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A positive characteristic Manin—-Mumford theorem

Thomas Scanlon

ABSTRACT

We present the details of a model-theoretic proof of an analogue of the Manin-Mumford
conjecture for semiabelian varieties in positive characteristic. As a by-product of the proof
we reduce the general positive-characteristic Mordell-Lang problem to a question about
purely inseparable points on subvarieties of semiabelian varieties.

1. Introduction

The Manin-Mumford conjecture in its original form (whose proof is due to Raynaud [Ray83]) asserts
that if A is an abelian variety over a number field k with an algebraic closure k2 and X C A is an
irreducible subvariety of A, then X (k®'2) meets the torsion subgroup of A(k*#) in a finite union of
cosets of subgroups of the torsion group. If one replaces k£ with a field of positive characteristic, then
there are obvious counterexamples to the direct translation of this conjecture. However, by isolating
groups defined over finite fields appropriately one can state and prove a positive characteristic
version of this conjecture.

We should say a word or two about attributions for this theorem. The current author sketched
the proof presented here in [Sca0l]. As the reader will see, given the model-theoretic treatment of
difference closed fields from [CHPO02] this argument follows Hrushovski’s proof of the number field
Manin-Mumford conjecture [Hru01]. In fact, the difference equations are easier to find in the positive
characteristic case and these equations are essentially the same as those used by the other authors
mentioned below. The main obstruction to the positive characteristic Manin—Mumford theorem
following immediately from the number field proof is the presence of infinitely many definable
subfields of difference closed fields in positive characteristic.

Pink and Roessler gave an algebraic proof of this theorem in [PR04]. While their proof avoids
appeals to the model theory of difference fields, it also uses some sophisticated arguments (involving,
for instance, the theory of Dieudonné modules). Pillay presented an elementary proof of the function
field Mordell-Lang conjecture using an analysis of algebraic D-groups [Pil04] and then transposed
this argument to the context of algebraic o-groups to reprove the Manin—Mumford conjecture
over number fields [Pil03a]. The student working group supervised by Pillay and Scanlon at the
2003 Arizona Winter School completed an elementary proof of the key lemma required to extend
Pillay’s argument for the Manin—-Mumford conjecture to positive characteristic. Some details of this
argument are available in a streaming video on the Southwestern Center’s webpage and in a recent
preprint of Pillay [Pil03b].

2. Statement of the main theorem

In this section we state the main theorem of this note. Before doing so we recall a definition
from [Hru96].
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By way of notation, if X is a scheme over the ring R and S is an R-algebra, then we write
X for the base change X Xgpec(r) Spec(S). We write ‘S-point (of X)’ and ‘S-valued point (of X)’
indiscriminately for the elements of Xg(S). If A is an abelian group, then by A, we mean the
torsion subgroup: {z € A | (In € Z+) nax = 0}.

DEFINITION 2.1. Let K be an algebraically closed field of characteristic p. Let G be a commutative
algebraic group over K and X C G an irreducible subvariety. We say that X is special if there are:

e Hj an algebraic group defined over Fglg ;

e H < (G an algebraic subgroup of G;
e a point a € G(K);
e a subvariety Xg C Hy defined over Fglg; and

e a morphism of algebraic groups h : H — (Hy)k;

such that X = a + h~1(Xo)k-.

With the definition of special in place we can state the positive characteristic version of the
Manin—-Mumford conjecture.

THEOREM 2.2. Let K be an algebraically closed field of characteristic p. Let G be a semiabelian
variety over K and X C G a closed subvariety. Then the Zariski closure of X(K) N G(K )tor is a
finite union of special subvarieties.

3. The proof

In this section we prove Theorem 2.2. The proof is split into two separate parts. First, we analyze
integral models of semiabelian varieties to show that with an appropriate choice of automorphism,
we can force the torsion points to satisfy a nontrivial difference equation. Secondly, we analyze
the structure of finite-rank difference algebraic subgroups of semiabelian varieties. Combining these
two parts, we prove Theorem 2.2. As mentioned in the introduction, finding the relevant difference
equations is entirely standard. Most of the heavy lifting in the analysis of difference algebraic groups
was carried out in [Cha97, CH99, CHP02, Hru01]. Our main innovation is the use of orthogonality
between incomparable fixed fields to convert nonmodularity into strong essential algebraicity. What
we mean by this comment should be clear by the end of this section.

3.1 Difference equations for the torsion

In this section, we show that for a given semiabelian variety G over an algebraically closed field K
of characteristic p, it is possible to find an automorphism o of K and a polynomial P(X) € Z[X] so
that: o fixes a field of definition for G; P(o), considered as an endomorphism of the group G(K),
vanishes on G(K )tor; and no root of P in C is a root of unity. Such automorphisms and polynomials
play an essential role in our proof of Theorem 2.2. As the reader undoubtedly already surmises,
o will arise from a suitable lifting of some Frobenius automorphism and P will be the minimal
polynomial over Z of that Frobenius considered as an element of the endomorphism ring of some
algebraic group over a finite field.

We start with an algebraic lemma. Of course, this lemma, with the ring of formal power series
over a finite field replaced by a general complete discrete valuation ring (DVR) with a finite residue
field, holds for general finitely generated domains, but as we need only the positive characteristic
version, we restrict to that case.
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LeEMMA 3.1. Let R be a finitely generated domain of characteristic p > 0. Then there is a Zariski
dense and open set U C Spec R so that for any p € U for some power q of p, there is an embedding
t: R — TF,[le]] with o(p) C (e).

