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Investors are concerned about the reliability and safety of their capital, especially its liquidity, when investing. (is paper sets up a
possibilistic portfolio selection model with liquidity constraint. In this model, the asset return and liquidity are fuzzy variables
which follow the normal possibility distributions. Liquidity is measured as the turnover rate of the asset. On the basis of possibility
theory, we transform the model into a quadratic programming problem to obtain its solution. We illustrate that, in the process of
investment, investors canmake better use of capital by choosing their investment portfolios according to their expected return and
asset liquidity.

1. Introduction

Recently, portfolio selection has received extensive atten-
tions [1–4]. (e portfolio selection model studies how to
allocate investment funds among different assets to guar-
antee profits and disperse investment risk. Markowitz [5]
proposed a mean-variance model (MVM) for portfolio se-
lection, which played an important role in the development
of modern portfolio selection theory. (e MVM uses mean
and variance to describe, respectively, the expected return
and risk of a portfolio. (e basic rule is the investors’ trade-
off between expected return and risk.

In the MVM, using the variance of return of a
portfolio as a risk measure has some limitations and
computational difficulties to construct large-scale port-
folio. In order to overcome the difficulty, some re-
searchers extended the MVM in various ways. Examples
are the semivariance model [6], mean absolute deviations
model [7], semiabsolute deviation model [8], Value-at-
Risk (VaR) model [9], Conditional Value-at-Risk (CVaR)
model [10], and so on. But whether there is a risk measure
that is best for all portfolios is still an open problem [11].
(e main reason is that each measure performs the best in
its domain, but not when considered in another measure
domain [12].

(e MVM combines probability theory with optimiza-
tion techniques to model investment behavior under un-
certainty. However, Black and Litterman [13] showed that
the solutions of the MVM are very sensitive to perturbations
of input parameters. (is means that a small uncertainty in
the parameters can make the usual optimal solution prac-
tically meaningless. (erefore, it is necessary to develop
models that are immune, as far as possible, to data uncer-
tainty. Robust optimization is a good tool to solve this
problem [14]. In order to systematically counter the sensi-
tivity of the optimal portfolio to statistical and modeling
errors in the estimation of relevant market parameters,
Goldfarb and Iyengar [15] established a robust portfolio
selection problem. (ey introduced “uncertainty structures”
for the market parameters and transformed the robust
portfolio selection problem corresponding to these uncer-
tainty structures into a second-order cone program. Piri
et al. [16] studied the robust models of the mean-Condi-
tional Value-at-Risk (M-CVaR) portfolio selection problem,
in which the mean return risk is estimated in both the in-
terval and ellipsoidal uncertainty sets. (e corresponding
robust models are a linear programming problem and a
quadratic programming problem, respectively. Kara et al.
[17] established a robust optimization problem based on the
data. In order to obtain the robust optimal solution of the
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portfolio, they used the method of Robust Conditional
Value-at-Risk under Parallelepiped Uncertainty, an evalu-
ation, and a numerical finding of the robust optimal port-
folio allocation. Kang and Li [18] proposed a robust mean-
risk optimization problem with multiple risk measures
under ambiguous distribution in which variance, value of
risk (VaR), and conditional value of risk (CVaR) were si-
multaneously used as a triple-risk measure. And a closed-
form expression of the portfolio was obtained. Khanjarpa-
nah and Pishvaee [19] established a robust flexible portfolio
optimization model and extended the model by introducing
an improved robust flexible method. Khodamoradi et al.
[20] established a robust cardinality constraints mean-var-
iance optimization model and proved that the model was
equivalent to a mixed integer second-order cone program.
(rough numerical examples, they found that, in both ro-
bust and nonrobust models, short selling and risk-neutral
interest rates would increase sharpe ratios. Robust optimi-
zation solves the effect of parameter uncertainty on the
optimal solution well. In addition, in real financial markets,
investors’ behaviors are influenced by such uncertainty
factors as politics, psychology, and social cognition. Fuzzy
set theory [21] is one of the effective methods to deal with
such uncertainty. Many scholars have tried to employ fuzzy
variables to manage portfolio selection problem and build
many fuzzy portfolio models [22–24]. Wang and Zhu [25]
introduced the fuzzy portfolio selection models. In 2012,
Tsaur [26] constructed a fuzzy portfolio model with the
parameters of fuzzy-input return rates and fuzzy-output
proportions. Zhou et al. [27] proposed the concept of fuzzy
semientropy. (ey used the semientropy to quantify the
downside risk and set up two mean-semientropy portfolio
selection models. To obtain the optimal solution, they used
the genetic algorithm. Possibility theory is an important
theory of fuzzy sets which was first proposed by Zadeh [28]
and developed by Dubois and Prade [29]. In possibility
theory, the relationship between fuzzy variables and pos-
sibility distributions is the same as that between random
variables and probability distributions in probability theory.
Tanaka et al. [30] firstly proposed the possibilistic portfolio
selection model. In this model, the fuzzy variables were
considered to follow the exponential possibility distribu-
tions. In 1999, Tanaka and Guo [31] believed that the upper
and lower possibility distributions can be used to reflect
experts’ knowledge in the portfolio selection model.
Carlsson and Fullér [32] introduced the notions of lower and
upper possibilistic mean values as well as the notations for
crisp possibilistic mean value and variance of continuous
possibility distributions. Based on that, Carlsson et al. [33]
assumed that the return of securities is trapezoidal fuzzy
variables and found the optimal portfolio model with the
highest utility score by scoring the utility. Zhang and Nie
[34] extended the possibilistic mean and variance concepts
proposed by Carlsson and Fullér and presented the notions
of upper and lower possibilistic variances and covariances of
fuzzy numbers. (en, in 2007, Zhang [35] proposed a
possibilistic mean-standard deviation model in which the
investment proportion has lower bound constrained. Zhang
et al. [36] proposed two kinds of portfolio selection models

