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Abstract

We present the first general-purpose digital signature scheme based on supersingular
elliptic curve isogenies secure against quantum adversaries in the quantum random oracle
model with small key sizes. This scheme is an application of Unruh’s construction of non-
interactive zero-knowledge proofs to an interactive zero-knowledge proof proposed by De
Feo, Jao, and Plût. We implement our proposed scheme on an x86-64 PC platform as well
as an ARM-powered device. We exploit the state-of-the-art techniques to speed up the
computations for general C and assembly. Finally, we provide timing results for real world
applications.
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Chapter 1

Introduction

The security of public-key cryptosystems depends on the intractability of certain mathe-
matical problems such as integer factorization and computing discrete logarithms. Cur-
rently, the most widely-used cryptosystems are based on these two problems which remain
infeasible for classical computers to solve. However, there exist efficient quantum algo-
rithms [27] for solving both of these problems, and the realization of large-scale quantum
computers pose a serious threat to modern cryptography. Recent efforts to standardize
quantum-resistant cryptosystems by the NSA and NIST suggest that the threat of quan-
tum computers may be more real than previously thought.

Post-quantum cryptography is the study of classical cryptosystems that remain secure
against quantum adversaries. There are several candidate approaches for building post-
quantum cryptographic primitives: lattice-based, code-based, hash-based, and multivari-
ate cryptography. Recently, cryptosystems based on supersingular elliptic curve isogenies
were proposed by De Feo, Jao, and Plût [15], who gave protocols for key exchange, zero-
knowledge proof of identity, and public key encryption. With small key sizes and efficient
implementations [10, 23], isogenies provide a promising candidate for post-quantum key
establishment.

Various isogeny-based authentication schemes have been proposed as well, such as
strong designated verifier signatures [30], undeniable signatures [21], and undeniable blind
signatures [26]. However, it was not known whether isogeny-based cryptography could
support general authentication. In this thesis, we show that this is indeed possible by
constructing the first general-purpose digital signature scheme based on isogenies which is
strongly unforgeable under chosen message attack in the quantum random oracle model.

Our signature scheme is obtained by applying a generic transformation to the zero-
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knowledge proof of identity proposed in [15]. Classically, obtaining a secure digital signa-
ture from an interactive zero-knowledge proof can be achieved by applying the Fiat-Shamir
transform [16]. However, its classical security proof requires certain techniques such as
rewinding and reprogramming the random oracle which do not necessarily apply in the
quantum setting. Quantum rewinding is possible in some restricted cases [33, 36], but it
has been shown to be insecure in general [1]. Further, since random oracles model hash
functions which, in a real world implementation, could be evaluated in superposition by a
quantum adversary, we require quantum random oracles which can be queried in superpo-
sition. Quantum random oracles are more difficult to reprogram since queries can be in
a superposition of exponentially many states and it is difficult to even determine a query
input, as measurement disturbs the state.

Unruh [34] recently proposed a transformation which remedies these problems to pro-
duce a secure signature from a zero-knowledge proof in the quantum random oracle model.
Its overhead is generally much larger than Fiat-Shamir – in some cases exponentially
large, making the scheme impractical. Fortunately, applying it to the isogeny-based zero-
knowledge proof incurs only twice as much computation as the Fiat-Shamir transform,
producing a workable quantum-safe digital signature scheme with small key sizes.

Related Work

Independently of us, Galbraith, Petit, and Silva recently published a preprint containing
two isogeny-based digital signature schemes [18]. Their second scheme, based on endo-
morphism rings, is completely unrelated to our work. Their first scheme, based on the De
Feo, Jao, and Plût identification scheme, is conceptually identical to our scheme, but they
present significant space optimizations to reduce the signature size down to 12λ2 bits (or
6λ2 if non-repudiation is not required), compared to our signature size of 69λ2 bits. How-
ever, we note that their signature size is for classical security level λ and as of this writing
their posted preprint contains no signature sizes for post-quantum security, whereas our
signature sizes are given in terms of post-quantum security. Moreover, their scheme may
be slower, since they use a time-space tradeoff to achieve such small signature sizes. The
performance of their scheme is not immediately clear, since they provide no implementation
results. In this thesis, by contrast, we provide a complete implementation of our scheme,
as well as performance results on multiple platforms and source code for reference.
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Outline.

In Chapter 2, we give the necessary mathematical background on isogenies for constructing
isogeny-based cryptosystems. In Chapter 3, we give an overview of isogeny-based cryptog-
raphy and describe the interactive zero-knowledge proof which will be used to construct
our signature scheme. In Chapter 4, we describe Unruh’s construction. In Chapter 5, we
construct and analyze our isogeny-based digital signature scheme, discussing algorithmic
aspects, parameter sizes, security, and implementation.
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Chapter 2

Background on Isogenies

In this chapter we give a condensed introduction to supersingular isogenies with the goal
of describing the necessary background required for understanding our isogeny-based cryp-
tosystems. The theory of elliptic curves and isogenies is deeply rooted in algebraic geometry
and it is difficult to give a reasonably brief introduction in full generality. As such, we fo-
cus on special cases that are relevant to isogeny-based cryptosystems and omit details and
proofs. A full treatment of this subject can be found in [8, 17, 28], which are the main
sources for the material summarized here.

2.1 Elliptic Curves

Let F be a finite field with characteristic p where p > 3.

Definition 2.1.1. An elliptic curve E over F, denoted E/F, is a non-singular plane
curve satisfying the short Weierstrass equation

y2 = x3 + ax+ b

for some fixed a, b ∈ F.

The non-singularity condition is equivalent to the statement that the discriminant
∆ := 4a3 + 27b2 is non-zero. In projective coordinates, the elliptic curve equation becomes

Y 2Z = X3 + aXZ2 + bZ3
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For a point P on a curve, we use (xP , yP ) or (XP : YP : ZP ) to denote its affine or
projective coordinate elements, respectively. Note that the point (0 : 1 : 0) always satisfies
the projective curve equation. This point, denoted O, is called the point at infinity.
Since there is no corresponding affine point to O, it is usually defined as an extra special
point in affine elliptic curves.

Projective curves (or affine curves with the extra point at infinity) admit a well-known
group structure with an operation (usually denoted as addition) which can be informally
described as follows. Given two points P,Q ∈ E, consider the line passing through P
and Q (if P = Q, take the tangent to the curve at P ). Since elliptic curves are defined
by cubic equations, this line meets E at a third point, say R. Then the operation is
defined as P + Q = −R, where −R denotes the reflection of R across the x-axis (i.e. if
R = (x, y) ≡ (X : Y : Z), then −R = (x,−y) ≡ (X : −Y : Z)). This operation defines a
group structure on elliptic curves with O as the identity element.

2.2 Isogenies

Definition 2.2.1. A rational map is a map φ : E1 → E2 between elliptic curves E1, E2

given by φ(P ) = (φx(xP , yP ), φy(xP , yP )), where φx, φy are rational functions in xP , yP .

An isogeny is a surjective rational map φ : E1 → E2 that is also a group homomor-
phism. Two curves are isogenous if there exists an isogeny from one to the other.

Since isogenies are group homomorphisms, they can be identified with their kernels.
In implementations, we generally represent isogenies by specifying the generators for its
kernel. Conversely, we can compute an isogeny with a given subgroup as the kernel using
Vélu’s formulas [35], described in §2.4.

