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ABSTRACT.  Subsurface contamination at petroleum-contaminated sites is posing a serious threat to the environment and the public 
and is acquiring more and more attention by governments and industries. This paper proposed a fuzzy risk assessment method and its 
application to a petroleum-contaminated site. The method consists of three parts: (i) calculation of fuzzy steady-state contaminant 
concentrations in the aquifer based on an analytical solute transport model, (ii) possibilistic analysis of fuzzy criteria for different risk 
levels, and (iii) environmental risk assessment based on the Euclidean method. The method can effectively reflect fuzzy natures of 
environmental quality at a site and evaluation criteria for different risk levels. Results of an illustrative case study indicate that environ-
mental risks at a petroleum-contaminated site can be effectively evaluated through the developed methodology. The assessment results 
are useful for the related site remediation and management decision. 
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1. Introduction 

Development of the petroleum industry is currently asso- 
ciated with a number of environmental concerns. Among them, 
soil and groundwater contamination is acquiring more and 
more attention by the public, governments, and petroleum in-
dustries themselves (Cheremisinoff, 1991). This situation is 
especially true in western Canada where petroleum production, 
processing, upgrading, and utilization are active. Generally, 
the major sources of soil and groundwater contamination are 
leaking storage tanks used by commercial, industrial and 
residential sectors. Similar contamination can also occur dur-
ing landfarming, petroleum sludge disposal, heavy oil upgrad-
ing, and others (Livingston & Islam, 1999). 

Soil and groundwater contamination has lead to a variety 
of impacts, risks, and liabilities to the communities and for the 
industries themselves. For example, it is proved that one gal-
lon of gasoline can render one million gallons of water unsuit-
able for drinking. In Canada, about 10% of the 200,000 under-
ground storage tanks are leaking and contaminating the sur-
rounding environment, causing losses of thousands of dollars 
yearly to petroleum industries. In Alberta, there are over 
130,000 abandoned drilling sumps that are associated with a 
number of subsurface contamination problems. It is estimated 
that rendering all these abandoned drilling sumps will require 
a minimum expenditure of 10 billion dollars. Therefore, 
in-depth and effective environmental risk assessment of 
groundwater contamination due to leaking petroleum 
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contaminants is important and desired for evalua- ting the 
need for site remediation actions and providing support for 
decisions related to prevention, detection, and correction of 
the leakage and contamination problems (Huang et al., 1999). 

In recent years, risk assessment techniques have become 
widely used as aids in the decision-making process related to 
contaminated soil and groundwater. Risk assessment could 
give managers a more rational basis on which to make deci-
sions (Guyonnet et al., 1999). The general formulation of the 
environmental risk problem captures the entire process of 
identifying the source term of the risk agent, its fate and trans-
port through porous media, estimation of human exposure, 
and conversion of such exposure into the risk level. This proc-
ess involves a number of chemical, physical, biological, 
geological, and socioeconomic factors due to their direct or 
indirect relations to the environmental impacts/risks. The re-
lated parameters generally show high degrees of intrinsic vari-
ability and substantial levels of uncertainty since many system 
components in real-world problems may not be known with 
certainty (Robin et al., 1991; Woodbury & Dudicky, 1991). 
This makes the study systems more complicated and harder to 
quantify. Thus, effective reflection of uncertainties, which is 
essential for generating reliable and realistic outcomes, has 
been a major concern for risk assessment (Lein, 1992). 

To deal with uncertainties within complicated environ-
mental systems, previously, there have been a few studies of 
risk assessment for petroleum waste management through 
employing probability theory (e.g. Monte Carlo simulation). 
For example, Lo proposed an oil spill risk simulation model 
based on a probabilistic approach (Lo, 1991). Hallenbeck & 
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Flowers undertook a study of risk assessment for worker 
exposure to benzene (Hallenbeck & Flowers, 1992). Rubin et 
al. used numerical simulations and presented the results in the 
form of a concentration cumulative distribution function as a 
possible probabilistic form to be used in risk assessment stud-
ies (Rubin et al., 1994). However, problems with data 
availability and solution algorithm may exist and affect their 
practical applicability (Lein, 1992; Bardossy et al., 1991). 