Proof. Write R = Fpla,...,ay] for appropriate generators a1, ..., a,. Rearranging the generators if
need be, we may assume that aq,...,a, are algebraically independent and that R is algebraic over
R’ :=Fpla1,...,an). For each i > m, let P;(X) € R'[X] be a minimal polynomial for a; over R’
(i.e. P, # 0, Pi(a;) = 0, and P; has minimal possible degree d;). Let Q;(X1, ..., Xy,) € Fp[X1, ..., X}
be the polynomial for which Q;(ay, ... ,an) is the coefficient of X% in P;(X). Let U := D(I]; Qi(a))
= {a € SpecR | []; Qi(a) £ a}-

Now take p € U and let q := p N R'. Let ¢ be a high enough power of p so that the set
V() (Fy) ~Ui,i1 V(Qi)(F,) is nonempty. Let (b1, ..., b,) be one such point. Then for any i < n
and any (ci,...,cm) € Fylle]] we have Q;(b + ec) € Fy[[e]]*. Choose ¢ = (c1,...,cn) algebraically
independent (such exists as the transcendence degree of F,((e)) is 2%0) and define an embedding
R" :=TFplar,...,am,Qmi1(a)™t, ..., Qn(a)"] = Fy[le] via a; — b; + ec;. Now R is contained in
a finite integral extension of R” and, thus, via the above embedding, of F,[[¢]]. Every such finite
integral extension is contained in the ring of integers of some finite extension of [F,((¢)), each of
which is isomorphic to Fg-[[]] for some positive integer 7. O

Using Lemma 3.1 we show that every semiabelian variety over a field of characteristic p > 0 may
be regarded as a base change of the generic fibre of some semiabelian scheme over a DVR whose
special fibre has the same p-rank.

LeEMMA 3.2. Let K be a field of characteristic p and G a semiabelian variety over K. Then there
are a DVR R C K with a finite residue field F, and a semiabelian scheme & over R for which the
p-rank of the special fibre of & is equal to the p-rank of the generic fibre and G = G .

Proof. Choose any finitely generated subring S over which we have a semiabelian scheme &’ with
(') =2 G. Let S":= S(G[p](K™#)). Let r be the p-rank of G (= dimg, G[p|(K™8)). Let v1,...,7 €
G[p)(K®#) = &[p](S’) be a basis for the (physical) p-torsion on G. The set U of primes p € Spec(S’)
such that the image of 71, ...,~, remain linearly independent in (& ® S’/p)[p|(S’/p) is open in the
Zariski topology. Let U” C U be a dense affine open subset of U and let S” be the coordinate
ring of U”. By Lemma 3.1 we can embed S” into a complete DVR T with a finite residue field.
Let R C K be the ring of integers of a maximal immediate (with respect to the valuation inherited
from T') extension of S” in K. O

With the following lemma we limit the rings in which we must search for torsion points.

LEMMA 3.3. Let R be a DVR of characteristic p with residue field IF, and field of quotients K.
Let S be the maximal unramified algebraic extension of R and let S’ := SP™~ = {y € K& |
(3n € N)y?" € S} be the perfection of S. Then for any semiabelian scheme G over R, the natural
map G(S")tor — G(K¥8)¢,, is an isomorphism.

Proof. Of course, this map is an injection. So, we must show that it is a surjection. For any finite
étale group scheme F over R, Hensel’s lemma shows that F(S) «— F(K®8) is an isomorphism.
For each n € Z., consider the connected-étale sequence over S’:

0—=G[n)’ Gln] Gln)s —0.

Over a perfect ring, this sequence splits and the group of rational points in a connected finite flat
group scheme over a domain is trivial. Thus, G[n](S") = G[n]s(S") = Gnle (K1) = Gn](K2#).

~

As the torsion group is the direct limit of the n-torsion groups, we conclude that G(S")ior =
G(K¥8),. O
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It follows now that we can capture the torsion group of semiabelian varieties having good models
over DVRs by difference equations.

LEMMA 3.4. Let R be a DVR of characteristic p with residue field IF, and field of quotients K. Let
G be a semiabelian scheme over R for which the p-rank of the generic fibre is equal to the p-rank
of the special fibre. There is a polynomial P(X) € Z[X] and an automorphism o of K# fixing K
such that P(o) vanishes on G(K®#),, and no root of P in C is a root of unity.

