
A possible neurophysiological basis of the octave enlargement

effect

Martin F. McKinneya and

Speech and Hearing Sciences Program, Harvard University–Massachusetts Institute of

Technology, Division of Health Sciences and Technology and Eaton-Peabody Laboratory,

Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114

Bertrand Delgutte
Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston,

Massachusetts 02114 and Research Laboratory of Electronics, Massachusetts Institute of

Technology and Speech and Hearing Sciences Program, Harvard University–Massachusetts

Institute of Technology, Division of Health Sciences and Technology

Abstract

Although the physical octave is defined as a simple ratio of 2:1, listeners prefer slightly greater octave

ratios. Ohgushi [J. Acoust. Soc. Am. 73, 1694–1700 (1983)] suggested that a temporal model for

octave matching would predict this octave enlargement effect because, in response to pure tones,

auditory-nerve interspike intervals are slightly larger than the stimulus period. In an effort to test

Ohgushi’s hypothesis, auditory-nerve single-unit responses to pure-tone stimuli were collected from

Dial-anesthetized cats. It was found that although interspike interval distributions show clear phase-

locking to the stimulus, intervals systematically deviate from integer multiples of the stimulus period.

Due to refractory effects, intervals smaller than 5 msec are slightly larger than the stimulus period

and deviate most for small intervals. On the other hand, first-order intervals are smaller than the

stimulus period for stimulus frequencies less than 500 Hz. It is shown that this deviation is the

combined effect of phase-locking and multiple spikes within one stimulus period. A model for octave

matching was implemented which compares frequency estimates of two tones based on their

interspike interval distributions. The model quantitatively predicts the octave enlargement effect.

These results are consistent with the idea that musical pitch is derived from auditory-nerve interspike

interval distributions.

INTRODUCTION

The octave is the basis of most known tonal systems throughout the world (Dowling and

Harwood, 1986).1 Pitches that are an octave apart are deemed equivalent to some degree and

can serve the same musical function within certain tonal contexts. The prevalence of the octave

as the fundamental building block of tonal systems suggests that there may be a physiological

basis for octave equivalence.

A physical octave is defined as a frequency ratio of 2:1. It is known, however, that listeners

prefer octave ratios slightly greater than 2:1 (Ward, 1954; Walliser, 1969; Terhardt, 1971;

Sundberg and Lindqvist, 1973). In a typical procedure to measure this octave enlargement

effect, a subject listens to a lower standard tone alternating with an adjustable higher tone and

is instructed to adjust the frequency of the higher tone until it sounds one octave above the

a)Author to whom correspondence should be addressed.
1Dowling and Harwood (1986) report (on p. 93) only one known tonal system, from an aboriginal culture in Australia, that is not based
on the octave.
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lower tone. Results of three such experiments are shown in Fig. 1. The size of the preferred or

subjective octave is close to 2:1 at low frequencies but increases with frequency and exceeds

the physical octave by almost 3% at 2 kHz. It is difficult for listeners to make octave judgments

for tones above about 2 kHz. This corresponds to an upper limit in musical pitch of about 4–

5 kHz (Ward, 1954; Attneave and Olson, 1971). There is considerable variability in the octave

enlargement effect across listeners but it is nonetheless a statistically significant effect in all

the reported studies. The effect is also seen in a wide variety of stimulus conditions and in

subjects with various musical backgrounds. It is seen when the two tones are presented

simultaneously (Ward, 1954; Demany and Semal, 1990) and under the method of constant

stimuli (Dobbins and Cuddy, 1982). The studies shown in Fig. 1 were all performed using

pure-tone stimuli but Sundberg and Lindqvist (1973) reported the effect with complex tones

as well as pure tones. Ward (1954) reported the presence of the effect in listeners without

musical training and in listeners with musical training as well as in possessors of absolute pitch.

Dowling and Harwood (1986, p. 103) reported the effect in a number of musical cultures.

The presence of the octave enlargement effect under a wide range of subject and stimulus

conditions suggests that the effect may have a general physiological basis. Ohgushi (1983)

proposed an octave matching scheme based on a temporal model for pitch that predicts the

octave enlargement effect. In an earlier study, he noticed that, in response to pure tones,

auditory-nerve interspike intervals are slightly longer than integer multiples of the stimulus

period (Ohgushi, 1978). He then showed, using a temporal model for octave matching, that

these deviations lead to a prediction of the octave enlargement effect (Ohgushi, 1983).

Upon review of Ohgushi’s (1983) model for octave matching, Hartmann (1993) pointed out

an arbitrary factor of two. This scaling factor, which is not based on any physiological process,

allows a model listener to theoretically set it, and thus the octave interval, to any value.

Hartmann suggested a variation of the model that would not rely on such a scaling factor. He

also suggested that if the model operated on all-order interspike intervals instead of first-order

inter-spike intervals, it may better predict the psychoacoustic data.

The work presented here was motivated by the hypotheses presented by Ohgushi and

Hartmann. Neither one of them could reliably test their predictions because the existing

physiological data consisted of only a small number of coarse-resolution interspike-interval

distributions. It was therefore difficult to measure the modes of the distributions, i.e.,

characterize the intervals, with high precision. Special methods were used in this study to ensure

high-precision interval analyses so that predictions of temporal models for octave matching

could be reliably evaluated. We combined spike data across fibers to form pooled interspike

interval histograms which have been shown to reflect a wide variety of pitch phenomena

(Cariani and Delgutte, 1996a, 1996b). In addition to characterizing interspike intervals, we

have developed and evaluated models for octave matching, based on Ohgushi’s and

Hartmann’s ideas, which operate on pooled interspike interval histograms.

I. METHOD

The methods used in this study differ from typical auditory-nerve (AN) studies in that specific

efforts were taken to ensure accurate estimation of interspike intervals (ISIs): Unusually long

recordings were made to ensure the inclusion of a high number of spikes in each record; very

fine binwidths (1 μsec) were used when generating ISI histograms in order to accurately

estimate the modes.

A. Experiment—Data were recorded from auditory-nerve fibers in six healthy, adult cats.

Cat preparation and recording techniques were standard for our laboratory (Kiang et al.,

1965; Cariani and Delgutte, 1996a).
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In each experiment, the cat was Dial-anesthetized with an initial dose of 75 mg per kg of body

weight and subsequent doses of 7.5 mg per kg of body weight. A craniectomy was performed

and the middle-ear and bulla cavities were opened to access the round window. The cerebellum

was retracted to expose the AN. Injections of dexamethasone (0.26 mg/kg of body weight/day),

to reduce brain swelling, and Ringer’s saline (50 ml/day), to prevent dehydration, were given

throughout the experiment.

