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Annals of Mathematics, 140 (1994), 435-447 

A positive answer 
to the Busemann-Petty problem 

in three dimensions 

By R.J. GARDNER* 

Dedicated to Professor C.A. Rogers 

ABSTRACT. We prove that in E3 the Busemann-Petty problem, concerning cen- 
tral sections of centrally symmetric convex bodies, has a positive answer. Together 
with other results, this settles the problem in each dimension. 

1. Introduction 

In [8], Busemann and Petty asked the following question, which resulted 
from reformulating a problem in Minkowskian geometry. Suppose K1 and 
K2 are convex bodies in n-dimensional Euclidean space En and are centrally 
symmetric with center at the origin, and such that 

An-1(K1 nu') < An-l(K2 n u), 

for all u in the unit sphere ?n-1. Then is it true that 

An(Kl) < An(K2)? 

(Here Ak denotes k-dimensional Lebesgue measure; see Section 2 for other 
notation.) 

The question, now generally known as the Busemann-Petty problem, has 
often appeared in the literature. More than 30 years ago, Busemann [7] gave 
the problem wide exposure, and Klee raised it again in [22]. The problem 
attracted the attention of those working in the local theory of Banach spaces; 
see, for example, the paper [25, p. 99] of Milman and Pajor. It surfaced again 
in Berger's article [1, p. 663], and it is also stated in the books [6, p. 154], [9, 
Problem A9, p. 22] and [30, p. 423]. Many papers have contributed partial 
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436 R.J. GARDNER 

solutions to the problem. We refer the reader to [11], [26], [33] and [35] for 
detailed historical comments, and confine ourselves here to a few remarks. 

In [35], Zhang shows that the answer is negative for all n > 4. Since the 
question is trivial in E2 (the hypotheses imply that K1 C K2), our answer 
for n = 3 settles the problem in all dimensions. The unexpected positive 
nature of the solution stands in complete contrast to the situation in higher 
dimensions; this is especially interesting from the point of view of geometric 
tomography, in which one attempts to obtain information about a geometric 
object from data concerning its sections or projections. Geometric tomography 
has connections with functional analysis, and possible applications to robot 
vision and stereology (see [12] and the references given there). 

Several previous papers concern the case n = 3. In [32], evidence is 
provided to indicate that the method found by Larman and Rogers [23] to 
construct examples in En for n > 12 will not work when n = 3. Bourgain 
[4] proves that his method, which provides examples for n > 7, fails for n = 
3. Hadwiger [19] and Giertz [13] independently showed that the Busemann- 
Petty problem has an affirmative answer when K1 and K2 are coaxial centered 
convex bodies of revolution in E3. Of course, the present paper explains why 
techniques previously used to construct counterexamples in higher dimensions 
cannot succeed, and demonstrates that the extra assumptions in the theorems 
of Hadwiger and Giertz are quite redundant. 

The most important concept in the solution for n = 3 (and, indeed, 
in Zhang's solution for n > 4) is that of an intersection body. This was 
introduced by Lutwak in [24], and it is now apparent that Lutwak's theo- 
rem [24, Theorem 10.1] represents the first step towards the full solution of 
the Busemann-Petty problem. The class of intersection bodies is, in a sense, 
dual to the better known class of projection bodies. The latter, which are 
just the centered zonoids, have been intensively studied and have many ap- 
plications; see, for example, [5], [16], [31] and [30, Section 3.5]. In fact, the 
Busemann-Petty problem has a dual form, due to G.C. Shephard, in which 
sections are replaced by projections. Shephard's problem was solved, by Petty 
and Schneider independently, shortly after it was posed, using tools from the 
Brunn-Minkowski theory (see, for example, [30, p. 422]). Lutwak's theorem, 
dual to a corresponding theorem of Petty and Schneider, similarly utilizes the 
machinery of a dual Brunn-Minkowski theory. It is interesting to note that 
the answer to Shephard's problem is negative for all n > 3; SO this paper 
provides a rare example of a result in the dual Brunn-Minkowski theory with 
a counterpart in the Brunn-Minkowski theory which is false. 

Lutwak's theorem implies that the answer to the Busemann-Petty prob- 
lem is affirmative if K1 is an intersection body. Conversely, results in [11] 
and [34] imply that if there is a centered convex body in En which is not an 
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ANSWER TO THE BUSEMANN-PETTY PROBLEM 437 

intersection body, then the problem has a negative answer. In [11], the author 
proved that a centered cylinder in En, n > 5, is not an intersection body, and 
Zhang [35] shows that a centered cube in En, n > 4, is also not an intersection 
body. 