based on upper and lower possibilistic means and variances,
and the notions of upper and lower possibilistic efficient
portfolios. In order to better integrate an uncertain decision
environment with vagueness and ambiguity, in 2009, Zhang
et al. [37] proposed a possibilistic mean-variance portfolio
selection model based on the definitions of the possibilistic
return and possibilistic risk. In this model, the returns of
assets were fuzzy variables with LR-type possibility distri-
butions. Based on the definitions of the upper and lower
possibilistic mean, Zhang et al. [38] defined the interval-
valued possibilistic mean and possibilistic variance. Based on
these, a new portfolio selection model with the maximum
utility was established. Li et al. [39] developed a possibilistic
portfolio model under VaR and risk-free investment con-
straints. Liu and Zhang [40] defined the product of multiple
fuzzy numbers’ possibilistic mean and variance, and, then,
based on these definitions, they developed three multiperiod
fuzzy portfolio optimization models. To solve these models,
they applied a novel fuzzy programming approach-based
self-adaptive differential evolution algorithm.

Several modifications to the basic MVM have been
suggested in the literature to consider more realistic factors
such as liquidity, budget, and lower/upper bound con-
straints, while deciding the allocation of money among
assets. Liquidity refers to the ability to transact a large
number of shares at prices that do not vary substantially
from past prices unless new information enters the market.

(ere are various ways of measuring liquidity, among
which trading volume, number of trades, transaction
amount, turnover rate, and velocity of circulation are
commonly used. (e turnover rate was introduced by Datar
et al. [41]. (e turnover rate is the total amount of traded
shares divided by the total net asset value of the fund over a
particular period. Marshalla and Young [42] argued that
liquidity is the most important factor in a portfolio. In our
model, turnover rate is controlled through fuzzy chance
constraint. Fuzzy portfolio selection with chance constraint,
different assumptions, and estimation methods has been
discussed in the literature (see [43–46]). Barak et al. [47]
developed a mean-variance-skewness fuzzy portfolio model
with cardinality constraint and considered the fuzzy chance
constraint to measure portfolio liquidity. Furthermore, they
designed a genetic algorithm to solve the model.