Another major approach for identifying uncertainties in 
risk assessment process is through fuzzy set theory in situa-
tions when probabilistic information is unavailable (uncertain-
ties present as fuzzy membership functions rather than 
probability distribution functions) (Bardossy et al., 1991). 
There have been few studies of fuzzy risk assessment for 
petroleum waste management. In comparison, many applica-
tions to other areas have been reported. For example, 
Ganoulis et al. (1995) proposed a fuzzy arithmetic for 
ecological risk management under uncertainty. Donald & 
Ross (1996) used fuzzy logic and similarity measures for risk 
management of hazardous wastes. Dahab et al. (1994) devel-
oped a rule-based fuzzy set approach for risk analysis of ni-
trate-contaminated groundwater. Dou et al. (1995) used fuzzy 
numbers to represent the uncertainty in simulations of 
groundwater flow. Bardossy et al. (1995) simulated unsatu-
rated flow using a fuzzy approach. Vollmer et al. (1997) sug-
gested representing cleanup guidelines with the help of fuzzy 
number.  

A possibilistic approach for assessing risks associated 
with petroleum-contaminated sites is provided in this study, as 
an extension of the previous studies. The approach will then 
be applied to an illustrative case study for demonstrating its 
applicability and implication for providing decision support 
for effective site remediation and management. 

2. Methods for Uncertainty and Risk Analysis 

Uncertainties inherently exist in many environmental 
processes due to sparse and imprecise natures of the available 
information. Probabilistic and possibilistic methods are major 
approaches for dealing with them. Generally, most of the 
previous risk analysts argued that risk should be measured 
through considering the probability of a damage that may 
occur following exposure of a target to contaminants. These 
studies generally dealt with uncertainties through the Monte 
Carlo method (Bobba et al., 1995; Haas et al., 1996; Labie-
niec et al., 1997). Thus, risk was expressed as a probability 
distribution over a number of adverse consequences. However, 
in practical applications, probability theory often assumes that 
there exists a historical run for the observation of events. The 
assumed probability distributions will then be assigned to the 
related parameters. In fact, in a risk assessment context, ana-
lysts often suffer from lack of data or imperfect knowledge 
about the processes. Therefore, it is always questionable 
whether statistically meaningful probabilities can be derived. 
This may frustrate rigorous probabilistic studies. Another 
problem with the probability theory is its law of excluded 
middle and contradiction. Intuitively, we know this is not true 

in many problems (Lai & Hwang, 1992). 

From risk assessment and decision-making standpoints, if 
information collected during field investigations reveals the 
existence of probability distribution functions, the probability 
theory should certainly be the preferred approach. But this is 
unlikely to be the case in many field situations, where 
parameter distributions are often selected based on the best 
estimates and/or literature. Another important question is 
whether the probabilistic approach is always appropriate, 
whether true probabilities can be assigned to the parameters, 
or whether these values should simply be considered as possi-
ble. The fact is that, when using the probabilistic approach, 
scenarios that combine low probability parameter values have 
very little chance of being randomly selected. However, in an 
environmental risk assessment context where human health is 
often at stake, the mere possibility that a scenario might occur 
can be an important element in the decision-making process. 
For example, if probabilities are arbitrarily assumed, some 
possible combinations of parameter values will disappear 
from the analysis as a result of Monte Carlo averaging. This 
might have detrimental consequences in terms of health im-
pacts because unlikely parameter combina- tions may gener-
ate the most damage. 