The cat was placed on a vibration isolation table in an electrically shielded, temperature-

controlled (38 °C) chamber. The AN compound action potential (CAP) in response to click

stimuli was monitored with a metal electrode placed near the round window. The cat’s hearing

was assessed by monitoring the CAP threshold and single-unit thresholds.

Sound was delivered to the cat’s ear through a closed acoustic assembly driven by a

(Beyerdynamic DT 48A) headphone. The acoustic assembly was calibrated with respect to the

voltage delivered to the headphone, allowing for accurate control over the sound-pressure level

at the tympanic membrane. Stimuli were generated by a 16-bit, Concurrent (DA04H) digital-

to-analog converter using a sampling rate of 100 kHz. The total harmonic distortion for pure

tones between 110 and 3000 Hz was less than −55 dB re fundamental when measured at a

stimulus level of 95 dB SPL.

AN action potentials (spikes) were recorded with glass micropipette electrodes filled with 2

M KCl. The electrodes were visually placed on the nerve and then mechanically stepped

through the nerve using a micropositioner (Kopf 650). The electrode signal was band pass

filtered and fed into a spike detector. The times of spike peaks were recorded with 1-μs
precision.

Nerve fibers were sought using a click (near 55 dB SPL) as a search stimulus. Upon contact

with a fiber, a threshold tuning curve was generated using the Moxon (Kiang et al., 1970)

algorithm with a criterion of 0. The spontaneous rate of the fiber was then measured by counting

the number of spikes over a 20-sec period. Units with a characteristic-frequency (CF) threshold

more than two standard deviations away from the mean threshold for normal AN fibers (as

found by Liberman and Kiang, 1978) were not included in the analysis.

An estimate of the number of false triggers in the spike record was derived from examination

of the ISIs. Because the absolute refractory period of AN fibers prohibits ISIs smaller than

about 0.5 msec (Gaumond et al., 1982, 1983), intervals shorter than 0.5 msec were assumed

to be false triggers. Spike records containing more than 0.1% of these short intervals were not

included in the analysis.

The experimental data were recorded using pure-tone stimuli at frequencies of 110, 220, 440,

880, 1500, 1760, and 3000 Hz and at levels of 5, 10, 15, 20, 25, 40, and 60 dB re threshold.

The stimulus was presented once per second (400 msec on, 600 msec off, 2.5 msec rise and

fall times) for 180 sec or until 20 000 spikes had been recorded, whichever came first. In order

to avoid the possible complex effects of onset transients and adaptation, spikes that occurred

during the first 20 msec following the onset of each stimulus and during the stimulus off-time

were excluded. Recordings containing fewer than 5000 spikes were not included in the analysis.

This unusually high requirement on the minimum number of spikes in the record ensures a

reliable estimate of the ISI distribution.

B. Analysis—Auditory-nerve responses to low-frequency stimuli tend to occur at a specific

phase with respect to the stimulus (Rose et al., 1967; Kiang et al., 1965). Thus ISI distributions

display modes at intervals corresponding, roughly, to integer multiples of the stimulus period.

The main goal of the analysis in this study was to accurately estimate modes of AN ISI
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distributions in order to quantitatively verify Ohgushi’s (1978) observation that the intervals

deviate from the stimulus period.

There were three main steps to the analysis of the ISI distributions. First, a histogram of the

intervals was produced. Second, the mean interval of each mode in the histogram was estimated

by fitting, in the maximum likelihood sense, a Gaussian mixture density to the histogram. Third,

deviation of the interval modes from stimulus periods was characterized.

1. Histogram generation: The first step in the analysis was to generate histograms of the ISIs.

The histogram binwidths were 2 μsec for frequencies less than 300 Hz and 1 μsec for

frequencies above 300 Hz. Both first-order and all-order ISI histograms were computed.

2. Mode estimation: The second step in the analysis was to estimate the modes of the interspike

interval distribution. A maximum likelihood (ML) estimation approach was implemented in

which the interval distributions were modeled as a mixture of Gaussian densities with each

mode in the distribution corresponding to a single density. This mixture density was fit (in the

ML sense) to the interval histograms and the means of the individual Gaussian densities were

taken as the estimated modes in the histogram. Two forms of mixture density were used, one

for estimating individual modes in the interval distributions and another for estimating the

fundamental mode (i.e., stimulus period) in the distributions (and subsequently the stimulus

frequency). In the first case, the individual Gaussian densities in the mixture had mutually

independent means and variances. In the second case, they were assumed to have harmonically

related means and a common variance.

Because obtaining the ML estimates of the parameters is not analytically straightforward, we

used the expectation-maximization (EM) algorithm, an iterative technique which converges to

the ML estimate (Redner and Walker, 1984; Moon, 1996). Mathematical details of our

implementation are included in the Appendix.

3. Mode offset: The third step in the analysis was to calculate the mode offset (MO), the

difference between the mode estimate (ME) and the corresponding multiple of the stimulus

period,

(1)

where f is the frequency of the stimulus and n is the mode number (e.g., mode 1 contains

intervals that are roughly one stimulus period in length and mode 2 contains intervals that are

roughly 2 stimulus periods in length). Figure 3(e) illustrates the above calculation for MO1.

In an effort to represent the total AN population response to the stimuli, pooled histograms

were generated by summing all of the individual ISI histograms for a specific stimulus

frequency. Mode estimates of the pooled histograms were calculated as well.

II. RESULTS

From six experiments, a total of 399 spike records from 164 fibers were obtained that met our

requirements in terms of the minimum number of spikes, normal thresholds, and small number

of false triggers. The majority (79%) of the records were from high spontaneous rate fibers.

CFs ranged from 150 to 17 000 Hz.

Figure 2(a) shows a schematic representation of a stimulus wave form and a hypothetical spike

record. ISIs are roughly integer multiples of the stimulus period. First-order intervals are those

between consecutive spikes, second-order intervals are those between every other spike, etc.
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Figure 2(b) shows a histogram of first-order ISIs from a single-unit recording generated with

an 880-Hz tone stimulus. The modal distribution of intervals clearly reflects the

synchronization of the spike train to the stimulus and the position of the modes provides

information about the stimulus frequency (Rose et al., 1967).

