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A Post-Processing Method for 
Three-Dimensional Electrical 
Impedance Tomography
Sébastien Martin1 & Charles T. M. Choi  1,2

Electrical impedance tomography is a modern biomedical imaging method. Its goal is to image the 

electrical properties of human tissues. This approach is safe for the patient’s health, is non-invasive 
and has no known hazards. However, the approach suffers from low accuracy. Linear inverse solvers 
are commonly used in medical applications, as they are strongly robust to noise. However, linear 
methods can give only an approximation of the solution that corresponds to a linear perturbation from 
an initial estimate. This paper proposes a novel reconstruction process. After applying a linear solver, 
the conductivity distribution is post-processed with a nonlinear algorithm, with the aim of reproducing 
the abrupt change in conductivity at the boundaries between tissues or organs. The results are used 
to compare the proposed method with three other widely used methods. The proposed method offers 
higher quality images and a higher robustness to noise, and significantly reduces the error associated 
with image reconstruction.

Electrical impedance tomography (EIT) is an imaging technique mostly used in biomedical imaging1. It involves 
estimating the electrical impedance within a volume conductor by injecting an electrical current at the boundary 
of the volume and measuring the resulting potential there2. Di�erent living tissues have di�erent electrical prop-
erties, and therefore EIT is applicable for biomedical imaging. Although �rst mentioned in the 1970s3, in practice, 
EIT is a relatively new technology, mostly because the high quality, inexpensive hardware, powerful algorithms 
and computational resources necessary to solve the problem are only emerging4.

An EIT inverse problem is highly nonlinear and very ill-posed5, and therefore the solution is not trivial and 
usually requires a certain conductivity distribution6 as an initial estimate of the solution. Several methods have 
been proposed to solve this inverse problem7, each having advantages and disadvantages8. In short, those meth-
ods can be regrouped in di�erent classes: linear approximation9, nonlinear iterative methods10, direct nonlinear 
methods11 and machine learning (ML)-based methods12. With the linear methods, the conductivity distribution 
is approximated as a small perturbation from an initial estimate13. By assuming an initial conductivity distribu-
tion, such as by using a regularisation method or prior distribution, a satisfactory solution to the inverse problem 
can be better approximated by the reconstruction algorithm. Nonlinear algorithms are theoretically capable of 
higher accuracy and do not extensively rely on an initial guess, as linear methods do. However, nonlinear meth-
ods are more sensitive to the electrode displacements, modelling errors and time-varying contours of the imaged 
region, making them less reliable in most biomedical applications14. Although prior probability functions15 can 
be used to perform more accurate reconstructions in the presence of noisy data, for these methods, the inverse 
problem remains ill-posed and the presence of minor modelling errors, even in a very small amount, may lead to 
large artefacts in the image16.

Arti�cial neural networks (ANNs) are arti�cial intelligence (AI) algorithms capable of �nding a better approx-
imation of the solution to a nonlinear problem17. Applications of EIT inverse problems have shown the ability of 
ANNs to solve the inverse problem in a very short time18. However, as ANNs are based on ML, it appears com-
plicated to generate correct training data for real biomedical applications10. �e main weakness of ANNs is their 
inability to extrapolate and estimate solutions from previously unseen data. �e latter is the major drawback of 
using an ANN to solve the EIT inverse problem in a biomedical environment. In real clinical data, the amounts 
of noise and modelling errors are not negligible, and therefore training an algorithm to model the conductivity 
distribution is infeasible, as the amount of noise cannot always be evaluated a priori.
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�is paper presents a novel approach to solving a three-dimensional EIT problem. �is approach mixes 
both linear approximations and an ANN in the inverse problem, and aims to combine the bene�ts of both lin-
ear approximations and nonlinear optimisations. A�er solving the inverse problem with the linear one-step 
Gauss-Newton (GN) algorithm19, a linear distribution is obtained. �e idea is to use an ANN as a post-processing 
method to overcome the weaknesses of the inverse solver and rectify the conductivity distribution. Applying the 
ANN a�er solving the EIT inverse problem should confer a signi�cantly higher robustness to noise. Although 
applying an ANN directly on the measured voltages requires the correct modelling of the noise and the possible 
distortions that appear in the measured voltages, applying it to the output of a linear reconstruction algorithm 
does not require such an intense modelling task to provide a satisfactory image. In fact, the linear algorithms are 
known to be extremely robust to noise, and therefore the resulting conductivity distribution is not strongly in�u-
enced by the modelling errors compared with the measured voltages. �erefore, training an ANN to enhance the 
quality of the reconstruction as a post-processor, rather than using an ANN as an image reconstruction processor, 
should provide a stronger robustness to measurement errors present in the measured data, even when they are 
not accounted for during the training phase. A comparison between existing methods based on the ANN and 
proposed method is shown in Fig. 1.

