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Abstract
In cone beam breast computed tomography (CT), scattered radiation leads to nonuniform biasing of
CT numbers known as a cupping artifact. Besides being visual distractions, cupping artifacts appear
as background nonuniformities, which impair efficient gray scale windowing and pose a problem in
threshold based volume visualization/segmentation. To overcome this problem, we have developed
a background nonuniformity correction method specifically designed for cone beam breast CT. With
this technique, the cupping artifact is modeled as an additive background signal profile in the
reconstructed breast images. Due to the largely circularly symmetric shape of a typical breast, the
additive background signal profile was also assumed to be circularly symmetric. The radial variation
of the background signals were estimated by measuring the spatial variation of adipose tissue signals
in front view breast images. To extract adipose tissue signals in an automated manner, a signal
sampling scheme in polar coordinates and a background trend fitting algorithm were implemented.
The background fits compared with targeted adipose tissue signal value (constant throughout the
breast volume) to get an additive correction value for each tissue voxel. To test the accuracy, we
applied the technique to cone beam CT images of mastectomy specimens. After correction, the
images demonstrated significantly improved signal uniformity in both front and side view slices. The
reduction of both intra-slice and inter-slice variations in adipose tissue CT numbers supported our
observations.
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1. Introduction
Scattered radiation remains one of the most challenging problems to address in cone beam
computed tomography (CBCT). Presence of scatter in the projection images leads to a reduction
of low contrast sensitivity, artifacts such as dark bands behind dense objects, and slowly
varying CT number nonlinearities known as the cupping artifacts in reconstructed 3D images.
Beam hardening is also known to be a source of similar CT image artifacts. However we have
observed that the x-ray scatter is the dominant cause of cupping artifacts in CBCT breast
scanning geometry1. Similar observations were also reported in the literature2.

To reduce scatter-induced image quality degradation, either scatter rejection or scatter
correction techniques may be used with different effects. Anti-scatter grids3, 4 are also used
in CBCT to preferentially reduce detected scattered radiation during image acquisition. It has
been shown to reduce the cupping and shading artifacts and improve the CT number accuracy.
However, there is little improvement on degradation in the contrast sensitivity due to the
significant attenuation of the primary x-rays by the anti-scatter grid.

To correct for the scatter component in the image data, the scatter signal can be estimated from
either modeling or measurement, and then subtracted from the projection images to obtain
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largely scatter free image data. In the scatter modeling approach, the scatter signals in projection
images could be calculated by analytical, empirical, or Monte Carlo methods for objects with
predetermined compositions and shapes5-9. In the scatter measurement approach, the scatter
signals could be measured directly in the shadows of a beam stop array1, 10-12 or tube
collimator blades13. After the image acquisition phase, a 2D scatter signal map can be
generated by interpolating the signals behind the beam stops or collimator blades in each
projection image. Subsequently, this scatter map is subtracted from the corresponding
projection images to obtain largely scatter free image data.

Although the image correction approach cannot be used to recover the contrast sensitivity, it
is effective in recovering the accuracy of the projection image data for x-ray transmission
measurement, and in reducing the non-uniformity of the CBCT signals that may be depicted
as the cupping artifacts. However, scatter correction performed on the projection images
requires extensive computation to estimate the two dimensional scatter signal profile in
conjunction with the use of sampled physical scatter measurements that are integrated with the
image acquisition process or performed with additional exposures.

In cone beam breast CT14-19 images from a dedicated scanner in which the breast is imaged
in pendant geometry, scatter-induced artifacts follow a more predictable pattern. With these
images, the cupping artifacts appear to be largely circularly symmetric and streak artifacts do
not exist because of the circular shape and soft tissue-only composition of the breast. These
features have allowed us to develop a practical, yet effective, technique to correct for the
cupping artifacts and improve the CT number uniformity in the reconstructed images. In this
paper, the principle and implementation of this technique are described. Application of this
technique to cone beam breast CT images is used to demonstrate the correction procedure and
the resulting benefits. Issues in the implementation of the technique are also discussed.