In real financial markets, short-time and institutional
investors hope to not only reach the expected rate of
return, but also ensure that the liquidity of the portfolio
should not be lower than the expected value. Moreover, in
addition to return, risk, and liquidity, the threshold
constraint is also the major concern for researchers and
practitioners because, in order to manage the portfolio
more effectively, it is necessary to limit the upper and
lower bounds (threshold constraints) of the capital
invested in each asset. (e core of this study was inspired
by Li et al. [39] and Barak et al. [47] and has been sub-
sequently further promoted and developed by other re-
searchers. Numerous studies have been done about
possibilistic portfolio selection but a few papers consider
liquidity constraint and regard asset liquidity as fuzzy
variables obey the possibility distribution.
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Our goal is to analyze the return-risk trade-off with li-
quidity constraint and threshold constraints under an un-
certain market environment. To increase the applicability of
the model, the return rate of assets is expressed as a fuzzy
variable which is associated with a normal possibility dis-
tribution. Liquidity is measured by turnover rate and is also
represented by a fuzzy variable associated with a normal
possibility distribution. (us, we established a possibilistic
portfolio selection model with fuzzy chance constraints. By
using the possibility theory, we transformed the chance-
constrained model into a deterministic mathematical model
and obtained the solution for the model.

(e rest of this paper is organized as follows. In Section
2, we present some basic concepts regarding the possibility
theory and the notions of the possibilistic mean and
variance of a fuzzy number. At the same time, in this
section, we recall the notion of normal possibility distri-
bution and introduce a theorem about it. In Section 3, we
propose a possibilistic portfolio model with liquidity
constraint and threshold constraints. We suppose the
expected rate of return and the turnover rate of the assets
are both normally distributed fuzzy variables and, then,
provide a solution for the model by a theorem. Section 4
provides a numerical example to illustrate the proposed
approach. Section 5 concludes and provides directions for
future research.

2. Preliminaries

In this section, we review some definitions and properties.
Let ξ be a fuzzy variable with membership function μ,

and let r be a real number. (en, the possibility of ξ is
defined as follows:

Pos ξ ≥ r{ } � sup
x≥r

μ(x). (1)

Definition 1. (e upper possibilistic mean value of Ã with
α-level set Aα � [a(α), b(α)] is defined as

M∗(Ã) �
∫1
0
Pos[Ã≥ b(α)]b(α)dα
∫1
0
Pos[Ã≥ b(α)]dα

� 2∫1

0
αb(α)dα, (2)

where Pos denotes the possibility measure.

Definition 2. (e lower possibilistic mean value of Ã is
defined as

M∗(Ã) �
∫1
0
Pos[Ã≤ a(α)]a(α)dα
∫1
0
Pos[Ã≤ a(α)]dα

� 2∫1

0
αa(α)dα. (3)

Definition 3. (e possibilistic mean value of Ã is defined as

M(Ã) �M∗(Ã) +M
∗(Ã)

2
� ∫1

0
α(a(α) + b(α))dα. (4)

Definition 4. (e possibilistic variance of Ã is defined as

Var(Ã) � ∫1

0
Pos[Ã≤ a(α)] a(α) + b(α)

2
− a(α)[ ]2( )dα

+ ∫1

0
Pos[Ã≥ b(α)] a(α) + b(α)

2
− b(α)[ ]2( )dα

� ∫1

0
α

a(α) + b(α)
2

− a(α)[ ]2( )dα
+ ∫1

0
α

a(α) + b(α)
2

− b(α)[ ]2( )dα
� 1

2
∫1

0
α[b(α) − a(α)]2dα.

