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In this paper we study a possible symmetry in Sakata's model for the strongly 

interacting particles. In the limiting case in which the basic particles, proton, p, neutron, 
n and A-particle, A, have an equal mass, our theory holds the invariance under the exchange 
of p and A or n and A in addition to the usual charge independence and the conservation 
of electrical and hyperonic charge. 

From our theory the following are obtained: (a) iso-singlet no/-meson state, which is a 
pseudo-scalar, exists, (b) the spin of E-particle may be (3/2) + and (c) several resonating 
states in K- and n-nucleon scattering are anticipated to exist. 

§ 1. Introduction 

Through the analysis of the various particles existing in nature and mutual 
interactions among them, we have obtained the useful concepts of family!) and 
universality2) of the interactions to clarify the complicated situation of the particle 
physics. For the Boson- and baryon-families which have a kind of universal 
interaction, e. g., the strong interaction, the well-known rule of Nakano, Nishijima 
and Gell-Mann3

) is valid. The complete understanding of the more fundamental 
origin of this rule is far from us at present, but a possible way of its realistic grasp 
has been proposed by Sakata.4

) Although many objections will be brought against 
this theory, we shall in this paper follow the idea of Sakata for its prospective 
insight on the present situation of the theory of elementary particles. 

Now, following this idea we assume proton, p, neutron, n and A-particle, A to 
be the basic particles which compose other baryons and Bosons in Fermi-Yang's 
sense5

). The strong interaction is characterized by the following selection rule, 

(A) 

where l1Ni means the change of i-th particle's number. 
According to the relation (A) and from the similarity of the nature of these 

three particles (mass, spin, etc.) and of their role in the strong interaction, we are 
tempted to regard the three particles as standing on an equal footing. In fact when 
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the mass difference is neglected and the electromagnetic interaction IS switched off, 
we may not find any difference among these three basic particles. Thus we can 
reasonably expect that a certain symmetry is also realized in their mutual interactions. 
This view has once been stressed by one of the authors (S. 0.) 6) and later, 
independently, by Yamaguchi. 

In this paper we have investigated a possible framework of such a theory. 
We shall give the mathematical construction of the theory in § 2 and some physical 
resul ts derived from this theory in § 3. 

§ 2. Mathematical construction 

We propose, here, a framework which explicitly assures the equivalence of the 
three basic particles, p, n and A, in the limiting case in which they are of equal 
mass. This means that our theory guarantees the invariance under the exchange 
of A and p or A and n in addition to the usual charge independence and the 
conservation of hyperonic charges. Our statement on the nature of particle state, 
e.g., spin and parity but except mass (or energy level), still holds with the finite 
mass difference between A and nucleon, when the mass of A is adiabatically increased 
from its original value (equal to the nucle,on mass) to the actual one. 

Now, denote the basic particles by the generic symbol X" (X"=01 1C

, for p, etc.). 
Then the above mentioned symmetry is expressed by the invariance under transfor­
mations of the 3-dimensional unitary group U(3) : 

"111'.1 _ Al'.l "II 1'. • A-l'.l - A l'. 
A - 1'. A, 1'. - 1'.1 , (1) 

where the matrix (A,/) is the inverse of (A/') and A/' denote the complex 
conjugates of AIC IC!. An infinitesimal transformation has the form 

(2) 

where (X,,"') is an Hermitian matrix and can be expressed linearly in terms of nine 
independent matrices Xi} (i, j=l, 2, 3): e. g., 

(Xij ) ~' =~ OilCI O}IC (1- i) +~ Oi" OJ,,, (1 + i) . (3) 

They satisfy the commutation relations 

[Xij , X)cZ] = Xi}XlcZ - X kl Xi,i= i (OikXCjlJ- OZj X[lci]- OjkXCil) +Oli X Ckj) ' (4) 

where ( ) and [ ] for indices denote the ordinary processes of symmetrization 
and alternation respectively. 

In a continuous representation of U(3) of degree n, Xi} are represented by 
n X n matrices Mij which satisfy the same commutation laws as Xi}' For the 
sake of physical understanding it is convenient to introduce the following quantities: 

II =M(12) ' 12 = M[12] , 13=~(Mll-M22)' 

(5) 
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A Possible Symmetry in Sakata's Model for Bosons-Baryons System 717 

(6) 

There are two other quantities which are important from the standpoint of 
representation, i. e., 

M= ~ (Mij)2, 
ij 

M'= ~ (Mi,i{Mjlc , M~!c} +Mi,,{Milc,M~j} +Jlvlij {Mlcj , M ici } 
ij!c 

-Mij{l'vfj,o ~ci}) ; {A, B} =AB+BA. (7) 