Figure 2(c) displays first-, second-, and third-order histograms based on the same spike record

as in (b). As one would expect, first-order intervals are, on average, shorter than second- and

third-order intervals and thus fall into earlier modes. There is, however, a great deal of overlap

in the distributions of the intervals of different orders and the intervals of a particular order are

not confined to a single mode in the histogram.

The histogram shown in Fig. 2(d) contains ISIs of all orders, and is thus termed the all-order

ISI histogram. This histogram is sometimes referred to as the autocorrelation or

autocoincidence histogram (Perkel et al., 1967; Rodieck, 1967; Ruggero, 1973; Evans,

1983).

An important difference between first-order and all-order ISI histograms is their general shape:

the size of the modes in the first-order ISI histogram tends to decrease as the mode number

increases; the size of the modes in the all-order ISI histogram is relatively constant. In other

words, when one examines very long ISIs, few are first-order intervals. The all-order ISI

histogram does not reflect the decaying trend because higher-order intervals are included and

“fill in” the modes at long intervals.

In addition to the 399 spike records included in the analysis, 28 spike records that met our data

requirements were excluded from the analysis because their histograms displayed peak-

splitting. At moderate to high levels of pure-tone low-frequency stimulation, AN ISI

histograms can exhibit two or sometimes three peaks per stimulus cycle instead of the normal

one (Kiang and Moxon, 1972; Kiang, 1980; Liberman and Kiang, 1984; Kiang, 1990; Ruggero

et al., 1996). Most of the fibers from which we recorded did not exhibit this behavior within

our stimulus-level range, but those records that did were excluded to simplify the analysis. In

our data, peak splitting occurred primarily at stimulus frequencies below 440 Hz.

A. All-order interspike intervals—Figure 3(a)–(d) are all-order ISI histograms from one

AN fiber for four different stimulus frequencies. Figure 3(e) is a magnification of the histogram

in (a) with the mode estimates indicated by ×’s above each mode. As previously reported by

Ohgushi (1978, 1983), the short intervals (early modes) are slightly longer than stimulus

periods. This deviation is presumed to be at least partially due to the refractory period of the

auditory-nerve fiber (Ohgushi, 1978). The mode offset for the first mode is labeled in the figure.

Mode offsets from the histograms in Fig. 3(a)–(d) are plotted in (f) as a function of ISI length.

The mode offset decreases monotonically as the ISI increases [Fig. 3(f)] and for intervals

greater than about 5 msec, mode offsets are insignificant. To a first approximation, the mode

offsets depend primarily on ISI and not stimulus frequency. However, at any particular ISI

≲5 msec, lower frequency stimuli generally yield slightly larger mode offsets.

Figure 4(a)–(c) show how mode offsets vary with fiber CF, spontaneous rate (SR), and

discharge rate (DR) for all-order histograms of 220 and 1760 Hz. The DR is typically a

compressed function of stimulus level ranging from SR to saturation rate. The mode offsets in

all-order ISI histograms do not obviously depend on the fiber CF, SR, or DR. Because of this,

we decided to pool the ISI data (across fibers and stimulus levels) and use pooled histograms

for testing the model presented in the next section. Because pooled histograms contain many

more intervals than single-fiber histograms, they more accurately represent the underlying

interval probability distributions. Figure 4(d) shows mode offsets grouped by the cat from
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which they were measured. There is a small, but statistically significant (see caption) variation

across cats for the 1760-Hz data. Despite this trend, we de cided to also pool data across cats.

Conclusions based on the analysis of data from individual cats were not different from those

based on pooled data.

Figure 5 shows pooled histograms for six stimulus frequencies. The pooled histograms are

much smoother than the single-fiber histograms due to the large number of intervals they

contain. Mode offsets are clearly visible at intervals less than about 5 msec. Modes in the 110

and 220 Hz histograms show no offset because even the earliest modes occur at intervals greater

than or near 5 msec.

Figure 6(a)–(e) show mode offsets as a function of interval length for pooled histograms as

well as for single-fiber histograms. Figure 6(f) shows just the pooled histogram mode offsets

for five stimulus frequencies. Although there is some variation across fibers in the size of mode

offsets, the characteristics seen in the single-fiber data are evident in the pooled data: the mode

offset is a monotonically decreasing function of ISI; mode offsets for intervals greater than

about 5 msec are insignificant; and for a given ISI, lower frequency stimuli yield slightly larger

mode offsets. Thus these characteristics seem to be general phenomena and not just particular

to one type of auditory-nerve fiber or stimulus intensity.

B. First-order interspike intervals—The general shape of first-order histograms changes

with fiber discharge rate while the shape of all-order histograms remains relatively constant

(Cariani and Delgutte, 1996a). Figure 7 shows interval histograms from one AN fiber for a

220-Hz tone at three stimulus levels. As the SPL, and therefore discharge rate, increases, the

average first-order interval gets shorter and the relative sizes of the histogram modes reflect

this change: the later modes get smaller and the early modes get larger. In contrast, as the

discharge rate increases, higher-order intervals fill in the modes that get depleted of first-order

intervals so that the general shape of all-order histograms remains unchanged.

The main difference between mode offsets of first-order and all-order intervals is the presence

of negative mode offsets for low stimulus frequencies in the first-order data. A negative mode

offset means that a particular ISI mode is shorter than the corresponding stimulus-period

multiple. This is illustrated in the first-order low-frequency histograms in Fig. 8(a) and (b): the

modes occur slightly to the left of the stimulus period lines. Mode offset data for low-frequency

first-order ISI histograms are shown in panels (c)–(f). These mode offsets show a greater

variability at low stimulus frequencies than those from all-order ISIs.

The negative mode offsets in low-frequency first-order ISI histograms are due to the presence

of intervals in Mode zero (0). As Fig. 9(a) and (b) illustrate, an interval falls into Mode 0 if

two spikes occur within the same half-period of the stimulus. Mode 0 is bounded on the left

by the absolute refractory period and on the right by half the stimulus period. Due to the

refractory period of the AN fiber, only low-frequency stimuli (≲500 Hz) produce ISI

histograms that contain a Mode 0. When an interval occurs in Mode 0, the preceding and

following first-order intervals tend to be smaller than if just a single spike had occurred in that

half-period. The relationship between consecutive intervals can be seen by examining a joint

ISI histogram (Rodieck et al., 1962), as shown in Fig. 9(c). The joint ISI histogram is a two-

dimensional histogram which plots the ISI size against that of the previous ISI. It is displayed

here as a gray scale image in which gray level indicates the number of interval pairs in a small

square bin. As is the case for one-dimensional ISI histograms, the modal distribution of

intervals is clearly evident in this plot: the intervals tend to cluster near integer multiples of the

stimulus period. We will use the notation Mode(n,m) to refer to the mode in which the previous

interval is in Mode n and the current interval is in Mode m. Examination of Mode(0,1), Mode

(0,2), and Mode(0,3) shows that if the previous interval lies in Mode 0, the current interval
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tends to be shorter than the corresponding stimulus-period multiple. Also, examination of Mode

(1,0), Mode(2,0), and Mode(3,0) shows a similar dependency on mode 0 for the current interval.