(5)

Definition 5. (e possibilistic covariance between fuzzy
numbers Ã and B̃ is defined as

Cov(Ã, B̃) � 1

2
∫1

0
α b1(α) − a1(α)( ) b2(α) − a2(α)( )dα.

(6)

Lemma 1 (see[25]). Let α, β ∈ R and let Ã and B̃ be fuzzy
numbers. .en,

(1) M(αÃ + βB̃) � αM(Ã) + βM(B̃),
(2) Var(αÃ + βB̃) � α2Var(Ã) + β2Var(B̃)
+2|αβ|Cov(Ã, B̃).

Definition 6. (e fuzzy variable ξ is obeying the normal
possibility distribution, if its membership function is

μξ(x) � exp − x − μ

σ
( )2{ }. (7)

(en, it can be written as ξ ∼ FN(μ, σ2).

Example 1. If the fuzzy variable ξ ∼ FN(μ, σ2), then its
λ-level set is

(ξ)k � μ − σ
�����
ln λ−1

√
, μ + σ

�����
ln λ−1

√[ ], λ ∈ (0, 1). (8)

In fact, from (4), we obtain

M(ξ) �M∗(ξ) +M
∗(ξ)

2
� ∫1

0
λ(a(λ) + b(λ))dλ

� ∫1

0
λ μ + σ

�����
lnλ−1

√
+ μ − σ

�����
lnλ−1

√( )dλ
� ∫1

0
2μλdλ � μ.

(9)

It follows from (5) that
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Var(ξ) � 1

2
∫1

0
λ μ + σ

�����
lnλ−1

√
− μ + σ

�����
lnλ−1

√( )2dλ
� 1

2
∫1

0
4λσ2 lnλ−1dλ

� 2σ2 ∫1

0
λ lnλ−1dλ

� 2σ2
1

4
� 1

2
σ2.

(10)

Next, we show the distribution of ∑nk�1 λkξk.
Theorem 1. If ξk, k � 1, 2, . . . , n, are n normally distributed
fuzzy variables expressed as ξk ∼ FN(μk, σ2k) and
λk, k � 1, 2, . . . , n, are n real numbers, then

∑n
k�1

λkξk ∼ FN ∑n
k�1

λkμk,
1

2
∑n
k�1

λk
∣∣∣∣ ∣∣∣∣σk 2 . (11)

Proof. According to Lemma 1 and (9), one has

M ∑n
k�1

λkξk  � ∑n
k�1

λkM ξk( ) � ∑n
k�1

λkμk. (12)

From (6), we deduce

Cov ξi, ξj( ) � 1

2
∫1

0
α2σ i

�����
lnα−1

√
2σj

�����
lnα−1

√
dα

� 2σiσj ∫1

0
α lnα−1dα

� 2σiσj
1

4
� 1

2
σiσj, i, j � 1, 2, . . . , n.

(13)

It follows from Lemma 1 and (10) that

Var ∑n
k�1

λkξk  � ∑n
k�1

λ2kVar ξk( ) + 2 ∑n
i>j�1

λiλj
∣∣∣∣∣ ∣∣∣∣∣Cov ξi, ξj( )

� ∑n
k�1

λ2k
1

2
σ2k + 2 ∑n

i>j�1

1

2
σiσj λiλj

∣∣∣∣∣ ∣∣∣∣∣

� 1

2
∑n
k�1

λ2kσ
2
k + 2 ∑n

i>j�1
σiσj λiλj

∣∣∣∣∣ ∣∣∣∣∣ 

� 1

2
∑n
k�1

λk
∣∣∣∣ ∣∣∣∣σk 2

.