Example 2.2.2. The multiplication-by-`-map takes a point P to its scalar multiple
[`]P = P + · · ·+ P . It is an isogeny whose kernel is the set of `-torsion points:

E[`] := {P ∈ E : [`]P = O}

E[`] is the `-torsion subgroup of E.

Torsion subgroups of elliptic curves have a special structure:

Theorem 2.2.3. Let E be an elliptic curve over F with characteristic p > 0, and let ` > 0
be coprime to p. Then E[`] ∼= (Z/`Z)2.
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Note that the multiplication-by-`-map is an isogeny that maps a curve to itself. Such
isogenies are called endomorphisms. For a given curve E, the set of endomorphisms of
E forms a ring under pointwise addition and composition called the endomorphism ring
of E, denoted End(E).

For an elliptic curve E : y2 = x3 + ax+ b over F, its coordinate ring is

F[E] := F[x, y]/〈y2 − x3 − ax− b〉

where F[x, y] is the ring of polynomials over F. Its function field, denoted F(E), is the
field of fractions of F[E].

For a given isogeny φ : E1 → E2, we define its pullback, denoted φ∗, to be the map
φ∗ : F(E2) → F(E1) where for f ∈ F(E2), φ∗(f) = f ◦ φ. An isogeny φ : E1 → E2 is
separable if the field extension F(E1)/φ∗(F(E2)) is separable (i.e. each element of F(E2)
has a separable minimal polynomial over φ∗(F(E2))).

The degree of the isogeny is the degree of the field extension [F(E1) : φ∗(F(E2))].

Proposition 2.2.4. For a separable isogeny, its degree is equal to the cardinality of its
kernel.

Our isogeny-based cryptosystems only use separable isogenies, and we will assume that
all isogenies are separable for the remainder of this thesis.

Proposition 2.2.5. Every isogeny φ : E1 → E2 has a unique dual isogeny φ̂ : E2 → E1

with the same degree such that φ̂ ◦ φ and φ ◦ φ̂ are the multiplication maps by deg(φ) on
E1 and E2 respectively.

Thus being isogenous defines an equivalence relation. Tate’s theorem [32] shows that
the isogeny classes of curves over finite fields are characterized by their cardinality:

Theorem 2.2.6. Two curves over F are isogenous over F (i.e. the isogeny is defined over
F) if and only if they have the same cardinality.

An isomorphism between elliptic curves is an isogeny with degree 1. Isomorphism
classes of elliptic curves are characterized by their j -invariants which is defined for a curve
E : y2 = x3 + ax+ b as follows:

j(E) = 1728
4a3

4a3 + 27b2

In other words, two elliptic curves are isomorphic (over the closure of F) if and only if they
have the same j-invariant.
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2.3 Supersingularity

The endomorphism rings of elliptic curves over finite fields are usually isomorphic to an or-
der in an imaginary quadratic field. However, some curves have much larger endomorphism
rings isomorphic to an order in a quaternion algebra.

Definition 2.3.1. An elliptic curve E is supersingular if its endomorphism ring is
isomorphic to an order in a quaternion algebra. Otherwise it is ordinary and its endo-
morphism ring is isomorphic to an imaginary quadratic field.

In particular, endomorphism rings of ordinary curves are commutative, while super-
singular endomorphism rings are not. Childs, Jao, and Soukharev [7] gave a quantum
subexponential-time algorithm for computing ordinary isogenies by a reduction to a hid-
den shift problem. However, their technique does not apply in the supersingular case due
to the non-commutativity, and the best known algorithms for computing supersingular
isogenies remain fully exponential time.

A supersingular curve cannot be isogenous to an ordinary curve. A supersingular
(resp. ordinary) isogeny is an isogeny between supersingular (resp. ordinary) curves.

Although there exist supersingular curves over Fpe for all e ≥ 1, all supersingular curves
are isomorphic to curves defined over Fp2 .

2.4 Vélu’s Formulas

Vélu’s formulas [35] explicitly describe how to compute an isogeny with a given kernel. Let
E : y2 = x3 + ax + b be an elliptic curve and let G be a finite subgroup of E. Let G2 be
the subset of points of G with order 2, and let G1 be such that

G = {O} ∪̇ G2 ∪̇ G1 ∪̇ (−G1)

where −G1 = {−P : P ∈ G1} and ∪̇ denotes disjoint union.

For Q = (xQ, yQ) ∈ G1 ∪G2, define

Fx(Q) = 3x2
Q + a

Fy(Q) = −2yQ

u(Q) = (Fy(Q))2

t(Q) =

{
Fx(Q) if Q ∈ G2

2Fx(Q) if Q ∈ G1
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and

A = a− 5 ·
∑

Q∈G1∪G2

t(Q)

B = b− 7 ·
∑

Q∈G1∪G2

(u(Q) + xQt(Q))

Vèlu showed that the isogeny φ on E with kernel G is defined by the map φ : (x, y) 7→
(X, Y ) where

X = x+
∑

Q∈G1∪G2

t(Q)

x− xQ
+

u(Q)

(x− xQ)2

Y = y −
∑

Q∈G1∪G2

u(Q) · 2y
(x− xQ)3

+
t(Q)(y − yQ)− Fx(Q)Fy(Q)

(x− xQ)2

and the image curve of φ is given by

E ′ : y2 = x3 + Ax+B

Since the computation involves a sum over each element in G1∪G2, its running time is
proportional to the size of the kernel, which may be exponentially large. However, as we
will see in §5.2.3, the isogeny can be decomposed and computed efficiently when the size
of the kernel is a power of a small prime.
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Chapter 3

Isogeny-Based Cryptography

3.1 Background

Isogeny-based cryptosystems rely on the difficulty of computing the isogeny between two
given curves of the same order. The first isogeny-based cryptosystems were proposed by
Couveignes [12] and Rostovtsev and Stolbunov [25] in 2006, where ordinary isogenies were
used to construct schemes for public-key encryption and key exchange. However, in 2010,
Childs, Jao, and Soukharev [7] gave a quantum algorithm which, under the Generalized
Riemann Hypothesis, can compute ordinary isogenies in subexponential time. This raised
serious concerns on the practicality of cryptosystems based on ordinary isogenies, given
their already poor performance (229 seconds to perform a key exchange operation for
128-bit security under previous assumptions [29]).

Since the algorithm relied on the commutativity of the endomorphism rings, it did not
apply to the supersingular case, and the best known algorithms for computing supersingular
isogenies remained exponential time. In 2011, Jao and De Feo [20] successfully constructed
cryptosystems based on supersingular isogenies for encryption and key exchange (now
known as the Supersingular Isogeny Diffie Hellman, or SIDH), and gave an implementation
achieving much faster performance compared to those based on ordinary isogenies. This
paper was later extended with Plût [15] to include a scheme for zero-knowledge proof of
identity and further optimizations to the implementation, achieving a runtime of roughly
0.06 seconds per key exchange operation.

In 2016, Costello, Longa, and Naehrig [10] published a constant-time implementation
of SIDH with more efficient algorithms for computing isogenies, running up to 2.9 times
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faster than the implementation of Jao, De Feo, and Plût [15]. Techniques for compressing
public keys of isogeny-based cryptosystems (which were already quite small) were proposed
in [2] and optimized in [9].

There are several specialized authentication schemes based on supersingular isogenies
[30, 21, 26], but a general-purpose digital signature scheme had not yet been proposed.
This thesis (and independently the work of Galbraith, Petit, and Silva [18]) addresses this
problem by constructing an isogeny-based digital signature scheme, and we also provide
implementation results in §5.2.

