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[1] In the last few years, research made significant
progress towards operational soil moisture remote sensing
which lead to the availability of several global data sets. For
an optimal use of these data, an accurate estimation of the
error structure is an important condition. To solve for the
validation problem we introduce the triple collocation error
estimation technique. The triple collocation technique is a
powerful tool to estimate the root mean square error while
simultaneously solving for systematic differences in the
climatologies of a set of three independent data sources. We
evaluate the method by applying it to a passive microwave
(TRMM radiometer) derived, an active microwave (ERS-2
scatterometer) derived and a modeled (ERA-Interim
reanalysis) soil moisture data sets. The results suggest that
the method provides realist ic error estimates.
Citation: Scipal, K., T. Holmes, R. de Jeu, V. Naeimi, and

W. Wagner (2008), A possible solution for the problem of

estimating the error structure of global soil moisture data sets,

Geophys. Res. Lett., 35, L24403, doi:10.1029/2008GL035599.

1. Introduction

[2] Soil moisture is a crucial parameter for a large
number of applications. Consequently, remote sensing of
soil moisture has been an important research topic since the
1970s. But only in the last few years significant progress
towards operational soil moisture services has been made
which lead to a greater diversity of methods and, conse-
quently, to more successful algorithms [Wagner et al.,
2007]. With these improved algorithms it has been possible
to derive soil moisture from existing operational passive
microwave satellite systems such as the Advanced Micro-
wave Scanning Radiometer (AMSR-E) [Njoku et al., 2003;
Owe et al., 2008], the TRMM Microwave Imager (TMI)
[Owe et al., 2008] and active microwave systems such as
the scatterometers on-board of ERS-1/2 [Wagner et al.,
2003] and METOP [Bartalis et al., 2007].
[3] For an optimal use of these data, an accurate estima-

tion of the error structure is an important condition. Tradi-
tional error estimation methods, i.e. the validation with
ground based observations, are however cumbersome and
often unreliable. While the gravimetric technique or one of
the numerous indirect approaches allows measuring soil
moisture accurately in the field, the problem is that these

measurements are only representative for very small areas
and the error estimation problem becomes distorted by
scaling errors, which can be larger than the actual retrieval
error. In addition, available ground observations are
restricted to a few locations worldwide and often cover
only limited observation periods. Other validation
approaches [e.g., Crow, 2007] can be applied globally but
are limited to validate the relative variation in the signal as
they are based on the analysis of correlations.
[4] In this study, we propose to use the triple collocation

error estimation technique. This technique has been used
previously in oceanography to evaluate wind and wave
height observations [Stoffelen, 1998; Caires and Sterl,
2003; Janssen et al., 2007]. The method allows the estima-
tion of the root mean square error e2 while simultaneously
solving for systematic differences in each collocated data
set. In previous studies the problem that satellite and model
derived soil moisture data are characterized by large sys-
tematic differences in the mean and the variance has been
highlighted while the inter-annual variations comply [Entin
et al., 1999; Dirmeyer et al., 2004]. The proposed method
directly accounts for such differences and therefore appears
specifically useful for soil moisture applications. However,
in the absence of an absolute ground truth, one of the
collocated data sets has to be defined as reference, i.e. e2 is
expressed in the climatology of the reference data set. In this
light, the approach is complementary to classical
approaches and together they provide a complete set of
validation metrics (capturing both the relative anomaly
detection and absolute e2 characteristics of a product). To
test the method we use a passive microwave (TMI) derived,
an active microwave (ERS-2) derived and a modeled (ERA-
Interim reanalysis) soil moisture data set.

2. Data

[5] For this study we used soil moisture data from the
ERS-2 scatterometer (QS), the TMI radiometer (QT) and the
ERA-Interim re-analysis project (QE) for the years 1998,
1999 and 2000. For later processing, the data are binned to
daily files and collocated to a 0.25� regular grid using a
nearest neighbor re-sampling. Such, for each grid point
approximately 300 collocated samples are available. To
avoid numerical problems we do not consider points with
less than 100 collocated samples during the error estimation.

2.1. ERA-Interim

[6] The ERA-Interim reanalysis data set contains consis-
tent atmosphere and surface analyses for the period from
1989 until real time based on the ECMWF NWP model.
The reanalysis makes use of the ECMWF Integrated Fore-
cast System at T255 spectral resolution (�80 km horizontal
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resolution) with 91 vertical levels. In the IFS, land surface
processes are described by the Tiled ECMWF Scheme for
Surface Exchanges over Land (TESSEL) [Viterbo and
Beljaars, 1995]. In TESSEL soil processes are calculated
in four layers. The lower boundary of each layer is at 0.07,
0.28, 1.0 and 2.68 m depth. To keep the land surface model
simple, TESSEL uses a globally uniform soil type with
fixed soil hydraulic parameters. Saturation is prescribed
with a value of 0.472 m3 m�3, field capacity with
0.323 m3m�3 and the wilting point with 0.171 m3 m�3.

