).

Then (73 (D", U, oy, D, DO) is called the semiring of enumerated Y —trajectories,
where for

P={ip,i1}, {iriz},... {ix_1,ix} € DX and
Q= {jor}t, o}, {jiivii} €D,

concatenation is defined as

{io i}, {ivio}, - Adk—1 i}, {i i}, G iads - Aj-u it} ik = joand
has property

@ otherwise.

POpo:

The property 1 is used to constrain the considered trajectories. For instance,
to enumerate walks or paths up to length k, walks or paths with length k. The
monomorphic transformation of a network x in P (D*) is given by
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{(s,t)} (s,t)eD N x4 =1
Yst =D (s,) €D A x4 =0
{(-)} (st) D,
and the strict closure by

y:t = {PerZI"‘}

where P; € D}, are trajectories that fulfill property 1. Indirect relations derived
from these sets of trajectories can be of various kind. Commonly, however, the
cardinality ,i.e.

T(%)st = |yst]

is used.

7.3 NEIGHBORHOOD-INCLUSION AND INDIRECT RELATIONS

We now have the basic terminology and notations to consider the preserva-
tion of dominance or, equivalently, the neighborhood-inclusion preorder in
undirected unweighted graphs for relations 7(x) and indices of the form

cr(u) = 2 T(X)uw -
{u,t}eD

Definition 7.13. Let x € RP be a network. An index cx : N' — Ry preserves
domination if
Urv = cr(u) > ce(v).

Domination is strictly preserved if
u>v = cr(u) > c(v).
We can relate the preservation to properties of 7(x).

Corollary 7.14. Let x € RP be a network and c- : N' — R{ be an index with

ce(u) =Y T(x)ur-

{ut}eD

Further, let u,v € N and u > v. Domination is preserved if one of the following
statements holds true.

(1) Vt € N : T(X)ut Z T(x)vt
(i) Vte N I N = N 0 7(x) yr(r) = T(%)ot

The second condition in Corollary 7.14 is equivalent to domination under
total homogeneity in Definition 6.5. Thus, (i) = (ii) but not vice versa. In
the forthcoming we therefore develop sufficient conditions for Corollary 7.14(i)
to be fulfilled.

We start by giving sufficient conditions for the preservation of dominance
in the strict closure of a semiring.
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Theorem 7.15. Let y be the monomorphic transformation of x € BP in the semiring
(R, ®,®,0,1), where (R, >) is a preordered set. Then, for u, v € N,

urv = Vte N\{uo} VkeN: P y(P)> P v(Q).

pep¥) Qep®
holds true if the following statements hold true.
(i) (R,>) is monotonic
(i) V(s,t) €D : 1>y >0
(iii) Yk e NVP € D*3Q € DX : Py Q
(iv) Vk e NYP e DK3Q e D1 : P>1Q

Proof. We proof the theorem by showing that if (i)-(iv) are fulfilled, then

v = ¥Qe DY IPeDY 1 (QmPVQ>1P)A(y(P) > y(Q))

holds true forall t € N\ {u,v} and k € IN.
Wlo.glett € N\ {u,v} and k € IN be arbitrarily chosen.
We define two sets

D] ={QeDh: {ou}¢QV {ioi} # {o,u}} and
Ph| = {QeDl: {ini}={vu}},

with I < k such that
[Dét] U {Dét] LT Di.

Consider an arbitrary Q € {Dét} . With (iii) we can define P € D!, such that
Py Q.Let R =PNQ.If (R, >) is monotonic, it follows that

Y(P) = yui, ©Y(R) > yui, ©y(R) = y(Q)-

ot

Since {DH ~C {D(k)] ~,we have
VQ € [pgp} C3PeDY 1 Prag QAY(P) 2 y(Q).

Consider now an arbitrary Q € [Dét} K With (iv) we can define P € Digl
such that Q t>;_1 P. With (ii), it follows that

¥(P) = you ©y(P) = y(Q),
since 1 > y,,, implies y(P) > you © y(P). We thus have

vQ e [D;tL IP e DL Qq PAY(P) > y(Q).
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In summary, we have shown that

vQ e DY) 3P e DY : (Qpayy PV Q1 P) A (y(P) = 1(Q))
which directly implies that

D vP) = D vQ ke
peD)y) Qe

holds. O

The geodetic semiring and the semiring of infinite sequences as well as
all one dimensional semirings in Table 7.1 fulfill the requirements, except the
longest path semiring which violates (ii).

Corollary 7.16.
UWFpo = Yy =Yy  VEEN\{wov}
if the requirements of Theorem 7.15 are fulfilled.

Theorem 7.15 and Corollary 7.16 excluded the direct comparison of {u, v}, {v, u}
and the diagonal elements. These special cases are treated in the following
corollary.

Corollary 7.17. Let x € BP and y its monomorphic transformation in (R, ®, ©, 0, T)
with R C Ry . Then

Q) YutveN : yi, =y,
(ii) If Theorem 7.15 (i) and (ii) hold then v}, = 1 forallu € N.

While the first statement is trivial for all symmetric networks, the second is
fulfilled when a self relation is considered the most beneficial or least costly re-
lation, e.g. dist(x)u, = 0, which is ensured by Theorem 7.15 (i) and (ii). We can
thus state a general result for indirect relations derived from a one dimensional
semiring.

Corollary 7.18. Let x € B and y its monomorphic transformation in (R, ®,®,0,1)
with R C Ry If the semiring fulfills (i)-(iv) in Theorem 7.15, then

pos(u|x) = pos(v|x) = pos(u|t(x))) = pos(v|t(x)))
Corollary 7.19. Closeness centrality preserves positional dominance.

The preservation is strict, since the underlying semiring is strictly mono-
tonic. The following theorem deals with the geodetic semiring.

Theorem 7.20. Let x € BP and y its monomorphic transformation in the geodetic
semiring. If u = v then the following statements hold.

(1) 5(]/*)514 Z 5(]/*)5'0 Vs S N\ {M,U}
(i) 6(y* )uw =0
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(iii) 5(y*)ou >0

Proof. (i) is fulfilled due to the definition of the adapted lexicographic order.
(ii) Since dist(y)uo + dist(y)or > dist(y)up + dist(y)ur > dist(y)ut, it holds
that 1,+(v) = 0 forall t € N and thus §(y* )uo = 0
(iii) If x,, = 1 and there exists a t € A such that x,; = 1 and x;; = 0 then
dist(y)ou + dist(y)us = dist(y)o+ holds and therefore 5(y*),, > 0. In general,
we thus have §(y*)o, > 0. O

Corollary 7.21. Betweenness centrality and its variants preserves positional domi-
nance.

The preservation is non-strict, since the underlying semiring is not strictly
monotonic.

For the semiring of infinite sequences, we note that Corollary 7.17(i) also
holds since walk counts are symmetric. The following lemma deals with the
diagonal elements.

Lemma 7.22. Let x € BP and y its monomorphic transformation in the semiring of
infinite sequences. Then

u=ov = wh, > wk, Vke N

Proof. Let Q € DX, be a closed walk. Suppose that (v,i1) # (v,u). According
to Theorem 7.15, there exists a P’ € Dk, such that P’ > Q and y(P') > y(Q).
Since x is symmetric, it holds that P’ € Dk . Thus, there exists P € Dk, with
P P and y(P) > y(P'). It follows that y(P) > y(Q).

Now suppose that (v,i1) = (v, u). We then just need the fact that for any i;
on a closed (v, v)-walk we can define a closed (i}, i;)-walk with the same set of
dyads. Therefore, we can define a P € Dk, such that y(P) = y(Q).

Together, we obtain that

¥Q €Dy, 3P €Dy = y(P) > y(Q)
and therefore wk, > wk, O

The following theorem deals with properties of the weighting sequences 7y
such that dominance is preserved.

Theorem 7.23. Let x € BP and y its monomorphic transformation in the semiring
of infinite sequences and u = v. Further, let v = (v )4, Then

@D v>m>...20 = (ywu) > (y,wy) VteN\{uv}

(i) >0 Vke N = <'Y/wuu> = <’Y;wvv>

The proof is omitted since (i) is a generalization of order preserving func-
tion for an infinite dimensional vector space [96,133] and (ii) is a direct conse-
quence from Lemma 7.22.

Corollary 7.24. (i) Indices based on walk counts preserve positional dominance if
7 is positive and non-increasing.
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(ii) Indices based on closed walk counts preserve positional dominance if v, > 0 for
all k € IN.