3.2 Protocols

We describe the Supersingular Isogeny Diffie-Hellman (SIDH) key exchange and the zero-
knowledge proof of identity protocols proposed by Jao et al. [15]. Although we do not
directly need SIDH in our signature scheme, we make use of results on efficient implemen-
tations of isogeny-based systems which focus on SIDH, and it would feel incomplete to
leave it out.

We give a mainly theoretical description in this chapter, and leave all computational
and algorithmic details to Chapter 5.

3.2.1 Setup

Isogeny-based cryptosystems use supersingular elliptic curves over fields of characteristic p,
where the prime p has the form p = `eAA `

eB
B f±1 such that `A, `B are small primes (typically

2 and 3) with `eAA ≈ `eBB , and f is a small cofactor to ensure p is prime. This special form
of p allows us to efficiently compute isogenies, as we will see in §5.2.3.

The public parameters consist of the prime p = `eAA `
eB
B f ± 1, a supersingular elliptic

curve E over Fp2 of order (`eAA `
eB
B f)2, and generators (PA, QA) and (PB, QB) of the `eAA and

`eBB -torsion subgroups E[`eAA ] and E[`eBB ] respectively.

The isogeny-based cryptosystems we will describe are based on the commutativity of
the diagram in Figure 3.1.

In Figure 3.1, we have the starting supersingular curve E and torsion points A and B
of order `eAA and `eBB , respectively, on E. The subgroups generated by A and B uniquely
correspond to isogenies φA and φB with kernel 〈A〉 and 〈B〉, respectively. The image curves
of φA and φB are denoted E/〈A〉 and E/〈B〉, respectively.

10



E E/〈A〉

E/〈B〉 E/〈A,B〉

φA

φB φ′B
φ′A

Figure 3.1: Each arrow is labelled by the isogeny and its kernel.

The torsion point A has image φB(A) in the curve E/〈B〉, with order `eAA . The tor-
sion subgroup 〈φB(A)〉 corresponds to an isogeny φ′A from E/〈B〉 to (E/〈B〉)/〈φB(A)〉 =
E/〈A,B〉. The isogeny φ′B : E/〈A〉 → E/〈A,B〉 is similarly defined, with kernel 〈φA(B)〉.

3.2.2 Key Exchange

Suppose Alice and Bob want to establish a shared secret key. Alice computes random lin-
ear combinations of PA, QA to obtain a random full-order `eAA -torsion point A = [mA]PA +
[nA]QA, and computes the isogeny φA with kernel 〈A〉. This isogeny, represented by the
point A, is Alice’s private key. For the public key, Alice publishes the image curve E/〈A〉,
along with the images of the public generators (PB, QB) under her isogeny φA. Bob simi-
larly chooses a random `eBB -torsion pointB, computes φB, and publishesE/〈B〉, φB(PA), φB(QA).

To compute the shared secret, Alice needs to compute the point φB(A) which gen-
erates the kernel of the isogeny φ′A : E/〈B〉 → E/〈A,B〉. Since Bob has published
(φB(PA), φB(QA)) and isogenies are group homomorphisms, she can compute

φB(A) = φB([mA]PA + [nA]QA) = [mA]φB(PA) + [nA]φB(QA),

allowing her to obtain the image curve E/〈A,B〉 of the isogeny φ′A. Similarly, Bob computes
φA(B) = [mB]φA(PB) + [nB]φA(QB) and the isogeny φ′B : E/〈A〉 → E/〈A,B〉. Alice and
Bob can then take the j-invariant of E/〈A,B〉 to arrive at a shared secret.

3.2.3 Zero-Knowledge Proof of Identity

The zero-knowledge proof works over the same diagram, but for clarity we will use different
labels as shown in Figure 3.2.3.

11



E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

Peggy (the prover) has a secret point S generating the kernel of the isogeny φ : E →
E/〈S〉. Her private key is S (or any generator of 〈S〉) and her public key is the curve
E/〈S〉 and the images of the public generators φ(PB), φ(QB).

In order to prove her identity (i.e. her knowledge of 〈S〉) to Vic (the verifier), Peggy
chooses a random point R of order `eBB defining an isogeny ψ : E → E/〈R〉. She then
computes and sends the curves E/〈R〉 and E/〈R, S〉 to Vic.

At this point, Vic knows all four curves in the diagram, but none of the isogenies
between them. To verify, Vic challenges Peggy to reveal some of the isogenies by sending
her a random challenge bit b ∈ {0, 1}. Depending on b, Peggy reveals either (ψ, ψ′) or φ′,
as shown in Figure 3.2.

E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

b = 0

E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

b = 1

Figure 3.2: Hidden isogenies are indicated by dashed lines. Bolded lines indicate the
isogenies revealed by Peggy on challenge b. In either case, the revealed isogenies do not
leak information about the secret isogeny φ.

More precisely, Peggy and Vic run the following protocol:

1. • Peggy chooses a random point R of order `eBB .
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• She computes the isogeny ψ : E → E/〈R〉.
• She computes the isogeny φ′ : E/〈R〉 → E/〈R, S〉 with kernel 〈ψ(S)〉 (alterna-

tively the isogeny ψ′ : E/〈S〉 → E/〈R, S〉 with kernel 〈φ(R)〉)
• She sends the commitment com = (E1, E2) to Vic, where E1 = E/〈R〉 and
E2 = E/〈R, S〉.

2. Vic randomly chooses a challenge bit ch ∈ {0, 1} and sends it to Peggy.

3. Peggy sends the response resp where

• If ch = 0, then resp = (R, φ(R)).

• If ch = 1, then resp = ψ(S).

4. • If ch = 0, Vic verifies that R and φ(R) have order `eBB and generate the kernels
for the isogenies E → E1 and E/〈S〉 → E2 respectively.

• If ch = 1, Vic verifies that ψ(S) has order `eAA and generates the kernel for the
isogeny E1 → E2.

To achieve λ bits of security, the prime p should be roughly 6λ bits and this protocol
should be run λ times. If Vic successfully verifies all λ rounds of the protocol, then Peggy
has proved her identity (knowledge of the private key S) to Vic. Otherwise, Vic rejects.

3.3 Security

We prove the security of the zero-knowledge proof of identity, but leave out the proof of
the key exchange protocol since its security is not directly related to the construction of
our signature scheme.

The required security assumptions are based on the following problems from [15, §5],
which are believed to be intractable even for quantum computers.

Computational Supersingular Isogeny (CSSI) problem: Let φA : E0 → EA be an
isogeny whose kernel is 〈RA〉 where RA is a random point with order `eAA . Given
EA, φA(PB), φA(QB), find a generator of 〈RA〉.

Decisional Supersingular Product (DSSP) problem: Let φ : E0 → E3 be an isogeny
of degree `eAA . Given (E1, E2, φ

′) sampled with probability 1/2 from one or the other
of the following distributions, determine which distribution it is from.
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• A random point R of order `eBB is chosen and E1 = E0/〈R〉, E2 = E3/〈φ(R)〉,
and φ′ : E1 → E2 is an isogeny of degree `eAA .

• E1 is chosen randomly among curves of the same cardinality as E0, and φ′ : E1 →
E2 is a random isogeny of degree `eAA

The CSSI (resp. DSSP) assumption is the assumption that the CSSI (resp. DSSP)
problem is computationally infeasible, even for quantum computers.

The best known attack for the CSSI problem involves claw-finding algorithms using
quantum walks [31] and takes O(p1/6) time, which is optimal for a black-box claw attack
[39]. Therefore it is believed that a prime with bitlength 6λ achieves λ bits of post-quantum
security.