2.2. ERS Scatterometer

[7] The scatterometer on-board ERS-2 is an active mi-
crowave instrument operating in C-band (5.6 GHz) at VV
polarization. The three SCAT antennas generate radar
beams, at incidence angles ranging from 18� to 59�. The
three antenna beams continuously illuminate a 500 km wide
swath, each measuring the radar backscatter for overlapping
50 km wide cells. The backscatter measurements are con-
verted to soil moisture estimates by applying the TUWien
model [Wagner et al., 1999]. To this end, the TUWien
model exploits the unique sensor design and the advantages
of a change detection method. To correct for the effects of
plant growth and decay the model uses the vegetation
sensitive signature of the multi-incidence angle observa-
tions. A soil moisture index QS is then retrieved relating
each observation to a dry and wet backscatter reference,
which results in a relative measure of surface (<2 cm) soil
moisture ranging between 0 and 1.

2.3. TMI Radiometer

[8] The TRMM mission is an earth observation satellite
in an equatorial path between 40�N and 40�S. The TRMM
Microwave Imager (TMI) is a passive microwave scanning
radiometer, operating at five different wavelengths within
the microwave spectrum (10.7, 19.4, 21.3, 37.0, and
85.5 GHz). The sensor measures the microwave brightness
temperature at horizontal and vertical polarization. The
spatial resolution of the different channels varies, and is
10 km for 37 GHz and 38 km for 10.7 GHz. The equatorial
orbit results in varying overpass times for any given
location, and a swath-width of approximately 800 km
results in a return time in the order of five days. The
brightness temperatures measured by TMI are converted
to surface soil moisture applying the Land Parameter
Retrieval Model (LPRM) [Owe et al., 2008]. The LPRM
is based on the solution of a microwave radiative transfer
model and solves simultaneously for the surface soil mois-
ture QT, vegetation optical depth and land surface temper-
ature without a-priori information of land surface
characteristics. In this case, the LPRM is applied to the
X-band (10.7 GHz) observations. VU University Amster-
dam together with NASA Goddard Space Flight Centre
provides the resulting global soil moisture data set(v03b).

3. Triple Collocation Error Model

[9] Our derivation of the error model closely follows the
notation of Janssen et al. [2007]. In contrast to Janssen et
al. [2007] we have to adopt the data calibration step to
comply with the requirements of the soil moisture data. To
account for the systematic differences of the soil moisture
data sets we assume a linear relationship between our three

estimates QE, QS and QT and the hypothetical truth Q
(equation (1)), where rE, rS and rT denote the residual error
of the estimates QE, QS and QT. The aim of our error model
is to derive an estimate of the root mean square error e2

which expresses the variance of the residual errors r of each
data set.

QE ¼ aE þ bEQþ rE

QS ¼ aS þ bSQþ rS ð1Þ
QT ¼ aT þ bTQþ rT

[10] From equation (1) we eliminate the calibration con-
stants by introducing the new variables Q*E = QE/bE � aE/
bE and r*E = rE/bE etc., to obtain equation (2). It is
important to note that this transformation also affects the
residuals and consequently the error estimates e2. To high-
light this fact, we flag the transformed variables by a *
symbol. Accordingly, the actual retrieval of e2 has to follow
a stepwise approach. In a first step we retrieve e*2. In a
second step we solve for the linear calibration and transform
e*2 to e2.

QE
* ¼ Qþ rE*

QS
* ¼ Qþ rS* ð2Þ

QT
* ¼ Qþ rT*

[11] The unknown truth can now be removed by a simple
elimination procedure and we obtain equation (3).

QE
*�QS

* ¼ rE*� rS*

QE
*�QT

* ¼ rE*� rT* ð3Þ
QS
*�QT

* ¼ rS*� rT*

[12] From equation (4) the variance of the residual errors
e*2 can be retrieved by pairwise multiplying the lines of
equation (3) and taking the average over a sufficiently large
sample population (indicated by angle brackets). Under the
assumption that the residual errors rE, rS and rT are uncor-
related, the residual covariances hr*Er*Si = hr*Er*Ti =
hr*Sr*Ti become 0 and we get a direct estimate of e*E

2 =
hr*E2i, e*S2 = hr*S2i and e*T

2 = hr*T2i. The error variances are
hence fully determined by three independent, calibrated soil
moisture estimates (equation (4)).

eE*
2 ¼ h QE

*�QS
*

� �
QE
*�QT

*
� �

i

eS*
2 ¼ h QE

*�QS
*

� �
QS
*�QT

*
� �

i ð4Þ

eT*
2 ¼ h QE

*�QT
*

� �
QS
*�QT

*
� �

i

[13] Finally, to estimate eE
2, eS

2 and eT
2, we have to solve

for the calibration expressed in equation (1). Since we do
not know the truth, we have to arbitrarily chose one of the
data sets as a reference. Hence only two of the three
calibration constant pairs can be determined. We arbitrarily
chose QE as a reference, i.e., we set aE = 0 and bE = 1. The
calibration constants aS, bS and aT, bT can then be calcu-
lated by a simple linear least-squares approximation that
considering errors in both variables [e.g., Press and
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Teukolsky, 1992]. Considering the symmetric nature of
equation (1), this choice does not influence the estimation
of e2E, e

2
S and e2T. As the calibration affects the estimation

of eE
2, eS

2 and eT
2 we have to follow an iterative scheme. In

this scheme, we start with estimating the initial guess of the
calibration parameters (by assuming eE

2 = eS
2 = eT

2) and
subsequently solving the calibration and error equations
until convergence is achieved.