With the semiring of enumerated ip—trajectories, we can broaden the class
of indices preserving dominance even more.

Corollary 7.25. Let x € BP and y its monomorphic transformation in the semiring
of enumerated -trajectories. The indirect relation T(x) = |y*| preserves dominance

if
(i) ¢ conform trajectories are walks or path with length at most k € IN

(ii) 1 conform trajectories are closed walks or path with length at most or exact
keN

The proofs for both statements are essentially the same as for the semiring
of infinite sequences.

7.4 CENTRALITY INDICES AND NEIGHBORHOOD-INCLUSION

In the last section we presented sufficient conditions for the neighborhood-
inclusion preorder to be preserved given a great variety of indirect relations.
The implication is that a great deal of centrality indices, e.g. betweenness (and
its variants), closeness (and its variants), eigenvector centrality and subgraph
centrality (and its variants) to name a few all preserve the neighborhood-
inclusion preorder. Besides the relations used in indices, we also showed that
dominance is preserved for a great variety of other relations, such as common
path optimization problems and indices relying on counts of trajectories up
to a length k. Based on these findings, we propose a new characterization for
centrality indices.

Proposition 7.26. Letc: N — ]Rar be an index. Then, c is a measure of centrality,
if and only if it preserves the neighborhood-inclusion preorder.

The preservation of dominance by neighborhood-inclusion is in line with
the preservation of dominance for additive value functions in CM. Alternatives
that are preferable in each dimension to another one should not be ranked
lower in any preference ranking. In the context of centrality, an actor that has
better relations to all other actors than another should never be less central.

Based on Proposition 7.26, we can state the following result about the whole
set of potential centrality indices.

Corollary 7.27. The set of feasible centrality indices according to Proposition 7.26
are the completions of the neighborhood-inclusion preorder.

The devastating implication of Corollary 7.27 is that the set of centrality
indices could potentially be much greater then it already is. Since the problem
of counting the completions is #P-complete [41], the actual number can not be
determined. However, if the neighborhood-inclusion preorder is complete, the
problem is reduced to two cases, stated in the following theorem.
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Theorem 7.28. Let ¢q and cy be two centrality indices according to Proposition 7.26.
Let G = (V, E) be a graph where the neighborhood-inclusion preorder is complete.
Then the following statements hold true.

(i) If cq and ¢y strictly preserve the neighborhood-inclusion preorder, then

c1(u) > c1(v) <= ca(u) > c2(v) Yu,v €V and
c1(u) =c1(v) <= ca(u) = c2(v) Yu,veV.

(ii) If either c1 or cp preserves the neighborhood inclusion non-strictly, then

c1(u) > c1(v) <= ca(u) > c2(v) Yu,v e V.

Note, that Theorem 7.28 also substantiates the star property in a formal
way. Star shaped graphs are completely ordered since the center dominates
all leafs which in turn mutually dominate each other, i.e. they are structurally
equivalent.

Incompatible Measures and the Star Property

We have shown that a vast amount of existing centrality measures preserve
the neighborhood-inclusion preorder. The question is, if there are indices that
do not meet this condition and if so, why it is reasonable to exclude them from
the set of centrality measures.

A simple index which generally does not fulfill Proposition 7.26 is the num-
ber of 2-paths starting at a vertex. As a simple illustrative example consider
a star graph, where the number of 2-paths for the center and leaf nodes are

given by
0 u = center
C2path (u) =

n —2 otherwise.

Obviously, this measure also does not fulfill the star property. The next exam-
ple, however, shows that preserving dominance is a tighter requirement than
the star property. The scores of the hyperbolic index, defined in Section 5.2,

Chyp (1) = ccoef (u) | Y cosh(AM)
veN|u]

on a star shaped network can be calculated as a function of the number of
vertices n with

o (1) = 2 [2cosh(vn—1) + (n—2)] u = center
SN 2cosh(1) otherwise.

Since cosh(x) is monotonically increasing faster than 2/# is decreasing, the
center of the star attains the highest value for all n > 2. Although the practical
relevance of this measure was already questioned, we could argue that it is a
centrality index according to the star property.
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However, it can be shown that the hyperbolic index generally does not
preserve the neighborhood-inclusion preorder. This is i.a. due to the scaling
with the clustering coefficient. It is easy to see that the clustering coefficient
itself does not preserve neighborhood-inclusion. Admittedly, it is not intended
to be a measure of centrality, yet it is used for several indices as a scaling
factor [123].

A prominent index that does not necessarily preserve dominance is given
by Bonacich’s B-centrality. Its representational sequence is defined

v = [0[1,‘8”32,...,‘8](_1/”-];

where |B| < /\% to ensure convergence. If § is chosen to be greater than zero,
Bonacich points out that

“[...], Cap is a conventional centrality in which each unit’s status is a
positive function of the statuses of those with which it is in contact.” [25,
p. 1170]

Indeed, for B > 0 the requirements of Proposition 7.26 are fulfilled, since - is
monotonically decreasing and 7y, > 0 for all k € IN so that the requirements of
Corollary 7.24 are fulfilled. However, this does no longer hold true if § is nega-
tive. In this case, 7 is an alternating sequence such that the preservation of the
neighborhood-inclusion preorder can not be guaranteed. Bonacich describes
the meaning of a negative § in the context of bargaining situations.

“In bargaining situations, it is advantageous to be connected to those who
have few options; power comes from being connected to those who are
powerless. Being connected to powerful others who have many potential
trading partners reduces one’s bargaining power.” [25, p. 1171]

His work was based on the findings of Cook et al., who showed that power
does not equal centrality in exchange network [50]. Having better relationships
in this situation is not an indicator for better bargaining positions. Therefore,
B-centrality with a negative 8 is no admissible centrality measure but rather a
measure of power in exchange networks.

7.5 SUMMARY AND DISCUSSION

This chapter dealt with the theoretical principles for the preservation of domi-
nance by centrality indices. We now have sulfficient conditions at hand to show
that

uzv < pos(u|x) = pos(v|x)
= pos(u|t(x))) = pos(v|t(x)))
= cr(u) > cr(v).
holds for a great variety of indirect relations 7(x). This lead to a new charac-
terization of centrality concepts by enforcing preservation on indices. From the

point of MCDM, the requirenment is a natural extension for the preservation
of dominance in the additive value function model.
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Compared to the conceptualizations of centrality given in Section 3.2, our
characterization can be positioned between the weak star property and the
restrictive axiomatic systems. We have shown that fulfilling the star property
is not enough to exclude contrived indices. We later introduce a super class
of star shaped networks which provides a stronger requirement for centrality
indices.

Our characterization encompasses all prominent indices and is not restricted
to selected groups of indices as for the axiomatic approaches. Further, it focuses
solely on induced rankings, which we have argued to be more important than
the actual centrality scores. Obviously, Proposition 7.26 could also be formu-
lated as an axiom for centrality. The resulting axiomatic definition would, how-
ever, be of a different nature then previous systems. The discussed axiomatic
systems in Chapter 3 are normative. As in other contexts, e.g. social choice theory,
anormative axioms does not imply that every index behaves according to them.
Instead, they are a basis for suggesting a behavior that we would like indices
to follow. In other words, enforcing properties on indices. Proposition 7.26
could be seen as a descriptive axiom. That is, we observed a certain behavior
all indices seem to follow, i.e. the preservation of the neighborhood-inclusion
preorder, and formulate it as an axiom.

Whether or not a centrality index preserves the neighborhood-inclusion
preorder can be verified without much mathematical effort. However, it pre-
vents us from deriving any general statements about theoretic conditions that
indices have to fulfill. The generalization of indirect relations by means of
semirings provides a holistic view of relations on networks and allows for
deducing sufficient conditions when the neighborhood-inclusion preorder is
preserved. Their application is by no means a novel approach. Semirings are
commonly used in order to produce generic algorithms for path finding prob-
lems and called path algebras [88,138]. Here, we are not interested in designing
algorithms but rather defining algebraic structures as a theoretic basis for indi-
rect relations used in the context of network centrality. Further, they facilitate
theoretical investigations, neglecting concerns about computational complex-
ity.