3.3.1 Security of the Zero-Knowledge Proof

The security properties we will prove are completeness, special soundness, and honest-
verifier zero-knowledge (HVZK). The definitions for completeness and HVZK are standard,
but special soundness differs slightly from the usual soundness property. It states that,
given any two valid responses to the same challenge, one can extract the private key.
Special soundness is required for Unruh’s construction, and these properties are formally
defined in §4.1.

Theorem 3.3.1 (adapted from [15, Theorem 6.3]). The isogeny-based zero-knowledge proof
of identity satisfies completeness, special soundness, and honest-verifier zero-knowledge.

Proof. Completeness follows from the fact that the diagram in Figure 3.2.3 commutes. As
long as Peggy follows the protocol, her responses should always be verifiable.

For special soundness, suppose we are given two valid transcripts (com, 0, resp0) and
(com, 1, resp1), where com = (E1, E2). Then we can use resp0 = (R, φ(R)) to compute the
isogeny ψ : E → E/〈R〉. Since resp1 = ψ(S) is a generator of the kernel of φ′, we can take

the dual isogeny ψ̂ : E/〈R〉 → E, and compute ψ̂(resp1), a generator for 〈S〉 (see Figure
3.3).

To prove honest-verifier zero-knowledge, we show that we can simulate outputs (com, ch, resp)
that are indistinguishable from valid interactions between a prover and an honest verifier.
To do this, we first choose a random bit ch ∈ {0, 1}.
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If ch = 0, then we follow the protocol by choosing a random `eBB -torsion point R
(and φ(R) using the public parameters) and computing com = (E/〈R〉, E/〈R, S〉). Setting
resp = (ψ, ψ′), we have a valid interaction (com, ch, resp).

If ch = 1, we choose a random supersingular curve E1 and a random `eAA -torsion point S ′

on E1, defining an isogeny φ′ : E1 → E1/〈S ′〉. Then we set E2 = E1/〈S ′〉, com = (E1, E2),
and resp = φ′. By the DSSP assumption, this output is indistinguishable from a valid
interaction.

E E/〈S〉

E/〈R〉 E/〈R, S〉

φ

ψ ψ′

φ′

Figure 3.3: If ψ and φ′ are both known, then we can recover the secret subgroup 〈S〉.

3.4 Compression

Azarderakhsh et al. [2] introduced two techniques for compressing parameters in isogeny-
based cryptosystems. However their implementation was quite slow compared to the run-
time of the isogeny computations. Costello et al. [9] proposed new algorithms for the com-
pression, accelerating the previous work by more than an order of magnitude to achieve a
runtime that is roughly as fast as the isogeny computations while reducing the public key
sizes slightly further.

The first technique of [2] is simple: we can represent an elliptic curve E : y2 = x3+ax+b
by its j-invariant j(E) ∈ Fp2 instead of the two parameters a, b ∈ Fp2 , cutting storage
requirements by a half.

The second technique has to do with representing the public torsion bases. To represent
a torsion point P = (xP , yP ) in the straightforward way, we need two field elements xP , yP ∈
Fp2 . Since the coordinates satisfy the elliptic curve equation y2 = x3 + ax + b, there are
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only two possible values of yP for a given xP , so it can suffice to store just one field element
xP ∈ Fp2 and an additional indicator bit.

The idea of [2] is as follows: just as we can represent a random full-order torsion point
by their coefficients with respect to the public basis, we can represent each public torsion
basis point in terms of their coefficients with respect to some other fixed basis. The new
basis need not be published as a public parameter, as long as all parties are able to generate
the same basis independently by a deterministic algorithm. Since the discrete logarithm
problem is easy on smooth-order curves, one can easily compute the coefficients of the
public torsion basis points with respect to the new deterministically generated basis. With
this approach, each torsion basis point can be represented with two smaller coefficients,
also reducing the storage requirements by a half (we will see a more detailed breakdown in
§5.3). In [9], the public torsion basis is further compressed by using only three coefficients
to represent both basis points.

16



Chapter 4

Unruh’s Construction

Unruh’s construction [34] is a generic transformation which takes an interactive zero-
knowledge proof system and produces a non-interactive one, like the Fiat-Shamir transform
[16]. In contrast to the Fiat-Shamir however, Unruh’s construction satisfies a property
called online extractability which allows us to extract the witness (private key) from a
successful adversary without rewinding, a technique that is problematic in the quantum
setting. It also avoids the problem of determining the query inputs of the quantum random
oracle by including its outputs in the proof (signature) and “inverting” them in the security
proof.

Let R be a binary relation. We say that a statement x holds if there exists w such that
(x,w) ∈ R. In this case, we call w a witness to x. In a proof system, a prover P tries to
prove a statement x to a verifier V (in other words, P tries to convince V that P knows a
witness w to x). We assume that all parties have access to a quantum random oracle H
which can be queried in superposition.

4.1 Sigma Protocols

A sigma protocol Σ = (P, V ), where P = (P 1, P 2), is an interactive proof system
consisting of three messages in order: a commitment com = P 1(x,w) made by the prover,
a challenge ch chosen uniformly at random by the verifier, and the response resp =
P 2(x,w, com, ch) computed by the prover based on the challenge. Then, based on this
interaction, V outputs V (x, com, ch, resp) ∈ {0, 1}, indicating whether they accept or
reject the proof.
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Let Σ = (P, V ) be a sigma protocol where P = (P 1, P 2). We define the following
properties of sigma protocols (from [34, §2.2]):

Completeness: If P knows a witness w to the statement x, then V accepts.

Special soundness: There exists a polynomial time extractor EΣ such that, given any
pair (com, ch, resp) and (com, ch′, resp′) of valid interactions (accepted by V ) with
ch 6= ch′, EΣ can compute a witness w such that (x,w) ∈ R.

Honest-verifier zero-knowledge (HVZK): There is a polynomial time simulator SΣ

with outputs of the form (com, ch, resp) that are indistinguishable from valid inter-
actions between a prover and an honest verifier by any quantum polynomial time
algorithm.

Recall that the isogeny-based zero-knowledge proof of identity from §3.2.3 is a sigma
protocol satisfying completeness, special soundness, and honest-verifier zero-knowledge.

4.2 Non-interactive Proof Systems

A non-interactive proof system consists of two algorithms: a prover P (x,w) outputting
a proof π of the statement x with witness w, and a verifier V (x, π) outputting whether it
accepts or rejects the proof π of x.

For a non-interactive proof system (P, V ), we define the following properties (from [34,
§2.1]):

Completeness: If (x,w) ∈ R, then V accepts the proof π = P (x,w).

Zero-knowledge (NIZK): There exists a polynomial time simulator S such that, given
the ability to program the random oracle H, S can output proofs indistinguishable
from those produced by P by any quantum polynomial time algorithm.

The simulator is modeled by two algorithms S = (Sinit, SP ), where Sinit outputs an
initial circuit H simulating a quantum random oracle, and SP is a stateful algorithm
which may reprogram H and produce proofs using H.

Simulation-sound online-extractability: (with respect to a simulator S = (Sinit, SP ))
There exists a polynomial time extractor E such that, if a quantum polynomial-time
algorithm A with quantum access to H ← Sinit and classical access to the prover SP
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outputs a new valid proof of a statement x, then E can compute (extract) a witness
w of x.