�e proposed method is compared with three widely used methods: a linear method19, a nonlinear iterative 
method20 and an inverse solver based on an ANN21. �e results show that the proposed method is e�cient, stable 
and rapid.

Results
Phantom experiments. Phantom experiments were carried out with a cylindrical tank �lled with ionised 
water. Two electrical insulators made of acrylic were inserted into the phantom and EIT measurement data were 
collected. EIT image reconstruction was then performed with four di�erent methods: the linear one-step GN, the 
iterative primal dual interior point method (PDIPM) solver, an ANN used as an inverse solver and the proposed 
post-processing method. Cross-sections of the resulting images are shown in Fig. 2 and the 3D models are shown 
in Extended Data Fig. 1. �e linear one-step GN method correctly outputs two di�erent targets near the expected 
location, but close to the boundary of the �nite element (FE) model. �e linear algorithm generates smoothness 
in the conductivity distribution, which makes it di�cult to correctly represent the two targets without generating 
large artefacts. Here, the smoothness present in the underlying algorithm tends to generate large ringing artefacts, 
which are responsible for the presence of the blue colour in the reconstruction. �ese artefacts are very likely to 
lead to an incorrect interpretation of the conductivity distribution.

�e iterative PDIPM method shown in Fig. 2(b) correctly shows two di�erent targets at the expected loca-
tion, represented by the green cylinders. �e use of a nonlinear algorithm does not give a smooth conductivity 
distribution and therefore the ringing artefacts, shown by the blue objects on the image, are signi�cantly reduced 
compared with the linear one-step GN. An ANN is applied to solve the EIT inverse problem in Fig. 2(c) and (e). 
If the ANN is trained without considering the inevitable presence of noise in the measured data, image recon-
struction from noisy data may generate large errors. Figure 2(c) shows the reconstruction obtained from phantom 
data with such an ANN. Although the ANN does not generate visible ringing errors, it does not clearly show the 
two expected cylindrical objects, but gives distorted objects. �is poor image reconstruction was expected from 
the theory as well as from other studies, which have shown that ANNs are capable of performing a satisfactory 
reconstruction and also very sensitive to modelling errors and noise present in the measured data. In other words, 
when the training data do not include noise similar to the noise present in measurement data, the ANN must 
extrapolate the result and therefore gives a poor reconstruction. In Fig. 2(e), the ANN is trained by considering 
the presence of noise in the measured data. �e conductivity distribution obtained with this ANN gives a satis-
factory reconstruction. �e two di�erent objects are represented as two electrical insulators, and their estimated 
positions seem to match the initial position. Furthermore, neither visible distortion nor ringing artefacts are 
present.

�e proposed method, which combines both the linear reconstruction method and ANN, was tested on 
the same measurement data. In the proposed method, the ANN was trained with EIT reconstructions from 
the one-step GN solver, obtained with simulated data. �e image in Fig. 2(d) was obtained using the proposed 
post-processing method and an ANN trained without considering the presence of noise in the measured data. 
Compared with an ANN used as an inverse solver trained without considering the presence of noise in the 
measurement data, as in Fig. 2(c), the proposed method performed better. When solving the inverse problem 

Figure 1. EIT Comparison between (a) existing reconstruction methods using an ANN and (b) the proposed 
method.
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with a linear algorithm, such as the one-step GN, the imperfectly modelled and constantly changing electrodes 
position, contact impedance and model contours22 had a limited e�ect on the image. �us, for the proposed 
post-processing method, training the ANN without considering the presence of noise in the measured data still 
led to a satisfactory image, close to the image obtained with an ANN trained by considering noisy measurement 
data.

