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ABSTRACT

This paper studies estimation algorithms for nonlinear hyperspec-

tral image unmixing. The proposed unmixing model assumes that

the pixel reflectances are polynomial functions of linear mixtures of

pure spectral components contaminated by an additive white Gaus-

sian noise. A hierarchical Bayesian algorithm and an optimization

method are proposed for solving the resulting unmixing problem.

The parameters involved in the proposed model satisfy constraints

that are naturally included in the estimation procedure. The perfor-

mance of the unmixing strategies is evaluated thanks to simulations

conducted on synthetic and real data.

Index Terms— Post nonlinear mixing model, hyperspectral im-

ages, MCMC methods, Taylor approximation.

1. INTRODUCTION

Spectral unmixing (SU) is one of the major issues when analyzing

hyperspectral images. SU consists of identifying the macroscopic

materials present in an hyperspectral image and quantifying the pro-

portions of these materials in all pixels of the image. Most SU

strategies assume that pixel reflectances are linear combinations of

pure component spectra (endmembers). The resulting linear mix-

ing model (LMM) has been widely used in the literature and has

shown promising results. However, as explained in [1], the LMM

can be inappropriate for some hyperspectral images, such as those

containing sand, trees or vegetation areas [2, 3]. Nonlinear mixing

models provide an interesting alternative to overcome the inherent

limitations of the LMM. Nonlinear models proposed in the hyper-

spectral image literature include the bidirectional reflectance-based

model proposed by Hapke [4] and the the bilinear models recently

studied in [2, 3, 5, 6]. This paper considers a wide class of nonlin-

ear mixing models referred to as post nonlinear mixing models (PN-

MMs). PNMMs are flexible generalizations of the LMM that have

been introduced in [7] for source separation problems (see also [8]).

In the hyperspectral imagery context, the endmember spectra can be

identified as the sources whereas the abundances are the mixing co-

efficients involved in the PNMM. This paper addresses the problem

of supervised nonlinear SU of hyperspectral images using PNMMs.

Supervised unmixing means here that the endmembers (the sources)

are known, whereas the abundances (the mixing coefficients) are un-

known and have to be estimated.

Prior knowledge regarding the pure spectral components con-

tained in the observed scene is rarely available in practical appli-

cations. As a consequence, the endmember spectra have to be ex-

tracted directly from the data using an endmember extraction algo-

rithm (EEA). In the last decades, many EEAs have been studied in
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the literature (the reader is invited to consult [9] for a recent review of

these methods). Most of existing EEAs implicitly rely on the LMM

and might be inappropriate for nonlinear models such as PNMMs.

However, as noticed in [1], geometric EEAs are still adapted to iden-

tify endmembers and can be reasonably employed when the mixing

model involves nonlinearities. Therefore, this paper proposes to ex-

tract the endmembers contained in the hyperspectral image using the

vertex component analysis (VCA) [10]. Once the endmembers have

been extracted from the image, we propose to estimate the abun-

dances and the nonlinearity parameters involved in the PNMM using

two estimation algorithms based on Bayesian and least-squares (LS)

methods.

The paper is organized as follows. Section 2 presents the

proposed PNMM for hyperspectral image analysis. Section 3 stud-

ies two algorithms for unmixing hyperspectral images using the

PNMM. Some simulation results on synthetic and real data are

shown and discussed in Section 4. Conclusions are reported in

Section 5.

2. POLYNOMIAL POST NONLINEAR MIXING MODEL

This section defines the nonlinear mixing model used for hyperspec-

tral image SU. A PNMM is introduced involving linear and quadratic

functions of the abundances. More precisely, the L-spectrum y =
[y1, . . . , yL]

T of a mixed pixel is defined as a nonlinear transforma-

tion g of a linear mixture of R spectra mr contaminated by additive

noise

y = g

(
R∑

r=1

armr

)

+ n = g (Ma) + n (1)

where mr = [mr,1, . . . ,mr,L]
T is the spectrum of the rth mate-

rial present in the scene, ar is its corresponding proportion, R is the

number of endmembers contained in the image and g is an appro-

priate nonlinear function from (0, 1)L to R
L. Moreover, L is the

number of spectral bands and n is an additive independent and iden-

tically distributed (i.i.d) zero-mean Gaussian noise sequence with

variance σ2, denoted as n ∼ N
(
0L, σ

2IL
)
, where IL is the L× L

identity matrix. Note that the usual matrix and vector notations

M = [m1, . . . ,mR] and a = [a1, . . . , aR]
T have been used in

the right hand side of (1).