2. Materials and methods
We have constructed a bench top experimental cone beam CT system and use it to image
mastectomy specimens. For the specimen imaging studies, specimens were delivered directly
from the mastectomy operation room to the imaging laboratory located in the same building.
Mastectomy specimens were placed and scanned in a thin plastic holder by using a flat panel
detector based bench top CBCT system20. During the scans the imaging geometry of the
specimen mimicked the pendant breast scanning geometry; the rotation axis (the z axis) was
almost parallel to the chest wall-nipple direction which was referred as axial direction in the
rest of the text. The front view images (axial slices) and side view images shown in figures
correspond to imaging planes orthogonal and parallel to the axial direction respectively.

Scans were acquired at 80kVp using a clinical, tungsten anode x-ray tube without added
filtration. The estimated mean glandular dose varied between 12 and 24 mGy, and the whole
volume of specimen was scanned in all studies. The images were reconstructed by using the
FDK algorithm21 and the ramp filter. The resulting images demonstrate that the breast tissue
consists mainly of two distinctively different types of tissue: the adipose tissue and the dense
tissue. The latter include the fibroglandular tissue, tumor and skin tissue. Thus, voxels in the
cone beam CT images cover either the adipose tissue or the dense tissue. Only along the border
of the dense tissue structures may the voxels cover a combination of both the adipose tissue
and the dense tissue. Otherwise, the adipose and the dense tissue are visually well separated
from each other. The breast is a relatively simple object consisting of only soft tissue, thus
there is generally no shading and streak artifacts. The shape of the breast approximates part of
an ellipsoid. With the breast centered with the rotating axis and scanned in the pendant
geometry, it may be considered as a circularly symmetric object with which the cupping
artifacts would be symmetric around the breast center in each axial view image.
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Based on our observations above and physics behind the scatter artifacts2, 20, effects of scatted
x-rays and the basis for the correction algorithm may be illustrated with a hypothetical example
in Fig. 1: In Fig.1a, a noise-free axial view of the breast phantom, which is composed of
fibroglandular (solid white circles, we will refer to fibroglandular tissue as dense tissue in the
rest of the text) and adipose tissue is shown. Fig. 1b shows the signal profile along the dotted
line for both x-ray scatter free and x-ray scatter included cases. The bias introduced by scatter
depends on the location (more towards the center) and the tissue CT number (more bias for
higher CT numbers). As a result, the dense tissue close the center had the most CT number
degradation. In Fig. 1c, we illustrated this problem as a nonuniform background and degraded
contrast difference with respect to the background. In breast CBCT images, the nonuniformity
of the background may be so severe that the dense tissue to the center may have smaller CT
numbers than the adipose tissue at the periphery. Therefore, the need for background
nonuniformity correction arises in the implementation of visualization and segmentation
techniques using CT number thresholding. To correct the background nonuniformity ideally,
we assume that we have the prior knowledge about the true background signal. Hence, we can
generate a simple additive background correction value to map back the nonuniform
background to the true background (Fig. 1d). Unlike the ideal scatter correction, where
degraded CT numbers are mapped back to true CT numbers, the ideal background correction
improves the CT number uniformity; the degradation of conrast difference will remain the
same. Although we do not have prior information about the true background signal, which is
a constant, we can pick an “expected” background signal value for the correction procedure.
The difference between true and expected background value will simply introduce a DC shift
to all signals, which has minimal impact on visualization and segmentation techniques.