Remark 4.2.1. Granting A classical access to the simulated prover SP is analogous to
granting the adversary access to a classical signing oracle in a chosen message attack in
the context of signatures. We could allow A to have quantum access to SP , corresponding
to a quantum chosen message attack as defined in [6]. We do not know whether Unruh’s
construction remains secure under this relaxation.

4.3 Unruh’s Construction

Unruh’s construction transforms a sigma protocol Σ into a non-interactive proof system
(POE, VOE) so that, if Σ satisfies completeness, special soundness, and HVZK, then the
result is a complete NIZK proof system with simulation-sound online-extractability.

Suppose we have a sigma protocol Σ = (PΣ, VΣ) with PΣ = (P 1
Σ, P

2
Σ), where there are c

possible challenges in the challenge domain Nch and the parties want to run the protocol t
times, where t depends on the security parameter λ (in our signature scheme we will have
Nch = {0, 1}, c = 2, and t = 2λ). Let G,H be quantum random oracles, where G has the
same domain and range. We define a non-interactive proof system (POE, VOE) where POE
and VOE are given by Algorithms 1 and 2 respectively.

The idea is to simulate the interaction in Σ by setting the challenge J = J1‖ . . . ‖Jt as the
output of the random function H. However, instead of evaluating H on the commitments
(comi)i alone as in the Fiat-Shamir transform, we also include the hashes hi,j = G(respi,j)
of the responses respi,j to each possible challenge chi,j, for each commitment comi. Then
the produced proof consists of the commitments, an ordering of all possible challenges,
hashed responses to the corresponding challenges, and the responses to the challenges
given by J1‖ . . . ‖Jt. The verifier can then take the data to reproduce J1‖ . . . ‖Jt, check
that the data was produced properly, and verify the responses (respi,Ji)i for each round of
Σ.

The main theorem of [34] proves that this construction is secure (that it satisfies the
three properties defined in the previous section) in the quantum oracle model. The main
idea of the proof is that, since the random oracle G has the same domain and range, it is
indistinguishable from a random permutation [38], thus it can be replaced by an efficiently
invertible function which is indistinguishable from a random oracle (for example, a random
polynomial of high enough degree [37]). This allows the hashes in the proof to be inverted
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Algorithm 1 Prover: POE on input (x,w)

// Create t · c proofs and hash each response

for i = 1 to t do
comi ← P 1

Σ(x,w)
for j = 1 to c do
chi,j ←R Nch \ {chi,1, . . . , chi,j−1}
respi,j ← P 2

Σ(x,w, comi, chi,j)
hi,j ← G(respi,j)

// Get challenge by hashing

J1‖ . . . ‖Jt ← H(x, (comi)i, (chi,j)i,j, (hi,j)i,j)
// Return proof

return π ← ((comi)i, (chi,j)i,j, (hi,j)i,j, (respi,Ji)i)

Algorithm 2 Verifier: VOE on input (x, π), where
π = ((comi)i, (chi,j)i,j, (hi,j)i,j, (respi,Ji)i)

// Compute the challenge hash

J1‖ . . . ‖Jt ← H(x, (comi)i, (chi,j)i,j, (hi,j)i,j)
for i = 1 to t do

check chi,1, . . . , chi,c pairwise distinct
check hi,Ji = G(respi)
check VΣ(x, comi, chi,Ji , respi) = 1

if all checks succeed then
return 1

to obtain the hidden responses in the adversary’s forged proof, which allows us to obtain
the private key by special soundness.

Theorem 4.3.1 ([34, Corollary 19]). If Σ satisfies completeness, special soundness, and
HVZK, then (POE, VOE) is a complete non-interactive zero-knowledge proof system with
simulation-sound online extractability in the quantum random oracle model.

4.4 Signatures from Non-interactive Zero-Knowledge

Proofs

Definition 4.4.1. A digital signature scheme consists of three algorithms:

20



• Keygen(λ): takes a security parameter λ and outputs a public-private key pair (pk, sk).

• Sign(sk,m): signs the message m using the private key sk, outputting a signature
σ.

• Verify(pk,m, σ): takes the public key of the claimed signer and verifies the signature
σ on the message m.

Definition 4.4.2. A digital signature scheme is strongly unforgeable under chosen
message attack (SUF-CMA) if, for any quantum polynomial time adversary A with
classical access to the signing oracle sig : m 7→ Sign(sk,m), A cannot produce a new valid
message-signature pair with non-negligible probability.

Suppose we have a function Keygen taking a security parameter λ and generating
a public-private key pair (pk, sk) such that no quantum polynomial-time algorithm can
recover a valid sk from pk with non-negligible probability. We say that such a function is
a hard instance generator.

Since a proof of identity just proves knowledge of the corresponding sk for a given pk,
in the context of proof systems it can be viewed as proving the statement x = pk with
witness w = sk, where (x,w) ∈ R if and only if (x,w) is a valid key pair that can be
generated by a hard instance generator Keygen.

From this view, a digital signature is just a non-interactive zero-knowledge proof of
identity for Keygen, except that this ignores the message that is being signed. To in-
corporate a specific message into each proof (or signature), we can simply include the
message as part of the statement while the relation R simply ignores the message. In
other words, the statement being proved is of the form x = (pk,m), and for the re-
lation R, we have ((pk,m), w) ∈ R if and only if (pk, w) is a valid key pair gener-
ated by Keygen. Thus, from a NIZK proof of identity (P, V ), we obtain a digital sig-
nature scheme DS = (Keygen, Sign, Verify) where Sign(sk,m) = P ((pk,m), sk) and
Verify(pk,m, σ) = V ((pk,m), σ).

Theorem 4.4.3 ([34, Theorem 23]). Let Keygen be a hard instance generator and (P, V )
a non-interactive proof of identity for Keygen satisfying completeness, zero-knowledge, and
simulation-sound online-extractability. Define:

• Sign(sk,m) = P ((pk,m), sk)

• Verify(pk,m, σ) = V ((pk,m), σ).
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Then the digital signature scheme DS = (Keygen, Sign, Verify) is strongly unforgeable
under chosen message attack (SUF-CMA) in the quantum random oracle model.

Proof. Suppose there exists a quantum polynomial time adversary A that can forge a new
valid message-signature pair, given access to a classical signing oracle. Since (P, V ) is zero-
knowledge, there is a polynomial time simulator S = (Sinit, SP ) that can indistinguishably
simulate proofs. Then we can use S to simulate the signing oracle (on a signing query
m, output a simulated proof of the statement (pk,m)), and since A cannot distinguish
the simulated signatures, A will be able to forge a new valid message-signature pair, say
(m,σ). Then σ is a new valid proof of the statement (pk,m), thus by simulation-sound
online-extractability, we can efficiently extract a witness sk of pk. This contradicts the
assumption that Keygen is a hard instance generator.
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Chapter 5

Isogeny-Based Digital Signature

Let Σ denote the isogeny-based zero-knowledge proof of identity described in §3.2.3. Ap-
plying Unruh’s construction to Σ, we obtain a non-interactive proof of identity (POE, VOE),
from which we get a digital signature scheme by the method described in §4.4.