4. Results

[14] The proposed model will only result in meaningful
error estimates if the three data sets represent the same
physical quantity. To test this prerequisite, we calculated the
correlation between each collocated data set (Figure 1). A
low or even negative correlation between one of the data
pairs is a clear sign that either of the estimates does not
provide meaningful soil moisture information. For example,
we generally observe a low correlation in desert areas. This
is expected, as the dynamic range of soil moisture is small
and hence the correlation becomes distorted by noise.
Nevertheless, for the ERS data set we even observe negative
correlations, which are caused by unaccounted volume
scattering effects of dry sand. Similarly, for the TMI derived
soil moisture we observe negative correlation effects in
regions with high vegetation cover, which is likely caused
by the higher frequency of the TMI sensor, which is more
sensitive to the vegetation structure than to the underlying
surface soil moisture. To avoid the use of these spurious
observations we mask those regions where the correlation
drops below 0.2. Correlation coefficients above 0.2 indicate
a significant correlation at the 0.05 confidence level accord-
ing to a t-test.
[15] The results of the error estimation suggest that all

three data sets are characterized by a low error (Figure 2).
The mean global error is 0.020 m3 m�3 for the ERA-Interim
(e*E), 0.028 m3m�3 for the ERS-2 (e*S) and 0.046 m3m�3

for the TMI (e*T) soil moisture data set. It is important to
note that these errors refer to the climatology of the
reference data set (in our case ERA-Interim). To normalize

the errors we can scale them by the dynamic range of the
ERA-Interim soil moisture which is defined by the wilting
level (0.17 m3 m�3) and the level of saturation
(0.47 m3 m�3). This results in average relative errors of
6.9%, 9.4% and 15.6% for ERA-Interim, ERS-2 and TMI
respectively. It is worth noting that the relative magnitude of
the error estimates do not depend on the choice of the
reference, i.e. the ERA Interim data set does not profit
relative to the other data sets from the selection as the
reference. The analysis also reveals clear spatial patterns.
The error in the ERA-Interim soil moisture, e*E, is spatial
consistent. Slightly larger values of e*E are found in the
Monsoon regions where the reanalysis has problems to
correctly reflect precipitation patterns. Although the values
of e*S and e*T can be locally lower than e*E, they are
spatially less consistent. Whereas the higher e*T values can
clearly be linked to regions of high vegetation cover the
cause of the high e*S values are less evident but are possibly
caused by azimuthal viewing and/or vegetation effects.

5. Conclusions

[16] The triple collocation technique is a promising
method to estimate the error of global soil moisture data
sets. The retrieved errors appear reasonable and the ob-
served patterns can be explained by known performance
issues of each data set. The results should however be
interpreted carefully. Two assumptions are central for the
validity of the derived error model: (i) Uncorrelated residual
errors; and (ii) A linear relation between the data sets. As
the measurement technique and retrieval concept of the data
sets used in this study are fundamentally different, the
assumption of uncorrelated errors appears justified. The
second assumption is however not necessarily true, al-
though all three data sets represent the same physical
quantity. Considering that the three systems observe differ-

Figure 1. Correlation between (a) QS and QE; (b) QT and
QE; and (c) QS and QT for the years 1998, 1999 and 2000.

Figure 2. Spatial errors (a) e*E (ERA-Interim) (b) e*S
(ERS-2); and (c) e*T (TMI) of derived soil moisture
estimates. Grey colour indicates regions where the triple
collocation error model cannot be applied as one of the three
data sets shows a significantly different soil moisture
behavior when compared to the other two data sets.
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ent soil layers and hence different dynamics a higher order
calibration might be necessary to avoid the introduction of
systematic errors [Drusch et al., 2005; Reichle and Koster,
2004]. It is worth stressing that the assumption of uncorre-
lated residual errors is absolutely vital and forms the basis
of the approach. A sensible result can not be obtained if this
assumption is relaxed, unless the covariance terms can be
quantified accurately. The linearity assumption on the other
hand could be relaxed by introducing a parametric trans-
form in equation (1) and some type of nonlinear iterative
root-finder instead of the linear least-squares approximation.
In addition, it is important to note that the proposed
calibration does not provide robust results if the signal to
noise ratio is small and if the number of observations is low.
In future applications we therefore recommend to include a
fourth data set to cross check the retrieved errors.

[17] Acknowledgments. EUMETSAT’s Hydrology Satellite Applica-
tion Facility H-SAF partly funded this project. ERS scatterometer data were
processed within the Austrian Science Fund project GLOBESCAT (project
L148-N10). TMI data were processed within the EU 6th Framework
program WATCH (project 036946-2).
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