(14)
(us,

∑n
k�1

λkξk ∼ FN ∑n
k�1

λkμk,
1

2
∑n
k�1

λk
∣∣∣∣ ∣∣∣∣σk 2 . (15)

(is completes the proof. □

3. Model Foundation

3.1. Possibilistic Portfolio Model with Fuzzy Liquidity Con-
straint and Risk-Free Investment. Suppose that there are n
risky assets and one risk-free asset available for investment.
Let r̃k be the return rate of asset k, k � 1, 2, . . . , n, which is a
fuzzy number. Let xk represent the proportion invested in
asset k, k � 1, 2, . . . , n, and let rf be the return of the risk-free
asset. (us, the return R̃ on the portfolio can be written as

R̃ � ∑n
k�1
xkr̃k + rf 1 −∑n

k�1
xk . (16)

Obviously R̃ is a fuzzy number.
To establish a new model, we need the following values.
(e possibilistic mean of the portfolio return R̃ is given by

M(R̃) � ∑n
k�1
xkM r̃k( ) + rf 1 −∑n

k�1
xk . (17)

(e possibilistic variance of R̃ is written as

Var(R̃) � ∑n
k�1
x2kVar r̃k( ) + 2 ∑n

i>j�1
xixj

∣∣∣∣∣ ∣∣∣∣∣Cov r̃i, r̃j( )
� ∑n
k�1
x2kVar r̃k( ) + 2 ∑n

i>j�1
xixjCov r̃i, r̃j( ).

(18)

Now, we can establish the following possibilistic port-
folio selection model with fuzzy liquidity constraint:

(PL1)

minVar(R̃) � ∑n
k�1
x2kVar r̃k( ) + 2 ∑n

i>j�1
xixjCov r̃i, r̃j( ),

s.t.∑n
k�1
xkM r̃k( ) + rf 1 −∑n

k�1
xk ≥ μ,

Pos ∑n
k�1
l̃kxk ≥ l0 ≥ 1 − α,

∑n
k�1
xk ≤ 1,

0≤ dk ≤xk ≤gk, k � 1, 2, . . . , n,


(19)

where μ is the underestimated expected return rate and l0 is the
predetermined value. dk and gk represent, respectively, the
lower and the upper bounds on investment in asset k , k �
1, 2, . . . , n. l̃k is the turnover rate of asset k, k � 1, 2, . . . , n,
which reflects the liquidity of the asset. α reflects the sensitivity
of the investor. If the value of α is close to 0, then the investor is
sensitive to liquidity of the portfolio. Otherwise, the investor is
not sensitive to the portfolio’s liquidity.

In this section, we suppose that the return rate of asset
k, k � 1, 2, . . . , n, is a normally distributed fuzzy variable
denoted as r̃k ∼ FN(μk, σ2k), and its membership function is

Ar̃k(x) � exp − x − μk
σk

( )2 . (20)
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(e turnover rate of asset k, k � 1, 2, . . . , n, is also a
normally distributed fuzzy variable denoted as
l̃k ∼ FN(ak, b2k). So, its membership function is

Ã
lk
(x) � exp − x − ak

bk
( )2 . (21)

From (eorem 1, we obtain

R̃ ∼ FN ∑n
k�1
xkμk + rf 1 −∑n

k�1
xk , 1

2
∑n
k�1
xkσk 2 ,

∑n
k�1
l̃kxk ∼ FN ∑n

k�1
xkak,

1

2
∑n
k�1
xkbk 2 .

(22)
(en, themembership function of∑nk�1 l̃kxk is defined by

A(u) � exp − u −∑nk�1 xkak( )2
(1/2) ∑nk�1 xkbk( )2

 . (23)

Furthermore,

Pos ∑n
k�1
l̃kxk ≥ l0  � sup

u≥l0
exp − u −∑nk�1 xkak( )2

(1/2) ∑nk�1 xkbk( )2
 

�

exp − l0 −∑nk�1 xkak( )2
(1/2) ∑nk�1 xkbk( )2

 , for∑n
k�1
xkak < l0,

1, for∑n
k�1
xkak ≥ l0.