The given sufficient conditions under which neighborhood-inclusion is
preserved show that we are faced with an infeasible number of possibilities
to craft new indices. From a theoretical perspective, any index based on walk
counts with a monotonic representational sequence y can be termed a measure
of centrality. Even worse, if v comprises a free parameter we can tune indices
ad infinitum to obtain desired outcomes. This is, however, not in agreement
with our arguments given in the previous chapter. Centrality should be seen
as a procedure of measurement and not as a tool to uncover patterns in data.



CHAPTER 8

Uniquely Ranked Graphs

“Threshold graphs have a beautiful structure and possess many important mathe-
matical properties such as being the extreme cases of certain graph properties.”
— Mahadev & Peled, 1995

8.1 DEFINITIONS AND PROPERTIES OF THRESHOLD GRAPHS

In Chapter 7, we introduced the preservation of the neighborhood-inclusion
preorder as a new characterization for centrality indices. An important impli-
cation was given in Theorem 7.28, i.e. there is only one possible ranking of
vertices if the preorder is complete. We discuss a class of graphs which fulfill
this property in the following.

Definition 8.1. A graph G = (V, E) is called a threshold graph if the neighborhood-
inclusion preorder is complete. The set of all threshold graphs with n vertices is denoted

by Tn.

Definition 8.1 ensures that all centrality indices in the sense of Proposi-
tion 7.26 induce the same ranking according to Theorem 7.28 on a threshold
graph. Threshold graphs and their applications have been studied extensively
in the literature [45,56,94]. However, they were never considered in the context
of network centrality.

Giving a detailed introduction on this graph class is out of the scope of this
thesis. An extensive review on topics related to threshold graphs can be found
in [129]. Here, we focus on properties with implications for network centrality.
Star graphs, e.g. are a proper subclass of threshold graphs such that we can
strengthen the star property by requiring agreement of centrality rankings on
threshold graphs.

Alternative characterizations for threshold graphs are given in the follow-
ing theorem.
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Theorem 8.2. Let G = (V,E) be a simple undirected graph. The following state-
ments are equivalent

(i) G is a threshold graph.

(ii) There exist vertex weights w : V. — Ry and a threshold t' > 0 such that
{u,v} € E <= w(u)+w(v)>t.

(iii) G can be constructed from the one-vertex graph by repeatedly adding an isolated
vertex or a dominating vertex which is connected to every other vertex that has
been added before.

(iv) G does not contain an induced Py, Cy or 2K5.
(v) G is asplit graph and the neighborhood of the independent set is nested.

The proof can be found in [129].

The degree sequence of a threshold graph (henceforth threshold sequence) is
unigraphic, i.e. the structure of a threshold graph is uniquely determined by its
degree sequence up to node relabeling. Theorem 8.2(v) implies that threshold
graphs have a perfect core-periphery structure, i.e. V.= KU I, where the vertices
in K form a clique and I is an independent set. Theorem 8.2(iii) can be exploited
to store threshold graphs very efficiently.

Definition 8.3. Let G = (V, E) € T,,. The binary creation sequence
By = biby... b, of Gis defined as

1<i<n

_ |1 iisadominating vertex
Z 0 otherwise

The value of by can be set arbitrarily, yet we choose to set it to 1.
Some simple examples for threshold graphs and their binary creation se-
quences are shown in Figure 8.1.

\.\ /. \._></ o7 '\.
| A X

100001 1101 1000101 111111

\

FIGURE 8.1: Examples of threshold graphs and their binary sequences.

Besides its compact form, the binary creation sequences posses another
advantageous property.

Corollary 8.4. Let By, be a binary creation sequence of a threshold graph G = (V, E).
Then the following holds true

b;j = bjy1 <= iandi+ 1arestructurally equivalent vV2<i<n-—1
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Taking advantage of Corollary 8.4, we can compress the representation
even more by solely giving the sizes of the equivalence classes in a run-length
encoding [92]. This representation does not come with any loss of information.
In fact, the sequence is enough to compute nearly all structural features and
centrality scores in linear time [92].

8.2 THRESHOLD DISTANCE MEASURES

Although threshold graphs play important roles in a variety of disciplines, it is
rather unrealistic to encounter them in real-world social networks. Yet, we can
determine if an arbitrary graph has a similar structure as a threshold graph
by several means. Similarity or distance measures are of particular importance
for our definition of centrality indices. Graphs that are structurally close to a
threshold graph exhibit a close to complete neighborhood-inclusion preorder,
such that the number of possible vertex rankings is reduced significantly. We
examine this observation in more detail in Chapter 9. Here, we give a brief
overview of potential measures to quantify distances between an arbitrary
graph and the class of threshold graphs.

Edit Distance

Distances between graphs are commonly calculated with the graph edit dis-
tance [84].

Definition 8.5. Let G = (V,E(G)) and H = (V,E(H)) be two graphs with the
same vertex set V. The edit distance between G and H is defined as

e(G,H) = |[E(G)AE(H)| ,
where A is the symmetric difference.

Informally, the edit distance is the number of edges that have to be added
and deleted to turn one graph into another. Special cases of graph editing for
our context are given in the following definition.

Definition 8.6. Let G = (V,E) be a graph. and F C V x V. Three instances of
threshold distances are

(i) threshold editing:

te(G) = min{|F|: H = (V, EAF) is a threshold graph}

(ii) threshold completion:

t+(G) =min{|F| : ENF =@ A H = (V,EAF) is a threshold graph}

(iii) threshold deletion:

t_(G) =min{|F|: F CE AN H = (V,EAF) is a threshold graph}
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The computational complexity of threshold editing has long been stated
as open [142]. Very recently, it was shown that determining t,(G), t(G) and
t_(G) is NP- complete even if G is a split graph [59].

Itis ,however, possible to obtain a specially designed threshold graph from
any graph with minimal edit distance based on rank-1 approximations.

Definition 8.7. Let G = (V,E) be a graph and let A = XAXT be the spectral
decomposition of its adjacency matrix. The t-binarized rank-1 approximation is defined
as

Al _ )1 a(iix(v) >t
uv .

0 otherwise
witht € Ry

The associated graph of a t-binarized rank-1 approximation Alfl is given
by Gt = (V, Et). The main result about t-binarized rank-1 approximations is
given in the following Theorem.

Theorem 8.8. Let A be the adjacency matrix of a graph G = (V,E). A t-binarized
rank-1 approximation of A is the adjacency matrix of a threshold graph for all t € R™.

Proof. Lett € RT. Definition 8.7 implies that
{u,0} € By = x1(u)hx1(v) > t.

Let « € Ry, such that & > max {1/ min,cy x1(u), /A1 /t}. The following
transformations are equivalent according to the Theorem of Perron Frobenius:

x1(u)Axq(v) > ¢t

= nwnE) > -

— a%x(u)x1(v) > a®>—
<= log(axq(u)) + log(axi(v)) > 2log(x) + log(t) —log(A1)
Setting w(u) = log(ax1 (1)) and ¢ = 2log(«) + log(t) — log(A1) we obtain
{u,v} €E <= w(u)+w(v) >t.

The choice of « ensures, that w(u) > O forallu € Vand # > 0forallt €
R{ . Hence, condition (ii) of Theorem 8.2 is fulfilled and Gy = (V,Ey)isa
threshold graph for every t € Ry . O

Definition 8.9. Let G = (V, E) be a graph. The rank-1 threshold distance is defined
as

H(G) = gél];{l} {EAEM}

where E|y is the edge set of a t-binarized rank-1 approximation graph.
Corollary 8.10. Let G = (V,E). It holds that t;(G) > t.(G) .

Although t;(G) is easy to obtain, Corollary 8.10 signifies that it is not op-
timal in the sense of minimum number of edits. An example for this case is
depicted in Figure 8.2.
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FIGURE 8.2: Illustration of the difference between t;(G) and ,(G). From
the original graph (middle) three edges have to be deleted according to t1(G)
whereas two edges have to be added according to f.(G) in order to obtain a
threshold graph with the respective minimal distance.

Edge Rotation Distance

Since the problem of threshold editing is N P— complete, we have to rely on
measures that quantify the distance to a threshold graph by different means.
One conceivable alternative is given in the following definition.

Definition 8.11. Let G = (V, E) be a graph. The edge rotation distance t,(G) is the
minimum number of edge rotations, i.e. changing one endpoint of an edge, which are
necessary to turn G into a threshold graph.

Since an edge rotation is equivalent to two edits, we have the following
corollary.

Corollary 8.12. For all graphs G = (V,E),
te(G) < 2t,(G)
holds.