In Theorem 4.1 of this paper we obtain a new inversion formula for a 
spherical Radon transform which is the radial function of a centered convex 
body. This enables us to conclude in Theorem 5.2 that a dense set of centered 
convex bodies in E3 consists of those which are the intersection body of a star 
body. (It is essential to work with star bodies in this context, since a centered 
cylinder in E3, for example, is the intersection body of a nonconvex star body; 
see [11, Remark 5.2(ii)].) We deduce in Corollary 5.3 that every centered 
convex body in E3 is an intersection body. The solution to the Busemann-Petty 
problem in E3 is an immediate corollary of either Theorem 5.2 or Corollary 
5.3. 

I am grateful to Professor R. Gorenflo and Dr. Vu Kim Tuan for the 
information presented in Section 3 concerning continuous solutions of the Abel 
integral equation, and to Professor Eric Grinberg for providing the proof of 
Proposition 2.3. 

2. Preliminaries 

We denote the unit sphere and closed unit ball in n-dimensional Euclidean 
space En by ?n-1 and TB, respectively. If u E Sn-1, then u1 is the subspace 
orthogonal to u. We write Ak for k-dimensional Lebesgue measure, which we 
identify throughout with k-dimensional Hausdorff measure. 

As is usual, we denote by C (or C() the class of continuous (or infin- 
itely differentiable, respectively) functions. By Ce or C7e we mean the even 
functions in these classes. 

Suppose p is the vertical angle for spherical polar coordinates in En, that 
is, the angle between a vector and the positive xn-axis. We say that a function 
f on ?n-1 is rotationally symmetric (with respect to the xn-axis) if its values 
depend only on p. 

A convex body is a compact convex set with nonempty interior. A set L 
is star-shaped at the origin if it contains the origin, and every line through the 
origin meets L in a (possibly degenerate) line segment. If L is star-shaped at 
the origin, its radial function PL is defined by 

PL(u) = SUP{C > 0: cu E L}, 

for u E ?n-1. The radial function PL can be extended to a function defined 
on En by requiring positive homogeneity of degree -1; we shall refer to this 
as the extended radial function of L. By a star body we mean a compact set 
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438 R.J. GARDNER 

which is star-shaped at the origin and whose radial function is continuous. We 
say a set is centered if it is centrally symmetric with center at the origin. 

Suppose L is a star body of revolution. Then L is said to be axis-convex 
if each line parallel to its axis which meets it does so in a (possibly degenerate) 
line segment. 

Let K be a convex body in En, and u E ?n-1. Let lu be the line parallel to 
u through the origin. For each x E lI, let Dx denote the (possibly degenerate) 
(n - 1)-dimensional ball contained in the hyperplane u1 + x, with center at 
x and with An-1-measure equal to that of K n (u' + x). (We take Dx = 0 
if K n (u' + x) = 0.) The union of all the sets Dx for x E lu is called the 
Schwarz symmetral of K in the direction u. It follows directly from the Brunn- 
Minkowski theorem that a Schwarz symmetral is a convex body of revolution 
with axis 1lu; see, for example, [3, Section 41]. 

Suppose g E C(Sn-1), and f is defined by 

f(u) = j g(v) dAn-2(v)v 
$.n-inu I 

for all u E sn-1; that is, f(u) is the integral of g over the great sphere in ?n-1 
orthogonal to u. Then we write 

f =Rg, 

and say that f is the spherical Radon transform of g. The following useful 
fact is known about R (see [21, p. 161]). 

PROPOSITION 2. 1. Suppose f E Ce?(Sn-i). Then there is a g E 

C~e00(Sn-1) such that f = Rg. 

It is also known (see [21, p. 144]) that R is self-adjoint, in the sense that 
for f and g in Ce(Sf-1), 

i|-i f (u)(Rg)(u) dAn-i(u) = j (Rf)(u)g(u) dAn-(u). 

From this and the fact that by Proposition 2.1, the range of R is dense in 
Ce(Sn-l1) it follows that R is injective on Ce(Sfl1). (Direct proofs of the 
injectivity are given in [20], [27] and [28].) 

The next proposition is proved in [18, p. 193] for the Radon transform on 
complex projective space. For the convenience of the reader, we provide the 
details for the case which interests us here. 