The choice of the nonlinearity g deserves a specific attention.

Polynomials, sigmoidal functions and combinations of polynomial

and sigmoidal nonlinearities have shown interesting properties for

source separation [8]. This study focuses on second order polyno-

mial nonlinearities g defined by

gb : (0, 1)L → R
L

s 7→ [gb,1(s1), . . . , gb,L(sL)]
T



with s = [s1, . . . , sL]
T and

gb,i : (0, 1) → R

si 7→ gb,i(si) = si + bs
2
i (2)

for i = 1, . . . , L. This particular choice has the advantage of defin-

ing the nonlinearity by a unique parameter b whose value allows the

importance of the nonlinear terms to be characterized. An interesting

property of the resulting nonlinear model referred to as polynomial

post nonlinear mixing model (PPNMM) is that it reduces to the clas-

sical LMM for b = 0. Thus, we can expect unmixing results at least

as good as those presented in [11] or [12] for supervised SU. Another

motivation for using the PPNMM is the Weierstrass approximation

theorem which states that every continuous function defined on an

interval can be uniformly approximated by a polynomial with any

desired precision [13, p. 15]. As explained in [3], it is reasonable to

consider polynomials with first and second order terms (since higher

order terms can generally be neglected) which leads to (2). Straight-

forward computations allow the PPNMM observation vector (for a

given pixel of the image) to be expressed as follows

y = Ma + b(Ma)⊙ (Ma) + n (3)

where ⊙ denotes the Hadamard (termwise) product. Note that the

resulting PPNMM includes bilinear terms such as those considered

in [5].

By studying the derivative of gb,i, it is straightforward to show

that the nonlinearity parameter b must be lower bounded by bmin =
−0.5 to make gb invertible. In this paper, we will assume that b be-

longs to a bounded interval (−0.3, 0.3) to ensure model invertibil-

ity. Moreover, due to physical considerations, the abundance vector

a satisfy the following positivity and sum-to-one constraints

R∑

r=1

ar = 1, ar ≥ 0, ∀r ∈ {1, . . . , R} . (4)

3. ESTIMATION METHODS

This section studies two estimation methods that can be used for

estimating the parameters a and b of the proposed PPNMM.

3.1. Hierarchical Bayesian algorithm

The Bayesian estimation algorithm introduced in [14] can be used

to estimate the unknown parameters x =
(
aT , b, σ2

)
of the model

(3). Appropriate prior distributions are assigned to the unknown

parameters associated to the PPNMM. The posterior distribution of

the unknown parameter vector can be derived from

f(x|y) ∝ f(y|x)f(x) (5)

where ∝ means “proportional to”, f(y|x) is the likelihood func-

tion of the observation vector y and f(x) is the prior distribution of

the unknown parameters. As in [14], f(x) is set to satisfy all con-

straints regarding the parameters, i.e., the positivity and sum-to-one

constraints for the abundance vector and the inequality constraint for

b. The standard Bayesian estimators (minimum mean square error

(MMSE) or maximum a posteriori (MAP)) of the PPNMM parame-

ters are then computed from the posterior distribution (5). To allevi-

ate the problems associated with this computation, a Markov chain

Monte Carlo method initially studied in [14] can be used. More pre-

cisely, an appropriate Gibbs sampler can be used to generate NMC

samples x(1), . . . ,x(NMC) asymptotically distributed according to

(5). The MAP and MMSE estimators can then by determined by

x̂MMSE =
1

Nr

Nr∑

i=1

x
(i+Nbi)

x̂MAP = arg
x(i)

max f(x|y) i = Nbi + 1, . . . , Nbi +Nr

where Nbi is the number of burn-in iterations and Nr = NMC−Nbi

is the number of iterations after convergence of the Gibbs sampler.

The advantage of this method is its ability to provide point estimates

(MAP or MMSE) for the unknown parameters as well as measures

of uncertainties (such as confidence intervals) about these estimates.

However, it suffers from high computational cost. The next section

presents a new estimation strategy which allows this computational

cost be to significantly reduced.