Thus in a first-order ISI histogram, the presence of intervals in Mode 0 effectively biases the

other modes toward smaller values.

Offsets of higher modes in all-order ISI histograms are not affected by the presence of intervals

in Mode 0 because these histograms include higher-order intervals. For every first-order

interval that is shortened by the presence of an interval in Mode 0, there is a second-order

interval (which includes the one in Mode 0) that is lengthened. This can be seen schematically

in Fig. 9(a). The lengthened second-order interval falls into the same mode as the shortened

first-order interval and counteracts its effect on the mode offset.

The effect of Mode 0 on first-order ISI histograms can be quantified by selecting only those

intervals that do not precede or follow intervals in Mode 0. This conditioning was performed

on all of the 220-Hz stimulated spike records and then histograms of the conditioned intervals

were generated. The distribution of the mode estimates for Mode 1 in these conditioned interval

distributions is plotted in Fig. 9(d) along with similar unconditioned distributions from first-

order and all-order ISI histograms. The alignment of the mode-estimate distributions for all-

order and conditioned first-order ISIs indicates that the presence of intervals in Mode 0 accounts

for nearly all of the difference between mode estimates in all-order and first-order ISI

histograms.

The negative correlation between consecutive intervals is a characteristic of our data that is

not well documented in the literature. The joint ISI histogram in Fig. 9(c) shows a clear

dependence between the previous and current first-order ISI. All of the modes are oval with

the long axis going diagonally from the top left to the bottom right of the figure. This means

that if the previous interval was shorter than average, the current interval will tend to be longer

than average and vice versa. This is a consequence of phase-locking: every interval longer than

the stimulus period must be compensated for by a shorter interval if the spikes are to remain

phase-locked.

III. MODEL

Our primary objective in formulating a (central) model for octave matching is to evaluate how

physiological constraints in the auditory periphery, i.e., deviations in AN ISIs, affect the central

processor. This is best accomplished with simple models that have few, if any, free parameters,

so that the effect of the peripheral physiological behavior is not clouded. With this in mind,

we developed a temporal model for pure-tone octave matching based on Ohgushi’s (1983)

model.

A. Model for estimating pure-tone frequency—The basic assumption of the model is

that perceived pitch is equal to a biased estimate of the stimulus frequency derived from AN

ISIs. The bias in the frequency estimate comes from the mode offsets in the ISI histograms.

Frequency estimates were derived from interval histograms using the EM algorithm [Eqs. (A1)

and (A2)], assuming a mixture density of Gaussians with harmonically related means [Eq.

(A9)],

(2)

where f̂ is the estimate of stimulus frequency f, μ̂ML is the ML estimate of the fundamental

mean in the mixture density [μ+ in Eq. (A10)], and Nmax is the number of modes included in

the calculation [M in Eqs. (A10) and (A11)]. If the modes occur exactly at integer multiples
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of the stimulus period, μ̂ML will equal the stimulus period and the frequency estimate will be

equal to the stimulus frequency.

Estimates for each stimulus frequency were calculated using pooled ISI histograms and their

deviations from the stimulus frequency were derived as follows:

(3)

where f̂DEV is the percent deviation of the frequency estimate and f̂ is the frequency estimate.

f̂DEV is plotted versus stimulus frequency in Fig. 10 for three values of Nmax. For both all-order

intervals and first-order intervals, f̂DEV is a decreasing function of stimulus frequency.2 This

trend is a direct result of the dependence of mode offset on interval size. As the stimulus

frequency increases, the stimulus period decreases and the offset for any given mode number

increases. This results in a larger estimate of the fundamental period, μ̂ML, and hence, a decrease

in the frequency estimate. For all-order intervals, f̂DEV is always negative because mode offsets

are always positive. On the other hand, first-order ISI intervals yield positive f̂DEV’s for low

stimulus frequencies because the histograms contain negative mode offsets.

Figure 10 also shows that the free parameter Nmax greatly influences the frequency estimate

at high frequencies. For low values of Nmax, the frequency estimate has a relatively large bias

from the mode offsets of the lower modes. Since the mode offset is minimal in the higher

modes, the frequency estimate becomes less biased as Nmax increases. On the other hand,

Nmax has little effect on the estimates at low frequencies because either the mode offsets are

consistently small for all modes (all-order ISIs), or the higher modes contain few intervals and

thus little weight in the calculation of f ̂ (first-order ISIs).

B. Model for octave matching—The model operates on two sets of pooled ISI histograms

to predict the size of the pitch interval separating their respective stimuli. The pitch interval

prediction is obtained by comparing the frequency estimate [Eq. (2)] of a low-frequency tone,

f 1, with the frequency estimate of a high-frequency tone, f 2. The model predicts that f 1 and

f 2 are separated by a subjective octave when,

(4)

The model algorithm can be interpreted graphically as attempting to align the modes of the

scaled (by two) f 1 histogram with the modes of the f 2 histogram. An octave is predicted when

the modes are best aligned.

The deviation of the model prediction (i.e., “subjective octave”) from the physical octave,

ΔSO, is:

(5)

for f 1 and f 2 separated by a physical octave.

Model predictions are shown in Fig. 11 for several values of Nmax. As in the frequency estimate

(Fig. 10), variation in Nmax results in large changes in model predictions at high frequencies.

2The slight deviation from monotonicity near 1500 Hz is due to differences in mode offsets across cats and uneven sampling across cats.
The data at 1500 and 3000 Hz are primarily from two cats which showed relatively large mode offsets in their AN responses [cats 5 and
6 in Fig. 4(d)].
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As Nmax increases, more modes with little or no offset are included in the frequency estimates

and the resulting deviation of the subjective octave decreases.

When all-order ISIs are used as model input, the model predicts an octave enlargement in

general agreement with the psychoacoustic data [Fig. 11(a)] at most frequencies for Nmax≈4–

6. At low frequencies, the model underestimates the psychoacoustic octave enlargement for

all values of Nmax, but its predictions are still within the range of the psychoacoustic data. At

1500 Hz, the model predicts the range of psychoacoustic data simply by varying Nmax from 4

to 6.