PROPOSITION 2.2. The spherical Radon transform commutes with rota- 
tions. 
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ANSWER TO THE BUSEMANN-PETTY PROBLEM 439 

Proof. Let <D E SON, f E C(Sn1-) and u E ?n-1. Then 

4J(Rf)(u) = Rf (Q 1u) = j f (v) dAn-2(V) 
$ n-1n(D-1U) I 

Substitute w = 4bv. Note that <71u v = 0 if and only if u* 4v = u w = 0. 
Using the SON-invariance of An-2, the last integral becomes 

f (b-1w) dAn-2 (w) = R(4f ) (u) 
$n- nu I 

as required. C1 

Suppose that f E C(S2). For 0 < (p < , denote by f((p) the average of 
f over the circle of latitude with angle (p from the north pole in $2; thus 

1 r2 
f((P) = 7 f(0, Q p) dO. 

We identify f with its natural extension to a rotationally symmetric function 
on $2. The following observation was made by P. Funk in [10, VI, p. 285]. 

PROPOSITION 2.3. If f, g E C(S2) and f = Rg, then f = Rg. 

Proof. We have 
m 

f(sc) = lim flm ( P)7 
i=1 

for suitable choices of Oj, 1 < i < m, and a similar expression for (fp). Denote 
also by Oi the rotation by angle Oi about the z-axis. Then, using Proposition 
2.2, we have 

f(OA, (P) = (971f) (O P) 

= (O9-(Rg))(O, p) = (R(O9;g)) (O, p). 

Consequently, 
m 

f(P) = lim m > (R(Oy1g)) (0, p) 

= R lim A(7 1g) (0, ) 

= R ( lim - . tP) 

= R -+0. C 
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440 R.J. GARDNER 

Using Proposition 2.1, one can extend the spherical Radon transform R in 
En to a continuous linear map from the space of finite signed Borel measures 
in ?n-1 into itself; see the discussion in [15]. A star body L in En is called an 
intersection body if PL = Ra, where 1a is an even (nonnegative) Borel measure 
in ?n-1. Any such L is centered. 

The latter definition is introduced in [14]. We shall almost always work 
with a special case of this, which corresponds to the original definition of an 
intersection body in [24]. We say that a star body L is the intersection body 
of a star body M if 

PL(U) = An-1(M n u), 

for all u E ?n-1. We write L = IM. It is easy to see, using the polar coordinate 
formula for volume, that L = IM for some M if and only if PL = Rg for some 
nonnegative continuous function g; just take g = pn-1/(n - 1). It is known 
(see [24, (8.3)]) that if L = IM, then there is a unique such M which is also 
centered. 

The following theorem is from [11, Theorem 3.1] (see also [35]). Most of 
the work is done in Lutwak's theorems [24, Theorems 10.1 and 12.2]. 

THEOREM 2.4. Let n > 3. The Busemann-Petty problem has a positive 
answer in En if and only if each centered convex body K in En, with everywhere 
positive Gaussian curvature and PK E CeOO(?n-1), is the intersection body of a 
star body. 

Zhang [34] has noted that it is possible to prove the following refinement 
of the previous theorem. 

THEOREM 2.5. Let n > 3. The Busemann-Petty problem has a posi- 
tive answer in En if and only if each centered convex body K in En is an 
intersection body. 

3. Some inversion formulae 

In this section we study some known inversion formulae for the spherical 
Radon transform in three dimensions. 

Suppose that f E Ce(S2) is rotationally symmetric with respect to the 
z-axis, and f = Rg for g E Ce(S2). Then, using the facts (see Section 2) that 
R is injective on Ce(S2) and commutes with rotations, we see that 9 is also 
rotationally symmetric with respect to the z-axis. Let u E S2, and suppose 
the angle between u and the z-axis is 2 - 4. Let p be the vertical angle in 
spherical polar coordinates, and suppose that x = cos 4 and t = cos p. Then 
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the equation f = Rg becomes 

(1) f(sin- x) = 4] ( - ) dt, 

for 0 < x < 1, and f(sin-1 0) = 2irg(cos-1 0). (This is explained in detail 
in [11, Section 4].) Conversely, if g E Ce(S2) is rotationally symmetric and 
satisfies (1), then f = Rg. 

Equation (1) is an Abel integral equation, which can be solved by standard 
techniques. Suppose we define h by h(x) = f(sin-1 x), 0 < x < 1. The 
existence and integrability of a solution g, unique in L1 (0, 1), was proved by 
L. Tonelli, under the assumption that h is absolutely continuous; see Chapter 1 
of [17], especially Theorem 1.2.1. One form of the solution is (cf. [17, (L.B.5i), 
p. 24]) 

(2) g(cos- t) = d 2f(siniX) dx, 

for 0 < t < 1, and g(cos-1 0) = f(sin-1 0)/27r. An alternative form of the 
solution of (1) is (cf. [17, (L.B.5ii), p. 24]) 