The edge rotation distance is closely related to two existing measures of
non-thresholdness of degree sequences. The first is due to Hammer et al. [94].

Definition 8.13. Let d(G) be the degree sequence of a graph G = (V,E). The
threshold gap is defined as

1e(d(G)) = amin 2 4(G) ~ (Gl

where || - ||; denotes the Li-norm.
Further theoretical details of this measure can be found in [94]. The sec-
ond measure operating on degree sequences, called majorization gap, was in-

troduced by Arikati and Peled [7]. We first need the definition of a sequence
closely related to degree sequences.

Definition 8.14. The corrected conjugate sequence d'(G) of a degree sequence d(G)
is given by the formula

dp=|{ii<kANdi>k—1}+|{i:i>k A d; >k} 1<k<n.
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Definition 8.15. For a degree sequence d(G) and its corrected conjugated sequence

d'(G), )
g (d(G)) = % X max {df — i 0}

is the majorization gap.

The majorization gap counts the number of reverse unit transformations in
order to turn a degree sequence into a threshold sequence [129]. A reverse unit
transformation is equivalent to changing two entries in the degree sequence.
Note, that although this operation is equivalent to rotating an edge, it is not
equivalent to the edge rotation distance. Degree sequences do not uniquely de-
termine a graph, such that an edge rotation from a reverse unit transformation
is not unambiguously defined. The following theorem is due to Mahadev &
Peled [129]

Theorem 8.16. For every degree sequence d(G),
tig(d(G)) = tmg(d(G))
The proof can be found in [129].
Corollary 8.17. Let d(G) be a degree sequence of a graph G = (V,E). Then
t(G) = tg(d(G))

An example that t;,¢(d(G)) is just a lower bound for the edge rotation
distance is given in Figure 8.3.

\‘///\\ b K

FIGURE 8.3: Illustration of the ambiguity of ¢,¢. The left and right graphs
have the same degree sequence [6, 5, 5, 5, 4, 4, 1, 1, 1] and the same
majorization gap of 1. However, two rotations are necessary for the left graph
to obtain the threshold graph in the middle and only one for the right graph.

Since we do not have a reliable method at hand to calculate the rotational
distance exactly, we apply the majorization gap in the forthcoming chapter.
We have to keep in mind, however, that it is just an approximation for the
rotational distance.



CHAPTER 9

Correlation and Threshold Distance

“Correlation is a minefeld for the unwary.”
— Embrechts et al., 2001

9.1 INTRODUCTION

The prevalent opinion about correlation among centrality indices is best de-
scribed in the words of Valente et al.:

“If centralities are not highly correlated, they indicate distinctive mea-
sures, associated with different outcomes.” [186, p. 1]

A weak correlation between two indices thus implies that they measure impor-
tance on different structural levels. Therefore, it seems convenient to employ
a correlation analysis to justify new indices [15,144]. A weak correlation with
existing measures presumably signifies that the new index evaluates structural
importance on a different level proving its novelty.

A second line of research deals with the questions of how correlated mea-
sures of centrality in general are [11,21,119,121,127,167,186]. These studies
intend to unveil similarities of indices with respect to the anticipated outcome,
hence investigating their redundancy. Indices that measure the same structural
importance are alleged to be used interchangeably and preferably the compu-
tationally less expensive one should be chosen [121]. Most of these studies
tested the correlation on a small set of networks such that an influence of the
network structure is ruled out beforehand. As a consequence thereof, results
often contradict each other. Lee finds that “... the degree and the betweenness
are correlated much strongly [sic] than other centrality measures” [119, p. 6],
while Lozares et al. find that the correspondence “are weaker or partial among
Degree and Betweenness” [127, p. 222].

A third type of studies deals with the robustness of indices towards per-
turbation of a network [29,51,73,148,157]. The goal is to examine the stability
of results when dealing with missing data or sampled networks. Work in this
category mostly use networks from random graph models and it was found
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that the network topology actually has a non-negligible effect on the reliability
of centrality.

Dependencies of centralities can also be proven analytically. Benzi & Klymko
examine a class of parametrized walk-based measures and showed that param-
eters can be tuned such that i.a. subgraph centrality and total communicability
interpolate between degree and eigenvector centrality in the limit cases of
the parameters [16]. An important role for the convergence plays the spectral
gap. The bigger it is, the stronger should the correlation between walk based
measures be.

In all mentioned cases, correlations are almost exclusively derived with
the Pearson correlation coefficient, undoubtedly the most commonly used cor-
relation coefficient across various disciplines. This measure, however, makes
strong assumptions on the underlying data such that it is unreasonable choice
in many cases [60].

In contrast to the received meaning of correlation in the literature, we show
in this chapter that correlation is contingent on the network structure. In par-
ticular, the distance to the closest threshold graph serves as an explanation for
correlations and is thus not associated with the definition of indices. In Sec-
tion 9.3, we provide a correlation analysis on two random graph models, the
Erd6s-Renyi model and the Barabasi-Albert model for preferential attachment.
This section is also used to demonstrate the sensitivity of results when differ-
ent correlation measures are chosen and to illustrate why testing on generated
data is not advisable.

Section 9.4 is devoted to an analysis on real-world networks. We use a set
of 400 self compiled protein interaction networks as well as 60 social networks.
The latter were used by Valente et al. [186]. Additionally we point to several
numerical issues that may have an influence on the correlation when indices
have an enormous value range, questioning their reliability.

9.2 MATERIAL AND METHODS

Random Graph Models

The Erd6s-Rényi, or G(n, p) model is the simplest model for random graphs.
Each dyad is realized as an edge with probability p, independently of each
other [61,86].

The Barabasi-Albert model is an algorithm to generate random networks
using a preferential attachment mechanism [9]. Starting from an initial network
with ng vertices, new nodes are added iteratively and connected to m; < ng
existing vertices, where the probability to connect to a specific vertex is pro-
portional to its degree. This mechanism eventually leads to what is referred to
as a scale-free network with a power law degree distribution as compared to a
Poisson distribution for G(n, p).

Both models suffer from several shortcomings when compared to hetero-
geneous real-world networks. Nevertheless, they are commonly used to test
new algorithms or hypotheses connected to certain network structures due to
their simplicity.
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For our analysis, we sample the parameters for both models. After choosing
the number of vertices # uniformly at random from the interval [100,1000], we
sample p or m; such that we obtain a network with density < 0.3.

Real-world Networks

We use two sets of networks derived from real-world phenomena. The first
comprises PINs of 400 organisms (henceforth protein dataset) taken from the
String Database (version 9.0) [182]. The networks are constructed with inter-
actions that have a confidence score greater than 950. We only consider the
biggest component of each network. Table 9.1 summarizes some basic statis-
tics of the dataset.

No. of vertices No. of edges density

mean 388 1303 0.37
min 28 70 0.001
max 3598 8890 0.69

TABLE 9.1: Network statistics of the protein dataset.

The second set consists of 60 social networks (henceforth Valente’s dataset)
obtained from a correlation study by Valente et al. [186]. Table 9.2 summarizes
some basic statistics of the dataset.

No. of vertices No. of edges density

mean 60 525 0.19
min 32 51 0.04
max 159 7009 0.94

TABLE 9.2: Network statistics of Valente’s dataset.

Centrality Indices

As in Chapter 5, we choose a small subset of existing indices for our analysis
(Abbreviation used in figures in parentheses). We consider degree (DC), be-
tweenness (BC), closeness (CC), eigenvector (EC) and subgraph centrality (SC),
as well as information centrality (INF). Additionally, we use total communica-
bility (TC) for a comparison of walk based indices.

Threshold Distance

We discussed several possibilities to quantify the distance of an arbitrary graph
to its closest threshold graph in Chapter 8. We have seen, that most measures
are either computationally too complex or only give a rough approximation of
the actual distance. We here choose the majorization gap as an approximation
of the rotational distance. To make results comparable, we normalize it by the
number of edges in each graph. A maximum majorization gap of 1 thus means
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that we have to rotate all edges in the graph and the minimum of 0 is only
reached for actual threshold graphs.