When operating on first-order ISIs, the model, with Nmax=4, predicts an octave enlargement

in general agreement with the psychoacoustic data, except at 100 Hz, where the model predicts

a much larger deviation [Fig. 11(b)]. In addition, the model predicts a decrease in deviation as

frequency increases (at low frequencies) but the psychoacoustic data show the opposite trend.

The model’s predicted octave enlargement at low frequencies is due to the negative mode

offsets in the first-order ISI histograms. The frequency estimates of these low-frequency tones

are higher than the true frequency [see Fig. 10(b)] and when they are matched to estimates of

(upper) tone frequencies that produce little or no negative mode offsets, an octave enlargement

is predicted.

In summary, the model, operating on first- or all-order ISIs with Nmax≈4–6, predicts the octave

enlargement effect at mid- to high frequencies. At low frequencies, the model underestimates

the effect when operating on all-order ISIs and overestimates it when operating on first-order

ISIs.

IV. DISCUSSION

A. Auditory nerve physiology—We have shown that, in response to low-frequency pure

tones, AN ISIs deviate systematically from integer multiples of the stimulus period. When

quantitatively expressed as mode offsets in ISI histograms [Eq. (1)], the deviations are positive

for ISIs less than 5 msec and decrease with increasing ISI until they become insignificant for

ISIs greater than 5 msec. In addition, first-order intervals show negative mode offsets for

stimulus frequencies less than 500 Hz. These robust phenomena exist for all CFs and SRs and

over a wide range of stimulus levels. Our quantitative characterization of these physiological

properties provides a solid basis to study how they can effect any temporally based estimate

of the stimulus frequency.

Our data and analyses suggest that positive and negative mode offsets in ISI histograms arise

from fundamentally different mechanisms. We showed in Fig. 9 that negative mode offsets,

seen in first-order ISI distributions for low-frequency stimuli, are due to the occurrence of

multiple spikes within the same half-period. In order to maintain phase-locking between the

stimulus and AN response, the intervals before and after these multiple spikes tend to be slightly

shorter, on average, than multiples of the stimulus period. Positive mode offsets, on the other

hand, have been attributed to the refractory properties of the neurons (Ohgushi, 1983,1978)

and, specifically, to a reduction in conduction velocity during the relative refractory period

(de Cheveigné, 1985). While these ideas are reasonable, it is important to note that the delays

causing the offsets could arise at any point from the basilar membrane to the AN fiber.

A physiological characteristic that we saw in our data but ignored in the analysis is peak

splitting. This phenomenon causes two or more modes of intervals to be present within a single

stimulus period of an ISI histogram instead of the usual one mode per stimulus period. The

multiple modes are the result of the AN response going through a change in phase (as much

as 180°) relative to the stimulus as the stimulus level is increased (Kiang and Moxon, 1972;

Johnson, 1980; Kiang, 1980, 1990).
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At first sight, peak splitting would seem to wreak havoc on temporal models for pitch. At

stimulus intensities where peak splitting occurs, a model operating on the intervals would

estimate multiple frequencies, depending on the degree of phase shift. However, because the

stimulus intensity at which peak splitting occurs depends on both fiber CF and stimulus

frequency, only a small fraction of AN fibers will exhibit peak splitting at the same stimulus

intensity. So, in a temporal model for pitch that operates on intervals pooled from fibers across

many CFs, peak splitting most likely has a small effect on the pooled interval distribution,

leaving the overall frequency estimate relatively unchanged.

B. Temporal models for octave matching and pitch perception—Our model for

octave matching makes pitch-interval judgments based on frequency estimates of two tones.

Each frequency estimate is computed from a pooled AN ISI histogram by fitting it with a

Gaussian mixture density with harmonically related means. An octave is predicted when the

frequency estimate of one tone is twice that of another tone. The model predicts the octave

enlargement effect except at very low frequencies, where it slightly underestimates the effect

when operating on all-order ISIs and overestimates the effect when operating on first-order

ISIs.

1. Comparison with Ohgushi’s model: Our model is similar to Ohgushi’s (1983) model for

octave matching. The basic elements of the models are the same although there are three

primary differences in his implementation: he uses first-order ISIs only; his frequency estimates

were based on just the first two modes of the histogram while we used a variable number

(Nmax) of modes; and he calculates frequency estimates from the modes with weights obtained

by fitting the model predictions to the psychoacoustic data and adjusting two free variables.

These differences lead to different predictions at low frequencies when operating on first-order

ISIs. Ohgushi’s model predictions are consistent with the psychoacoustic data on the octave

enlargement for all frequencies while our model has difficulties at very low frequencies (<200

Hz). It should be pointed out that with two free parameters, Ohgushi had more flexibility with

which to fit the data.

In addition, Ohgushi operated on rather coarse (100-μsec binwidth) single-fiber ISI histograms

from only four AN fibers, published by Rose et al. (1967, 1968), while our model predictions

were based on fine-resolution pooled histograms which represent a large number of fibers and

spikes. Analysis of our data using Ohgushi’s method yields results similar to his.

2. Interpretation of Nmax: The one free parameter in our model is Nmax, the number of modes

over which the frequency estimate is calculated. Nmax can greatly affect the frequency estimate

and resulting octave interval prediction. Rather than treating it as an arbitrary free parameter,

it would be nice to give Nmax a physiological or psychoacoustic interpretation. If one assumes

that pure-tone pitch is based on the interspike interval distribution of AN spikes, Nmax could

be related to the minimum tone duration required to elicit a pitch.

A number of psychoacoustic studies have investigated the effect of tone duration (for very

short tones) on pitch (Doughty and Garner, 1947, 1948; Pollack, 1967) and the ability to

recognize musical melodies (Patterson et al., 1983). A general result from these studies is that,

for tones below about 1000 Hz, a minimum number of cycles (6±3) is required to elicit a stable
pitch or to achieve maximum performance in melody recognition. On the other hand, above
1000 Hz, a minimum tone duration (~10 msec) is required to elicit a stable pitch (Gulick et

al., 1989). If Nmax is taken as the number of cycles required to elicit a pitch for low frequencies,
our empirically derived range for Nmax (~4–6) is consistent with this result. It should be noted
that our analyses do not include the first 20 msec of the AN response. Verification of such a
relationship between Nmax and minimum duration for pitch would require a study which
carefully addresses the effects of adaptation and ringing of the cochlear filter for short-duration
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tones. Nevertheless, our results suggest that there may be a link between the two “integration
times.”