Proof. On the special fibre G of G the g-power Frobenius induces an endomorphism F : G — G.
As such, the subring of End(G) generated by F is a finite product of finite integral extensions _of Z.
Let P(X) € Z[X] be the minimal monic polynomial of F' over Z. By the Weil conjectures for G, no

complex root of P is a root of unity.
The completion of R is isomorphic to F,[[¢]]. Let p : F2[[]] — F2¢[[] be defined by

Z Tie — Z zle'.

i>0 i>0
Extend p to p: F2%((€))8 — F3'8((¢))!8 and let o := 5 | gai be the restriction of 5 to K*$. Noting
that p restricts to the identity on R, we see that ¢ is an automorphism of K28,

This choice of P and o works. By Lemma 3.3 every torsion point in G(K®#) lives in G(S’) where

S’ is the perfection of the maximal algebraic unramified extension of R. Our hypothesis on the p-rank
implies that for each n € Z, the reduction map induces an isomorphism G[n](S") = G[n](F2'8).
Moreover, as we have chosen o to lift F, if we regard G(S’) as a Z[X]-module with the generator
X acting as o and E(Fglg) as a Z[X]-module with the generator acting as F, then the isomorphism
G(S)tor — G(F2'8) is an isomorphism of Z[X]-modules. P is defined so that P(F) = 0 on G(F2#).
Thus, P(c) vanishes on G(S")ior = G(K®8)0- O

Putting together all of the results of this section, we find the polynomial and automorphism
mentioned in the introduction.

COROLLARY 3.5. Let K = K®2 be an algebraically closed field of characteristic p > 0 and G a
semiabelian variety over K. There is a polynomial P(X) € Z[X] having no roots of unity amongst
its complex roots and an automorphism o : K — K such that G is defined over the fixed field of o
and P(o) vanishes on G(K )or.

Moreover, if R C K is a finitely generated subring over which G is defined, then for any maximal
ideal m of R outside a proper Zariski closed set if o : K — K is a relative Frobenius at m, then

there is a polynomial P(X) € Z[X] with no roots of unity amongst its complex roots for which
P(o) vanishes on G(K )or-

Proof. By Lemma 3.2 we may find a model of G over a DVR with a finite residue field so that
the p-rank of the generic and special fibres agree. Applying Lemma 3.4 to this model we obtain the
requisite polynomial P and automorphism o.

For the ‘moreover’ clause, note that in Lemma 3.2 it suffices to take m in the intersection of
the open set U of Lemma 3.1 and the open set of primes for which the p-rank does not change upon
reduction. O

3.2 Background from the model theory of difference fields

In this section we recall some of the main results on the model theory of difference fields (taken
mostly from [CH99, CHP02, Hru01]) which we shall employ for our proofs. For the purposes of this
paper we eschew the formalism of logic.
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A difference field is simply a field K given together with a distinguished endomorphism
o : K — K. A morphism of difference field ¢ : (K,0) — (L,p) is a homomorphism of fields
¥ : K — K for which pot =1 oo. If V is a variety over the difference field (K, o), then we set
V7=V Xgpec(rr) Spec(K) where the second K obtains its K-algebra structure via o.

DEFINITION 3.6. A difference closed field is a difference field (K, o) satisfying:
e K is algebraically closed;

e 0: K — K is an automorphism; and

e for any irreducible affine variety V over K and irreducible subvariety W C V x V7 which
dominates each factor via projection there is a K-rational point a € V(K) with (a,0(a)) €

In the literature, difference closed fields are called ‘existentially closed difference fields’ or ‘models
of ACFA’. In some sense, difference closed fields may be regarded as analogous to algebraically
closed fields. For example, every difference field embeds into a difference closed field and if some
finite system of difference equations and inequations is satisfiable in some extension of a difference
closed field (K, o), then it is already satisfiable in (K, o) (see [CH99, p. 3007]).

For the remainder of this section (K, o) refers to a difference closed field.

If (K,0) is a difference closed field and X is an algebraic variety over K, then a difference sub-
variety Y C X of X is given by an algebraic subvariety Y C X x X% x-x X° for some natural
number n. The set of (K, o)-rational points of Y is Y(K,0) := {a € X(K) | (a,0(a),...,0"(a)) €
Y (K)}. If A C X(K) is any set of points and n is a natural number, then we define the nth prolon-
gation of A, V,,(A), to be the Zariski closure in X x --- x X" of the set {(a,...,0"(a)) | a € A}.
We consider two difference subvarieties of X to be the same if they have the same set of (K, 0)-
rational points. Equivalently, two difference subvarieties are the same if they have identical prolon-
gations. A finite Boolean combination of difference subvarieties is called a difference constructible
set. If m: X — X’ is a morphism of algebraic varieties and C' C X is a difference constructible
subset, then 7(C(K,0)) :={y € X'(K) | (3z € C(K,0)) n(xz) =y} is called a definable set. Unlike
the case of ordinary constructible sets in algebraic geometry, it is not the case that every definable
set is constructible. However, every definable set may be expressed as the image of a constructible
set under a map which is generically finite [CH99, Corollary 1.5].

For definable sets there are various notions of dimension or rank. The simplest of these is the
o-dimension. If A C X(K) is a subset of the (K-rational points of the) variety X, then we define
the o-dimension of A to be supdim V,,(A) € NU {oo}. Many of the theorems we cite are stated in
terms of S1-rank or SU-rank, which we decline to define here. In the case of difference closed fields,
finiteness of any of these ranks (or dimensions) implies the finiteness of all the others (although
they need not be equal to each other).