Correlation Coefficients

A vast amount of correlation coefficients can be found in the literature, derived
from different assumptions about underlying data [131]. The most commonly
used coefficient is Pearson product-moment correlation coefficient (henceforth Pear-
son’s p), which measures the strength of a linear association between two vari-
ables x and y. It is defined as

where ¥ and ¥ are the mean of x and y respectively. Due to its popularity, it
was almost exclusively used in correlation studies for centrality indices. How-
ever, the assumption of a linear dependence between the scores of indices is
too strong and nonlinear dependencies are not adequately captured with Pear-
son’s p. A common workaround, not only limited to network analytic studies
is to use the logarithmic scores, although p is not invariant under nonlinear
transformations [60]. That is, drawn conclusion from correlations obtained by
logarithmic scores are potentially fallacious. Further, it is only fully applicable
if two variables have a joined normal distribution [60], which can not be univer-
sally assumed for centrality indices. For these reasons, we employ Pearson’s p
on the scores and the logarithmic scores (denoted as pjog) only for illustrative
purposes.

Since we are solely interested in induced rankings of indices, it is more
convenient to use rank based correlation measures. Five different configura-
tions of pairs (i, j) can be observed when comparing two rankings induced by
indices ¢; and c¢y:

(i) concordance if c1(i) > ¢1(j) and c2(i) > c2(j)
(ii) discordance if c1(i) > ¢1(j) and e2(i) < ¢a(j)
(iii) tie if c1(i) = c1(j) and c2(i) = c2(j)

(iv) right tie if 1 (i) # c1(j) and c2(i) = c2(j)

(v) left tie if c1(i) = c1(j) and c2(7) # ca(j)

Measures of rank correlation rely on aggregating the appearance of subsets
of these configuration, depending if ties are assumed to be present or not and
normalizing them [89,106, 158]. For ease of exposition, we assume that r and s
are variables containing the scores of two different centrality indices. Further,
we define an inner product

(r,s) =) _sign(r; —rj) sign(s; — sj),

i<j
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where
1 x>0
sign(x) =<0 x=0
-1 x<0.

A simple measure based on the counts of (i) and (ii) is Goodman and Kruskal’s .
It can be defined as

(r,s)

X |sign(r; — rj) sign(s; —sj)|
1<j

v(r,8)

The downside of this measure is, that it neglects potentially present ties in the
ranking. Yet, the measure is useful to compare fine grained and coarse grained
indices, i.e. when many left or right ties are present. A measure that accounts
for ties is version b of Kendall’s rank correlation coefficient (henceforth Kendall’s
7). Together with an induced norm

Il = /()

{r,s)
= ST
This definition is equivalent to Kendall’s original work [107,191].

However, Kendall’s T is also not unconditionally guaranteed to be free from
defects. Particularly, problems may arise when dealing with huge networks.
The scores of central vertices tend to be highly correlated in many reasonable
rankings, yet most of the peripheral vertices are ranked in slightly different
ways, introducing a large amount of noise and leading to a low value for 7.
This phenomenon motivates the use of weighted correlation measures, which
correct for this issue. Numerous weighted approaches have been proposed in
the literature [115,174,200], where we use a recently introduced version by
Vigna [191], due to its scaling properties for large networks. The main idea is
to define a weighted inner product

it can then be defined as

(r,s)w = Y_sign(r; — r;) sign(s; — s;)w(i,

i<j

and accordingly a weighted correlation coefficient

(r,8)w
Ty(r,8) = T,
71w - I8l
There are several mathematical adjustments to be made to this formulation,
which can be found in the original work of Vigna. We here use an additive
hyperbolic weight function, i.e.

1

w(rank(i), rank(j)) = rank(i) + rank(j) + 1’
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9.3 RESULTS FOR RANDOM GRAPH MODELS
Erdds-Rényi Model

Figure 9.1 shows the results on the 1000 G (1, p) graphs. We can observe that all
graphs have a large distance from threshold graphs. However, all graphs still
have a high correlation for all indices. Although we do not have a comprehen-
sive explanation for this phenomenon, there is a good case to believe that the
reasons are given by the fairly homogeneous structure of the networks. Fur-
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FIGURE 9.1: Correlation of several indices (y-axis) and normalized majoriza-
tion gap (x-axis) for 1000 different G(n, p) graphs. Correlation is measured
with T (shades of grey, representing the density of the network) and 7, (red).

ther, we do not observe any differences between Kendall’s T and its weighted
version. The results of Goodman and Kruskal’s <y are not shown since they are
not distinctive of the results with Kendalls” measures.
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Bardbasi-Albert Model

Figure 9.2 illustrates the potential contradictory results that may arise for dif-
ferent coefficients. While Pearson’s p suggests a higher association between
betweenness and eigenvector centrality, its logarithmic version and the two
versions of Kendall’s T give a higher value for closeness and eigenvector cen-
trality. Additionally, the scores have a high variability for both comparisons.

\

(A) Betweenness and eigenvector (B) Closeness and eigenvector

P Plog T Tw

betweenness and eigenvector 091 0.59 0.26 0.61
closeness and eigenvector 081 086 0.89 0.92

FIGURE 9.2: Illustration for contradictory results obtained by correlation
coefficients. The figure shows the scatter plot between (a) betweenness and
eigenvector centrality and (b) closeness and eigenvector centrality on a net-
work created with the Barabasi-Albert model (n = 500 and mg = 12).

Figure 9.3 shows the results on the 1000 randomly generated preferential
attachment graphs. We can observe a significant difference in the results of
Kendall’s T and its weighted version. It becomes apparent that the weak corre-
lation of betweenness with other indices is mostly due to the ranking noise in
the lower ranks. Also, subgraph centrality is perfectly correlated with eigen-
vector centrality in all considered networks.
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FIGURE 9.3: Correlation of several indices (y-axis) and normalized majoriza-
tion gap (x-axis) for 1000 different preferential attachment graphs. Correlation
is measured with T (shades of grey, representing the density of the network)
and 1, (red).

An interesting behavior can be observed for closeness correlated with eigen-
vector and subgraph centrality. The correlation seems to decay linearly at first,
yet it increases again for a greater distance. Goodman and Kruskal’s v is iden-
tical with Kendall’s 7 for all but degree and information centrality where 7y is
one for all networks.

9.4 RESULTS FOR REAL NETWORKS

Results for the protein dataset are shown in Figure 9.4. Since the weighted
version of Kendall’s T produced correlation scores close to the unweighted ver-
sion, we omit the results. We can observe a strong decay of the correlation with
an increasing normalized majorization gap for most pairs of indices, except for
correlations including betweenness.

In [15,16] it was analytically shown, that the correlation between subgraph
centrality and total communicability with eigenvector centrality depends on
the size of the spectral gap, i.e. the difference of the principal and the second
largest eigenvalue. Figure 9.5 indicates that there is no strong coherence be-
tween correlation and the spectral gap on the protein dataset.!.

! As a reminder, we use A,/ as spectral gap to keep values in the interval [0, 1] The closer to
one the fraction is, the smaller is the spectral gap.
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FIGURE 9.4: Correlation of several indices (y-axis) and normalized majoriza-
tion gap (x-axis) for the protein dataset. Correlation is measured with Kendall’s
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FIGURE 9.5: Correlation of several indices (y-axis) and spectral gap (x-axis)
for the protein dataset. Correlation is measured with Kendall’s 7.
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We also checked for numerical stability of the results. In particular sub-
graph centrality has an enormous value range due to the exponential function
and we might expect numerical problems when calculated. Figure 9.6 indeed
shows that we obtain differing results for subgraph centrality when centrality
scores are rounded to 8 digits thus indicating stability issues.

DC and BC DC and CC DC and EC DC and SC DC and INF

10
08
06
0.4

0.2
0.0

BC and CC BC and EC BC and SC BC and INF CC and EC
1.0

0.8
0.6 ’
0.4
0.2

0.0

CCand SC EC and SC EC and INF SC and INF

1.0
0.8

0.6
0.4

0.2

0.0

FIGURE 9.6: Correlation of several indices (y-axis) and normalized majoriza-
tion gap (x-axis) for the protein dataset. Correlation is measured with Kendall’s
T on unaltered scores (black) and rounded to 8 digits (red).

The results for Valente’s dataset shown in Figure 9.7 are comparable to
those from the protein dataset. Notable is the apparent decaying correlation
between subgraph and eigenvector centrality for a low majorization gap. How-
ever, this is again due to numerical stability issues depicted in Figure 9.8.
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FIGURE 9.7: Correlation of several indices (y-axis) and normalized majoriza-
tion gap (x-axis) for Valente’s dataset. Correlation is measured with Kendall’s
T.
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FIGURE 9.8: Correlation of several indices (y-axis) and normalized majoriza-
tion gap (x-axis) for Valente’s dataset. Correlation is measured with Kendall’s
T on unaltered scores (black) and rounded to 8 digits (red).
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9.5 SUMMARY

In this chapter, we showed that correlations among different centrality indices
mainly depend on the network structure, specifically on the distance to its
closest threshold graph. This stands in stark contrast with the literature where
correlations are assumed to be contingent on the definitions of indices.