Another consideration related to Nmax is that the overall neural delay required to perform octave
matches for low-frequency tones may be physiologically implausible. For example, with
Nmax=5, the total delay required to obtain a frequency estimate for a 60-Hz tone is 83 msec.
There is however, evidence for the existence of a lower limit to musical pitch around 90 Hz
(Biasutti, 1997), which reduces the maximum required neural delay in our model to about 55
msec.

3. An alternative model for octave matching: We developed and implemented a second
model for octave matching following a suggestion by Hartmann (1993). Noting that the scaling
factor of two in Ohgushi’s (1983) model for octave matching is arbitrary, Hartmann suggested
that a more physiologically grounded model is one that attempts to correlate the ISIs without
first scaling those from the low-frequency tone. The comparison is then made between two
tones using only the intervals from the even modes in the ISI histogram for the high-frequency
tone. This model can be interpreted graphically as attempting to align the modes of the f 1
histogram with the even modes of the f 2 histogram.

Despite the appeal of Hartmann’s suggestion, we found that this model fails to predict the
octave enlargement phenomenon and instead predicts a slight octave contraction. The cause
of this prediction can be seen by examining the mode offsets at the same interval size in Fig.
6(f). In an octave comparison between two tones separated by a physical octave, the second
mode in the ISI histogram for the high-frequency tone has a smaller mode offset than the first
mode of the lower frequency tone. This causes the suboctave estimate of the higher tone to be
slightly higher than the frequency estimate of the lower tone. In order to achieve a subjective
octave match, the higher frequency tone needs to be slightly lower in frequency than the
physical octave above the lower tone. This results in a predicted octave contraction rather than
an octave enlargement.

4. Temporal models for pitch: Our model for octave matching is similar to existing models
for frequency discrimination (Siebert, 1970; Goldstein and Srulovicz, 1977) in that they are
based on the idea that pitch is a frequency estimate of a pure-tone stimulus based on temporal
discharge patterns. Both Siebert (1970) and Goldstein and Srulovicz (1977) represent AN
activity with nonhomogeneous Poisson processes. Siebert’s main objective was to investigate
the limitations in frequency discrimination of an optimal processor operating on spike times
of modeled AN activity. He discovered that there is enough temporal information in the all-
order intervals from a small number of auditory-nerve fibers to account for the psychoacoustic
data on frequency discrimination. However, the slope of the predicted frequency discrimination
limen versus stimulus duration far exceeded psychoacoustic performance. Goldstein and
Srulovicz showed that a similar model operating on only first-order ISIs better predicts the
dependence of the psychoacoustic frequency difference limen on stimulus duration.

The essential difference between these models and ours is that the optimal processor models
give unbiased (ML) estimates of the stimulus frequency. The octave matching model relies on
biased frequency estimates which result from the assumption that modes of the ISI distribution
are harmonically related to the stimulus period. These biases were lacking in the Siebert and
Goldstein models because refractory effects were not included in the Poisson processes.

An important distinction within the class of temporal models for pitch is between those that
operate on first-order ISIs and those that operate on all-order ISIs. All-order intervals can be
obtained from a spike train using delay lines and coincidence detectors as proposed by Licklider
(1951). Analysis of first-order intervals, on the other hand, requires an extra stage of processing
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to eliminate the higher-order intervals. This makes a model based on first-order ISIs less
appealing, physiologically, than one that operates on all-order intervals. A further advantage
for a model operating on all-order intervals may be the fact that all-order interval distributions
tend to be more stable across stimulus level than first-order interval distributions, as shown in
Fig. 7.

We have seen in this study, as have Goldstein and Srulovicz (1977), that model predictions
based on one or the other type of ISI can yield different results. Goldstein and Srulovicz show
that in the context of frequency discrimination, operating on first-order ISIs results in a better
fit to the psychoacoustic data than operating on all-order ISIs. Also, psychophysical
experiments attempting to distinguish between the two kinds of ISI-based pitch models have
favored first-order ISIs (Kaernbach and Demany, 1996). Kaernbach and Demany used random
click train stimuli with specified first- and higher-order interclick distributions and found that
discrimination between those stimuli and randomly distributed clicks was better for regular
first-order interclick intervals. Results of our study do not strongly favor either first- or all-
order intervals. Model predictions based on first-order ISIs overestimate the subjective octave
at low frequencies and those based on all-order ISIs slightly underestimate the subjective
octave. The trend with frequency, however, of those predictions based on all-order ISIs is more
consistent with the psychoacoustic data. Nevertheless, we can not rule out models based on
intermediate combinations of the two types of intervals or other more complex models, such
as Ohgushi’s, which predict the octave enlargement based on first-order ISIs. Also, it is
conceivable that different physiological cues may be responsible for discriminating frequency
than for matching octaves or for performing other tasks involving musical pitch.

Our model for octave matching is also analogous to the optimum processor introduced by
Goldstein (1973). He uses a template of Gaussian density functions spaced harmonically along
the spectral axis to fit, in the ML sense, the excitation pattern produced by a complex tone.
Although his implementation operates on spectral excitation, there is nothing inherent to the
model that precludes its operation on interval distributions. Our model is similar to his in that
it fits harmonic templates to noisy and possibly inharmonic data. In Goldstein’s case, the
inharmonicity only arises if the stimulus contains inharmonically related partials. In our case,
the inharmonicity is always present and comes from mode offsets in ISI distributions.

Although we have concentrated solely on temporal models, we should not forget that there
exist alternative schemes for octave matching, namely rate/place models. Terhardt’s (1971,
1974) model for virtual pitch theoretically predicts the octave enlargement effect and is
discussed in that light by Hartmann (1993). Terhardt suggests that through pervasive listening
to natural tone complexes we develop memory templates of tonotopic excitation patterns and
that we make octave judgments based on the places of maximum excitation in these memory
templates. He further postulates that these templates are stretched, i.e., the places of maximum
excitation corresponding to the harmonics in the tone complex are shifted (upwards in
frequency) due to masking effects caused by the presence of the lower harmonics. Thus the
subjective octave, based on these stretched templates, is slightly larger than the physical octave.
There is some evidence that lower-frequency masking stimuli can lower the CF of an AN fiber
(Kiang and Moxon, 1974; Delgutte, 1990) but the effect of masking depends on the overall
stimulus level and on the relative levels of the signal and masker. It is not known whether these
effects are quantitatively adequate to validate Terhardt’s theory.