If the characteristic of K is p > 0, then the Frobenius map 7 : K — K given by = — 2P
is an automorphism. For the sake of unifying the statement, let 7 be the identity map for K of
characteristic zero. In general, if L is an algebraically closed field and p : L — L is an automorphism,
then Fix(p) is perfect and Fix(p)*& = [ J°° | Fix(p"). If (n,m) is a pair of integers with n # 0, then
the automorphism p := ¢”7™ has a fixed field Fix(p) which is pseudofinite [CH99, pp. 3007, 3013].
That is:

e Fix(p) is perfect;

e the Galois group of Fix(p) is isomorphic to 7 and its topological generator is the restriction of
p to Fix(p)*#; and

e Fix(p) is pseudo-algebraically closed (every absolutely irreducible variety over Fix(p) has a

Fix(p)-rational point).
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Every definable automorphism of K (meaning every automorphism whose graph is a definable
set) takes the form o™7™ for some (n,m) € Z2.

As noted in the introduction to this section, the notion of orthogonality is crucial to our proof.

DEFINITION 3.7. If D C X (K) is a definable subset of the variety X and E C Y (K) is a definable
subset of the variety Y, then we say that D and E are orthogonal, written D 1 E | if for every pair
of natural numbers (n, m) every definable subset of D™ x E™ is a finite Boolean combination of sets
of the form A x B with AC D and B C E.

What we call here ‘orthogonal’ might be better termed ‘fully orthogonal’, but the distinction is
irrelevant for our purposes. In the special case that D and E are difference varieties and D | F,
then every difference subvariety of D x FE is a finite union of difference varieties of the form A x B
where A C D and B C E are difference subvarieties. If p and p’ are two definable automorphisms
for which Fix(p) N Fix(p) is finite, then Fix(p) L Fix(p’). In particular, we have the following.

Fact 3.8. Fix(p)*8 and Fix(p')*# are algebraically independent.

DEFINITION 3.9. If G is an algebraic group over K and I' < G(K) is a definable subgroup (meaning
that it is a definable subset which is the universe of a subgroup), then we say that I" is modular
if every difference constructible subset of any prolongation of I' is a finite Boolean combination of
cosets of difference constructible subgroups.

This term is somewhat better motivated in a more abstract context dealing with combinatorial
geometries. Perhaps it would be better to call such groups module-like, but for historical reasons
we stick with modular. The term ‘one-based’ is used for a condition applying beyond the context
of groups. In the case of groups definable in difference closed fields, modularity and one-basedness
are equivalent. In [HruO1] the terms ‘locally modular, stably embedded (LMS)’ and ‘algebraically
locally modular (ALM)’ are used for related concepts.

The following result is not immediately obvious from the definitions, but holds nonetheless.
In [HruO1, Proposition 3.4.1] it is proved under the additional hypothesis of stable embeddedness,
but [Wag04, Corollary 12] shows that it holds in general.

Fact 3.10. If G is a definable group having a definable normal subgroup N <1 G such that N and
G/N are both modular, then so is G. In particular, if G is abelian and is the sum of finitely many
modular groups, then it is modular itself.

If p: K — K is a definable automorphism and G is an algebraic group over Fix(p), then
G(Fix(p)) is not modular (unless it is finite). Indeed, if X C G2 is a sufficiently general curve
(not a translate of an algebraic subgroup), then using the fact that Fix(p) is pseudo-algebraically
closed one sees that X (Fix(p)) = X (K) N G(Fix(p))? is not expressible as a finite Boolean combi-
nation of difference constructible cosets. More generally, if H is any other algebraic group over K
and ¢ : G — H is a map of algebraic groups with ¢(G(Fix(p))) infinite, then the definable group
(G (Fix(p))) is not modular.

If p is a (nontrivial) definable automorphism and A is modular, then A L Fix(p). (Even, if
p1,---,Pm is a finite sequence of nontrivial definable automorphisms, then A L (|J; Fix(p;)).)
In the case of groups, [CHP02, Theorem A, p. 305] is a converse of sorts. Specifically, if G is a
commutative algebraic group over K and I' < G(K) is a finite o-dimensional definable subgroup
having no infinite definable subgroup of infinite index, then I' is modular if and only if T L Fix(p)
for every nontrivial definable automorphism p: K — K.

Recall that if A,B < C are two subgroups of the group C, then we say that A and B are
commensurable if A/(AN B) and B/(AN B) are both finite.
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With the next definition we introduce (strongly) essentially algebraic groups. This notion is
implicit, although not explicit, in the literature.

DEFINITION 3.11. Let G be a commutative algebraic group defined over K. The group I' < G(K)
is a basic essentially algebraic subgroup of G(K) if it is an infinite group of the form ¢ (H (Fix(p)))
where p : K — K is a nontrivial definable endomorphism, H is an algebraic group defined over
Fix(p) and ¢ : Hx — G is a morphism of algebraic groups. If the group H may be taken to be
defined over a finite field, then we say that I' is a basic strongly essentially algebraic subgroup of
G(K). A definable subgroup of G(K) which is commensurable with a finite sum of basic essen-
tially algebraic (respectively, basic strongly essentially algebraic) subgroups is said to be essentially
algebraic (respectively, strongly essentially algebraic).

The dichotomy theorem for definable subgroups of commutative algebraic groups may be
strengthened as follows.

FacT 3.12. Let G be a semiabelian variety over K. Suppose that I' < G(K) is an infinite definable
subgroup of finite o-dimension having no infinite definable subgroup of infinite index. Then I' is
either modular or essentially algebraic.

This result is not explicitly stated in our references. So, we explain how to derive it from the
published theorems.