5.1 Signature Scheme

Public Parameters. We have the same public parameters as in Σ:

• A prime p = `eAA `
eB
B f ± 1

• A supersingular elliptic curve E of cardinality (`eAA `
eB
B )2 over Fp2

• Generators (PB, QB) of the torsion group E[`eBB ]

Key Generation. To generate a public-private key pair (pk, sk):

1. Choose a random point S of order `eAA

2. Compute the isogeny φ : E → E/〈S〉
3. Output (pk, sk) where pk = (E/〈S〉, φ(PB), φ(QB)) and sk = S.

Signing. To sign a message m with the key sk,

1. Run the zero-knowledge proof of identity 2λ times:

(a) Choose a random point Ri of order `eBB
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(b) Compute the commitment comi = (E/〈R〉, E/〈R, S〉) by computing the
isogenies ψ : E → E/〈R〉 and either φ′ : E/〈R〉 → E/〈R, S〉 or ψ′ :
E/〈S〉 → E/〈R, S〉

(c) Choose a random challenge order (chi,j)j, the responses respi,j for each
challenge, and their hashes hi,j

2. Hash all the commitments, challenges, and hashes of responses together with
the public key pk and the message m to obtain J1‖ . . . ‖J2λ

3. Reveal the response for the challenge Ji for each round i of the zero-knowledge
proof.

4. Output the signature σ = ((comi)i, (chi,j)i,j, (hi,j)i,j, (respi,Ji)i)

Verification. To verify the signature σ of message m:

1. Compute the hash J1‖ . . . ‖J2λ

2. Verify the responses for each round of the zero-knowledge proof protocol:

(a) If chi,Ji = 0, verify that the response is (R, φ(R)) where R and φ(R) have
order `eBB and generates the kernel of the isogeny ψ and ψ′ respectively.

(b) If chi,Ji = 1, verify that the response has order `eAA and generates the kernel
of the isogeny φ′.

Algorithms 3, 4, and 5 gives explicit steps for computing Keygen, Sign, Verify.

5.2 Implementation

We now describe some of the lower-level algorithmic and computational aspects of the
signature scheme. These techniques were developed in [15] and optimized in [10]. We
follow the approach of the latter as our implementation of the signature scheme relies on
their SIDH Library.

5.2.1 Choosing Parameters

To find a suitable prime p, we can try various exponents with `A = 2 and `B = 3, so that
roughly `eAA ≈ `eBB and `eAA `

eB
B f ± 1 is a prime of desired cryptographic size. As in [10], we

fix our prime to be

p = 2372 · 3239 − 1

24



Algorithm 3 Keygen(λ)

Pick a random point S of order `eAA
Compute the isogeny φ : E → E/〈S〉
pk← (E/〈S〉, φ(PB), φ(QB))
sk← S
return (pk, sk)

Algorithm 4 Sign(sk,m)

for i = 1 to 2λ do
Pick a random point R of order `eBB
Compute the isogeny ψ : E → E/〈R〉
Compute either φ′ : E/〈R〉 → E/〈R, S〉 or ψ′ : E/〈S〉 → E/〈R, S〉
(E1, E2)← (E/〈R〉, E/〈R, S〉
comi ← (E1, E2)
chi,0 ←R {0, 1}
(respi,0, respi,1)← ((R, φ(R)), ψ(S))
if chi,0 = 1 then
swap(respi,0, respi,1)

hi,j ← G(respi,j)
J1‖ . . . ‖J2λ ← H(pk,m, (comi)i, (chi,j)i,j, (hi,j)i,j)
return σ ← ((comi)i, (chi,j)i,j, (hi,j)i,j, (respi,Ji)i)

Algorithm 5 Verify(pk,m, σ)

J1‖ . . . ‖J2λ ← H(m,x, (comi)i, (chi,j)i,j, (hi,j)i,j)
for i = 1 to 2λ do

check hi,Ji = G(respi,Ji)
if chi,Ji = 0 then

Parse (R, φ(R))← respi,Ji
check R, φ(R) have order `eBB
check R generates the kernel of the isogeny E → E1

check φ(R) generates the kernel of the isogeny E/〈S〉 → E2

else
Parse ψ(S)← respi,Ji
check ψ(S) has order `eAA
check ψ(S) generates the kernel of the isogeny E1 → E2

if all checks succeed then
return 1
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This prime has bitlength 751, providing roughly 124 bits of post-quantum security. The
field Fp2 is implemented as Fp(i) where i2 = −1. The public curve E over Fp2 can be
conveniently chosen to be:

E : y2 = x3 + x

which is supersingular and has order (p+ 1)2 = (2372 · 3239)2 [28, Exercise 5.4 & 5.10(a)].

To choose generators (PB, QB) for the torsion subgroup E[`eBB ], we can try picking
random points R and checking whether PB := [`eAA ]R has order `eBB , which will succeed
with high probability. We can choose QB in the same manner, and check that PB, QB are
independent by computing and checking that the Weil pairing e(PB, QB) has order `eBB .
This also succeeds with high probability. This gives us a basis (PB, QB) generating the
torsion subgroup E[`eBB ].

Alternatively, following [10], we can make use of the distortion map which is an en-
domorphism τ : E → E mapping a point (x, y) → (−x, iy). The distortion map has the
property that, if PB is a full-order `eBB -torsion point, then so is τ(PB), and withQB = τ(PB),
(PB, QB) generate a large subgroup of E[`eBB ]. They do not generate the full torsion sub-
group, since PB, QB are not independent, thus they are technically not a basis of E[`eBB ].
However, they offer compactness of parameters and simplify implementation while intro-
ducing no known vulnerabilities to the security (even if they did, reverting to the first
method would not hurt performance significantly). We can pick PB randomly as before or,
for more compactness, define it deterministically as PB := [`eAA ](z,

√
z3 + z) where z is the

smallest positive integer such that PB has order `eBB . In our case, we have

PB = [2372](6,
√

63 + 6) QB = τ(PB)

This is the approach we will use for the remainder of this section, and we will refer to
(PB, QB) as the basis points, even though they do not generate the full torsion subgroup.

5.2.2 Sampling Torsion Points

The special generators allow us to sample random full-order torsion points easily. It is
shown in [10] that, for each m′ ∈ {1, 2, . . . , 3eB−1 − 1}, the point R := PB + [m′]QB is
a full-order `eBB -torsion point generating distinct subgroups. This samples from roughly a
fourth of the `eB−1

B (`B + 1) distinct cyclic subgroups of E[`eBB ] of order `eBB .

To compute PB+[m′]QB once m′ is chosen, we can use the three-point ladder algorithm
given in [15, Algorithm 1], which can compute the linear combination efficiently in constant
time, in contrast to the standard double-and-add algorithm.
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Figure 5.1: A small example illustrating the computation of an isogeny whose kernel is
generated by a point R0 of order `6.

5.2.3 Computing Isogenies

To compute an isogeny of degree directly using Vèlu’s formulas would be impractical, as
its runtime is proportional to the size of the kernel which is exponentially large. However,
the isogenies in our cryptosystems have degree `e for some small prime `, and can be
computed as a composition e isogenies of degree `, which is more manageable. We will
give an overview of this method developed in [15].

Let R be a point of order `e and suppose we want to compute the isogeny φ : E →
E/〈R〉 whose kernel is generated by R. One possible strategy for decomposing isogeny
computations is the following:

1. Set E0 = E and R0 = R.

2. For i = 0, . . . , e− 1:

(a) Compute the point [`e−i−1]Ri, which has order ` in Ei.

27



(b) Use Vèlu’s formulas to compute the isogeny φi : Ei → Ei/〈[`e−i−1]Ri〉.
(c) Set Ei+1 = Ei/〈[`e−i−1]Ri〉 and Ri+1 = φi(Ri).

3. Then E/〈R〉 = Ee and φ = φe−1 ◦ · · · ◦ φ0.

This is called the multiplication-based strategy for computing φ, which requires a
quadratic (in terms of e) number of multiplication-by-` operations, and e evaluations of
`-isogenies. Various strategies can be visualized by considering Figure 5.1.