In recent years, application of fuzzy set approach to envi-
ronmental studies has received increasing attention, as 
environmental hazards are often perceived by the public in 
terms of possibilities rather than probabilities. Also, it is typi-
cally more difficult for planners and engineers to specify 
probability distribution than to define membership functions. 
For risk assessment, the fuzzy set approach has advantages in 
its effectiveness in reflecting uncertainties and its applicability 
to practical problems, especially in situations when 
probabilistic information is unavailable. Another advantage 
lies in that the fuzzy set approach can appropriately handle the 
previous dilemma faced by probabilistic approach, through 
considering all possible combinations of uncertain parameters. 
Thus, extension of this method to the petroleum waste 
management area would be desired for generating effective 
evaluations and decisions. 

3. Methodology 

3.1. Possibilistic Analysis 

(1) Fuzzy numbers 

The concept of fuzzy set theory was introduced by Zadeh 
(1965). It is a generalization of ordinary set theory for solving 
real world problems which are often obscure or indistinct. 
Fuzzy numbers are used for representing the uncertainties. A 
fuzzy number X can be defined as a set of ordered pairs: 

  

    ( ) : ; ( ) 0,1X XX x x x R x                    (1) 

 
where x is a particular value of X; and X(x) represents a 
membership function of X. Values of a membership function 
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are located in a closed interval [0, 1]. The closer X(x) is to 1, 
the more “certain” one is about the value of x. 

Figure 1 presents two types of fuzzy membership func-
tions (trapezoidal and triangular) for illustrating uncer- tain-
ties associated with an aquifer parameter X. The triangular 
membership function means that (i) it is most likely that X is 
equal to c, and (ii) values lower than a or greater than b are 
considered impossible for X; the trapezoidal one represents 
that (i) it is most likely that X lies between c1 and c2 without 
preference in this range, and (ii) X will never be lower than a 
or greater than b. A membership function is normally defined 
based on characteristics of the uncertain information. 

(2) Arithmetic operations on fuzzy numbers 

Fuzzy arithmetic has the capability of performing point- 
to-point operations on fuzzy sets. It defines the fuzzy addition, 
multiplication, and division as follows, which is the base of 
fuzzy modeling. 

 

      min ,A BA B= x+y x y                         (2) 

 

      min ,A BA B x y x y                      (3) 

 

A        min ,A BB x y x y                    (4) 

 
where A (A = [x|A(x)]) and B (B = [y|B(y)]) are two fuzzy 
sets; symbols  ,  , and   represent fuzzy arithmetic 
operations of addition, multiplication, and division; and +, , 
 are normal arithmetic operations. When the result of 
calculation leads to more than one membership value for a 
given fuzzy set, the highest membership value is selected. In 
most cases, A B must be approximated. One approach is to 
reduce this set by disregarding any number from the division 
operation that is not integer (Dubois & Prade, 1980). 

3.2. Solute Transport Model 

The solute transport model is used for estimating pollut-

ant concentrations in the aquifer immediately down- gradient 
from the contaminated site, given a constant source concentra-
tion in a multilayered system (Domenico, 1987). The solution 
is obtained by coupling the equations for solute migration 
through soil with the mass balances in the aquifer, via bound-
ary conditions at the soil-aquifer interface. The main underly-
ing assumptions include: (i) soil infiltration is controlled by its 
permeability, and is sufficient to keep the soil saturated; (ii) 
the source concentration equals to the pollutant’s aqueous 
solubility; (iii) the pollutant migrates vertically through the 
soil as a dissolved phase; (iv) the mass flux at soil-aquifer 
interface mixes homogeneously over a certain aquifer thick-
ness; and (v) there is enough mass at the source to attain a 
steady-state concentration in the aquifer below the site. For a 
multi-layered system in subsurface, the solution is as follows: 

 

   

0

0
1 1 exp

E

C
c

qH I
z

IL z D z





       

    


             (5) 

 

where c = average pollutant concentration in the aquifer 
immediately downgradient from the contaminated area (after 
mixing); C0 = source concentration; L = length of the site in 
the direction of groundwater flow; I = infiltration rate through 
the layers overlying the aquifer; E = thickness of the aquifer; 
(z) and D(z) = volumetric water content and diffusion- 
dispersion coefficient at depth z, respectively; q = Darcy flux 
in the aquifer domain; and H = thickness of the mixing layer. 