Proof. By [CHP02, Theorem A], if I" is not modular, then it is nonorthogonal to the fixed field,
Fix(p), of some nontrivial definable field endomorphism p. Let ¥ C T' be a minimal difference
subvariety (Y is infinite but every proper difference subvariety is finite). By the analogue of Zilber’s
indecomposability theorem [Hru0l, Lemma 3.2.2], Y generates a definable subgroup of I" which by
our hypothesis must have finite index in I'. As I" / Fix(p), it follows that Y [ Fix(p). One sees
easily that possibly after naming some parameters, a witness to this nonorthogonality gives a finite-
to-finite correspondence between Y and Fix(p). Thus, the hypotheses of [Hru0l, Lemma 4.0.2]
hold and we obtain an algebraic group H defined over Fix(p) and a definable homomorphism
~v:I'— H(Fix(p)) having a finite kernel and a finite cokernel. If n is the exponent of ker v, then the
map 0 : y — [n](y"(y)) is a well-defined homomorphism on ~(T') having a finite kernel. It follows
that &, possibly restricted to a subgroup of finite index, is the restriction of an isogeny ¢ : Hx — G
which witnesses the essential algebraicity of I'. ]

Proposition 3.6.2 of [HruOl] was included in that paper merely to round out the theory of
groups of finite Sl-rank. It played no part in the proof of the number field version of the Manin—
Mumford conjecture, but it plays an important role here. Unfortunately, the statement of [Hru01,
Proposition 3.6.2] contains some very technical hypotheses, all of which are satisfied in our intended
application, but they are technical nonetheless. We recall this proposition specialized slightly to the
case of definable subgroups of algebraic groups.

Fact 3.13. Let k < K be a countable algebraically closed difference subfield. We are given

e (7, a commutative algebraic group over k;

I' < G(K), a difference constructible subgroup of finite o-dimension defined over k;
e X C I, an irreducible difference subvariety of I'; and

e = < I', a difference constructible subgroup defined over k
such that:

e every difference constructible subgroup of I'/= is defined over k;
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e it is not possible to find a definable group = < T < I', a minimal difference variety Y (in the
sense that Y (K, o) is infinite but any proper difference subvariety of Y is finite), difference
subvariety W C T x Y™ for which the first projection is surjective and the second projection
is generically finite over its image, and Y /= infinite; and

e the stabilizer of X in = is trivial.

Then X is contained in a single coset of =.

In our intended application, G is a semiabelian variety. In this case, the algebraic groups V,,(G) =
G x---xG°" are themselves semiabelian varieties and every algebraic subgroup of V,,(G) is defined
over k. It follows that every difference constructible subgroup of I' is defined over k. It follows from
Facts 3.10 and 3.12 that if = is the sum of E, an essentially algebraic subgroup of maximal possible
o-dimension, and M, a modular subgroup of maximal possible o-dimension, then the hypothesis on
the nonexistence of T holds.

3.3 o-algebraic groups of finite o-dimension

In this section, we analyze the structure of subgroups of semiabelian varieties defined by difference
equations.

DEFINITION 3.14. Let K = K28 be an algebraically closed field and k < K the algebraic closure of
the prime field in K. We say that the semiabelian variety GG defined over K is weakly isotrivial if
there is a semiabelian variety G defined over k and a purely inseparable isogeny ¢ : G — (Go)x
defined over K. (Equivalently, there is a purely inseparable isogeny ¥ : (Go)x — G defined over K.)

It is worth remarking that if G is isogenous to a semiabelian variety defined over a finite field,
then, in fact, G is weakly isotrivial. Indeed (in the notation of the definition), if ¢ : (Go)x — G is an
isogeny where G is defined over k, then because every torsion point of G is defined over k, we have
that (Go)k[¥](K) < Go(k). So, the quotient H of G by the constant group scheme (Go) g [¥)]red 1S
defined over k£ and the induced isogeny ¥ : Hx — G is bijective on the K-rational points.

Slicker proofs of the following lemma are certainly possible. For instance, it follows from the
existence of a minimal algebraically closed field of moduli for the isogeny class of an algebraic
group. While we expect that the existence of such fields is well known, we were unable to find
published proofs for the case of semiabelian varieties. We present an algebraic reformulation using
the language of Weil-style algebraic geometry of an argument from basic stability theory.

LEMMA 3.15. Let M be an algebraically closed field and K1 and Ky algebraically closed subfields
which are algebraically independent over L := K1 N Ko. Suppose that A is an algebraic group over
K1, B is an algebraic group over Ko and that there is a surjective morphism of algebraic groups
g : Ay — Byay with T := (ker g)yeq defined over Ki. Then there is an algebraic group B’ defined
over L and a morphism of algebraic groups g’ : A — (B')y; with T = (ker ¢')req-

Proof. Choosing equations for A, B, and g, we may express A as a fibre A = A, of a group scheme
A — Vi and B = By, as a generic fibre of a group scheme B — V5 where Vi and V5 are irreducible
varieties over L, a € Vi(K7), and b € Vo(K3). Moreover, we may assume that a is Weil generic in V}
over L and b is Weil generic in V5 over L. Likewise, identifying ¢ with its graph, we may find a map
m: W — Vi x Vs, a subvariety G C (A x B) X (1;x1,) W, and an M-rational point ¢ € W (M) for
which 7(¢) = (a,b) and G. is the graph of g. The condition on z € W (M) that G, is the graph of a
surjective morphism of algebraic groups is constructible. Hence, possibly at the cost of shrinking G,
we may assume that it holds for general z € W (M).