(24)

From (19) and (24), we have

− l0 −∑n
k�1
akxk 2

≥ 1
2
ln(1 − α) ∑n

k�1
xkbk 2

. (25)

From (22) and (25), (PL1) can be transformed into

(NPL1)

minVar(R̃) � 1

2
∑n
k�1
xkσk 2

,

s.t.∑n
k�1
xk μk − rf( ) + rf ≥ μ,

− l0 −∑n
k�1
akxk 2

≥ 1
2
ln(1 − α) ∑n

k�1
xkbk 2

,

∑n
k�1
xk ≤ 1,

0≤ dk ≤xk ≤gk, k � 1, 2, . . . , n.


(26)

3.2. PossibilisticPortfolioModelwithoutRisk-Free Investment.
Similar to the previous section, we propose a portfolio se-
lection model without risk-free investment as follows:

(PL2)

minVar(R̃) � ∑n
k�1
x2kVar r̃k( ) + 2 ∑n

i>j�1
xixjCov r̃i, r̃j( ),

s.t.∑n
k�1
xkM r̃k( )≥ μ,

Pos ∑n
k�1
l̃kxk ≥ l0 ≥ 1 − α,

∑n
k�1
xk � 1,

0≤ dk ≤xk ≤gk, k � 1, 2, . . . , n.


(27)

If the return rate of asset k, k � 1, 2, . . . , n, is a normally
distributed fuzzy variable denoted as r̃k ∼ FN(μk, σ2k) and
the turnover rate of asset k, k � 1, 2, . . . , n, is also a normally
distributed fuzzy variable denoted as l̃k ∼ FN(ak, b2k), then
the model (PL2) can be transformed into

(NPL2)

minVar(R̃) � 1

2
∑n
k�1
xkσk 2

,

s.t.∑n
k�1
xkμk ≥ μ,

− l0 −∑n
k�1
akxk 2

≥ 1
2
ln(1 − α) ∑n

k�1
xkbk 2

,

∑n
k�1
xk � 1,

0≤dk ≤xk ≤gk, k � 1, 2, . . . , n.


(28)

(NPL1) and (NPL2) are quadratic programming
problems and can be solved by MATLAB, Lingo, etc.

4. Numerical Example

In this section, we give a real portfolio example to illustrate
our approach. In this example, we selected eight stocks from
the Shanghai Stock Exchange. We collected data on monthly
returns and turnover rate for each of the eight stocks over the
period of January 2006 to December 2006 from the RESSET
Financial Research Database. We use SPSS to generate the
frequency distributions of the monthly returns and turnover
rates.

Table 1 shows the transaction codes and the frequency
distributions of the monthly returns, while Table 2 shows the
transaction codes and the frequency distributions of the
monthly turnover rates.
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Let the risk-free asset be a bank deposit. We use the
three-month deposit interest rates as the return on risk-free
assets. So, we get the return on risk-free assets rf � 2.8%. If
the possibility of the portfolio’s turnover rate must be more
than 0.002 (in more than 90% times); that is, l0 � 0.2(%)
and α � 10%, then the lower bound of investment ratio xk
must be d �{0.02, 0, 0.1, 0, 0.02, 0.1, 0.1, 0.05} and the upper
bound g �{0.3, 0.2, 0.3, 0.2, 0.2, 0.4, 0.4, 0.3}. By solving the
model (NPL1) and (NPL2), the possibilistic efficient
portfolios for the different µs are obtained as shown in
Tables 3 and 4.

From these two tables we can see that the risk increases
as μ increases. We also can see that when the value of μ is low
(e.g., μ � 3%), the proportion that invests is low. For ex-
ample, when the value of μ is equal to 3%, the investment
proportion with risk-free is the lower bound but the in-
vestment proportion without risk-free is 0.02, 0.0702, 0.1, 0,
0.2, 0.1, 0.2098, and 0.3. Figure 1 shows these two efficient
portfolios. From Figure 1, we can see that when the risk-free
investment is included in the portfolio, the risk is lower at
the same value ofμ. And from Figure 1, we also can draw the
conclusion that the risk of the portfolios can be spread by
diversification. (e impact of liquidity constraint on the
portfolio is shown in Figure 2. Figure 2 shows some pos-
sibilistic efficient portfolios with and without liquidity
constraints.