Their commutation relations are given in the Appendix. 
Three quantities N e, M and M' are commutable with any Mi,i and their eigen­

values specify each irreducible representation. On the other hand, since Nfl, M, 
M', Q, S, 12 and Is are commutable with each other, there will be a basis in 
terms of which all these matrices are of the diagonal form. In fact, from the 
configuration (p, n, A) we are informed that Ii, Q, Sand N n are isospin, charge 
number, strangeness quantum number and baryon number, respectively. If v is a 
simultaneous eigenstate of Q, Sand 13, so is Nijv, and the corresponding eigenvalues 
change as in Table I. M and M' are the new quantum numbers which are 
characteristic to our theory. Their eigenvalues can be easily calculated in the 

following manner. 

Table I 
.- -

I ,dQ f- ,dI3 ,dS 
--~---.-.-------

N I3 +1 -H' +1 
N 23 0 1 +1 2 

N3I -1 1 -1 ,> 

N32 0 +i -1 

We consider an irreducible representation of U(3). Let So be the maximum 
eigenvalue of S, and denote by Vo the simultaneous eigenstate of Q, S, NB and 13 
which corresponds to the maximum 13 among those eigenstates with S = so. Then 
we have I+vo=Msvo=N23vo=O. It follows from this that the values of M and 
M' for Vo are given by 

M=q02+S02+ (nn-qo+so)2+2 (qo+so) , 

M'=4[q03+S0S+ (nn-qo+so)3+3(qo2- s02) - (qo + so) +4loJ, (8) 

where nn, qo and lo are the eigenvalues of N n, Q and Is corresponding to the vo, 
respectively. Since M and M' have the same values for states of an irreducible 
representation, (8) is the desired result. 

Physical meanings of M and M' are not so obvious. In addition, we shall be 
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718 M. Ikeda, S. Ogawa and Y. Ohnuki 

confronted with some difficulty when dealing with these quantities. So, it seems 
better to use So and Zo rather than the values of M and M'. That is, a set of njJ, 

So and Zo can specify an irreducible representation of U (3), which is of the degree 

~(2Zo +1)[~(nB + 3so) + Zo + 2J[~nB + 3so) - ZO +IJ and is composed of (2Zo+1)· 
[~ (n B + 3so) - Zo + 1 J irreducible representations of isospin. Moreover, it is also easy 
to obtain the law of decomposing a product of representations. The details of this 
approach will be published elsewhere. 

We next consider the (m+n)-body system of m baryons and n anti-baryons, 
and denote its Salpeter-Bethe amplitude by 

(9) 

where IB) is an eigenstate of the total Hamiltonian and If2) the true vacuum. 
It is to be noted that the index of a baryon r is written as a superscript and 
that of an anti-baryon X/C as a subscript. Such a notation is useful because an 
anti-baryon behaves like a covariant vector under the transformation (1) : 

(10) 

AC' A 

The amplitude (9) is a mixed tensor T",l"'''': of contravariant valence m and 
covariant valence n. So the decomposition of the system into its irreducible 
consti tuents is reduced to that of the corresponding tensor space. F or this purpose, 
we have only to decompose the tensor space according to Young's diagram with 
respect to the upper and lower indices separately, and then to apply the "contraction 
operation" for an upper and a lower index or for several such pairs of indices. 
The latter process is similar to the trace operation in the case of the orthogonal 
group. In what follows we take the cases m=n=1 and m=2, n=1 for illustration. 
(i) Two-body system of a baryon and an anti-baryon 

The corresponding tensor TIC A. can be decomposed into two irreducible constituents, 
by means of contraction operation, thus 

T//=T/+T//; T/~'!!..lJ/Taa/3, Tf{:A.def T/CA.-T/CA.. 
1 2 2 1 2 

TIC A. has the only one independent component and the corresponding Salpeter-Bethe 
2 

amplitude is rx/C. TICA. is characterized by Taa=o and has eight independent 
1 1 

components. We present the basis vectors in Table II explicitly together with the 
quantum numbers. Each basis vector belonging to an irreducible representation 
must have the same eigenvalues of energy (= mass), spin and parity. 
(ii) Three-body system of two baryons and an anti-baryon 

We first decompose a tensor TICA.l" with respect to the upper indices as follows: 

T~[J.= Tr;[J.) + Tf{[J.J. 