Using Chevalley’s theorem, one sees that the set

C:={yeVo(M)|(3z€ W(M)) G, is the graph of a surjective map from A, to B, withkernel Y}
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is Kj-constructible. By hypothesis, b € C'. As K; and Ky are algebraically independent, b is still
Weil generic in V4 over K. Hence, outside of a proper closed subset, every point in V(M) lies in C.
In particular, we can find some point &’ € Vo(L) N C. O

Until further notice is given (U, o) denotes a fixed difference closed field of characteristic p > 0.
We denote by 7 the p-power Frobenius automorphism of U. All fields considered will be regarded as
subfields of U. In the final application to the Manin-Mumford problem, we shall require a special
choice of o.

We now apply Lemma 3.15 to the special case of algebraic closures of incomparable fixed fields
in difference closed fields.

LEMMA 3.16. Let A be a semiabelian variety defined over Fix(c). Suppose that there are nonzero
integers m and n such that A is isogenous to a semiabelian variety defined over Fix(c"7™), then A
is isogenous to a semiabelian variety defined over a finite field.

Proof. By Fact 3.8 the fields Fix(c)*# and Fix(c"7™)# are algebraically independent over their
common intersection. We know that

Fix(a)alg = U FiX(JN) and Fix(a"rm)alg = U FjX(J”MTmM)
N>0 M>0

so that Fix(c)¥8 N Fix(om7™)3l8 = FZlg. Thus, using the fact that every algebraic subgroup of A is
defined over Fix(c)*# by Lemma 3.15 we see that A is isogenous to a semiabelian variety defined
over Fglg. O

As promised, we specialize Fact 3.13 to the case of definable subgroups of semiabelian varieties.

LEMMA 3.17. Let G be a semiabelian variety over U and I' < G(U) a definable subgroup of finite
o-dimension. Let E < I' be an essentially algebraic subgroup of maximal o-dimension. Then if
X C G is an irreducible subvariety with a trivial stabilizer and X (U) N T' Zariski dense in X, X
must be contained in a single translate of the Zariski closure of E.

Proof. Let M < T be a modular subgroup of maximal possible o-dimension. Set = := M + E. As
we noted in the discussion following Fact 3.13, this fact applies to Z so that X(U) NT is contained
in a single coset of E. Translating, we may assume that X(U) NI C =.

Let s : G x G — G be the summation map (z,y) — z + y. Let X =s5!'X CGxa.
Then X (U)NE =s(X(U)N(M x=)). As M L E, the set X(U)N (M x E) is a finite union of sets of
the form (A xY) where Y C E and A C M are definable sets. As M is modular and X is closed, we
may take A to be a translate of a definable subgroup of M. As X is irreducible and is equal to the
Zariski closure of X(U)NT, it is equal to s(A x Y) for one of the sets A x Y in the decomposition
of X(U)N (M x E). As X has a trivial stabilizer, A must be a single point, a. That is, X =a + Y

for some definable subset Y C E. A fortiori, X C a + E. O

For our ultimate application of Lemma 3.17 we need a complete description of the essentially
algebraic groups which intervene. With the following lemma we see that they are all strongly essen-
tially algebraic.

LEMMA 3.18. Let G be a semiabelian variety defined over Fix(o). We presume that every connected
algebraic subgroup of Gy and every endomorphism of Gy is already defined over Fix(o). Let P(X) €
Z|X] be a polynomial with integer coefficients having no roots of unity amongst its complex roots.
If E < ker P(0) < G(U) is an essentially algebraic subgroup of the kernel of P(c) on G(U), then E
is strongly essentially algebraic.
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Proof. 1t suffices to consider the case that E is a subgroup of a group of the form ¢ (H (F')) where
F = Fix(o"7™) for a pair of integers with n # 0, H is an algebraic group over F', and ¢ : Hy — G
is a morphism of algebraic groups having a finite kernel. We consider the cases of m = 0 and m # 0
separately.

Consider the case that m = 0. Let N be a multiple of n so that v is defined over Fix(c").
Factor P(X) = B][(X —a;) and set Q(X) = B[(X — al¥). Then ker P(0) < ker Q(¢”V) and Q(X)
is a polynomial with integer coefficients having no roots of unity amongst its complex roots. Now,
Y(H(Fix(aV))) is a subgroup of G(Fix(oV)). Thus, G(Fix(c")) meets ker Q(¢") in an infinite
group. It follows that Q(1) = 0 contrary to our hypothesis on Q.

Consider now the case of m # 0. Let G’ < G be the image of ¢ (as an algebraic group).
By our hypotheses, G’ is defined over Fix(c). By Lemma 3.16 there is an algebraic group Hy
defined over Iﬁ‘glg and an isogeny ¥ : (Hg)y — Hy. Taking N large enough, we see that o is de-
fined over F' := Fix(¢"V7™V). The group 9(Hy(F')) is a subgroup of finite index in H(F’).
It follows that (¢ o ¥)(Ho(F')) meets E in a group of finite index so that E is strongly essen-
tially algebraic. O

Before we can finish the proof of Theorem 2.2, we need to understand the structure of subvarieties
of semiabelian varieties which meet the torsion of essentially algebraic groups in a Zariski dense set.