V. CONCLUSION

We have shown that, in response to low-frequency pure tones, AN ISIs less than 5 msec are
systematically larger than integer multiples of the stimulus period and, for frequencies less
than 500 Hz, first-order ISIs are smaller than integer multiples of the stimulus period. These
deviations result in biased estimates of frequency and can lead directly to a prediction of the
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octave enlargement effect by temporal-based models. Thus computational models for pitch
may have to incorporate detailed physiological properties of the auditory periphery, such as
refractoriness, in order to predict effects such as octave enlargement.

Correlating psychoacoustic behavior in the context of pitch effects with physiological
responses to the same set of stimulus conditions can lead to valuable insights into the
neurophysiological basis of pitch. Here, we have examined models for octave matching
operating on two forms of ISIs and, although no model is completely satisfactory, one of them,
operating on all-order intervals, comes close to predicting the octave enlargement effect over
its entire frequency range. This result is consistent with the notion that musical pitch is based
on a temporal code.
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APPENDIX: THE EM ALGORITHM

In order to find the ML estimates of parameters in the Gaussian mixture densities described in
Eqs. (A3), (A4), and (A9), we used the iterative EM algorithm (Redner and Walker, 1984;
Moon, 1996). This Appendix briefly describes the EM algorithm and shows the mathematical
details of our implementation.

The general idea of the EM algorithm is as follows: Ideally, one would like to obtain ML
estimates for parameters, Φ, of a pdf, f (y|Φ), over the complete sample space, Y. At hand,
however, is an incomplete data sample, x, which is insufficient to compute and maximize the
log-likelihood function over Y. In our case, the vector x={xk:k=1,N}is the interspike interval
distribution where xk is a single interval and N is the number of intervals. The data sample is
incomplete because the component density in the mixture from which a particular interval
arises is not known. A complete data sample, yk=(xk,ik), would consist of the inter-spike
interval, xk, and an indicator, ik, of the component density from which xk originated. So, instead
of maximizing the log-likelihood over Y, the EM algorithm maximizes the expectation of log
(f(y)) given the data, x, and the current parameter estimates, Φ′. The two-step EM algorithm
is,

(A1)

(A2)

With each iteration, the next parameter estimates, Φ+, replace the current parameter estimates,
Φ′, until convergence or until the difference between sequential sets of parameters is less than
some designated ε. Our implementation of the EM algorithm follows directly from equations
developed in Redner and Walker (1984), so we refer the reader to their paper for details on the
preliminary derivations and focus here on details pertinent to our implementation.

1. Gaussians with independent means and variances

To characterize the individual modes of ISI histograms, we modeled each interval distribution
as a mixture of M-weighted, univariate Gaussian probability density functions (PDF) with
independent means and variances,

(A3)
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where x is a single interval in the distribution, Φ=(α1,…,αM,φ1,…,φM), is a non-negative

weighting, , and pi is a univariate Gaussian pdf with parameters φi=(μi,σi),

(A4)

For a mixture of Gaussian densities in the form of Eqs. (A3) and (A4), Redner and Walker
(1984) derive Q(Φ|Φ′) in their Eq. (4.1),

(A5)

where N is the number of data samples (number of intervals in the histogram), and the other
variables are as defined in Eq. (A3). Note that maximization of Q(Φ|Φ′) with respect to the
weights, αi, is independent of the parameters, φi, of the individual densities. Maximizing Q
(Φ|Φ′) with respect to the individual parameters leads to the following relations, which are
special cases of Eqs. (4.5), (4.8), and (4.9) in Redner and Walker (1984),

(A6)

(A7)

(A8)

where , and  are the parameter values used in the subsequent iteration of the algorithm.
In this form of mixture density, the weights, means, and variances of the individual densities
in the mixture are mutually independent. This form was used to characterize the individual
modes in the interval histograms. The ML estimate of μi was used as an estimate of the ith
mode.

2. Gaussians with harmonically related means and a common variance

To estimate the fundamental mode, i.e., stimulus period, of ISI histograms, we modeled their
distribution as a Gaussian mixture density with harmonically related means and a common
variance,

(A9)

The ML estimate of μ was used as an estimate of the stimulus period.
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A different set of iteration equations result when considering the mixture density described by
Eqs. (A3) and (A9). In this case, maximizing Q(Φ|Φ′) with respect to the individual parameters
leads to the following iteration equations, similar to Eqs. (A7) and (A8),

(A10)

(A11)

The weights of the individual densities, , are the same as in Eq. (A6).
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FIG. 1.
Psychoacoustic measures of the octave enlargement. Adapted from Fig. 4 in Sundberg and
Lindqvist (1973) and Fig. 9 in Ohgushi (1983). The subjective octave, obtained from octave
matching experiments, is plotted as a deviation from the physical octave versus the frequency
of the lower tone in the octave pair. The subjective octave is larger than the physical octave
and the deviation grows with frequency.

McKinney and Delgutte Page 18

J Acoust Soc Am. Author manuscript; available in PMC 2008 April 28.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