The above characterization of the cupping artifacts in cone beam breast CT allow us to develop
a post-reconstruction technique to correct for these artifacts. With this technique, the cupping
artifacts can be approximated as an additive background signal profile which lowers the true
tissue signals in a non-uniform way-greater bias towards the breast center. Based on this
approximation, the adipose or dense tissue signal at the voxel located at (x, y) in an axial slice
located at z in the reconstruction volume, Qtissue (x, y, z) can be expressed as follows:

Qtissue(x, y, z) = Qtissue
exp + C(x, y, z) (1)

where,
Qtissue

exp (x, y, z) = Qadipose
exp (x, y, z) or Qtissue

exp (x, y, z) = Qdense
exp (x, y, z) (2)

Qexp
tissue is the expected adipose or dense tissue signals after cupping correction and it is a

constant; C(x, y, z) is the smooth bias signal introduced by the cupping artifact. From Eq. 1, C
(x, y, z) can be estimated by choosing an expected value for Qexp

adipose and subtracting it from
Qadipose (x, y, z). To reduce the noise level for the estimated C(x, y, z), Qadipose (x, y, z) may
be smoothed to be Zadipose (x, y, z) and C(x, y, z) may be estimated and expressed as follows:

C(x, y, z) ≈ Zadipose(x, y, z) − Qadipose
exp (3)

Thus, once estimated, C(x, y, z) can be subtracted from the cone beam CT signals, Qtissue (x,
y, z), to obtain a more accurate representation of the tissue signals, Qcor

tissue (x, y, z), as follows:
Qtissue

cor (x, y, z) = Qtissue(x, y, z) − C(x, y, z) (4)

From Eq. 3, it appears that in order to estimate C(x, y, z), Zadipose (x, y, z) needs to be measured
for every point in the reconstructed volume. However, dense tissue structures are usually
present in a breast and the adipose tissue signals cannot be measured in these structures. Thus,
Zadipose (x, y, z) must be estimated for any non-adipose tissue voxel by employing 2D
interpolation.
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However, the problem then arises as how to automatically sample the adipose tissue pixels
needed for 2D interpolation. This can be done by reducing the 2D problem to 1D by using the
circular symmetry assumption for the cupping artifact. For a typical breast scanned in the
pendant geometry, we can assume it to be a circularly symmetric object centered with the
rotating axis of the scanner. Thus, we can also assume that the scatter (cupping) effect is
symmetric around the isocenter. This means that in an axial image, Zadipose (x, y, z) and C(x,
y, z) have similar values along a ring at the same distance from the isocenter. Thus, they may
be measured at a few selected sampling points and used to construct the correction signals for
all points on the ring. We have developed and tested a concentric rings sampling technique to
obtain sampled measurement of the adipose tissue signal for each different radius and use the
measurement result to construct a 1D radial adipose tissue signal profile (RATP) which can
then be used to form a circularly symmetric background correction signal profile. The sampling
and correction procedures are described and discussed in the following sections. A flow chart
is shown to illustrate the correction technique in Fig. 2.

2.1 Sampling of adipose tissue signals
To reduce fluctuation due to image noise, the images were first smoothed using an averaging
filter with a small kernel (e.g. 3x3) to reduce the noise level. Next, the breast tissue-air border
was detected to determine the region of interest (ROI) to be sampled. A threshold based method
was used for this detection, and a binary ROI mask was created. Pixels with partial volume
effects near the breast borders or in the specimen were discarded to avoid erroneous
measurements. Center of gravity, (x0 (z), y0 (z)), of the binary ROI mask was determined for
each axial slice along z direction. In the following sections, we assume that the center of the
circularly symmetric cupping artifact was located at x0, y0.

To exploit the circular symmetry of the cupping artifact, each axial image, Q(x, y, z)|z=const,
was expressed again in polar coordinates as Q′(r,θ,z), where the origin of the polar coordinate
system was at the center of the breast and r and θ are related to x, y as follows:

r = (x − x0)2 + (y − y0)2 (5)

and

θ = arctan( y − y0
x − x0 ) (6)

Since each axial image was processed independently, we omitted the variable z from the
expressions and equations in the rest of the paper for simplification purpose. Due to the
symmetry of the cupping effect, the adipose tissue signals should be roughly the same along
any ring centered with the breast. Thus, the radial adipose tissue signal profile (RATP) was
measured by extracting the adipose tissue signals over a series of concentric rings with various
radii. Over each ring, the image signals were sampled every 10 degrees, resulting in 36 samples
for each different radius. As the adipose tissue is supposed to have the lowest density and
therefore the lowest CT number on each ring, the adipose tissue signal was determined by
extracting the minimum value from the 36 sampled signals for each radius, ri, to form the
RATP, R(ri):