For the last reconstruction, shown in Fig. 2(f), noise was added to the simulated voltage data so that these 
voltages would be similar to the voltages measured from the phantom and therefore the need for extrapolation 
by the ANN would be reduced. Compared with the proposed post-processing method and an ANN trained 
from noise-free data, this solution gave a similar image. �e two targets are visible at the expected location. �e 
smoothness and the ringing e�ects or shape deformation are not visible to the human eye. As for the ANN used 
as an inverse solver trained from noisy voltages, the ANN applied as a post-processing method resulted in a sat-
isfactory reconstruction without visible smoothness or ringing artefacts. In addition, the resulting images show 

Figure 2. Cross-section view of EIT reconstructions from phantom data with di�erent methods: (a) the one-
step GN, (b) the PDIPM, (c) an ANN as inverse solver trained without considering noise, (d) the proposed 
post-processing method and an ANN trained without considering noise, (e) an ANN as inverse solver trained 
with noisy data and (f) the proposed post-processing method and an ANN trained with noisy data. Green 
circles show the location of the targets. �e bar at top is the normalised conductivity distribution.
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that the two reconstructed objects did not shi� towards the boundary of the FE model, as may happen with linear 
methods.

For each reconstruction, di�erent errors23 were calculated to validate the visual impression that the proposed 
post-processing with ANN o�ered a strong resistance to the noise present in the measurements. �e correspond-
ing errors are given in Table 1.

Position error (PE) indicates an error on the position of the target. PE was divided into two errors, one for 
each di�erent target. On the images shown in Fig. 2, the target on the le� is called the �rst target, and the target 
on the right is called the second target. PE errors are normalised based on the radius of the FE model. For the 
�rst target, the one-step GN method tended to push the reconstruction towards the boundary of the FE model, 
which increased the PE and was as high as 2.69% in this case. �e ANN used as an inverse solver trained without 
considering the presence of noise also gave a poor result, as seen in Fig. 2(c), with a PE of 2.60%. Other meth-
ods were able to estimate the position of the target with high accuracy, and the PE obtained from ANN-based 
methods did not exceed 1.35%. Similar to the �rst target, the linear one-step GN and the ANN used as an inverse 
solver trained without noisy data gave the two highest PE for the second target. �e one-step GN gave an error of 
2.30%, while the ANN used as an inverse solver trainer gave an error of 1.76% when trained without considering 
noise. �e ANN used as an inverse solver trained with noisy data gave the best estimate, with an error of 0.37%. 
Post-processing methods did not exceed 0.55% (obtained with training without noise), less than 0.2% more than 
the ANN used as an inverse solver trained with noisy data.

Di�erence of resolution (|∆RES|) errors can be interpreted as the di�erence between the area of the target and 
the area of the reconstructed object. �e one-step GN method generated large smoothness, which leads to a large 
|∆RES| of 19.44%. �e proposed method gave the lowest error of 2.27% if trained by considering the presence 
of noise. When trained correctly, an ANN used as an inverse solver also gave a low error of 2.35%. However, if 
the ANN was not trained correctly, the error increased to 6.90%. �e proposed post-processing gave a low error 
in both cases, regardless of whether the presence of noise was (2.27%) or was not (2.59%) considered during 
training. Additional |∆RES| errors, obtained at di�erent heights of the 3D model, are presented in Extended Data 
Table 1, and show that the proposed method performed better than other methods at di�erent cross-sections, as 
can be seen from Extended Data Fig. 1.

Similarly, the linear one-step GN method and PDIPM both gave large shape deformation (SD) errors of 
20.03% and 22.91%, respectively. An ANN used as an inverse solver gave a very low error of 10.35% if trained 
while considering the presence of noise in the measurements. If not, the SD error could go as high as 17.87%. 
Although training the ANN with noisy voltages always gave a slightly better result, the proposed post-processing 
method also gave a low error when trained without any consideration of the noise. In this case, the SD varied by 
less than 1%, from 10.55% when trained with noisy data to 11.21% when trained with non-noisy data. �is obser-
vation shows the high stability and large resistance to noise of the proposed method.

To summarise, Table 1 shows that the proposed method is capable of giving an accurate reconstruction of the 
EIT inverse problem without requiring a strong a priori knowledge of the data acquisition system.