The results on random graphs in Section 9.3 have shown that there exists
a strong dependence of correlations on the distance to threshold graphs for
networks from the Bardbasi-Albert model. However, this does not hold true
for the G(n, p) model where strong correlations are generally observed. The
results suggest that one has to use caution when probing new indices or testing
algorithms on generated data. For networks sampled from the G (n, p) model,
we can expect similar results for any set of indices no matter how parameters
are chosen. For the Bardbasi-Albert model we might observe differing results
depending on how parameters are chosen. If tests on random graph models
have to be conducted, it must be ensured that a big range of parameters is
chosen to obtain a broad sample of graphs from the respective model.

Section 9.4 has shown that similar outcomes can be expected for real-world
networks, although with a higher amount of variability. Real-world networks
inherit many different non trivial structural properties, such that it would be
premature to constitute a strong or even causal dependence between the dis-
tance to a threshold graph and an observed correlation. Nevertheless, we could
observe a linear decay in correlation for most pairs of indices when the ma-
jorization gap increases. An aggravating phenomenon is the numerical issue
observed for subgraph centrality. Since its values can be far beyond any reason-
able value range, statistical software might run into their numerical boundaries
yielding wrong results due to cancellation. In terms of measurement theory,
subgraph centrality can thus not be considered as a reliable measure.

The choice of an appropriate correlation coefficient has shown to be non-
trivial and that wrong choices can lead to contradictory results. Especially the
use of Pearson’s p, logarithmic or not, is not convenient to capture dependence
among indices, since it assumes indices to be on an interval scale. Thus, rank
correlation measures are generally the preferred choice.

As it was already stated in Chapter 8, the majorization gap is just a rough
estimate for the distance to the closest threshold graph. It is also not to be
expected that edge rotations have a uniform impact on correlations. Certain
rotations have a greater effect while others may have no effect at all. Besides the
neighborhood-inclusion preorder there are certainly more structural properties
of networks that drive all measures of centrality we miss by only focusing
on the distance to threshold graphs. In the upcoming chapter, we introduce
further concepts of dominance relations in networks which have an additional
influence on the correlation of indices.

The predetermination of rankings by the neighborhood-inclusion preorder
is not the universal reason for observed correlations. Pairs of indices can be
perfectly correlated independent thereof, e.g. a network diameter of two is
sufficient for degree and closeness to induce the same ranking.



CHAPTER ]- O

Generalization and Application of
the Dominance Concept

“Problems cannot be solved by the level of awareness that created them.”
— Albert Einstein

10.1 FURTHER NOTIONS OF DOMINANCE

In his seminal work of 1979, Freeman considered all 21 connected and non-
isomorphic graphs with five vertices (henceforth Freeman’s dataset) to illus-
trate differences of degree, closeness and betweenness, focusing on the attained
scores for the respective indices [75].

We here reconsider Freeman’s dataset, albeit focusing on the neighborhood-
inclusion and the predetermination of rankings in the dataset. In this course,
we develop further notions of dominance which tighten the set of feasible
rankings for centrality indices even more.

In Chapter 8, we presented threshold graphs as a class of uniquely ordered
graphs. Freeman'’s dataset contains eight threshold graphs, which are shown
in Figure 10.1.

Another group of graphs which are completely ordered is shown in Fig-
ure 10.2. The five depicted graphs are no threshold graphs but contain auto-
morphic equivalent vertices.

An obvious generalization of dominance w.r.t. automorphic equivalence is
given in the following corollary.

Corollary 10.1. Ifu = vand v ~; w then u = w.

The corollary is a result of the transitivity of ’=. In order to symbolically
distinguish neighborhood-inclusion from this indirect form of dominance, we
denote it by = .

Before proceeding with Freeman'’s dataset, consider the graph shown in Fig-
ure 10.3. Although u and v are not comparable according to neighborhood-
inclusion, u should intuitively be more central than v. We can formalize this
intuition with an automorphic counterpart to neighborhood-inclusion.
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FIGURE 10.1: Threshold graphs with five vertices. The matrices show the
order relations among vertices.

AN

FIGURE 10.2: Graphs with five vertices where the ranking is completely
predetermined due to neighborhood-inclusion and automorphic equivalence.
The matrices show the order relations among vertices.

FIGURE 10.3: Example graph motivating two new definitions of dominance.
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Definition 10.2. Let G = (V, E) be a simple undirected graph and u,v € V and
Ny C N(u). If there exists a function ¢ : V. — V with the following properties

(i) ¢ restricted to V' \ Ny, is an automorphism
(ii) ¢(v) = u
(iii) ¢ restricted to N,, is the identical function

we say that u dominates v automorphically, denoted by u = v.

It is easy to see that u = v = u =, by setting N, = N(u) \ N(v) and
letting ¢ be the identity function. The reverse direction does not necessarily
hold. With the notion of automorphic dominance, we thus have a coarser form
of dominance, as in the case of structural and automorphic equivalence.

Going back to Figure 10.3, we can also argue about the ordering of the struc-
tural equivalence classes [i] := {i, i, i3} and [j] := {j1, j2}. Although they
have the same degree, it seems that [i] has an advantage over [j] considering
indirect relations.

A corresponding form of dominance is described in the following definition

Definition 10.3. Let G = (V, E) be a simple undirected graph and u,v € V with
IN(u)| = |[N(v)|. If forall j € N(v), there exists an i € N(u) such that either i = j
ori i=¢ j holds true, then we say that u dominates v in terms of indirect relations,
denoted by u =+ v.

Theorem 10.4. Let ¢ : V — R be a centrality index according to Proposition 7.26.
Then

(i) uzgv = c(u) >c(v)
(i) uzrv = c(u) > c(v)
hold true for all u,v € V.

With the semiring framework of Chapter 7 we can apply the same reason-
ing as for the neighborhood-inclusion and the proofs of all central theorems in
Section 7.3 can easily be transfered to the new notions of dominance and are
thus omitted.

The new forms of dominance can be found in two graphs of Freeman’s
dataset and are shown in Figure 10.4.

With the newly derived forms of dominance, we expect more graph classes
except the threshold graphs to be totally ordered. Two classes we expect to be
totally ordered are given in the following.

Conjecture. Paths P, and complete bipartite graphs Ky, ,, are uniquely ranked for all
n,m € IN.

In Freeman’s dataset, K 3 and P5 are present. The two graphs are the two
rightmost in Figure 10.4.
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FIGURE 10.4: Graphs with five vertices where the ranking is completely
predetermined due to newly derived forms of dominance. The matrices show
the order relations among vertices.

Till now, all graphs could be uniquely ordered without the application of a
centrality indices by applying several forms of dominance. Figure 10.5 shows
the only graphs, where distinct indices may rank pairs of nodes differently.

Qz/L\O 9/6\0 9/6\0 9/6\0
™~ . /.

FIGURE 10.5: Graphs with five vertices where discordance may occur,
shown in the gray cells of the matrices.
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All feasible rankings can be achieved with the four traditional measures as
shown in Figure 10.6.

b

Nwﬁ

Ce Ch Ce Ce

FIGURE 10.6: Induced rankings of degree, betweenness, closeness and eigen-
vector centrality as parallel coordinates for the four graphs shown in Fig-
ure 10.5.
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10.2 THE SCOPE OF RANKINGS AND ITS IMPLICATIONS

With positional dominance, dominance induced by automorphic equivalence,
automorphic dominance and dominance by indirect relations, we now have
identified four forms of dominance in networks, which are preserved by cen-
trality indices in line with Proposition 7.26. Together with structural and auto-
morphic equivalence, we thus have six structural properties of networks that
drive all measures of centrality. Depending on the considered network, they
can tighten the set of feasible centrality rankings significantly. This six proper-
ties were, e.g. enough to rank 17 out of 21 graphs without applying any index.
For the remaining 4 graphs, effectively only 4 pairs were incomparable.