When there is only one layer overlying the aquifer, Eqs. 
(5) can be simplified as follows, through the introduction of 
diffusion-dispersion coefficient (D) defined by Freeze and 
Cherry (1979): 

0

1 1 exp

C
c

qH Ie
IL D


        

                       (6) 
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Figure 1.  Two types of fuzzy membership functions: triangular and trapezoidal. 
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where e = thickness of the soil layer. Equation (6) is the 
pollutant source term of solute transport model for calculating 
pollutant migration in the aquifer to a distance located 
downgradient from the source. 

Due to sparse and imprecise natures of the available 
information, many parameters of the analytical solute trans-
port model for calculating steady-state pollutant concen- tra-
tion would be represented as fuzzy numbers associated with 
membership functions. This is a model fuzzification pro- cess. 
With fuzzy arithmetic operations, when some parameters are 
presented as fuzzy numbers, the resulting modeling outputs 
(contaminant concentrations) would also be fuzzy. For a num-
ber of fuzzy variables X1, X2, …, Xk, and a fuzzy function f(X1, 
X2, …, Xk), the following operation procedure can be used 
(Dubois & Prade 1988): 

 Select a level, , of membership grade (a level of possib-
lility); 

 Select values a1 and b1 corresponding to the -cut for 
each fuzzy number X1, X2, …, Xk (Figure 1); 

 Calculate the minimum and maximum values of f, 
considering all of the values located within the -cut for 
each fuzzy member; 

 Use the minimum and maximum values as lower and 
upper limits of the -cut of f; 

 Repeat the operation for another -cut; 

 Build the fuzzy outputs of f using the minimum and 

maximum values of f for each -cut. 

After this procedure, the membership function of 
steady-state contaminant concentration in the aquifer can be 
obtained. 

 

3.3. Possibilistic Analysis of Risk Levels 

Groundwater standards and related regulations are gener-
ally established for safeguarding water quality and preventing 
adverse effects on public health. The first step in the develop-
ment of regulations and related guidance is to identify all con-
taminants that are known to or likely to occur in public water 
system. Then, through undertaking epidemiological investiga-
tion and laboratory analysis, the relationship between 
contaminant concentration and human health impacts can be 
identified. This relationship is useful for establishing the 
maximum contaminant level (MCL with a meaning of the 
maximum allowable contaminant concentration), which can 
be used as a threshold for evaluating potential risks associated 
with the site contamination. 

In the process for developing the MCL, conditions for the 
toxicological studies were considered deterministic. However, 
in the real world, many related parameters are uncertain. Due 
to the sparse of available data related to the MCL, fuzzy num-
bers would be used for reflecting the uncertainties. 

Figure 2 shows a schematic framework for developing 
fuzzy criteria of different risk-levels. It represents the project- 
tions of MCL value under each risk level corresponding to 

 

Environmental risk 

Low  Medium Very low Fairly high High 

Figure 2.  Fuzzy criteria for different risk levels. 

Values for MCL  
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different membership grades. Here, “risk” is a linguistic vari-
able; “very low”, “low”, “medium”, “fairly high”, and “high” 
are the fuzzy restrictions. The combination of a fuzzy restric-
tion and a linguistic variable leads to a fuzzy criteria for one 
risk-level. Totally, five fuzzy criteria for different risk-level 
can be obtained through the combinations, inclu- ding “very 
low risk”, “low risk”, “medium risk”, “fairly high risk”, and 
“high risk” criteria. To develop each fuzzy criteria, the corre-
sponding fuzzy restriction is linked to a number of numerical 
values on the scale which represents the MCL value. Then, a 
membership grade between zero and one is assigned to each 
branch which connects the fuzzy restriction with a MCL value. 
The membership grade shows the belief degree in which that 
MCL value belongs to the fuzzy criteria. The belief degree is 
based on the information from epidemiological investigation, 
toxicological study, laboratory analysis, and related expertise 
and experience. 