R(ri) = min Q ′(ri, 0 ° ), Q ′(ri, 10 ° ), …….Q ′(ri, 350 ° ) ri = {r1, r2, ……} (7)

This processing is sometimes referred to as the order statistics filtering (OSF). This tissue
sampling scheme can also be used to create a radial dense tissue profile by selecting the
maximum value from the sample set. In Fig. 3 the axial (front view) image of a mastectomy
specimen is shown. The ring with the radius r shows where 36 samples are collected to
determine the value of R(ri) at ri = r. Fig. 4 shows two randomly picked radial signal profiles,
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(Q′(r,90°) and Q′(r,180°)), and the RATP, R(ri), generated from the image in Fig. 3. As shown
by Fig. 4, dense tissue signals have been filtered out and the extracted adipose tissue signals
in R(ri) clearly demonstrate the radial dependence of the cupping artifacts. Although the RATP
may be slightly underestimated by selecting the minimum value of all image signals to
represent the adipose tissue signal in Eq. 7, it is less noisy than the radial signal profiles due
to the low-pass filtering effect of the OSF.

2.2 Curve fitting for the radial adipose tissue profiles (RATPs)
To successfully use OSF to filter out dense tissue signals and extract an adipose tissue signal
in forming the RATPs, one of the sampled voxels must cover the adipose tissue region. This
is generally the case when the radius is large and the sampled voxels cover a large region.
However, when the radius is small, the sampling ring covers a smaller region which may not
cover any adipose tissue and dense tissue signals would be erroneously extracted for the
RATPs. Thus, the probability of dense tissue contamination in an RATP is inevitably higher
for samples taken close to the origin. An example of this contamination is shown in the 0−14
position range in Fig. 4. A further concern was that samples taken from the outer rings near
the breast border may contain all skin tissue signals and no adipose tissue signals. As a result,
the skin tissue signals would be extracted for the RATPs. Thus, two peaks, one near the center
and one near the border, may appear in the RATPs.

To overcome this problem, we adopted an automated, least-square background estimation
method introduced by Steenstrup22. With this method, an orthogonal polynomial is fitted using
the least-square technique to an array consisting of true background values and non-background
values to obtain a smooth approximation of the background. A weighting factor is assigned to
each data point and adjusted in an iterative fashion so that non-background values get smaller
weights. A more detailed description of this method is given in the Appendix. The background
curve fitting method was applied to the RATP for each axial image and the background fit of
the RATP, Z(r) , instead of the RATP itself, was used in the rest of the correction procedure.
Fig. 5 shows a second order background fit to a simulated RATP, consisting of a slowly varying
noisy background profile to mimic the adipose tissue signals superimposed with the cupping
artifact and two peaks to simulate the dense tissue signals near the center and the skin signals
near the breast border. As Fig. 5 shows, the effects of the two peaks on the fit are minimal, and
the background estimation is in good agreement with the true background.

2.3 Smoothing the RATP background fits along the axial direction
Although the above described background fitting procedure was effective in minimizing the
contamination of the dense tissue or skin signals, the accuracy of the background fit depended
on the magnitude of fluctuations in the RATPs. Furthermore, the dense tissue signals would
not always appear as peaks in RATPs. In some instances, they might appear as slowly varying
perturbations indistinguishable from the noisy background. Thus, the transition of the
background fits from one slice to the next is not uniformly smooth.

This problem was overcome by forcing the background fits to be smooth and slowly varying
by smoothing the polynomial coefficients rather than smoothing the background fits. A
theoretical basis for this technique and applications of this technique has been discussed in
previous literature23-25. The background fitting method described in section 2.2 was employed
again for smoothing the polynomial coefficients. Smooth background fits, Zsmooth (r), were
regenerated by computing the fits with the smoothed coefficients.