It can be seen from Figure 2 that, under the same ex-
pected return, those investors who have requirements for
financial liquidity need to take on greater risks. In other
words, if investors want to keep the risks they take constant,
the demand for financial liquidity will reduce the expected
return of the portfolio. In addition, the impact of liquidity
floor l0 on the portfolio is shown in Figure 3. Figure 3 shows
some possibilistic efficient portfolios with different l0. (e

impact of l0 on the portfolio depends on the slope and the
intercept of the l0 line and the position of the possibilistic
efficient frontier.

As shown in Figure 3, when the position of the possi-
bilistic efficient frontier and the slope of the l0 line remain
unchanged, the intercept changes of the l0 line will affect the
optimal solution of the model. As l0 moves from “a” point to
“b” point, the optimal solution of the model would not
change. But when l0 moves from “a” point to “c” point, this
change would affect the optimal solution of the model.

Analogous to the above, if the turnover rate of the
portfolio must be more than 0.002, i.e., l0 � 0.2(%), and the
expected rate of return must reach 8% or more, then the
lower and upper bound of investment ratio xk should be
d �{0.02, 0, 0.1, 0, 0.02, 0.1, 0.1, 0.05} and g �{0.3, 0.2, 0.3,
0.2, 0.2, 0.4, 0.4, 0.3}, respectively. By solving the model
(NPL1) with different investor sensitivity parameter values,
we obtain the possibilistic efficient portfolios in Table 5. (e
relationship between investor sensitivity and the portfolio
risk is shown in Figure 4.

From Figure 4, we can see that an increase in investor
sensitivity is associated with a decrease in the portfolio risk,
and when investor sensitivity reaches a certain threshold, the
portfolio risk no longer reduces. (at is to say, in this case, if
investors seek at least 8% of the profits, regardless of the
investors’ preference for liquidity, the minimum risk of the
portfolio is 0.5126 (or 51.26%).

(e impact of liquidity sensitivity α on the portfolio is
shown in Figure 5. Figure 5 shows some possibilistic efficient
portfolios with different α. In Figure 5, when the position of
the possibilistic efficient frontier and the intercept of the α
line remain unchanged, the slope changes of the α line will
affect the optimal solution of the model. As α moves from
“a” point to “b” point, the optimal solution of the model

Table 1: (e possibility distribution of returns.

Stock code μk σk

600058 0.06 0.167
600028 0.09 0.102
600089 0.10 0.207
600115 0.04 0.111
600170 0.03 0.049
600495 0.10 0.080
600526 0.01 0.086
600662 0.03 0.076

Table 2: (e possibility distribution of turnover rates (%).

Stock code ak bk

600058 40.70 31.762
600028 1.77 0.802
600089 32.51 10.681
600115 9.75 4.384
600170 14.86 8.796
600495 73.85 51.658
600526 65.47 16.565
600662 40.14 19.587
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Figure 1: Variation of portfolio risks with μ.

Table 3: Possibilistic efficient portfolios with risk-free investment for the different µs with l0 � 0.2(%) and α � 10%.