Regarding the cost of computation, the one-step GN solver consists of a simple matrix product. Computing 
the matrix requires 48.6 GB of memory and takes 3,029.18 seconds. However, the matrix does not depend on the 
measurements and can therefore be calculated before solving the inverse problem. In this example, the recon-
struction matrix was considered as known when applying the one-step GN solver.

�e time and memory required to solve the EIT inverse problem by di�erent methods are given in Table 2. 
Once the reconstruction matrix was known, the EIT inverse problem could be solved within 0.1 s, and with only 
0.6 GB using the one-step GN method. �e PDIPM method is an iterative approach and requires both time and 
a large amount of memory to achieve a reconstruction. �is solver converges to a precise reconstruction, but 
takes 4,289 seconds and 65.46 GB of memory to solve the problem. Here, the method based on ANN as an inverse 
solver was the fastest and only took 0.36 s and 0.38 GB. �e proposed method combines the one-step GN solver 
and an ANN, and therefore takes longer than these two solvers. Here, the proposed method solved the inverse 
problem in 0.80 s and needed only 1.1 GB of memory.

Although the PDIPM is also capable of solving the EIT problem with great accuracy, its iterative approach 
requires both time and resources, and therefore this solution is not applicable for fast imaging applications. 
Compared with the proposed post-processing method, the iterative PDIPM approach is more than 4,000 times 
slower and takes more than 100 times the amount of memory needed to solve the inverse problem. �erefore, 
expensive hardware must be used, which is a signi�cant drawback.

Method PE #1 (%) PE #2 (%) |∆RES| (%) SD (%)

One-step GN 2.69 2.30 19.44 20.03

PDIPM 1.95 2.10 8.10 22.91

ANN (training: no noise) 2.60 1.76 6.90 17.87

One-step GN + ANN (training: no noise) 1.35 0.55 2.59 11.21

ANN (training: noise) 0.97 0.37 2.35 10.35

One-step GN + ANN (training: noise) 1.01 0.50 2.27 10.55

Table 1. PE, |∆RES| and SD errors obtained for reconstruction from phantom data with di�erent methods. 
Corresponding images are shown in Fig. 2. Target #1 is located on the le� side and target #2 is located on the 
right side of the images.
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Lung data. EIT data of a healthy person were collected24 and the images reconstructed using the same four 
methods. In this experiment, 16 electrodes were located around the subject’s chest in a single plane. As the subject 
was healthy, two similar elliptical shapes were expected to represent the lungs. Figure 3 shows the conductivity 
distributions within the FE models obtained from lung data using the di�erent methods. Extended Data Fig. 2 
shows a cross-section from these FE models. Extended Data Fig. 2 shows the conductivity distribution at the 
middle of the FE model, where the electrodes were located.

�e one-step GN method, widely used in real-time biomedical applications, gave an image showing two dif-
ferent targets; however, it also contained smoothness and therefore some artefacts that degraded the quality of 
the reconstructed image. Ringing artefacts were visible between the two lungs. �ese artefacts, represented by the 
blue region visible in Fig. 3(a), could have led to an incorrect interpretation of the result and a wrong diagnosis by 
the practitioner and thus had to be eliminated.

Method CPU Time (s) Memory (GB)

One-step GN 0.09 0.59

PDIPM 4289.57 65.46

ANN as inverse solver 0.36 0.38

One-step GN + ANN 0.80 1.10

Table 2. CPU time and memory required to solve the EIT inverse problem from phantom data with di�erent 
methods.

(d)

(f)

(b)(a)

(c)

(e)

-1 -0.5 0 0.5 1

Figure 3. 3D EIT reconstructions of lung data using di�erent methods: (a) one-step GN, (b) the PDIPM, 
(c) an ANN as inverse solver, trained by considering sources of errors, (d) the proposed method, trained by 
considering errors in measurement data, (e) an ANN as inverse solver, trained without considering errors 
and (f) the proposed post-processing method, trained without considering errors. �e normalised resistivity 
distribution is given at the top. �e electrodes are shown in green.
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�e PDIPM result in Fig. 3(b) shows a fused lung, whereas the plots in Fig. 3(c–f) show separated lungs. 
Figure 3(c) is distorted and Fig. 3(e) is slightly distorted when compared with Fig. 3(a), which is the established 
standard. Moreover, Fig. 3(d) and (f) are much superior to Fig. 3(a) and the rest of the plots in Fig. 3.