In addition to smoothing the background fits in the axial direction, this smoothing technique
was also useful for extrapolation. For instance, the adipose tissue fraction and the area of the
breast tissue drop significantly in the proximity of the nipple, degrading the accuracy of the
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background fits. Extrapolated polynomial coefficients were used for these slices if the area of
ROI was smaller than a predetermined threshold.

2.4 Correction of axial images
For each axial image, the smoothed RATP background fits were transformed back to the
Cartesian coordinates, and used to compute the 2D adipose tissue signal map:

Zadipose(x, y, z) = Z smooth (r) ∣ z (8)

Using Eq. 3 and the expected adipose tissue signal, Qexp
adipose, the correction signal profiles,

C(x, y, z), were computed and subtracted from the cone beam CT image signals, Qtissue (x, y,
z), for correction of the cupping artifacts. As we indicated earlier, the value of Qexp

adipose
represents the expected adipose tissue CT number after correction, and its value was picked as
−50.

3. Results
Fig. 6a shows the cupping artifact signal profile estimated by independently fitting the RATPs
extracted from 200 consecutive axial slice images of a mastectomy specimen. Although most
of the fits seem to follow a slowly varying trend as along the axial direction, transition between
two consecutive slices was not uniformly smooth. Also, a small number of the fits deviated
substantially from the trend, e.g. those at around the 190th slice. The profiles formed by the
fits regenerated with smoothed polynomial coefficients are shown in Fig. 6b. As can be seen,
the slice-to-slice discontinuities were smoothed out, and the outlying inaccurate fits largely
eliminated.

We applied the cupping artifact correction to different sets of mastectomy specimen images
where full reconstructed volumes were corrected. Example axial images from three different
specimens are shown in Fig. 7. First and second row correspond to uncorrected and corrected
images respectively. All images are displayed using the same gray scale window setting. Two
of the specimens were medium sized (Figs. 7a and 7b), with a volume of approximately 800
and 1000 cc respectively, the third one was large (Fig. 7c), with a volume of approximately
2000 cc. As all three specimens had different volumes and are represented by different image
sizes, images were rescaled to the same size for printing. In these images, fibroglandular tissue
(higher CT number, spiculated white colored regions) is visually separated well from the
adipose tissue. The skin is only partially included at the perimeter in Fig. 7a and 7b. Also
several air pockets are visible in Fig. 7a and 7b. Cupping artifacts are clearly demonstrated as
lower signals (darker gray scale levels) towards the center in Figs. 7a, 7b and 7c. Fig. 7d, 7e,
and 7f show the corresponding corrected images in which the cupping artifacts were reduced
to visually undetectable levels. Similar image quality improvements were observed in the rest
of the axial images for all three specimens.

Figs. 8a and 8b show the side view images of a medium-sized specimen (axial view is shown
in Fig. 7b) without and with the correction, respectively. Both images are displayed at the same
gray scale window setting. As seen in the images, the CT number nonuniformity varies slowly
along the vertical direction, indicating that the magnitude of cupping artifact changes from
axial slice to axial slice. After cupping correction, gray scale values appear to be more uniform
along the central axis of the breast. Also, row-to-row signal variation is smooth, demonstrating
the benefit of using smoothed polynomial coefficients to generate correction signals for
different slices. The horizontal streaks in the upper section of the images are metal artifacts
due to metal surgical clips in the tissue.
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The CT number histograms of a corrected and an uncorrected image are shown in Fig. 9. The
improvement in signal uniformity is indicated by the narrower peaks, and better separation of
the adipose and dense tissue signals in the corrected image. It should be noted that the adipose
tissue peak in the histogram is close to the expected adipose tissue signal value, −50.