 
3.4. Environmental Risk Assessment 

Based on the obtained fuzzy membership functions for 
contaminant concentration and risk-level criteria, the Euclid-
ean method is used for further risk assessment (Hipel, 1982). 
In the method, an Euclidean distance between fuzzy contami-
nant concentration and each fuzzy risk-level criteria is calcu-
lated: 

 

   
1

22
,i i i i

i

D C R C R
 

  
 
 ,  i, i = 1 to n           (7) 

 
where D (Ci, Ri) denotes Euclidean distance between fuzzy 
contaminant concentration Ci and fuzzy risk-level criteria Ri; 
n is the total number of certain values in Ci and Ri used for 
distance calculation. Thus, when Ci and Ri are known, D (Ci, 
Ri) can be calculated through Equation (7). The obtained D (Ci, 
Ri) values can then be directly used for environmental risk as-
sessment, through identifying the closest natural expression 
by minimizing the Euclidean distance. 

4. Application 

The developed methodology is applied to a site with an 
underground storage tank that is leaking gasoline into the 
subsurface. The leaking gasoline consists mainly of aliphatic 
hydrocarbons (e.g. pentane and butane) and aromatic hydro- 
carbons (e.g. benzene and toluene). Most of these hydro- car-
bons are classified as either priority pollutants or hazar- dous 
substances. Among them, benzene is classified as a human 
carcinogen by the International Agency for Research on Can-
cer and as a hazardous waste and a priority pollutant by the 
U.S. Environmental Protection Agency (USEPA, 1984). In 
this study, we focus on the health impacts and risks of ben-
zene. 

The type of soil underneath the tank is clay with low 
hydraulic conductivity (Table 1). However, there has been no 
building up of the hydraulic head around the tank, and infiltra-
tion through the clay layer is gravity-driven. It is assumed that 
infiltrating water mobilizes dissolved benzene at a concentra-
tion equal to its aqueous solubility (1750 mg/L). The aquifer 
underlying the clay layer is a layer of homogeneous sand. The 
contaminated zone has a length of 50 m in the direction of 
groundwater flow. Other parameters, including clay porosity, 
clay dispersivity, aquifer hydraulic conductivity, aquifer 
hydraulic gradient, and thickness of mixing layer, are pre-
sented in Table 1. All these parameters are fuzzy in nature. 
They are graphically represented as fuzzy numbers with 
triangular membership functions (Figure 3). 

 
Table 1.  Fuzzy Numbers of the Parameters used in the 
Case Study 

Parameter Minimum 
Value 

Maximum 
Value 

Most 
Likely 
Value 

Clay hydraulic con-
ductivity (m/s) 510-11 210-10 10-10 

Clay porosity 0.4 0.55 0.5 

Clay dispersivity (m) 0.03 0.10 0.05 

Aquifer hydraulic 
conductivity (m/s) 810-4 210-3 10-3 

Aquifer hydraulic 
gradient 

0.005 0.015 0.010 

Thickness of mixing 
layer (m) 

10 40 30 

 

The results of fuzzy modeling calculation are shown in 
Figure 4. It is indicated that the steady-state benzene concen- 
trations in the aquifer range from 12 to 638 g/L. The most 
likely concentration (65 g/L with possibility = 1) is the value 
obtained using the most likely input values in Table 1. Thus, 
the fuzzy benzene concentration can take on membership 
grades as follows: 