In the figure, the vertices represent points and the dashed edges are directed downwards,
representing multiplication-by-` maps and `-isogeny evaluations for leftward and rightward
edges, respectively. To compute φ, we start with R0 and compute the necessary edges to
compute all points on the bottom line.

There are many different ways (strategies) to do this, as illustrated in Figure 5.2.

Figure 5.2: Some strategies for computing the isogeny φ in Figure 5.1

The left figure represents the multiplication-based strategy described previously. The
right figure represents the isogeny-based strategy where we compute [`e−i−1]R for each i =
0, 1, . . . , e−1 and successively evaluate the isogenies φj on each point. This strategy requires
a quadratic number of isogeny evaluations. While these two strategies require different
numbers of multiplication and isogeny evaluations, they have the same total number of
operations. However, there are balanced strategies which requires fewer operations in total
than either of the extreme strategies, as represented by the middle figure.

The most efficient strategy depends on the relative computational costs of the multiplication-
by-` map and an `-isogeny evaluation, and can be computed efficiently by dynamic pro-
gramming. This method is detailed in [15, §4.2.2].
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5.2.4 Representing of Curves and Points

We use projective coordinates for both points and curve coefficients as in [10] to reduce the
number of field inversions. The curves in our system are isomorphic to Montgomery curves
which have the form E(A,B) : By2 = x3 + Ax2 + x. The Kummer line on a Montgomery
curve, which identifies each point (X : Y : Z) with its inverse (X : −Y : Z), has efficient
point arithmetic and allows us to disregard the Y coordinate in our computations. This
allows us to represent points by just one field element X/Z in Fp2 . However, to compute
linear combinations we require an additional x-coordinate of P −Q to perform differential
addition. We thus include the x-coordinate of φ(PB − QB) as part of the public key.
Isogeny computations are unaffected because a point R and its inverse −R generate the
same subgroup.

In the Montgomery form, it turns out that there are only two isomorphism classes
of Montgomery curves for a given coefficient value A, and they have the same Kummer
line. So the B coefficient also does not affect our computations, and curves can also be
represented by one field element for their A-coordinate.

5.3 Parameter Sizes

Recall that our primes have the form p = `eAA `
eB
B f ± 1 with roughly `eAA ≈ `eBB , and that p

has bitlength 6λ for λ bits of post-quantum security. So we have `eAA ≈ `eBB ≈ 23λ.

Since our curves are defined over Fp2 , each field element requires 12λ bits. Curves are
represented in Montgomery form By2 = x3 +Ax2 +x where the A-coefficient alone suffices
for isogeny computations. Similarly, a point on the Kummer line can be represented by
their X-coordinate. In both cases, we need one field element, requiring 12λ bits.

Compression

Recall the compression technique described in §3.4 which compresses curves to their j-
invariants and torsion points to their coefficients with respect to a certain basis. Since we
are using the Montgomery form of curves which can be represented by one coefficient, the
first technique does not reduce our curve sizes. The second technique does reduce the sizes
of points, since each coefficient requires 3λ bits and a straightforward representation of a
point requires a field element of 12λ bits.
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We can apply the compression to our signature scheme in two ways: first to the public
key and second to the responses ψ(S) for the rounds where ch = 1. The private key and
the other responses (R, φ(R)) are already generated using a 3λ-bit coefficient and as such
do not require additional computation for compression.

Public Keys

The public key has the form pk = (a, x(φ(PB)), x(φ(QB)), x(φ(PB−QB))), where a denotes
the A-coefficient of the public curve E/〈S〉. These four field elements require 48λ bits of
storage.

We can compress the public key significantly by compressing the torsion basis (φ(PB),
φ(QB)), requiring three 3λ-bit coefficients. Moreover, the X-coordinate of φ(PB −QB) is
no longer required since the full coordinates of φ(PB) and φ(QB) can be recovered from
their compressed coefficients. Thus the compressed public key requires 12λ bits for the
curve and 9λ bits for the generators, for a total of 21λ bits.

Private Keys

The private key S can be stored as a single coefficient n with respect to a `eAA -torsion basis
PA, QA (i.e. S = PA + [n]QA), requiring 3λ bits.

Signatures

The signature contains (comi, chi,j, hi,j, respi,Ji) for each round i of the ZKP protocol.
Each commitment contains two curves (E1, E2), each requiring one field element. We
need one bit to indicate the first challenge bit chi,0. We do not need to send chi,1 since
chi,1 = 1−chi,0. The hash hi,j = G(respi,j) should have bitlength 3λ (this will be justified
in §5.4). Note that we do not need to send hi,Ji since it can be computed from respi,Ji .

The response has a different length depending on the challenge bit Ji. If Ji = 0, the
response (R, φ(R)) can be represented by their coefficients with respect to the public bases
at no additional computational cost, requiring only 3λ bits. If Ji = 1, the response ψ(S)
requires 12λ bits as a field element. With compression, ψ(S) can be represented in 3λ bits.

In total, each round of the ZKP requires roughly 24λ + 1 + 3λ + 3λ+12λ
2

≈ 34.5λ
bits on average without compression, and roughly 30λ bits on average with compression.
Although λ rounds of the ZKP sufficed for λ bits of post-quantum security, the signature
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requires 2λ rounds of the ZKP protocol due to the challenge hash being vulnerable to
Grover’s algorithm [19] (see §5.4.1). So the entire signature has size roughly 69λ2 (60λ2

compressed) bits on average.

For instance, to achieve 128 bits of post-quantum security, our signature scheme requires
48λ = 6144 bits (768 bytes) for the public key (336 bytes compressed), 3λ = 384 bits (48
bytes) for the private key, and 69λ2 = 1, 130, 496 bits (141,312 bytes) for the signature
(122,880 bytes compressed) on average.

5.3.1 Comparison

We compare our parameter sizes with various post-quantum signature schemes: the state-
less hash-based signature SPHINCS-256 [4], a code-based signature based on Niederreiter’s
variant of the McEliece cryptosystem [5, 11], a lattice-based signature BLISS [14], a recent
ring-LWE-based signature TESLA# [3], and the multivariate polynomial-based Rainbow
signature [13, 24].

Table 5.1: Comparison of parameter sizes (in bytes) with various post-quantum signature
schemes at the quantum 128-bit security level.

Scheme Public-key size Private-key size Signature size
Hash-based 1,056 1,088 41,000
Code-based 192,192 1,400,288 370

Lattice-based 7,168 2,048 5,120
Ring-LWE-based 7,168 4,608 3,488

Multivariate-based 99,100 74,000 424
Isogeny-based 768 48 141,312

Compressed 336 48 122,880

It is clear from Table 5.1 that our isogeny-based signature achieves very small key
sizes relative to the other post-quantum signature schemes. We note that the variants of
the Merkle signature scheme can achieve smaller (32 byte) key sizes at the same security
level, but require state management. We expect future works in isogenies to improve upon
signature sizes and performance to produce more practical signatures with still compact
keys.
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5.4 Security

Theorems 3.3.1 and 4.4.3 imply that our isogeny-based signature scheme obtained in §5.1
is SUF-CMA. However, one important detail in Unruh’s proof is that the quantum random
oracle G must have the same domain and range for both response types, so that one can
substitute G with a random polynomial and invert hashes in the security proof. In §3.4,
we described compression techniques giving us a few variants of our signature scheme with
a space-time tradeoff (we could compress the public key, the responses, or both), and
in §5.3 we also took G to be a random oracle outputting hashes of bitlength k ≈ 3λ.
While Unruh’s proof applies directly to our compressed signatures, it is invalid in our
uncompressed signature scheme where the responses can have bitlength k or 4k. In this
case, we would need to pad the shorter responses to 4k bits to apply Unruh’s construction.
G should then output hashes of bitlength 4k so that the domain and range of G are both
equal to {0, 1}4k, increasing signature sizes by roughly 18λ2 bits.