μ (%) 600058 600028 600089 600115 600170 600495 600526 600662 Risk ∑8
k�1 xk

3 0.02 0 0.1 0 0.02 0.1 0.1 0.05 0.0901 0.39
5 0.02 0 0.1 0 0.02 0.2330 0.1 0.05 0.1441 0.523
6.5 0.02 0.0717 0.1 0 0.02 0.3737 0.1 0.05 0.2654 0.7354
7 0.02 0.1521 0.1 0 0.02 0.3717 0.1 0.05 0.3287 0.8138
7.5 0.02 0.2 0.1497 0 0.02 0.3482 0.1 0.05 0.4408 0.8879
8 0.02 0.2 0.2725 0 0.02 0.2929 0.1 0.05 0.6485 0.9554
8.12 0.02 0.2 0.3 0.0197 0.02 0.2779 0.1 0.05 0.7252 0.9876

Table 4: Possibilistic efficient portfolios without risk-free investment for the different μs with l0 � 0.2(%) and α � 10%.

μ (%) 600058 600028 600089 600115 600170 600495 600526 600662 Risk ∑8
k�1 xk

3 0.02 0.0702 0.1 0 0.2 0.1 0.2098 0.3 0.3607 1
5 0.02 0.0760 0.1 0 0.2 0.1547 0.1493 0.3 0.3640 1
6.5 0.02 0.1554 0.1 0 0.2 0.2868 0.1 0.1378 0.4004 1
7 0.02 0.1906 0.1 0 0.2 0.3281 0.1 0.0613 0.4165 1
7.5 0.02 0.2 0.1817 0 0.1386 0.3097 0.1 0.05 0.5309 1
8 0.02 0.2 0.2853 0 0.0671 0.2776 0.1 0.05 0.6910 1
8.12 0.02 0.2 0.3 0.03 0.024 0.276 0.1 0.05 0.7252 1
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Figure 2: Some possibilistic efficient portfolios with and without liquidity constraint.
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would not change. But when α moves from “a” point to “c”
point, this change would affect the optimal solution of the
model.

5. Conclusions and Directions for
Future Research

In this paper, we proposed a possibilistic portfolio model,
which is different from the MVM proposed by Markowitz.
Unlike the MVM, we measured the liquidity of asset as the
turnover rate. Besides, we assumed that the expected rate of
returns and turnover rates of assets are fuzzy variables,
which follow the normal possibility distribution. We, then,

applied the possibility theory and fuzzy chance constraint to
consider the turnover rate and obtained the solution for the
model. Furthermore, we illustrated our proposed effective
approaches for the portfolio construction using numerical
examples. In these examples, we analyzed the risk between
the portfolios with and without risk-free constraints. We
also analyzed changes in the portfolio’s risk with respect to
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Figure 3: Some possibilistic efficient portfolios with different l0.

Table 5: Possibilistic efficient portfolios with risk-free investment for the different α values with l0 � 0.2(%)and μ � 8(%).

α (%) 600058 600028 600089 600115 600170 600495 600526 600662 Risk ∑8
k�1 xk

0.1 0.02 0.2 0.2725 0 0.02 0.2929 0.1 0.05 0.6485 0.9554
0.2 0.02 0.2 0.2544 0 0.02 0.3110 0.1 0.05 0.6241 0.9564
0.3 0.02 0.2 0.2315 0 0.02 0.3339 0.1 0.05 0.5942 0.9605
0.4 0.02 0.2 0.2012 0 0.02 0.3642 0.1 0.05 0.5560 0.9554
0.5 0.02 0.2 0.1654 0 0.02 0.4 0.1 0.05 0.5126 0.9554
0.6 0.02 0.2 0.1654 0 0.02 0.4 0.1 0.05 0.5126 0.9554
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Figure 4: Variation of portfolio risk with investor sensitivity α. 0
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changes in investor sensitivity. Finally, we drew a conclusion
that our method can play a leading role in financial markets.

Future research can extend our model in the following
ways. Firstly, researchers can use other methods to solve the
problem and compare the results. Secondly, our fuzzy
portfolio model can be extended to a multiperiod case.
(irdly, our model can be considered in a fuzzy random
environment. Finally, with the development of behavioral
finance, investor behavior has received more attention. We
believe that investor behavior can be considered in fuzzy
portfolio theory.
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