When using an ANN as an inverse solver, the result strongly depended on the simulated data used to train the 
ANN. Basically, the closer they were to the measured data, the better the result. Based on this statement, training 
an ANN to give excellent EIT image reconstruction appeared to require an intense modelling e�ort. As this study 
considered time di�erence EIT, the modelling had to consider not only the breathing activity of the patients, 
but also the presence of movement and model distortion through time, which led to electrode displacement. In 
addition, research has shown that, to give a better result, modelling work should consider the presence of noise 
in the measured data, which is hardware-dependent. Figure 3(c) and (e) both show the reconstruction with an 
ANN used as the inverse solver. In Fig. 3(c) the ANN is trained by omitting the presence of noise, electrode 
movement and model deformations, while in Fig. 3(e) the ANN is trained by considering the presence of those 
artefacts. Data were collected at the end of the inspiration and expiration phases, meaning that two similar targets 
representing the conductivity di�erence during the breathing cycle should be visible on the image. If the ANN is 
trained while considering the di�erent sources of errors, as in Fig. 3(e), two di�erent elliptical regions are visible. 
Although the le� lung appears to be slightly smaller than the right, their sizes are relatively close and they can 
be separated easily. However, when the ANN is trained without considering the errors and inaccuracies of the 
hardware, as in Fig. 3(c), large artefacts may appear, shapes are not consistent with expectations and it becomes 
di�cult to correctly separate the two di�erent regions.

As for the phantom experiments, the proposed method was less sensitive to the presence of noise, movement 
and measurement errors. Figure 3(d) and (f) show images obtained with the proposed method by not consid-
ering the di�erent sources of errors during the training phase and considering them, respectively. In both cases, 
the two lungs are visible and separated. Some artefacts are visible in Fig. 3(d), where the ANN is trained with-
out considering any source of error in measurement, but the visual quality of the reconstruction is signi�cantly 
improved compared with the reconstruction based on the ANN only, as shown in Fig. 3(c). Compared with other 
the nonlinear methods used in this paper, the proposed method gave signi�cantly fewer artefacts. Finally, Fig. 3(f) 
gives the best image of the conductivity di�erence in the lungs during the breathing cycle; two large symmetrical 
shapes can be seen, the smoothness remains low and there is no visible artefact on the image. However, even when 
considering modelling errors during the training of the ANN improved the result, this step was not necessary to 
obtain a satisfactory image of two separate targets similar to the lungs. �is �nding contributes to considerably 
reducing the modelling e�ort required to train an ANN e�ciently for biomedical applications.

For each method, the computational resources used to perform 3D EIT reconstruction were measured. 
Although the iterative PDIPM method generally o�ers high quality, it takes a long time and cannot be used for 
real-time monitoring. Compared with the PDIPM method, the one-step GN- and ANN-based methods are sig-
ni�cantly faster. �e proposed method is capable of solving the inverse problem in less than 0.3 second on a CPU 
and is expected to be even faster on a GPU or speci�c hardware. CPU time and memory consumption are given 
in Table 3.

To show the stability of the proposed method, di�erent measurements were performed during the breathing 
cycle and each individual image was reconstructed. �e results are recorded in Extended Data Figs 3–6. Although 
the one-step GN method was stable, the images show relatively small lungs and ringing artefacts between them. 
�e PDIPM method gives high quality images but also generates large artefacts instead of blank images when 
both the reference and measured signals are acquired during the same phase of the breathing cycle (i.e., the end 
of expiration). �e ANN used as an inverse solver appeared to be stable but generated strange shapes, di�erent 
from the expected shape of the lungs. Finally, the proposed method o�ered a stable and accurate reconstruction. 
�e resulting images show a complete breathing cycle with two lungs having similar sizes and a satisfactory shape 
close to the shape obtained from other imaging modalities such as computerised tomography.