Next by applying the contraction operation we have 
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A Possible Symmetry in Sakata's Model for Bosons-Baryons System 719 

Tr;ILJ= T~IL+ T~IL ; T~IL ~.:= TI~AILJ - T~IL, 
1 2 2 1 

Tr;IL) = T~IL+ T~IL ; 
3 4 

T AIL ,def J (~;.. T(tt IL) +0" IL T(ttA) 
~ = 4: u~ tt ~ tt , 

3 

T~{J> ~! TC:{J» - T~{J>. 
4 3 

We thus obtain four irreducible constituents. Each of T,/'# and T,/'# has three 
1 3 

independent components and the corresponding representation is equivalent to the 

Table II 

____ ~ ___ ~ __ ~ ____ ~~ ___________ C_l_a_,_ss--~I-_____ M ______ =_6 __ , ___ ~M __ = ___ '8 _________ ~ _________ ____ ~1 __ ~ ___ ~~~~ ____ _ 
S=-l, 1=1/2 - (An) 

(Ap) 

KO 

K-
------------------ ---~~-----~-----------------~-----------~ 

(pp + nn - 2AA) /V-6-
-~-----------------~--I-----------------~----I---------~~-----

S=o, 1=1 

S=l, 1=1/2 

S=o, 1=0 

(pn) 

(pp-nn) /V-2 
(np) 

(p;r) 

(n;r) 

Table III [A, B] =A(x)B(y) -B(x)A(y), (A, B) =A(x)B(y) +B(x)A(y) 

____________ C_la,-ss_I __ M_~=_3_, _M_I_=_2_0 __________ _ __ 1 ______ Not: ____ _ 

S=-l, 1=-0 

S=o, 1=1/2 

--------_ ... __ ._---

Class III 

S=-l, 1=0 

S=O, 1=1/2 

Class II 

S=-l, 1=1 

S=o, 1=1/2 

S=l, 1=0 

{PEp, A] +n[n, A]}/2 

{;rEA, p] -n [p, n]}/2 

{;rEA, n] +p[P, n]}/2 

M=3, M'=20 

{2;rAA+p(p, A) +n(n, A}/2V2 

{;rCA, p) + 2ppp+n(pn)}/2V2 

{;rCA, n) +2nnn + p(pn)}/2V-Z-

M=7, M'=4 

ii [p, A] /V-2 
{P[p, A] -ii[n, A]}/2 

pEn, A]/V2 

{;rEA, p] +n [p, n] }/V2 
{;rEA, n] - p [p, n] }jV2 

;r[n, P]/V2 

K-+p--':> 

Note 

K-+p--':> 

Note 

- --------------------~~------------------ ----- -- -- -----------~---------

--

--

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/22/5/715/1868480 by guest on 16 August 2022



720 
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Class IV M=ll, M'=76 

-nAA 
pAA 

-----------------~----------------

S=-l, 1=0 

s= -1, /=1 

S=o, 1=1/2 

S=o, 1=3/2 

i 

-----~I 
S=l, /=1 I 

{2AAA-p(P, A) -n(n, A)}/2V2 

- n (p, A) /V2 
{PCP, A) -n(nA)}/2 

pen, A)/V2 

{2ppp+n(p, n) -3A(A, p)}/2V6 
{2nnn+p(p, n) -3A(A, n)}/2V6 

-npp 
{ppp-n(n, p) }/V-3 
{pen, p) -nnn}/v3 

pnn 

App 

A(p, n)/v2 
Ann 

original one (1). TIC >..# and TIC>"# are characterized by 
2 4 

TC:I'» = T~I'>=O and Tf{I'>J= T~I'>=O, 
2 2 4 4 

Note 

EO 
E-

(1=%, J=%) 

resonance state in 7r-N 
scattering 

so they give representations of degree six and fifteen respectively. The basis 
vectors of each representation are given' in Table III. 

§ 3. Application of the theory 

Before referring to the results obtained from our theory, we should like to 
describe explicitly our equation of motion and the interaction Hamiltonian. The free 
field equation is the Dirac equation with spin 1/2: 

(irpap+IC)X=O, X=(~). (11) 

For the interaction which acts so as to compose other particles we take the four 
field interaction. Then the following expression is a sole one, * 

H'=).(XOX)2, (12) 

where 0 is the usual Dirac matrix. We do not enter the problem how to construct 
the composite particle from (11) and (12), and our approach here is quite 
phenomenological. 