Since the ground truth for cupping nonuniformity was not known, we investigated the relative
improvement in adipose tissue CT number uniformity by segmenting the adipose tissue in the
reconstructed volume. To achieve this, we employed a seeded region growing algorithm26
with a fixed threshold to create a binary adipose tissue mask from the cupping artifact corrected
images. The binary mask was then applied to both corrected and uncorrected images to get
identical sets of adipose tissue–only voxels. Segmented regions were smoothed to reduce the
stochastic noise. We analyzed the images by computing the mean and standard deviation of
image data in the segmented regions in each axial image. The variation of the mean along the
axial direction measures the inter-slice uniformity. The standard deviation for data in each slice
measures the intra-slice uniformity.

In Fig. 10a and 10b, the mean and standard deviation of adipose tissue signals are plotted as a
function of the axial position for a medium-sized and a large specimen, respectively. (Axial
images of these specimens are shown in Fig. 7b and Fig. 7c, respectively.) The variation range
of the mean and standard deviation values are summarized in Table I. In Fig. 10a, the mean
CT numbers varied from −136 to −116 before correction and from −36 to −21 after correction.
The standard deviations of the adipose tissue signals in the uncorrected axial images varied
from 16 to 31 before correction. After correction, the standard deviation values were smaller
and more uniform, varying from 10 to 10.5. As shown by Fig. 10b, the mean CT numbers were
significantly lower for the large specimen before correction, ranging from −225 to −190. After
correction, they ranged from −35 and −14. The standard deviations of the adipose tissue signals
in the uncorrected axial images were quite high as the result of severe cupping artifacts
associated with the higher scatter component in the projection images of a large specimen.
They varied from 60 to 72 before correction but were reduced to from 11 to 14 after correction.

4. Discussion
A post-reconstruction technique to correct for cupping artifacts has been developed for CBCT
images of mastectomy specimens. With this technique, cupping artifacts are assumed to be
additive background signals in the reconstructed images and quantified by measuring the
spatial variation of the adipose tissue CT numbers. Using this correction technique, we could
reduce the cupping artifacts to a visually undetectable level, making it easier to adjust the gray
scale window/level for proper display of the entire CBCT image. The quantitative accuracy of
the CBCT data was also improved, making it possible to apply threshold based visualization
techniques or quantitative studies.

As can be seen in Fig. 9 and Fig. 10, a threshold-based image segmentation could be inaccurate
in differentiating between adipose and fibroglandular tissue without first correcting for the
cupping artifacts. As shown in Fig. 10b, the standard deviation of the adipose tissue CT number
can exceed 70 in an uncorrected axial image. Hence, the adipose tissue CT numbers in the
central region of the specimen can be 140 units lower than those in the periphery. Given that
the contrast difference between the adipose and dense tissues is about 150, the CT numbers of
the dense tissue in the central region could be at a similar level as those of the adipose tissue
in the periphery. However, after correction using our technique, the standard deviation of the
adipose tissue signals could be reduced to around 14, allowing image segmentation to be
accurately performed.

Altunbas et al. Page 7

Med Phys. Author manuscript; available in PMC 2007 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



As our correction technique involves processing of the reconstructed images only, it does not
require any prior calibration or hardware modifications for scatter signal measurements.
Furthermore, empirically determined parameters such as order of the background fit are
insensitive to the breast tissue size, composition, or x-ray technique settings. Thus, manual
selection of a region-of-interest or threshold level is not required, allowing the correction to
be performed with minimal user intervention.

Due to the simplicity of our technique, only modest computation power is required. First of
all, the iterative background fits were performed on the one dimensional RATPs extracted from
the axial images instead of the images themselves, leading to a significant reduction of the
computation required. Moreover, the RATPs may be measured and sampled every several
slices to generate the background fit coefficients for all axial slices. Background fit coefficients
for skipped slices could be obtained by interpolation while smoothing the polynomial
coefficients. This would further reduce the computation requirement without significantly
affecting the accuracy of the correction.