In empirical studies we rather expect to encounter graphs with far more
vertices and a visual analysis, as partially done for Freeman’s dataset, is not
feasible. Furthermore, we do not yet have an algorithm to determine compa-
rable pairs of vertices according to the new dominance relations. We therefore
have to rely on the neighborhood-inclusion preorder for larger graphs, keep-
ing in mind that it only provides a lower bound of the predetermination of a
centrality ranking.

In the following, we show that our new characterization of centrality con-
cepts proves helpful for empirical studies. We illustrate how our methods can
be applied to support empirical studies in hypothesis testing and to reduce the
need for trial-and-error approaches.

The density of the neighborhood-inclusion preorder can be used as an a
priori test before any centrality related hypothesis is posed. If the preorder
is sparse, i.e. only a few pairs of vertices are comparable, then the network
structure permits a high degree of freedom for centrality rankings. We can
quite easily define indices which yield desired outcomes, yet we have to be
careful with the interpretation of results. There might well be an index holding
a different rationale for an empirical phenomenon, which might either describe
it even better, or in the worst case give rise to a contrary explanation.

In cases where the neighborhood-inclusion preorder is (nearly) complete
we have to be equally careful with drawing conclusions. All centrality indices
induce a similar ranking since the majority of the ranking is predetermined.
Therefore, we can not attribute results to a specific index since the network
structure does not permit any other outcome. We are thus also confronted
with competing explanations for observed phenomena, e.g. dual measures like
betweenness and closeness explain an outcome equally well.

Recall Leavitt’s communication experiment from Chapter 4. Already Free-
man noticed that degree, betwenness and closeness induce the same ranking
on the wheel, chain, circle and Y used in the experiment [80]. An explanation
can now be given with the new notions of dominance. The star graph is a
threshold graph, all vertices in the circle are automoprhic equivalent, chain
graphs (paths) are uniquely ordered and the Y is uniquely ordered due to
automorphic dominance. With these graphs we can therefore not make any
substantial argument for the use of a specific index since all indices induce the
same ranking. Freeman reconsidered Leavitt's experiment with yet a different
set of graphs. He used the first two graphs in Figure 10.5 and the third of Fig-
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ure 10.2. In the first two graphs, we observed pairs of nodes that can be ranked
differently. Since all possible rankings are achievable with degree, betweenness
and closeness, we can observe differences in the outcomes and certain indices
could explain varying performances in the experiments. Freeman conducted
the experiments and noted that degree and betweenness are more indicative
than closeness for solving tasks within groups.

Besides Leavitt’s and Freeman’s experiments we can now also explain the
extremely different outcomes when various indices are applied to our intro-
ductory example graphs with nine vertices (cf. Figure 10.7).

Z@\,e

(A) uniquely ranked graph ) discordant graph

FIGURE 10.7: Example graphs with nine vertices discussed in Section 3.3

The graph in Figure 10.7(a) with an observed unique ranking is in fact a
threshold graph with the complete ranking

[ H=GsFrE~DxCx=BxA

and no other ranking is possible for indices according to Theorem 7.28. If
this graph would have been encountered in an empirical setting, we have to
have the aforementioned points in mind to not attribute outcomes to a specific
index.

The graph in Figure 10.7(b) on the other hand, does not hold any form
of dominance or equivalence relation, i.e. their is no predetermined ranking.
That is, we have the stated huge degree of freedom to determine a centrality
ranking. If we do not allow for ties in the ordering, we theoretically have up
to 9! = 362880 possibilities to rank the vertices. Ties in a ranking are, however,
not only a result of equivalence relations but can occur for arbitrary subsets of
vertices due to the aggregation of relations. The number of weak orderings for
n objects is given by the ordered Bell number defined as

n n k )
:Z“ﬂmUZEZZFUk(gﬂ'
k=0 k=0 j=0 J

where S(n, k) is the Stirling number of the second kind. In our case with n = 9
we have 7087261 possibilities to weakly order the vertices. Most of these weak
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orderings are out of scope with reasonable graph-theoretic approaches, yet
taking a data-driven approach we could quite easily define indices to obtain
any of these orderings. Recall that we can interpret walk based indices as a

scalar product
C(u) = Z <’YI wut> 7
tev

such that we can choose 7y (e.g. with a multidimensional linear program) to be
a monotonically decreasing series yielding a desired outcome. This procedure
is of course not in line with our definition of centrality designated as a form
of measurement. It should just serve as an illustration of the potential of a
deceitful index-driven approach.

10.3 CENTRALITY-LETHALITY HYPOTHESIS REVISITED

In Chapter 5, we examined in depth the centrality-lethality hypothesis on sev-
eral instances of the PIN of yeast. We saw that different indices perform best
on each instance and we demonstrated with the hyperbolic index that indices
producing reasonable results can be tailored with apparent ease. In this section,
we investigate the centrality-lethality hypothesis with our newly developed
tools for structural evidence to justify the assumption of a centrality effect and
offer reasons for our observed outcomes.

The low density of the neighborhood-inclusion preorder for all eight PINs
of yeast (cf. first column of Table 10.1) offers an explanation for several aspects
observed in Chapter 5. This first includes the comparable performances yet
weak correlations of several indices and second, the reasonable performance
of the crafted hyperbolic index. The network structure in all eight instances
gives ample scope for centrality rankings such that different indices might rank
different lethal proteins on top. This prevents any general statement about a
connection between a specific index and the lethality status of a protein. We
can, however, argue about a general possibility of a centrality effect without
appealing to indices by testing if the neighborhood-inclusion preorder is in
accordance with the hypothesis.

Recall that the hypothesis we are working with states that centrality is
positively associated with the lethality status of a protein, a dichotomous cate-
gorical variable. A general plausibility test we can perform is therefore twofold.
First we check for the possibility to structurally discriminate the two kinds of
proteins and second if lethal proteins dominate non-lethal ones such that they
can be ranked on top. For the structural discriminability, the automorphic and
structural equivalence classes should be homogeneous. We find, however, that
the compositions are quite heterogeneous (cf. second column of Table 10.1),
that is a high fraction of lethal proteins is not discriminable from one or more
non-lethal proteins by any structural measure and thus also by any centrality
index. Additionally, the third column of Table 10.1 shows, that a great deal
of lethal proteins are dominated by at least one non-lethal protein. Hence, an
optimal performance is not achievable with any centrality index, since sev-
eral non-lethal proteins are always ranked higher than the lethal proteins they
dominate.
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It must be pointed out that an optimal performance is anyways quite a
strong demand. We can estimate an upper bound for the performance of cen-
trality indices, by minimizing the number of inversions of non-lethal/lethal
proteins in a completion of the neighborhood-inclusion preorder. Finding the
completion with minimum inversions is N P—hard [117], such that we have
to rely on heuristics to estimate the upper bound. The fourth column of Ta-
ble 10.1 shows estimated upper bounds for the AUC values of PR and the high-
est achieved AUC in Chapter 5 in parenthesis. The results show, that we can
potentially come very close to an optimal performance, yet current methods
are far away from this upper bound. It is unlikely to attain this accuracy with
the network structure alone, suggesting that approaches incorporating further
information or attributes, e.g. biological properties, are more promising.

Dataset Comparable Indistinguishable Dominated by Upper bound

pairs from non-lethals  non-lethals for AUC
Jeong 0.88% 25% 37% 0.98(0.28)
Estrada 0.64% 13% 30% 0.97(0.48)
DIP 0.55% 11% 29% 0.94(0.47)
BIOGRID 0.89% 5% 2% 0.99(0.26)
STRING 0.37% 8% 26% 0.95(0.54)
LC 0.72% 14% 28% 0.97(0.57)
Collins 1.06% 15% 34% 0.96(0.51)
Y2H 0.87% 12% 44% 0.95(0.27)

TABLE 10.1: Statistics for neighborhood-inclusion in eight PINs of S. cere-
visiae. AUC values in parenthesis denote the best performance of centrality
indices.

10.4 SUMMARY AND DISCUSSION

The main purpose of this chapter was to illustrate how the theoretical frame-
works developed in Chapter 7 can be used to derive further dominance rela-
tions in graphs and how the neighborhood-inclusion preorder can be applied
in empirical settings. The new dominance relations tighten the set of feasible
centrality rankings and also suggest that there are further graph classes that
are uniquely ranked besides threshold graphs, e.g. paths and complete bipar-
tite networks. However, we currently do not have an algorithm to determine
dominance besides neighborhood-inclusion, such that examinations as done
with Freeman’s dataset are only feasible for small graphs. In times of the big
data conundrum this poses of course non negligible problems. We thus have to
rely on the neighborhood-inclusion alone, keeping in mind that it only yields
the lower bound for the predetermination of any centrality ranking.