Conclusion
In this paper, a novel reconstruction method for 3D EIT is proposed. By o�ering near real-time image recon-
struction, strong robustness against noise and rough boundaries, the proposed method combines the advantages 
of both linear and nonlinear methods. Although simulation data do not show signi�cant amelioration between 
the existing methods based on the ANN and novel method presented in this paper, phantom and lung data 
clearly show the advantages of the new method, especially its ability to produce high quality images from a noisy 
environment. Solving the EIT problem with linear solvers before applying the ANN helps to reduce the in�uence 
of noise present in the measured data and confers higher stability to the nonlinear ANN. �is higher stability 
then allows the training of an ANN to solve the EIT inverse problem from biomedical data without an exten-
sive knowledge of either the physiology of the human anatomy or the hardware used for EIT data acquisition. 

Method CPU Time (s) Memory (MB)

One-step GN 0.03 70

PDIPM 5.04 669

ANN as inverse solver 0.13 236

One-step GN + ANN 0.29 413

Table 3. CPU time and memory required to solve the EIT inverse problem from lung data with di�erent 
methods.
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Compared with a solution based on an ANN only, the proposed method provides signi�cantly greater stability 
and stronger robustness to previously unseen data. �e results show that, with the proposed method, a deep 
knowledge of the data acquisition system, as well as the patient’s body shape, are no longer necessary to train 
an ANN capable of giving a high resolution image. Based on this observation, the computationally expensive 
training process can be done only once, and then an identical set of weights and biases can be used for every 
patient and EIT hardware available. In this study, the inverse problems were solved using Matlab and calculations 
were performed on a CPU. �e authors believe that future computers and a GPU-based implementation of the 
proposed method should open the way to real-time implementation of a high quality, stable and non-linear EIT 
image reconstruction of the lungs.

Methods
Phantom data were acquired from a physical phantom. �e cylindrical tank contained four layers of electrodes. 
Each layer contained eight di�erent electrodes, giving a total of 32 electrodes. Both current injection and meas-
urements were made using an adjacent current pattern, meaning that each pair of electrodes used corresponded 
to two adjacent electrodes, located on the same layer. Phantom data were acquired using the data acquisition 
system introduced by Tu25. �is system uses each pair of two adjacent electrodes located on the same layer for 
current injection. For each current injection, 32 di�erent voltages were measured with the 32 pairs of adjacent 
electrodes present at the boundary of the volume conductor. �e current source then moved to the next pair of 
adjacent electrodes, and 29 other measurements were acquired. Finally, 928 measurements were used for image 
reconstruction.

�e di�culty presented by real-life EIT applications is to correctly model the contour of the volume conductor 
and the positioning of the electrodes. �e real boundary shape not only is slightly di�erent for every patient, but 
also changes continuously during breathing and therefore during the monitoring process. Due to the presence 
of errors in estimating the contour of the thorax region, additional errors result from the positioning of the elec-
trodes. Additionally, due to the presence of movement during data acquisition, between the measurement of the 
reference signal and the actual frame, a reconstruction in a �xed FE model cannot give an exact solution, only 
approximate a solution. Nonlinear iterative algorithms are known to be highly sensitive to the mismatch between 
the boundary of the FE model and actual shape of the volume conductor.

A di�erence EIT approach involves using two di�erent sets of measurements, usually acquired at two di�erent 
times, and considering the di�erence between these two measurements to do the reconstruction. �is approach 
helps to cancel out errors due to imperfect modelling. However, the inverse problem requires only one FE model 
to image the conductivity distribution. In other words, if the shape of the volume conductor keeps changing 
during measurement, the di�erence EIT cannot cancel out all of the errors resulting from imprecise modelling, 
only help to reduce them.

It has been shown that ANNs are capable of dealing with these issues when trained accordingly. To train 
an ANN capable of considering a possible modelling error usually present in practical biomedical applications, 
training data should include such possible artefacts. In this study, to train the ANNs from simulation data, the for-
ward problems had to be solved with di�erent FE models. For EIT imaging of the lung data, a circular FE model 
was generated and distorted using Fourier coe�cients of the average human thorax. During the training phase, 
the Fourier coe�cients were modi�ed with a random weight of up to 10% of the original coe�cient to obtain 
di�erent shapes similar to the thorax. In addition, given the focus of this work on di�erence EIT, two di�erent FE 
models were used to solve the forward problems in the homogeneous and inhomogeneous cases, respectively. �e 
forward problems were then solved using di�erent models. Finally, for the proposed post-processing solution, 
the inverse problem was solved in an FE model of the lungs obtained without modifying the Fourier coe�cients.