In actual scanning situations, the central axis of the breast may not align well with the isocenter.
To investigate the effect of this misalignment, we scanned cylindrical water phantoms placed
off the rotating axis of the CBCT scanner. Despite the resulting asymmetric scatter distribution
in the projection images, the correction technique still worked and could be used to reduce the
cupping artifacts to an undetectable level both visually and quantitatively. A further concern
was that since our cupping artifact correction technique is based on the analysis of the adipose
tissue signals, it may not apply to very dense breasts. This may constitute a problem for a small
fraction of breast tissues (∼10%) which appear very dense in mammograms27. To address this
issue, the tissue sampling scheme and background fitting algorithm can be modified to create
a second correction algorithm that exploits the nonuniformity in fibrogladular tissue signals.
Although such a modification of the algorithm is trivial, it requires implementation of a
selection step to decide on which algorithm to use depending on the dominant tissue type in
the image data. Since none of the mastectomy specimens studied were classified as very dense,
this issue needs to be investigated in future studies.

It should be noted that in addition to introducing a cupping bias, scattered radiation detected
as part of the image signals also degrades the contrast sensitivity. The correction technique
described in this paper is intended for improving uniformity of tissue signals but not for fully
recovering the true CT numbers or the image contrast. With the correction technique described
in this paper, the local contrast and noise level of the reconstructed images remain unchanged.
A detailed discussion on effects of x-ray scatter on CT number accuracy can be found in 2.

Based on our initial experiences with cone beam breast CT, superior tissue contrast can be
achieved while overlapping of tissue structures is eliminated. However, tumors are still
detected and recognized on the basis of their distinctively different morphological appearance
rather than on the contrast between dense tissues and tumors. Thus, volume visualization and
segmentation techniques may become the key tools for detecting and recognizing tumors.
However, the development of such techniques requires efficient gray scale thresholding of the
image data, which may be hampered by the background nonuniformities associated with
cupping artifacts. The correction technique reported here may improve the uniformity of the
CBCT image data thus facilitating the development of accurate volume visualization and image
segmentation techniques.
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Appendix
Background trend fitting algorithm is explained in this section. For any given axial slice, the
value of an RATP at ri can be approximated by an nth order background fit, Z(ri), and it is given
as:

R(ri) ≈ Z(ri) = ∑
j=0

n
cj pj(ri) (9)

where pj(ri) is a polynomial of degree j. During the weighted least squares fit, the coefficients,
cj’s, are determined iteratively by minimizing the error function, E:

E = ∑
i=1

N
wi(R(ri) − Z(ri))2 (10)

where wi is a weighting factor assigned to R(ri). Each polynomial pj(ri) satisfies the following
orthogonality condition:

∑
i=1

N
wi pj(ri)pk(ri) = gkδ jk (11)

where gk is a normalization constant. Also, each higher order polynomial may be obtained
using the following recurrence relation:

p j+1(ri) = (ri − aj)pj(ri) − bj p j−1(ri) (12)

where aj and bj are constants that depend on the polynomial order. aj, bj, and cj are calculated
by applying the orthogonality condition in Eq. 8. For example, cj’s may be computed as follows:

cj = ∑
i=1

N
wiR(ri)pj(ri) (13)

Proper selection of wi’s is the key to achieving optimal background fitting. wi’s for points with
background signals are selected to be higher than those for points with non-background signals
as follows:

If R(ri) ≤ Z(ri) + m × rms then R(ri) is considered as a background point and
wi = 1

Z(ri) (14a)

Similarly, if R(ri) > Z(ri) + m × rms then R(ri) is considered as a non-background point and
wi = 1

(Z(ri) + R(ri))2 (14b)

In Eqs. 14a and 14b, rms is calculated as follows:

rms =
∑

i∊background
N (R(ri) − Z(ri))2

Nb − f (15)

where Nb is the number of all background points identified in the previous iteration, and f is
the order of the polynomial. For the first iteration, since there is no previous iteration, the
summation is operated on all points. In using Eqs. 14a and 14b to compute wi‘s, m needs to be
determined empirically and we have set m to 2 to successfully minimize the effects of the non-
background data points in the background fit. The iteration was repeated until E converged to
a minimum value. Since the background signal trend in the RATPs was a slowly varying one,
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we employed second order polynomial for the fits. Higher-order polynomial fits were found
to have little impact on the quality of the fit but result in oscillations near the end points.