(3) g(cos it) = 2 \f(0) + t (t2 2)(s 
- 
2)ido 

for 0 < t < 1. The existence of a unique continuous g of either form follows 
from the assumption that the function h defined above satisfies h E Cl ([, 1]). 
Indeed, by substituting (3) into (1), we see that 

X g(cosl1t) 2 xf~ f(O)dt 4 x2-t) dt = , 
+ 2 x t ft f'(sin-i y) 
7r VxT2 Jo (t2 2)(2)dYdt 

= f(O) + 2 
x 

(sini ) i t dtdy 
7r Jo l-_y2Jy (2-t)t-y) 

= f(O) + fA f(i dy = f(sin-1 x) 

so that (3) is a solution of (1). (It is also not difficult to obtain (3) from (2), 
by means of integration by parts and differentiating under the integral sign.) 
According to [17, Theorem 5.1.5], with m = 1, K(x,t) _1, 13 = 0, 1a = 2 
and a = 1/2, there is a continuous solution g of (1) if h E C1([O, 1]); since the 
solution is unique, we conclude that the g given by (2) or by (3) is continuous 
for 0 < t < 1. (A direct proof of the continuity of g is fairly straightforward 
using (3).) 
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442 R.J. GARDNER 

Setting t = 1 in (3), and substituting x = sin (p, we obtain 

(4) 27rg(O) = f(O) + f'((p) sec (p dfp. 

Let us now suppose that f = Rg, for arbitrary f E C, (S2) and g E C(e(S2). 
Then f = Rj, by Proposition 2.3. Denote the north pole in S2 by uO. When 
(4) is valid, we can use it with f and g replaced by f and 9, respectively, 
together with the equalities f(uo) = f(O) and g(uo) = 9(O), to obtain 

2ir9(uo) = f (Uo) + j f'(() sec ( dp. 

Substituting for f, and changing the order of integration, we arrive at the 
formula 

2&f (9, (p) 
(5) 27rg(uo) = f (uo) + j a s sec p dp d9. 

It seems that (5) was familiar to Blaschke; see [2, p. 155]. 

4. A new inversion formula 

THEOREM 4.1. Let K be a centered, strictly convex body in E3 with PK E 

Cl(S2), and suppose that PK = Rg for some g E Ce(S2). Denote by uo the 
north pole in S2. Then 

g(uo) =-4 2 j 
K A(z) dz, 

where AK(zo) denotes the area of the intersection of K with the plane z = zo. 

Proof. For each 0o, let KOo be the intersection of K with the quarter- 
plane {(p, 0, Ap): 0 = Oo, 0 < p < 7r/2} containing the z-axis for z > 0, where 

(p, 0, p) are spherical polar coordinates (with p > 0 as usual). For each fixed 0, 
there is a unique point x* = x*(0) in the boundary of K9 which has maximum 
height z* = z*(0). If x* = (p*, 0, Ap*), then x* divides the part of the boundary 
of K9 contained in the boundary of K into two arcs; namely, that for which 
0 < p < p* (which may be degenerate), and that for which A* < p < 7r/2. 
These arcs can be described in cylindrical polar coordinates (r, 9, z) by 

ri = ri (9, Z) PK(UO) < Z < Z 

and 

r2 = r2(9,z), 0 < z < Z* 
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For j = 1, 2, extend the domain of rj by defining rj(O, z) = 0 for all z > 0 
outside these intervals. Note that 

A 2ffir2(0 z) dO if O<Z< pK(UO) 

l 2 f(rri(,) Z r(9,z)) dO if pK(UO) < Z? 

By (5), we have 

(6) ~~~~~~~~~~27r X A (6) 27rg(uo) = PK (UO) + ~ p~,~sec (p d~p dO. 

We transform this expression to cylindrical polar coordinates. Let us again 
fix 0. For 0 < p < A*, we have p2 = r2 + Z2 and tangp = ri/z, while for 
AP* < (P < 7r/2, we have p2 = r2 + z2 and tan (p = r2/z. Therefore 

to PK =secepd(p = dp + sec p dp 

- JP~?I) (2ja (rr2) + 1) dz - j2 (2a(r2) + 1) dz X ZA( 2)_ ( 

Substituting into (6), we now obtain 

1 27r PKf(UO) 1 2 

+ I (dZ (r2(O, z)-r1(O. z)) dzj d. 

The theorem follows from a change in the order of integration and the above 
expression for AK(Z). 

5. The main results 

The following theorem is a slight improvement of a similar result (see [11, 
Theorem 5.1]). 