 
C(benzene) = [5|0.0, 10|0.0, 15|0.1, 30|0.3, 45|0.6, 60|0.9, 
80|0.9, 100|0.9, 200|0.7, 300|0.6]                    (8a) 

According to the existing water quality standards (CEPA, 
1988; USEPA, 1989; Health Canada, 1988), we define fuzzy 
criteria for five risk-levels as follows: 

R1 = [5|1.0, 10|0.6, 15|0.3, 30|0.0, 45|0.0, 60|0.0, 80|0.0, 

100|0.0, 200|0.0, 300|0.0]                         (8b) 

R2 = [5|0.2, 10|1.0, 15|0.4, 30|0.1, 45|0.0, 60|0.0, 80|0.0, 

100|0.0, 200|0.0, 300|0.0]                         (8c) 
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R3 = [5|0.0, 10|0.1, 15|0.3, 30|1.0, 45|1.0, 60|0.5, 80|0.0, 

100|0.0, 200|0.0, 300|0.0]                         (8d) 

R4 = [5|0.0, 10|0.0, 15|0.0, 30|0.0, 45|0.0, 60|0.3, 80|1.0, 

100|0.3, 200|0.0, 300|0.0]                         (8e) 

R5 = [5|0.0, 10|0.0, 15|0.0, 30|0.0, 45|0.0, 60|0.0, 80|0.1, 
100|0.7, 200|1.0, 300|1.0]                         (8f) 

where R1, R2, R3, R4, and R5 are the criteria for “very low”, 
“low”, “medium”, “fairly high”, and “high” risk levels, 
respectively.  

 

 

Figure 4.   Modeling solution of fuzzy benzene 
concentration. 
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Based on Figure 4, and Equations (7) and (8), the Euclid-
ean distance between the fuzzy benzene concentration and the 
fuzzy risk-levels can be estimated as follows: 

 
D(C, R1) = 2.26                           (9a) 
 
D(C, R2) = 2.19                           (9b) 
 
D(C, R3) = 1.82                           (9c) 
 
D(C, R4) = 1.43                           (9d) 
 
D(C, R5) = 1.48                           (9e) 
 

The results indicate that, among the five fuzzy risk-levels, 
the obtained benzene concentration has the closest Euclidean 
distance to R4 and R5. Therefore, the environmental impacts 
from the contaminated site has “fairly high” or “high” risk 
level. Remediation should then be carried out to reduce the 
risk level and ensure low benzene concentrations in the 
groundwater that satisfy the regulated water quality standards. 
The advantages of this environmental risk assessment method 
include: (1) it is an integrated approach that incorporates the 
fuzzy solution of contaminant concentrations and the fuzzy 
criteria of environmental risk levels within a general assess- 
ment framework, and (2) it can effectively reflect uncertain- 
ties presented as fuzzy numbers which is especially meaning- 
ful for practical problems with sparse information available 

 

Figure 3.  Fuzzy parameters. 
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for the assessment task. 

5. Conclusions 

This paper presented an integrated environmental risk as-
sessment framework and its application to a petroleum- 
contaminated site. It consists mainly of three parts: (i) calcula- 
tion of fuzzy steady-state contaminant concentrations in the 
aquifer based on an analytical solute transport model, (ii) 
possibilistic analysis of fuzzy criteria for different risk levels, 
and (iii) environmental risk assessment based on the Euclid-
ean method. Results from an illustrative case study indicated 
that environmental risks at a petroleum- contaminated site can 
be effectively evaluated through the developed methodology. 
The risk assessment framework proposed in this study can 
effectively handle uncertainties presented as fuzzy numbers. 
Fuzzy natures of water quality and risk-level criteria were 
reflected in the related simulation and evaluation models. This 
framework is especially useful for situations when probabilis-
tic information is unavailable. Application of the proposed 
approach to risk assessment of groundwater contamination 
represents a new attempt to the area of petroleum waste 
management under uncertainty. The results are useful for the 
related site remediation and management decisions. 
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