The criteria for determining weighting factors in 14a and 14b is tailored where the the peaks
appear as larger numbers with respct to background. The weighting criteria can also be
modified to estimate a background hidden behind dips rather than peaks.

The method described above was also implemented to smooth the background fits in the axial
direction. However, instead of directly smoothing the fitted background (adipose tissue)
signals, the coefficients of the background fits were smoothed and then used to regenerate the
background signal profile. Eqs. 9-15 can be easily modified to obtain a smoothed coefficient,
aj

smooth(zl), from the original coeffient, aj (zl), by weighted least square fit as follows:

ak(zi) ≈ aksmooth (zi) = ∑
j=0

n
cj pj(ri) (16)

Unlike fitting the RATPs, the outlying data values could be either larger or smaller than the
fitted value. Thus, the weighting scheme was modified as follows:

If ∣ ak (zi) − a smooth k (zi) ∣  > m·rms then aj (zl) is considered as a nonbackground point and

wi = 1
(ak(zi) + a smooth k(zi))2

(17a)

Otherwise, aj
smooth(zl) is considered as a background point, and:

wi = 1
ak(zi) (17b)

The value of m was kept as two. Because the differential change in polynomial coefficients of
the same order should be smooth and slowly varying along the z-axis, a third order polynomial
was fit to each coefficient set. The background fits were then regenerated with smoothed
coefficients.
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Figure 1.
Illustration of an axial breast CBCT image is shown in (a). White solid circles represent
fibroglandular tissue and the gray area represents the adipose tissue. The signal profiles along
the dotted line is plotted in (b). (b) shows the signal profile with and without scatter artifacts,
and the background profiles are marked in (c). The comparison of corrected signal profiles
after ideal scatter correction and ideal background correction is shown in (d).
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Figure 2.
Flow chart of the cupping artifact correction method.
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Figure 3.
An axial view of the breast mastectomy specimen CBCT image. Two lines represent the radial
profiles of the image at θ equal to 90 (1) and 180 (2). The intersection points of the circle and
the radial profiles show two sample locations at a distance r from the origin.
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Figure 4.
Radial adipose tissue profile (RATP) of the axial slice shown in Fig. 3. Two sample radial
profiles taken from Fig. 3 were also plotted for comparison.
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Figure 5.
Background fit to a simulated RATP. The curve fit is in agreement with the true background.
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Figure 6.
Background fits to RATPs are shown as a function of axial slice location. (a) Fits before
polynomial coefficient smoothing. (b) Regenerated fits obtained after polynomial coefficient
smoothing.
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Figure 7.
Sample axial views picked from three different mastectomy specimen CBCT image sets are
shown before (a, b, c) and after correction (d, e, f). Images were rescaled to the same size to
display in the same figure and they are displayed at the same gray scale window setting.
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Figure 8.
Side views of a medium size mastectomy specimen CBCT images are shown before (a) and
after correction (b). Both images are displayed at the same gray scale window setting. In (a),
it’s clearly visible that the magnitude of nonuniformity due to cupping varies in the vertical
direction. In (b), nonuniformity was reduced to visually undetectable levels.
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Figure 9.
CT number histogram for uncorrected and corrected images of an axial slice is shown. Note
that the difference between the adipose tissue and dense tissue signal peak is 150.
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Figure 10.
Means and standard deviations of adipose tissue CT numbers in axial slices of medium (a) and
large size (b) specimens. Values are plotted as a function of position along the axial direction.
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Table I
Mean and standard deviation of adipose tissue CT numbers in axial breast mastectomy specimen CBCT images.

Variation in mean value (CT #) Variation in standard deviation (CT #)
Min Max Min Max

Medium size specimen
Before correction −136 −116 16 31
After correction −36 −21 10 10.5
Large size specimen
Before correction −225 −190 60 72
After correction −35 −14 11 14
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