LEMMA 3.19. Let G be a semiabelian variety over U. Suppose that G is weakly isotrivial and that
X C G is an irreducible subvariety with X (U) N G(U)or Zariski dense in X. Then X is special.

Proof. Let H be a semiabelian variety defined over a finite field and ¢ : Hy — G a purely inseparable
isogeny witnessing the weak isotriviality of G. Let Xy := ¢! X C Hy As 1 is purely inseparable,
X(U) = 9Xo(U). As G(U)ye, is dense in X, we see that H(U)ior = H(Fglg) is dense in X. Hence,
Xy is defined over F32. O

We are now in a position to prove Theorem 2.2. The symbol U no longer refers to a fixed
difference closed field. The other notation refers to the statement of Theorem 2.2.

Proof. Working by noetherian induction on X, we may assume that X is irreducible and that
X(K) N G(K)or is Zariski dense in X. Passing to the quotient by the stabilizer of X, we may
assume that X has a trivial stabilizer.

By Corollary 3.5 we may find an automorphism ¢ : K — K and a polynomial P(X) € Z[X]
having no roots of unity amongst its complex roots so that P(c) vanishes on G(K)ior. Every
connected algebraic subgroup of G is defined over a finite extension of Fix(c). In particular, taking
n > 1 sufficiently divisible, every connected algebraic subgroup of G is defined over Fix(o). If P(X)
factors as [[(X — «;), then the polynomial Q(X) = [[(X — ') also has integral coefficients, no
roots of unity amongst its complex roots, and (o) vanishes on G(K )ior. Thus, replacing o with
o" and P with ) we may assume that every connected algebraic subgroup of G is already defined
over Fix(o).

Let (U, o) be a difference closed field extending (K, 0). Let E' < ker P(0) =: I' be an essentially
algebraic subgroup of maximal o-dimension. By Lemma 3.17, X (K) is contained in a translate of
the Zariski closure of E. Translating, we may assume that X is a subvariety of the Zariski closure, H,
of E. By Lemma 3.18, E is strongly essentially algebraic so that H is isogenous to a semiabelian
variety defined over a finite field. Now, X meets the torsion of H in a Zariski dense set so, by
Lemma 3.19, X is special. U
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4. Towards the full positive characteristic Mordell-Lang conjecture

The full Mordell-Lang conjecture over C asserts that if S is a semiabelian variety over C, I' < S(C)
is a finite rank subgroup of the complex points (in the sense that dimg(I'® Q) < 00), and X C S is
a closed subvariety, then X (C)NT is a finite union of cosets of subgroups of I'. Of course, the direct
translation of this statement to positive characteristic is false, but with the requisite allowances for
special varieties it may be true. Generalizing results of Abramovich and Voloch [AV92], Hrushovski
proved such a version with the restriction that rkz (P ®Zp)) be finite. In this section we note that
the full version (with Q in place of Z,)) would follow from the restricted case where I' is assumed
to lie in S(K') where K is the perfection of a finitely generated field.

At this point, let us state precisely the conjectures to be proven.

CONJECTURE 4.1. Let K be an algebraically closed field of positive characteristic, S a semiabelian
variety over K, I' < S(K) a finite rank (in the sense that dimg(I' ® Q) < oco) subgroup of the K
points, and X C S a closed irreducible subvariety for which X (K) NI is Zariski dense in X. Then
X is special.

An ostensible weakening of Conjecture 4.1 takes the following form.

CONJECTURE 4.2. Let K be a finitely generated field of characteristic p > 0 and K28 > K an
algebraic closure of K. Let L := KP := {x € K¥% | (3n € Z,) 2" € K} be the perfection of K.
Let S be a semiabelian variety over L and I' < S(L) a finite rank subgroup of the L-points of S.
If X C S is an irreducible subvariety for which X (L) NI is Zariski dense in X, then X is special.

It should be noted that the groups in Conjecture 4.2 are much smaller than those in Conjec-
ture 4.1. For instance, using the notation above, S(L) always has a finite torsion group, and unless
finite itself, is never n-divisible for n coprime to p. Neither of these properties need hold for I' of
Conjecture 4.1. We reduce Conjecture 4.1 to Conjecture 4.2 by choosing an automorphism so as to
split the group I' into a subgroup of a modular group and a subgroup of an orthogonal group and
then analyzing the situation along the lines of our work from the last section. A single choice of an
automorphism might not suffice, but through an appropriate induction we complete the reduction.

THEOREM 4.3. Conjectures 4.1 and 4.2 are equivalent.

Proof. As each instance of Conjecture 4.2 is an instance of Conjecture 4.1, the left-to-right impli-
cation is immediate. We concentrate on proving the other direction.

Let S be a semiabelian variety over the algebraically closed field K, I' < S(K) a finite rank
subgroup of the K-rational points of S, and X C S a closed irreducible subvariety containing a
Zariski dense set of points from I". We work by noetherian induction on X and pass to quotients
when need be so that we may assume that X has a trivial stabilizer.