Our new insights were used to revisit the centrality-lethality hypothesis,
offering explanations for certain observed phenomena in Chapter 5. We gath-
ered some evidence against a centrality effect by showing that many lethal
proteins are either indistinguishable from or dominated by non-lethal proteins.
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The sparsity of the neighborhood-inclusion preorder prevents us from com-
pletely refuting the hypothesis. There might well be an index which describes
the structural position of lethal proteins in a PIN in a nearly optimal way. We
could find this index with optimization techniques and terminate the hunt
for the best index once and for all. Still, even in a perfect setting where PINs
are error-free and complete, this purely data-driven approach does not allow
for deriving substantive conclusions. Once determined, it will (a) be hard to
interpret what the index actually measures and (b) even with an interpretation
not at all be clear what the biological connection is.

The presented results might give the impression that using our new charac-
terization of centrality only reveals adverse consequences in empirical research
since a sparse as well as a dense neighborhood-inclusion preorder seem to im-
pede a proper reasoning about centrality effects. This certainly holds true for
the index-driven approach to centrality. Indices quantify high-dimensional re-
lations into a one-dimensional ranking structure, such that information gets
lost, is neglected or leveled off.

Comparing network positions, as described in Chapter 6, offers the possi-
bility to gradually build a ranking by incorporating additional information to
tighten the order step by step. We actually do not even have to go as far as to
define a complete ranking. A partial ranking already bears information about
the relationship of positions.
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Conclusion

“The time has come, it would seem, to stop, take stock and try to make some
sense of the concept of centrality and the range and limits of its potential for
application.”

— Freeman, 1979

The main goal of this thesis was to provide a better theoretical foundation
for network centrality to reduce its conceptual ambiguity. We did so by re-
conceptualizing centrality based on positional dominance. The preservation of
dominance is the first structural property besides structural and automorphic
equivalence that drive all measures of centrality. With our conceptualization,
we were able to explain several empirically observed phenomena of centrality
indices and we could offer new insights in discussed topics of the literature. In
summary, our theoretical results are the following.

SPECTRAL FORMS OF INDICES. We explored the possibility of represent-
ing all centrality indices with the spectral decomposition of the adjacency
matrix and conjectured about two general representations. We could ob-
serve a close relation of information centrality and degree which was
not that obvious before. A general spectral framework might, however,
fail to come into use, since measures like betweenness and closeness are
most likely not representable in a non-trivial way.

INDIRECT RELATIONS VIA SEMIRINGS. We used the algebraic structure
of semirings as a general framework to define indirect relations on net-
works. Semirings were already used in the context of generic path al-
gorithms, however, not in the context of centrality. Additionally, we in-
troduced semirings for relations based on walk counts which were not
established hitherto. Semirings proved helpful for all our considerations
and should remain useful in future theoretical research about centrality.

PRESERVATION OF DOMINANCE. We derived several sufficient conditions
for the preservation of dominance. Indices based on paths preserve dom-
inance if they are defined on a monotonic idempotent semiring. For walk
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based indices we found that dominance is preserved if the representa-
tional sequence is positive and monotonically decreasing for arbitrary
walks and positive for closed walk counts. Both cases incorporate indi-
rect relations which are not yet considered as measures of centrality.

UNIQUELY RANKED GRAPHS. The notions of dominance revealed, that
there exist different graph classes which are uniquely ordered, i.e. every
index yields the same ranking. Besides threshold graphs, we found that
paths and complete bipartite graphs are potentially completely prede-
termined by dominance. It is to be expected that there are several such
classes. The requirement of agreement of all indices on these classes gen-
eralized the star property which was the only known uniquely ordered
class so far.

CORRELATION AMONG INDICES. The existence of uniquely ranked graphs
gave rise to a new explanation for correlation among indices. In con-
trast to the literature, where correlations are believed to be related with
the definition of indices, we showed that it mainly depends on the net-
work structure, specifically on the distance to the closest threshold graph.
The relation between threshold distance and correlation is, however, not
the only driving force. First, more general forms of dominance were ne-
glected and other network properties like the diameter were not consider.
We thus expect the dependence of correlation on network structure to be
even stronger than illustrated in this thesis.

The second goal of the thesis was to investigate centrality in empirical
research and offering a more versatile approach for its assessment.

We reviewed the literature and discussed obtained results for the centrality-
lethality hypothesis in detail. The provided results show that centrality as a
kind of data mining task involves an elevated risk of producing fallacious
conclusions. Results from the literature do not withstand closer examinations
and proclaimed effects in PINs are weak at best and strongly data dependent.
Applying the dominance principle, we were able to provide some evidence
against the hypothesis, yet we could not entirely refute it.

The centrality-lethality hypothesis is not a unique case and just exempli-
fies the limitations and issues of the index driven assessment of centrality. An
index producing desired results can always be found among the plethora of
measures, if not, new ones can be crafted until satisfaction. It is due to this op-
portunistic approach that negative results are rarely seen in centrality studies.
There is no doubt that phenomena exist where an assessment of centrality is
not possible because of the complexity of relationships and/or the processes
involved. Inferring an effect in such cases by applying indices in a haphazard
way defies the nature of things.

The positional approach paired with tools from measurement theory offer
a chance of restructuring centrality at the root of the concept. Viewing an actor
not just as a vertex in a graph, but rather as an entity with multi-dimensional
relations of various kinds give us the chance to gradually assess the position
of an actor, relative to others depending on varying conditions. It thus breaks
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down the analytic process into steps where in each step domain-specific re-
quirements can be adapted leading to well-defined intermediate results. Posi-
tional dominance, or neighborhood-inclusion for binary symmetric relations,
always serves as a starting point since it puts the highest requirements on rela-
tions. If afterwards additivity and /or homogeneity can be assumed on various
levels, we obtain a huge space of options to proceed, which always depend
on the specific context. Especially the case where homogeneity can not be as-
sumed poses some challenges, where no universal solution exists. Thus, more
empirical studies have to be conducted in order to validate the potential advan-
tages or uncover weaknesses and especially to define proper methodological
procedures.

If we do not accept the positional approach, we at least have to acknowl-
edge the preservation of the neighborhood-inclusion preorder as a shared fea-
ture of all centrality indices. Enforcing such features on indices has shown to
be futile and only shifts the focus from indices towards defining axiomatic
systems. Uncovering shared properties of measures, on the other hand, yield
insight in the driving forces of indices which can later be used to explain em-
pirically observed phenomena from a theoretical point of view. This, in turn,
suggest the shift of defining indices towards examining theoretical founda-
tions of measures giving a better understanding of what indices actually do. A
solid theoretical foundation is of utmost importance for empirical research in
order to prevent fallacious courses of action.

In empirical research, we will, however, most certainly not be dealing with
the simple form of symmetric and binary networks. Binarizing and /or sym-
metrizing those kinds of network is not an uncommon procedure, yet it comes
with loss of information. Centrality indices have to be adapted to incorporate
potential weights and asymmetric links in order to provide distinctive out-
comes. In contrast, positional dominance is readily applicable to any kind of
network. Most of the theoretical considerations evolving around it are also
transferable, such that it is independent of the network in question. A ma-
jor challenge pose dynamics on networks and networks evolving over time.
Understanding these dynamics is already a complex task for itself such that
defining any reasonable concept of centrality for such cases seems out of scope,
at least for the moment.

The thesis only dealt with the concept of network centrality but many as-
pects tackled are transferable to other network analytic methods. The concept
of clustering (or community detection) is, besides centrality, the most widely
used network analytic procedure in empirical research. Corresponding to cen-
trality, a proper foundation is missing and the number of methods to find
cohesive groups is as extensive as for centrality.

Admittedly, network science is still in its infancies and many fundamental
theories are naturally not yet established. Its popularity across scientific bound-
aries, however, lead to the spread and innovation of methods. This, paired
with the ever-expanding availability of data, ensures the growth of fields of
application but shifts the focus away from reflecting about theory and proper
methodology. Network science should not be seen as an attempt to unify sci-
entific areas or savior for all research problems, but as a scientific field by itself
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with proper theory and well-elaborated methods to investigate networks of
different origins with enough confidence.
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