We show that neither compression nor padding is necessary—the uncompressed signa-
ture scheme remains secure when G outputs hashes of bitlength k ≈ 3λ. Let DSu denote
the uncompressed signature scheme and DSc denote the scheme where the responses ψ(S)
are compressed.

Theorem 5.4.1. DSc is SUF-CMA in the quantum random oracle model.

Proof. Since all responses are represented by bitstrings of length k, the security of DSc
follows from Theorem 4.4.3.

Theorem 5.4.2. DSu is SUF-CMA in the quantum random oracle model.

Proof. Suppose there exists a quantum polynomial-time adversary A breaking the SUF-
CMA security of DSu. We show that, given a classical signing oracle to an instance of DSc
with quantum random oracle Gc : {0, 1}k → {0, 1}k, we can forge a new valid message-
signature pair for DSc using A.

Suppose we are given the public key pk and a signing oracle to an instance of DSc with
quantum random oracles Gc and H. Let C0, C1 denote the set of possible responses to the
challenge ch = 0, 1 respectively in DSc. Note that both sets have cardinality roughly 2k

and consist of k-bitstrings. We create an instance of DSu with the same setup, except the
quantum random oracle Gu is to be defined as follows.

Let U0, U1 denote the set of possible responses to the challenge ch = 0, 1 respectively in
DSu. Then we have C0 = U0 and |C1| = |U1|, but the elements of U1 are 4k-bitstrings. Let
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C : U1 → C1 denote the compression map taking the field representation of a point ψ(S)
in U1 to its compressed coefficient representation in C1. Then C is a bijection that can
be computed efficiently both ways since the compression map is injective and its inverse
just computes the linear combination. Let G′u : {0, 1}4k → {0, 1}k be a quantum random
oracle such that G′u(z‖x) = Gc(x) for all x ∈ {0, 1}k, where z denotes the all-zeros string
of length 3k. Define Gu : {0, 1}4k → {0, 1}k where

Gu(x) =


G′u(z‖C(x)) if x ∈ U1

G′u(C−1(y)) if x = z‖y where y ∈ C1

G′u(x) otherwise

Since Gu just permutes the inputs according to the bijection C (with MSB zero-padding)
before applying the quantum random oracle G′u, it follows that Gu is indistinguishable
from G′u. Hence A can break DSu when instantiated with Gu.

We give A the same public key pk with quantum random oracles Gu and H. When A
makes a signing query on a message m, we relay it to the DSc signing oracle to get back
a signature

σ = ((comi)i, (chi,j)i,j, (hi,j)i,j, (respi,Ji)i)

where J1‖ . . . ‖Jt = H(pk,m, (comi)i, (chi,j)i,j, (hi,j)i,j) and hi,j = Gc(respi,j). We simply
decompress all responses respi,Ji in σ where chi,Ji = 1, and give this modified σ to A.
Since Gu(C−1(y)) = G′u(z‖y) = Gc(y) for all y ∈ C1, and Gu(x) = Gc(x) for all x ∈ C0

(with MSB zero-padding of input), it follows that the hi,j’s are still valid hashes in DSu
with Gu. Hence the modified σ is a valid signature for m in DSu.

Therefore we can answer A’s signing oracle queries so that A can forge a new valid
message-signature pair (m,σ) in DSu. By similar reasoning, we can then re-compress the
new signature without recalculating the hashes to obtain a valid message-signature pair
for DSc, contradicting Theorem 5.4.1.

5.4.1 Number of Rounds

To achieve λ bits of security, the protocol must be run at least t = 2λ times, since a
quantum adversary can choose arbitrary bits J1‖ . . . ‖Jt, compute simulated proofs using
J1‖ . . . ‖Jt as challenge, then perform a pre-image search on H using Grover’s algorithm
[19] to find a message m that will give the required hash. A faster collision attack does
not seem to apply since an adversary must know the challenge bits beforehand in order
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for their simulated proofs to be verifiable with non-negligible probability. Thus to achieve
λ bits of security against quantum attacks, our signature scheme runs the zero-knowledge
proof t = 2λ times.

We have seen that, in the underlying zero-knowledge proof, revealing responses to both
challenges b = 0, 1 will allow anyone to compute the secret isogeny. Consequently, it is
crucial that our signature scheme does not use the same commitment twice. We show that
this happens with negligible probability.

Recall that p = `eAA `
eB
B f ± 1 ≈ 26λ with `eAA ≈ `eBB ≈ 23λ. There are roughly `eB−1

B − 1 ≈
23λ distinct cyclic subgroups of E[`eBB ] from which the commitments are chosen randomly.
The zero-knowledge protocol is run 2λ times for each signature, so if we sign 2s messages,
we would select 2s+1λ cyclic subgroups of E[`eBB ] at random. An upper bound on the
probability that we will select the same subgroup at least twice is given by the Birthday
bound:

2s+1λ(2s+1λ− 1)

2 · 23λ
≤ 22s+2λ2

23λ+1
≤ λ2

2λ−1

for s ≤ λ, which is negligible in λ.

5.5 Performance

Performance tests of the uncompressed signature scheme1 were run on an Intel Xeon E5-
2637 v3 3.5 GHz Haswell processor running CentOS v6.8, compiled with GCC v4.4.7.
We also present timing results on the high-performance ARM Cortex-A57 processor in
both C and an optimized arithmetic library on ASM [23]. The Juno platform provides
a combination of Cortex-A57 and Cortex-A53 cores for ARMv8 big.LITTLE technology.
However, our software is only benchmarked on a single high-performance Cortex-A57 core
to get the most performance-oriented results. The software is compiled with Linaro GCC
v4.9.4 on a single core 1.1GHz ARM Cortex-A57 running OpenEmbedded Linux v4.5.0.

The signing and verifying algorithms are easily parallelizable with linear speedup, since
the computations required for each round of the ZKP protocol is independent. We have
implemented parallelization for the PC platform. The timing results are summarized in
Table 5.2.

As noted before, the computing costs in the signing algorithm are incurred almost
entirely in the ZKP rounds which can be precomputed offline. With precomputation, the

1Source code is available at https://github.com/yhyoo93/isogenysignature
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Table 5.2: Performance results (in 106 clock cycles) on Intel Xeon E5-2637 v3 3.5 GHz.
Platform Threads Keygen Signing Verifying

1 63 28,776 19,679
PC 2 - 14,474 10,042

4 - 7,449 5,536
ARM (C) - 1,656 767,928 493,797

ARM (ASM) - 123 57,092 36,757

signing algorithm simply needs to evaluate a hash function on the data and output the
appropriate responses for the signature.
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Chapter 6

Conclusion

We presented and implemented a stateless quantum-resistant digital signature scheme
based on supersingular elliptic curve isogenies with very small key sizes, useful for post-
quantum applications with strict key size requirements. Combined with previous works,
these results show that isogenies can provide the full range of public-key cryptographic
primitives including key establishment, encryption, and digital signatures. Though our re-
sults are promising, further improvements are still needed to bring isogeny-based signatures
truly into the realm of practicality.
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