* Apparently the more general expression (B) in the preceding letter6l can be reduced to 
(12) by using Fierz's formula for the ordering exchange of particle. 
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A Possible Symmetry zn Sakata's Model for Bosons-Baryons System 721 

Now our theory has so far assumed the complete equivalence between A and' 
nucleon N while the real case has the asymmetry due to the existing mass 
difference between them, so we should note the modification of the theory. If the 
true situation is attained by adiabatically increasing the mass of A from its original 
value (equal to the nucleon mass) to the actual one, then the change of Hamiltonian 
is expressed by the addition of such a term as 

H" = 'he (AA). (13) 

By including the term (13) the complete symmetry of our theory is broken and 
M and M' are no more good quantum numbers. But we notice that the parity 
(P), spin (J), iso-spin (1) and the strangeness quantum number (S) of each state 
still do not change with the inclusion of (13), namely, 

iJP=iJJ=iJ1=iJS=0; iJM=j=O; llM'=j=O. (14) 

Thus we obtain the following conclusions: 
(a) In the limiting case of equal mass for p, n and A, the corresponding particle 

states of an irreducible representation must have the same nature; equal mass (or 
energy) level, same parity and equal spin. 
(j3) When the finite mass difference is taken into account as (13), M and M' may 
not be good quantum numbers. Irreducible representation with different values of M 
and M' may become to mix, and the mass (or energy) level of each state will 
change. But the original value of spin,parity, iso-spin and strangeness of each 
state must still be preserved and the irreducible classes with different spin and parity 
will not mix with each other. 

A possible reasoning for that the actual case is attained by the inclusion of 
such a term as (13) is as follows. We know another family-the lepton family 
the situation of which is very similar to our case. Within the energy region now 
available for us p-meson and electron behave with close resemblance in the 
electromagnetic interaction as well as in the weak interaction in spite of their 
large mass splitting. Accordingly the origin of their mass difference, if it exists, 
must be confined in a far smaller region than the one where the usual interactions 
playa dominant role. We should like to think that the mass splitting between A 
and nucleon arises from a similar cause. 

Now we shall enter into the concrete problem. 
(i) Two-body system of baryon and anti-baryon. 

From Table II it. is informed that two neutral particle states no' and no" are 
anticipated to exist in addition to the well established seven Bose particles 
(n+non-, K+ KO, K-KO). 

no' belongs to the same class as that of the other seven particles and must be 
a pseudo-scalar particle with isotopic spin 0*. In the limiting case of equal 

* A possible role of 77:0' in decay process has been studied by Sawada and Yonezawa7). We 
thank them for informing us of their results. 
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mass for A and N, the mass of rro' is equal to that of usual rr-meson (in this case 
the mass of K is also equal to that of rr-meson). 

rro" alone forms the other irreducible base and its nature is not known to us 
except its isotopic spin=O. But we should note that if we take the strong Fermi 
interaction. (12) to be of well-known S-T+P or V-A or S-A+P (invariant 
for the exchange of ordering) type, the sign of potential in Fermi-Yang's sense 
between baryon and anti-baryon is opposite for class I and for class II. If this is 
the case, rro" may not be a bound state. 

K-meson must be pseudo-scalar. This means that when we make up the 
following Yukawa type of interaction 

AON·K, 

the Dirac matrix 0 must be r 5 or r 5r fb" 

(ii) Three-body system of two baryons and one anti-baryon (see Table III). 
Twenty-seven states appear in this case which are classified into four irreducible 

representations. Now we shall present a remark for each class separately. 
Class IV: In this class we have the 1=1/2 S= -2 state the bound level 

of which is E-particle. There is also the 1=3/2 S=O state which corresponds 
to the rr + N system with 1= 3/2 in the lowest configuration of the usual theory. 
The rr + N system may be the free scattering state or the well-known 1=3/2 
resonant state. However, we may reasonably take the resonant state as that 
corresponding to the E -particle state, because the scattering state (continuous 
spectrum) will not go into the bound (discrete spectrum) state by adiabatically 
changing the mass. Thus the nature of E particle will be same as that of the 
1=3/2 J=3/2 resonant state in rr-N scattering, that IS, the spin of E is 
J= (3/2) +. 

Our reasoning here is rather phenomenological and not logically strict. For 
instance, if there exist other discrete (but metastable) levels which are yet un­
observed and the correspondence is such as that indicated by the arrows in Fig .. 1, 

unobserved 
I 
I 

I - ( • ) A + K scattenng state 

s= -2, [= 1/2-------'-;:-----<---;-'---------

unobserved 

(3/2, 3/2) 

IT +N (scattering state) 

s=o, I=3/2~~~~------------~~ ____ 
--~") energy 

Fig. 1 
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then our conclusion will fail. But our original intention rests on the conjecture 
that the symmetry will not be drastically destroyed in the actual case and the 
closeness of mass level of S and the (1=3/2, J = 3/2) resonant state induces us 
to accept the correspondence between them. And in the experiment we have not 
any other 1=3/2, S=O resonance-like state in the energy interval of "",,500 Mev 

from the mass of S. 
There are nine other corresponding states in class IV, whose spin is J = 3/2. 