FIG. 2.
Histogram generation. (a) is a schematized representation of a pure-tone stimulus and
corresponding spike record from the auditory nerve. The order of the interspike interval is
based on the number of spikes included in the interval: first-order intervals are those between
consecutive spikes; second-order intervals are those between every other spike; third-order
intervals are those between every third spike. (b) and (c) are histograms of the various types
of interspike intervals. (d) is an interval histogram containing intervals of all orders, thus termed
an all-order histogram. All of the histograms were generated from the same spike record. The
stimulus was an 880-Hz pure tone at 84 dB SPL. The auditory-nerve fiber from which the
recording was made had the following properties: CF: 2609 Hz; SR: 29 spikes/sec. The
histograms have a binwidth of 40 μsec and the following number of total intervals: first-order:
10 305; second-order: 5696; third-order: 1643; all-order: 17 874.
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FIG. 3.
Histogram mode offset. (a)–(d) are all-order ISI histograms of specified frequency with 40-
μsec binwidths. Vertical dashed lines mark integer multiples of the stimulus period. (e) is a
magnification of the first four modes of (a). The gray curve outlining the histogram is the ML
estimate of the Gaussian mixture density corresponding to the histogram. The ×’s above the
modes in (e) mark the ML estimate of the mode (the ML means of the individual Gaussian
pdfs in the mixture density), obtained from Eq. (A7) operating on a histogram with 1-μsec
binwidths. The mode offset is the deviation of the mode estimate from the corresponding
integer multiple of the stimulus period. Each histogram was generated from a separate spike
record but each spike record was obtained from the same auditory-nerve fiber. Fiber
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characteristics: CF=2602 Hz; SR=66 spikes/sec. The stimulus levels were all 10 dB re
threshold, corresponding to the following levels for each spike record (in dB SPL): (a) 27; (b)
45; (c) 62; (d) 70. (f) displays the mode offsets from the histograms in (a)–(d). Mode offsets
are primarily a decreasing function of interval, although, at corresponding intervals, lower
frequency stimuli yield slightly larger mode offsets.
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FIG. 4.
Variation of mode offset across spontaneous rate, characteristic frequency, discharge rate, and
cat. +’s mark the first mode offset of every individual 220-Hz data record and ○’s mark the
second mode offset of every individual 1760-Hz data record. These frequencies and mode
numbers were chosen as typical representatives of our low- and high-frequency data. In (c),
lines connect mode offsets (plotted against DR) that were derived from the same fiber. (a), (b),
and (c) show that there is no obvious dependence of mode offset on CF, SR, or DR. (d) shows
how mode offset depends on the cat from which it was measured. One-way ANOVA on the
data in (d), using the cat number as the individual factor, yielded the following p-values: p =
0.003 for 1760 Hz and p = 0.139 for 220 Hz. Although there were significant differences in
mode offsets across cats, our decision to pool data across cats did not affect our general
conclusions.
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FIG. 5.
Pooled histograms. (a)–(f) are pooled all-order ISI histograms of specified frequency. The
histograms have the same format as Fig. 3(a)–(d). The intervals are pooled from the following
number of fibers: (a) 26; (b) 75; (c) 58; (d) 47; (e) 33; (f) 10. Positive mode offsets are visible
for intervals ≲5 msec (i.e., modes at intervals smaller than 5 msec are shifted slightly to the
right of their corresponding stimulus-period multiple). Note that the scale of the abscissa in (f)
is different than the other panels.
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FIG. 6.
Mode offsets of all-order ISI histograms. (a)–(e) display the mode offsets of pooled and
individual histograms of specified frequency. Lines connect the mode offsets of pooled
histograms and dots mark the mode offsets of individual histograms. (f) shows the pooled-
histogram mode offsets for most of the experimental stimulus frequencies. Mode offsets in
pooled histograms show the same trend with interval as those in individual histograms: mode
offset is primarily a monotonically decreasing function of interval, although lower-frequency
stimuli yield slightly larger mode offsets at corresponding intervals. Note that the scale of the
ordinate in (f) is different than the other panels.
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FIG. 7.
A series of 220-Hz ISI histograms (from the same auditory-nerve fiber) over a range of
discharge rates. Stimulus level and fiber discharge rate are indicated to the left of the plots.
First-order ISI histograms are plotted in (a), (c), and (e). All-order ISI histograms are plotted
in (b), (d), and (f). Fiber characteristics: CF: 409 Hz; SR: 0.7 spikes/sec; threshold at 220 Hz:
47 dB SPL. The histogram binwidths are 80 μsec.
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FIG. 8.
Low-frequency first-order ISI histograms display negative mode offsets. (a) and (b) show first-
order ISI histograms in the same format as those in Fig. 3. The ×’s above the modes mark the
ML estimate of the mode. (c), (d), and (e) show mode offsets from first-order ISI histograms
in the same format as Fig. 6. (f) shows the pooled-histogram mode offsets for most of the
stimulus frequencies. Below ~500 Hz, first-order ISI histograms display large negative mode
offsets (i.e., modes are shifted slightly to the left of their corresponding stimulus-period
multiple), in contrast to the in-significant mode offsets present in low-frequency all-order ISI
histograms. Note that the scales of the axes vary across panels.
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FIG. 9.
Intervals in Mode 0. (a) is a schematic representation of a stimulus and a corresponding spike
record. The number between the spikes in (a) indicates the mode of the histogram, shown in
(b), to which the first-order interval belongs. (b) is a first-order ISI histogram and (c) is a joint
first-order ISI histogram of the same auditory-nerve spike record. The joint ISI histogram is a
two-dimensional histogram which plots ISI size against that of the previous ISI. It is displayed
as a gray-scale image in which gray level indicates the number of interval pairs in a small
square bin. The dashed lines in (b) and (c) mark integer multiples of the stimulus period. The
stimulus was a 220-Hz pure tone at 61 dB SPL. The fiber characteristics are: CF: 379 Hz; SR:
76 spikes/sec; threshold at 220 Hz: 36 dB SPL. The histogram binwidth is 80 μ sec in (b) and
64 μ sec for both dimensions in (c). (d) shows the distribution of the estimates of Mode 1 in
50 individual 220 Hz histograms for all-order, first-order, and conditioned first-order ISIs. The
condition in the third case is that the intervals do not follow or precede an interval in Mode 0.
The traces are vertically offset for clarity and the vertical bar in the lower left denotes 20 modes.
The binwidth of the mode estimate distribution is 50 μ sec. The vertical dashed line marks the
stimulus period. Negative mode offsets in low-frequency first-order ISI histograms are due to
shortened intervals caused by intervals in Mode 0 (i.e., two spikes within the same half-period
of the stimulus).
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FIG. 10.
Frequency estimate deviation (f̂DEV) vs frequency. (a) displays f̂DEV calculated from pooled
all-order ISI histograms for the values of Nmax shown next to each trace. (b) displays f̂DEV
calculated from pooled first-order ISI histograms. For frequencies ≳500 Hz, f̂DEV is a
decreasing function of both frequency and Nmax. Error bars show an estimate of the standard
error of f̂DEV. The estimate was calculated using the bootstrap technique (Efron and Tibshirani,
1993): 50 simulations of the frequency estimate were calculated [Eq. (2)] in which pooled
histograms were generated by randomly choosing (with replacement) spike records of
individual stimulus presentations. The standard deviation of the frequency estimates from these
simulations is an estimate of the standard error of the mean.
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FIG. 11.
Model predictions of the octave enlargement effect. The model predictions are based on pooled
histograms for each stimulus frequency. Error bars show the estimated standard error of the
subjective octave prediction and were calculated in a similar manner to those in Fig. 10. (a)
shows the model predictions for all-order ISIs and several values of Nmax. (b) shows the same
for first-order ISIs. Although low-frequency data are not well predicted by the model, the
predictions based on all-order intervals are within the range of the psychoacoustic data with
Nmax≈4–6.
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