3.2. Taylor approximation

An alternative to the Bayesian algorithm presented in section 3.1 is

a least-squares (LS) method which has been used successfully for

linear unmixing [12]. The LS method associated with (3) consists of

minimizing the LS criterion

J(a, b) = ‖y − gb(Ma)‖22 (6)

where ‖.‖2 is the standard ℓ2 norm, subject to the following con-

straints

R∑

r=1

ar = 1, ar ≥ 0, ∀r ∈ {1, . . . , R}

b ≥ −0.5. (7)

This minimization of (6) subject to the constraints (7) is not easy to

handle.

Following the strategy adopted in [5], we propose to approx-

imate the nonlinearity gb using a Taylor series expansion where

only first-order terms are considered. Let θ(i) = [a(i), k(i)]T de-

note the parameter vector estimate at the ith step of the proposed

iterative algorithm, where k(i) = b(i) + 0.5. Note that the pro-

posed reparametrization ensures all coordinates of θ(i) satisfy the

non-negativity constraint. These constraints are required to apply

the fully constrained least squares (FCLS) algorithm presented at

the end of this section. The corresponding estimated spectrum can

then be written

h(θ(i)) = Ma
(i) +

(
k
(i) − 0.5

)(
Ma

(i)
)
⊙
(
Ma

(i)
)

(8)

according to the model (3). The Taylor approximation of h at θ(i) is

h(θ) = h
(
θ
(i)
)
+∇h

(
θ
(i)
)(

θ − θ
(i)
)
+ ǫ (9)

where ∇h(θ(i)) is the gradient matrix of h(θ(i)) of size L× (R+
1), ǫ is a residual error vector of size L × 1 and θ is the unknown

parameter vector to be estimated. The vector θ(i+1) can then be

estimated by solving the following constrained LS problem

θ
(i+1) = argmin

θ

∥∥∥y − h
(
θ
(i)
)
−∇h

(
θ
(i)
)(

θ − θ
(i)
)∥∥∥

2

(10)

subject to the constraints (7). Problem (10) can be solved by mod-

ifying the FCLS algorithm introduced in [12]. More precisely, the



FCLS algorithm has been introduced to solve the following opti-

mization problem

min
a

‖y −Ma‖2 , subject to (4). (11)

The FCLS algorithm includes the sum-to-one constraint of the abun-

dances as an additional observation equation in the criterion to be

minimized. The following optimization problem is then obtained

min
a

∥∥∥∥

[
y

δ

]
−

[
M

δ1T
R

]
a

∥∥∥∥
2

2

(12)

subject to the non-negativity constraints for the abundance vector a,

where δ ∈ R
+ controls the impact of the sum-to-one constraint and

1R ∈ R
R is a vector of ones (see [12] for more details).

Similarly, to solve (10), the sum-to-one constraint for the abun-

dances is included in an additional observation equation, leading to

the following optimization problem

min
θ

∥∥∥∥

[
z

δ

]
−

[
M̃

δ1T
R 0

]
θ

∥∥∥∥
2

2

(13)

subject to the non-negativity constraints for the parameter vector θ,

where M̃ = ∇h
(
θ(i)
)

is an L× (R+1) matrix, δ ∈ R
+ controls

the impact of the sum-to-one constraint and

z = y − h
(
θ
(i)
)
+∇h

(
θ
(i)
)
θ
(i) ∈ R

L
. (14)

The iterative procedure stops at the nth iteration, when∥∥∥θ(n) − θ(n−1)
∥∥∥
2

2
≤ ρ, where ρ is a given threshold (set to ρ =

10−6 in our simulations).

4. SIMULATIONS

4.1. Synthetic data

The performance of the proposed nonlinear SU algorithms has

been investigated by unmixing 4 synthetic images of size 50 × 50.

The R = 3 endmembers have been extracted from the spectral

libraries provided with the ENVI software (i.e., green grass, olive

green paint and galvanized steel metal). The different images de-

noted as I1, . . . , I4 have been generated according to the LMM,

the bilinear model of [5] (referred to as FM), the generalized bi-

linear model (GBM) of [6] and the proposed PPNMM, respec-

tively. For each image, the abundance vectors ap, p = 1, . . . , 2500,

have been randomly generated according to a uniform distribu-

tion over the simplex defined by the positivity and sum-to-one

constraints (4). The nonlinearity coefficients are uniformly drawn

in the set (0, 1) for the GBM. The parameter b defining the PP-

NMM has been drawn uniformly in the interval (−0.3, 0.3). All

images have been corrupted by an additive Gaussian noise of vari-

ance σ2 = 2.8 × 10−3, corresponding to a signal-to-noise ratio

SNR = L−1σ−2 ‖f (M, a)‖2 ≃ 15 dB. The quality of the unmix-

ing procedures is measured by comparing the estimated and actual

abundance vectors using the root mean square error

RMSE =

√√√√ 1

PR

P∑

p=1

‖âp − ap‖
2

(15)