�e proposed method was compared with a reconstruction method based on an ANN only and two widely 
accepted methods for EIT reconstructions of the lungs.

EIT inverse solvers. One-step gauss-newton. �e one-step GN is a direct linear reconstruction method 
commonly used for real-time imaging applications26. �is method o�ers the advantage of being non-iterative, 
and therefore a solution to the inverse problem can be computed in a very short time. �is reconstruction method 
can be seen as a simpli�ed linearised version of the nonlinear GN method, named a�er the mathematicians Carl 
Friedrich Gauss and Isaac Newton. In fact, only the �rst step of the nonlinear method is calculated. �is solution 
gives a rapid and satisfactory reconstruction, as in di�erence EIT some parameters of the complete nonlinear 
method feature a very poor identi�ability and therefore can be set to constant values.

Primal-dual interior point method. �e nonlinear PDIPM is an iterative reconstruction method and therefore 
requires both time and large computing resources to estimate a solution to the inverse problem. �e PDIPM 
is essentially based on barrier methods widely used in linear and nonlinear programming. �e idea of encod-
ing the feasible set using a barrier and designing barrier methods was studied by Anthony V. Fiacco, Garth P. 
McCormick and others in the early 1960s27. �ese methods fall into the category of simplex methods, in which 
the solution follows the boundary of the feasible set28. Karmarkar proposed a new algorithm called Karmarkar’s 
algorithm, which runs in provably polynomial time and is also very e�cient in practice29. Compared with the 
simplex methods, this algorithm, later called the PDIPM, has the ability to search at the interior of the feasible set 
instead of at the boundary. Later, in 2012, Borsic and Adler proposed using the PDIPM method to solve the EIT 
inverse problem20 and obtained high quality image reconstructions, showing rough boundaries and nonlinear 
conductivity distributions. In this study, this algorithm was used with the L1 norm on the data and the L2 norm 
on the regularisation term.



www.nature.com/scientificreports/

8SCIENTIFIC REPORTS | 7: 7212  | DOI:10.1038/s41598-017-07727-2

Both the one-step GN solver and PDIPM solver were used with the well-known prior probability function 
initially used with the Newton one-step error reconstructor (NOSER) algorithm30.

Noise estimate. To train the ANN, 2,000 EIT images containing random targets were simulated. For each 
of these conductivity distributions, both the forward and inverse problems were solved. Each of the 2,000 EIT 
images contained targets with random conductivity, di�erent from the background. Solutions to the forward and 
inverse problems were obtained using the EIDORS toolkit24 and Matlab’s neural networks toolbox, running under 
an Intel Core I7-6700 CPU at 4 GHz with 64 GB of RAM and Ubuntu Linux. A�er solving the forward problem, 
noise was added into the simulated voltages. �e amount of noise added was determined by analysing the meas-
ured signals at the electrodes.

Although most of the noise was eliminated using a tenth-order bandpass �lter centred on the frequency of 
the injected current, some noise was still present in the acquired data. To reduce the need to extrapolate from the 
ANNs, it was of interest to train them with noisy data similar to the data acquired from the phantom.

�e amount of noise was not �xed and strongly depended on the physical distance between the current source 
and the electrodes used for measurement. Noise was estimated independently for each of the phantom experi-
ment and lung data measured. Current injection consisted of a sinusoidal waveform at a frequency of 100 kHz. 
During each sine wave, 20 voltages were measured by each pair of electrodes. For EIT reconstruction, these data 
were �ltered and the highest peak was considered. �e noise was then estimated by comparing the measured data 
with a simulated sine wave. By estimating the amount of noise in the measurements before �ltering, the noise was 
assumed to be a WGN. Noise was estimated according to (1):

=











⁎SNR dB

mean signal

mean residual noise
( ) 10 log

( )

( ) (1)

2

2

Finally, the signal-to-noise ratios for each of the 928 measurements were estimated over 500 di�erent frames 
and averaged. When the measured signal was spatially close to the injected current, the estimated SNR was above 
50 dB. However, when it was measured at the opposite side of the phantom, the SNR could be less than 10 dB, 
basically a result of the attenuation of the medium. By assuming a WGN before �ltering, it became possible to 
reproduce the noise by adding a WGN to the simulated sine waves. A�er that, simulating the presence of a �lter 
generated a noise model that was close to the noise present in the real phantom experiments.