Let B C T be a finite subset of I" for which {b® 1g | b € B} is a basis for ' ® Q. Let M < K
be a finitely generated subring for which S and X are defined over M and B C S(M). Denote the
fraction field of M by L. More precisely, there is a group scheme S’ over M and a closed subscheme
X' C S also over M so that S = Sy, X = X/, and the inclusion of X in S is also given by base
change. We ignore these niceties for the remainder of this argument. As M is a finitely generated
ring, it follows from the Lang—Néron theorem that S(M) is a finitely generated group. The group
I' is a subgroup of the division hull of S(M),

S(M)W .= {¢ e S(K)| (TneZy)nt e S(M)}.

For the purposes of this argument, we say that (o, P) is a good pair if o : K — K is a field
automorphism and P(X) € Z[X] is an integral polynomial for which P (o) vanishes on S(K )0, and
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P(X) has no roots of unity amongst its complex roots. By Corollary 3.5 for almost any relative
Frobenius o there is a polynomial P so that (o, P) is a good pair. In particular, for any point
€ €T~ S(LP) there are good pairs (o, P) with o(&§) # &.

For the moment, fix one good pair (o, P). Let (U, o) be a difference closed field extending (K, o).
Let T' = ker P(0)(U) and F' := S(Fix(¢)). We note that I' = (' N T') + (I' N F'). Indeed, as P(X)
and (X — 1) are coprime in Q[X] there are polynomials @, R € Z[X] and a positive integer m € Z
for which Q(X)P(X) + R(X)(X — 1) = m. We have reduced to the case that T' = S(M)%", so, in
particular, mI' =T and o(T") C . Thus,

I'=mI
(@(0) 0 P(o) + R() o (o~ 1))(T)
(0) o P(o)(I') + R(o) o (0 — 1)(I)
(@) T'NF)+ R(o)(I'NT)
NF)+('NT)

I
O O

N 1N 1N 1N
e

Hence, I' = (I'NF)+(I'NT).
Let s: S xS — S be the addition map (z,y) — = + y. Let X := s 1X. We have

X(K)nT=X({U)nT
= s(X(U)N[(TNT) x (FNT)))
= s([X(U)N(T x F)]N[(TNT) x (FNL)]).
So it suffices to understand the intersection on the right.

As P(X) has no roots of unity amongst its complex roots, the groups 7" and F' are orthogonal.
Indeed, if T" were nonorthogonal to Fix(o), then it would contain an essentially algebraic subgroup
nonorthogonal to Fix(o), but as was shown in the second paragraph of the proof of Lemma 3.18,
this is impossible.

Thus, there are (o-)closed sets Y1,...,Y, CT and Z1,...,Z, C F such that
X(U)n(TxF) =] x z.
i=1

Let 9;:=Y; NI and 3; := Z; NI". Then we have,
([)Z(IU) NTxF)N[(TNT)x (FNT)))

=
=
D
=
I

I

N
Il
—

s((Yix Zi) N [(TNT) x (FNT)))

[D:(U) N (T NID)] + [3:(U) N (FNT)].

I

N
Il
—

Decomposing further, we may assume that each ); and 3; is irreducible.

By modularity of T, ); must be a translate of a connected algebraic group. Thus, if dimQ); > 0,
then 9); + 3; is a subvariety of the Ueno locus of X, Ueno(X)(U) := {z € X(U) | 2+ B C
X for some infinite algebraic group B < S}, which by our hypothesis that X has no stabilizer is a
proper subvariety of X (see [Hru98, Lemma 11]).

If 9); is zero dimensional, then as ;(U) N (I' N T) is dense, Y; = {7} for some v € I' N T and
3i = X — 7. As the Fix(o)-rational points are dense in 3;, we see that 3; is defined over Fix(o).
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As X has a trivial stabilizer and is itself defined over Fix(c), it follows that if X — v is also defined
over Fix(c), then v € F.

So, we have shown that for any good pair (o, P),
X(U)NT = Ueno(X)(U)NT) U (X(U)NT'NF).

As observed above, if v € T' ~. S(LP®), then we can find a good pair (p, @) with p(v) # 7.
If, in addition, v ¢ Ueno(X)(U), then from the above equation we see that v ¢ X(U). Hence,
X(U)NT = (Ueno(X)(U) NI) U (X(LP)NT) whose Zariski closure is a finite union of special
varieties, by induction in the case of Ueno(X) and by the hypothesis that Conjecture 4.2 holds in
the latter case. O

Conjecture 4.2 remains open, but there are some nontrivial cases in which it is known. Ghioca
has shown that if F is a nonisotrivial elliptic curve over a finitely generated field k of characteristic
p > 0, then there is a natural number n such that E(KP®) = E(K? ") (see [Ghi05]). Consequently,
if A is a product of non-isotrivial elliptic curves over the finitely generated field K and T' < A(KP®")
is a finite rank subgroup, then I' is actually finitely generated. So, by reducing to Hrushovski’s
theorem, one sees that Conjecture 4.2 holds for A isogenous to a product of (not necessarily ordinary)
elliptic curves. Such a reduction cannot be achieved in every case. For instance, there are nonweakly
isotrivial abelian varieties A of p-rank zero. If A is defined over K and A(K) is infinite, then the
group A(KP®) cannot be finitely generated. However, the reduction might succeed for sufficiently
general ordinary abelian varieties.
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