where ap and âp are the actual and estimated abundance vectors for

the pth pixel of the image, P is the number of image pixels and R is

the number of endmembers extracted from the image. Table 1 shows

the RMSEs associated with the images I1, . . . , I4 and the consid-

ered estimation procedures. These results show that the abundances

estimated by the Bayesian algorithm and proposed LS method are

similar. However, the LS method has the advantage to provide a

much smaller computational cost. The unmixing quality can be also

evaluated by using the mean reconstruction error

RE =

√√√√ 1

P

P∑

p=1

‖ŷp − yp‖
2

(16)

where yp is the pth observation vector and ŷp its estimate (note that

ŷ = Mâ+ b̂(Mâ)⊙ (Mâ) for the PPNMM). Table 1 compares the

mean reconstruction errors (REs) obtained using the two proposed

unmixing algorithms for the 4 synthetic images. These results show

that the two algorithms provide similar REs for all images. Fig. 1

shows the histograms of the estimated nonlinear parameter b (de-

noted as b̂) for the four images I1, . . . , I4 (from left to right) using

the Bayesian algorithm and LS method. The histograms are simi-

lar for the two algorithms. Moreover, the shape of these histograms

seems to be interesting for detecting the kind of linearity or nonlin-

earity characterizing the spectral mixing model.

RMSE (×10−2) RE (×10−2) Time (s)

Bayes. LS Bayes. LS Bayes. LS

I1 2.91 2.92 5.28 5.28 5940 3.6

I2 3.42 3.42 5.29 5.29 6300 4.3

I3 3.23 3.23 5.28 5.28 6600 4.1

I4 2.94 2.93 5.28 5.28 5940 4.3

Table 1. RMSEs, REs and computational cost of I1, . . . , I4.

Fig. 1. Distribution of the nonlinearity parameter b estimated by the

Bayesian algorithm (red lines) and the LS method (black lines).

4.2. Real data

The real image considered in this section is composed of L = 189
spectral bands and was acquired in 1997 by the airborne visible in-

frared imaging spectrometer (AVIRIS) over the Cuprite mining site

in Nevada. A sub-image of size 50× 50 pixels has been chosen here

to evaluate the proposed unmixing procedure. The scene is mainly

composed of muscovite, alunite and kaolinite, as explained in [15].

The endmembers are extracted by VCA [10], with R = 3. The esti-

mation algorithms presented in Section 3 have been applied indepen-

dently to each pixel of the scene using the endmembers extracted by

VCA. The abundance maps estimated by the proposed algorithms

are presented in Fig. 2. They are similar to the abundance maps

that would be obtained with estimation algorithms associated to the



LMM. However, the advantage of the PPNMM is that it allows the

nonlinearities between the observations and the endmembers to be

estimated. For instance, Fig. 3 (Top) shows the estimated posterior

distributions of b on the Cuprite image (2500 pixels). These results

show that the observations are nonlinearly related to the endmem-

bers (since b 6= 0) but that these nonlinearity are weak (the estimated

values of b are close to 0). Fig. 3 (Bottom) also shows the b maps

estimated by the two algorithms for the Cuprite scene.

Fig. 2. Top: Spectra estimated by the VCA algorithm for the Cuprite

scene. Middle: Abundance maps estimated on the Cuprite scene by

the Bayesian algorithm. Bottom: Abundance maps estimated on the

Cuprite scene by the LS method.

5. CONCLUSIONS AND FUTURE WORKS

Two nonlinear unmixing algorithms were presented for hyperspec-

tral imagery. These algorithms assumed that the hyperspectral image

pixels are related to the endmembers by a polynomial post-nonlinear

mixing model. The constraints related to the unknown parameters

of this model were considered for the two algorithms. The proposed

unmixing strategies provided promising results. Future works in-

clude the derivation of nonlinearity detectors based on the proposed

model.
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