For the lung measurements, internal organs and movements could also be responsible for the presence of 
noise. �erefore, a non-Gaussian noise was considered. �e Fourier transform of the measured signals were ana-
lysed and a non-Gaussian noise was added to the measurement data.

Artificial Neural Networks. Radial basis functions (RBFs) were used in the hidden layer of neurons. �e 
output layer was made of a linear transfer function. Research has shown that this con�guration of an ANN is 
capable of high quality EIT reconstruction from biomedical data. For an ANN used as an inverse solver, the input 
layer has a number of neurons equivalent to the number of measurements (e.g., 208 neurons for the lung data, 
928 neurons for the phantom data). For the post-processing application, the input layer has a number of neurons 
equivalent to the number of nodes present in the FE model. In this study, in both cases, the hidden layer was made 
of 1,000 neurons with a RBF transfer function. Finally, the output layer outputted the estimate of the conductivity 
distribution within the FE model and contained a number of neurons equivalent to the number of nodes present 
in this model.

To train the ANN for the phantom data, training data were simulated. In those simulated data, the presence 
of one or two cylindrical insulators within a saline solution was simulated. Each of the insulators had a random 
electrical conductivity, de�ned to be lower than the background. In those simulations, the electrical conductivity 
of the homogeneous background was not �xed and varied randomly across the di�erent training samples. A�er 
simulating up to 2,000 di�erent conductivity distributions, the forward problems were solved with and without 
considering the presence of distortions (movement). When solving the EIT forward problems, a second-order 
forward solver and a very �ne FE model di�erent from the model used to solve the inverse problems were used to 
avoid committing the inverse crime.

In the case of the lungs, each lung was considered to be an electrical insulator compared with the background 
conductivity. Research has estimated that the electrical conductivity of the lungs is higher at the end of the expi-
ration phase than at the end of the inspiration phase. According to previous studies, at the end of expiration, the 
lungs are expected to have an electrical impedance of approximately 700 Ω.m at the frequency of the injected 
current, or 100 kHz. At the end of the inspiration phase, the electrical impedance is expected to rise as high as 
2,500 Ω.m. �e electrical properties of the other tissues and materials crossed by the electrical current may also be 
in�uenced by several factors such as the heartbeat or blood circulation within the body. �e di�erence in conduc-
tivity between the two di�erent current injections (when a di�erent pair of electrodes is used for measurement) is 
expected to remain low and is therefore neglected during the training of the ANN. In this study, the background 
impedance was arbitrarily set to be 700 Ω.m. As di�erence EIT was used in this application, the di�erence of 
conductivity in the background should not have been visible. In other words, the absence of change in the con-
ductivity around the spinal cord and blood vessels between two di�erent measurements made them invisible in 
the reconstructed image. �erefore, such artefacts were neglected during the generation of the training samples. 
Although in real biomedical applications the presence of movements and variation of blood pressure may theo-
retically be re�ected in the �nal image, neglecting them allows for great simpli�cation in the generation of 2,000 
training samples. �e RBF ANNs were trained by simulating the presence of two elliptical cylinders of random 
size and conductivity varying within the range of the possible electrical conductivities determined in previous 
work. A�er training with the particle swarm optimisation method, the resulting ANN assumed the presence of 
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two lungs, a seemingly reasonable assumption for biomedical imaging. �e forward and inverse problems were 
solved using widely accepted methods for biomedical EIT applications.

Errors. Di�erent functions have been proposed for use as an error function for medical imaging applica-
tions31–33, and a consensus (Graz consensus reconstruction algorithm for EIT, or GREIT) aimed to propose nor-
malised error de�nitions23. Among these normalised de�nitions, the position error (PE), the resolution (RES) 
error and shape deformation (SD) were of signi�cant interest and were calculated. �ese normalised de�nitions 
were designed for 2D EIT but can easily be adapted to a 3D EIT problem. In 2D EIT, these errors are estimated 
based on a rasterised image of the FE model. In this study, the resulting errors were measured on di�erent 
cross-sections of the FE model. As RES was expected to give an estimate of the area of the target, the di�erence of 
resolution |∆RES|18 was used.

If more than one target was present in the phantom, a PE was computed for each individual target, based on 
the method described by Martin and Choi21.
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