THEOREM 5.1. Let L be a centered axis-convex body of revolution in 1E3 
such that PL Elw (fm2) and the curvature of L exists on the intersection of the 
boundary of L with the plane through the origin orthogonal to the axis of L. 
Then L is the intersection body of a star body. 
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444 R.J. GARDNER 

Proof. We have to prove the existence of a nonnegative g E Ce(S2) such 
that PL = Rg. From Section 3 we know that this is equivalent to the existence 
of a nonnegative g E C(e(2) which satisfies (1), with f replaced by PL* We may 
assume that the axis of revolution of L is the vertical axis, so that PL = PL('P), 
where (p is the vertical spherical polar coordinate. Let x = sin (p, and define 
h by h(x) = pL(sin-1 x), for 0 < x < 1. Then h is continuously differentiable 
on [0, 1). Furthermore, 

lim h'(x) = lim pL(sin -x) - 
x >1l- x >+-1- 1-x2 

which exists by our assumptions, so h E C1([O, 1]). From Section 3, we know 
that this implies that a g E Ce(S2) exists of the form given by (2), so that 

1 d t XPL(sin-x) dx 
g(cos-1t) = d d 

2ir dtj Vt 2-~X2 

for 0 < t < 1, and g(cos-1 0) = pL(sin-1 O)/2ir. 
We have to show that g is nonnegative, and this will follow if the integral 

increases with t. As in [11, Theorem 5.1], we substitute s = x/t, and the 
integral becomes 

1 stpL (sin-1(st)) d 

But the axis-convexity of L means that sin (pPL((p) increases with (p, so 
XPL(sin-1 x) increases with x, and the result follows. C1 

THEOREM 5.2. Let K be a centered convex body in E3, such that K has 
everywhere positive Gaussian curvature and PK E Co (S2). Then K is the 
intersection body of a star body. 

Proof. Since PK E C(,(S2), Proposition 2.1 guarantees the existence of 
a g E C(e(2) such that PK = Rg. We have to show that g > 0. 

Let uO E $2. Suppose K is the Schwarz symmetral of K in the direction 
uO. We claim that pk E C1( (2). To see this, let uO be the north pole for 
coordinates on $2, and let r- = r-(z) give (in cylindrical polar coordinates) 
the boundary of K. Denote by <D the horizontal shear transformation which 
takes the point x* in the boundary of K with maximal height z* to the point 
(0, 0, z*); then the body 4JK has the same Schwarz symmetral in the direction 
uO as K. The transformation rule 

PDK(X) = PK(D X), 

for the change in the extended radial function under the linear map <D, fol- 
lows from its definition. From this, we see that the usual radial function of 
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4DK satisfies PbK E Ce, (S2). Since the boundary of liK can be expressed in 
cylindrical polar coordinates as a single function s = s(O, z), we have 

= 1 
2 

( z) dO, 

for all z. For any zo with 0 < zo < z*, this shows that r- is a C(? function 
on [-zo, zo], and hence that Pk is a C(? function except possibly at +uo. The 
assumptions that K has everywhere positive Gaussian curvature and PK E 
Cj?(S2) allow us to apply Blaschke's rolling ball theorem (see, for example, 
[30, Corollary 3.2.10]) to conclude that K has cIB as a Minkowski summand 
for some E > 0. Therefore there is a translate of cIB which contains x* and 
which is contained in K. It follows that there is also a translate of dB which 
contains (0, 0, z*) and which is contained in K. So K has a unique tangent 
plane at (0, 0, + z*), and this shows that Pk E 7lC(S2), as claimed. 

Theorem 5.1 implies that K is the intersection body of a star body, so 
that PR = R-, for some nonnegative g E C((S2). By the definition of K, we 
have AK = AK, in the notation of Theorem 4.1. The latter theorem implies 
that g(uo) = -(uo), and therefore g(uo) > 0. Since uo E S2 was arbitrary, the 
proof is complete. C1 

COROLLARY 5.3. Every centered convex body in E3 is an intersection 
body. 

Proof. It is shown in [14] that the class of intersection bodies is closed 
under uniform limits. The corollary follows from Theorem 5.2 and the fact that 
the class of centered convex bodies whose Gaussian curvature is everywhere 
positive and whose radial functions are infinitely differentiable is dense in the 
class of all centered convex bodies (see [29]). C1 

The results of [35] show that Theorem 5.2 and Corollary 5.3 are false in 
four or more dimensions. In particular, as we remarked in the introduction, 
Zhang shows that a centered cube in En, n > 4, is not an intersection body. 

COROLLARY 5.4. The Busemann-Petty problem has a positive answer in 
E3. 

Proof. This follows immediately, either from Theorem 2.4 and Theorem 
5.2, or from Theorem 2.5 and Corollary 5.3. 

WESTERN WASHINGTON UNIVERSITY, BELLINGHAM, WA 
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