All of them are thought to be unstable states. But we may expect that some of them 
will be realized as the resonating states with J = 3/2 in K-nucleon and 7r-nucleon 
scattering in not so high energy region (say < 1 Bev). Some possible channels 
leading to these states are presented in "note" of Table III. 

Class II: There is the (1=1 5= -1) state which we take as l'-particle. 
Although l'-like state appears in Class IV, we regard it rather as the excited 
state of 2', because the ground level of Class IV is of spin J = 3/2 as stated above 
and l' is known to be of spin 1/2. Now the other states of Class II corresponding 
to 2: have spin J = 1/2 and the experimental check for this will be found in 
K+ +n (1=0 5= +1) scattering. 

Class I and Class 111: Both classes have the same quantum numbers as that 
of the one-body configuration. If they possess the spin, parity and other nature 
in common with the one-body configuration, these states will mix with p, nand 
A state correspondingly. The situation is also the same for (I = 1/2, 5 = 0) state 
of Class (II). Of course the statement here is nothing beyond the speculation. 
Some of the states might be realized as the resonating states. 

In this paper we have proposed a theory in which the systematical side of 
Sakata's theory is stressed, while the problem of dynamics such as a composition 
of the particles is left untouched. We hope, however, that if our theory is quali­
tatively supported by future experiments, then it will give some of clues to attack 
the dynamical side of composite model. 

In conclusion we should like to express our deep gratitude to Profs. S. Sakata 
and K. Sakuma for their keen interest in this work. We should also like to thank 
Prof. Y. Yamaguchi at CERN who has sent us very stimulating, information 
about his work in which the similar course to ours is developed. One of the 
authors (S. 0.) thanks the collegues of Sakuma laboratory for their helpful discussions. 

Appendix 

[12, I3J=iI1' [13, I1J=iI2' [11, I2J= iI3' 

[Q, I1J= iI2 , [Q, 12J= -ill, [Q, I 3J=0, 

[5, I1J=[5, I2J=[S, I3J = [5, QJ=O, 

[Q, 12J=[5, 12J=[I3' 12J=0, 
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[1+, 13J=-I+, [1_, 13J=I_, [1+, I-J = 213 , 

[1+, QJ=-I+, [1_, QJ=I_, [1+, SJ=[1_, SJ=O, 

. . 
[M.3, 12J= __ 1 N 23 , [N23 , 12J=~N13' [N31 , 12J= --1-N32 , [N32 , 12J= ~N3b 

2 2 2 2 

[N13 , 13J= -~N13' [N23 , 13J=~N23' [N31 , 13J=~N31' [N32 , 13J= -~N32' 

[N13 , I+J=O, [N23 , I+J= -N13 , [N31 , 1+J=N32' [N32 , I+J=O, 

[N13 , I-J= -N23 , [N23 , 1-J=0, [N31' 1-J=0, [N32 , 1-J= N31 , 

[lV13 , QJ= -NI3 , [N23 , QJ=O, [N31 , QJ=N31 , [N32 , QJ=O, 

[N13 , SJ= -N13 , [N23 , SJ= -N23 , [N3I , SJ=N31 , [N32 , SJ=N32 , 

[N13 , N3IJ=Q+S, [N13 , N 32J=1+, [NI3 , N 23J=0, 

[N23 , N32J=O+S- 213' [N23 , N 31J=1_, [NS!, N 32J=0. 

References 

1) S. Oneda, Prog. Theor. Phys. 9 (1953), 327. 
S. Oneda and H. Umezawa, Prog. Theor. Phys. 9 (1953), 685. 

2) K. Iwata, S. Ogawa, H. Okonogi, B. Sakita and S. Oneda, Prog. Theor. Phys. 13 (1955), 19. 
3) T. Nakano and K. Nishijima, Prog. Theor. Phys. 10 (1953), 581. 

M. Gell-Mann and A. Pais, Proceedings of the Glasgow Conference 1954 (London). 
4) S. Sakata, Prog. Theor. Phys. 16 (1956), 686. 

S. Tanaka, ibid., 625. 
S. Matsumoto, ibid., 583. 
Z. Maki, ibid., 667. 

5) E. Fermi and C. N. Yang, Phys. Rev. 76 (1948), 1739. 
6) S. Ogawa, Prog. Theor. Phys. 21 (1959), 209. 

Y. Yamaguchi, Prog. Theor. Phys. Supplement (to be published). 
7) S. Sawada and M. Yonezawa, Prog. Theor. Phys. (to be published). 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/22/5/715/1868480 by guest on 16 August 2022


