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Abstract

In 1944, E. Post proposed a program that would lead to the identification of
separate degrees of recursively enumerable sets. Post proposed to identify structural
properties that sets of different degrees would not share. Thus proving such a
property for sets in one degree would imply that these sets are not in the other.
We propose a similar program for the separation of complexity classes and identify
three properties that are potential separators: auto-reducibility, robustness, and
mitoticity. Some partial results that do separate complexity classes have already
been established. Also, answering the question whether complete sets in certain
classes do or do not have these properties either way gives an answer to separation
problems of central interest.

1 Introduction
The major quest for the complexity theory community is finding methods that may
separate complexity classes. For the standard sequential hierarchy of complexity classes,
P, NP, PSPACE, EXP, NEXP, EXPSPACE,... we know that e.g., P 6= EXP by the
ancient hierarchy theorems. However in the game of separating complexity classes, the
hierarchy theorems have a big drawback. Their proofs relativize, as do many other
techniques currently known in complexity theory. As there are oracle worlds in which
e.g., P = PSPACE and others where P 6= PSPACE, such proofs can never be used to
determine the relations we are currently interested in.

Many approaches have been tried in recent and more distant history to prove com-
plexity classes different. We name a few.

Lower bounds. The most direct approach to proving that complexity classes A and
B are not the same is of course to take a problem in one class and prove a lower bound
on it’s computational complexity that shows that it is not in the other. However, most
complexity classes of interest have rather large flexibility. Most time bounds that define
time complexity classes are closed under taking polynomials and hence a lower bound
would imply quite a gap between A and B. As an example, better than linear lower
bounds have yet to be proven for satisfiability.

Diagonalization. Another way of proving that A and B are different is by con-
structing a problem in B that is not in A. Therefore we take an enumeration of all
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“A-machines” and construct a language that is in B, but differs from every “A-machine’s
language” in at least one point. To be able to diagonalize we have to have a single
machine of “B-complexity” that is able to simulate all A languages, in other words B
has to have a universal language for A. This often means that A and B are rather far
apart. Also, most known diagonalization proofs relativize. Most notably, the well-known
time and space hierarchy theorems [11] have proofs of this type and relativize als already
mentioned above. There exist broad consensus nowadays that techniques that relativize
are of rather limited use.

Stronger Hypotheses. Sometimes it is easier to prove a more general statement,
from which the statement of interest then follows To give a rather trivial example, it can
be quite hard to prove that a given graph is 4-colorable, yet its 4-colorability would follow
easily from its planarity, which is easy to prove. This is the idea behind the formulation
of hypotheses even stronger than the separation of complexity classes we are interested
in, and work on proving them. As an example, the Berman-Hartmanis conjecture that all
NP-complete problems are isomorphic immediately implies P 6= NP, as do the following
more recent hypotheses

1. The measure hypothesis: NP does not have p-measure 0.

2. The pseudo-NP hypothesis: there is an NP- language L such that any DTIME(2ne
)

language L′ can be distinguished from L by an NP refuter.

3. The NP-machine hypothesis: there is an NP machine accepting {0}∗ for which no
2ne-time machine can find infinitely many accepting computations.

Recently, Hitchkock and Pavan proved some interesting relations between these hypothe-
ses [10]. Thus far however, attempts to prove that e.g., NP does not have p-measure 0
have not been succesful.

The approach we propose is of a different type. To show that classes A and B are
different we could also identify some property such that some sets in B have the property,
whereas all sets in A do not have the property. It then follows that A 6= B, without the
direct proof of a difference in computational complexity. The difference between A and
B then proven is the structural difference involving the property. This approach is not
new. It was first proposed in 1944, by E. Post, who then sought to prove that there were
more than just two Turing degrees in r.e. (namely 0 and 0′). That problem was resolved
by Friedberg and Muchnick [8, 12], who constructed incomplete sets by diagonalization.
This was however not the type of solution that Post envisioned. His program was aimed
at constructing nonrecursive r.e. sets with very “thin” complements, resulting in a set
that could not be Turing complete. Such a set was finally constructed by Degtev [7].
In complexity theory a similar approach can be identified e.g., in the work on sparse
sets. Mahaney proved early-on that sparse sets cannot be NP-complete unless P = NP
as an addition to the aforementioned Berman-Hartmanis conjecture and much work has
been done since on sparse sets in complexity (See [9]) In fact sparseness is a structural
property with which unconditionally the difference between complexity classes can be
shown. It is known that EXP does not have sparse many-one complete sets [3] whereas P
does. Therefore P 6= EXP. The interesting question is therefore whether NP has sparse
m-complete sets. If it does, then NP 6= EXP and if it doesn’t then P 6= NP.
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In this survey we concentrate on three different structural properties for which sim-
ilar results have been achieved. These properties also give a direct separation between
complexity classes. Most notably, these properties do not relativize. Results that hold
for these properties in the real world are not true in some oracle worlds.

1. Auto-reducibility. A set A is auto-reducible if there exists a polynomial time oracle
machine M such that (∀x)A(x) = MA−{x}(x) = MA∪{x}(x). That is, membership
in A can be determined by M by asking queries of A other than x.

2. Robustness. A set A is robust against some other set S under reduction type r if
A− S ≡r A.

3. Mitoticity. A set A is weakly mitotic under reduction type r if A ≡r A1 ≡r A2

where A = A1 ∪ A2 and A1 ∩ A2 = ∅. A is moreover mitotic if there exists a set B
in P, such that A1 = A ∩B and A2 = A ∩B.

Some obivious relations hold between these properties, e.g., if A is strongly mitotic,
then A is also auto-reducible, but the converse is not necessarily true (see [?]), and if A is
not auto-reducible, then A is also not robust. For the investigation of the abovementioned
properties we focus on complete sets. Why? For the complexity classes in the complexity
hierarchy, the inclusion relation holds. If A ⊆ B and A 6= B, then at least the complete
sets in B are not in A. Therefore, complete sets in B might have properties that complete
sets in A do not, or vice versa.

2 Auto-Reducibility
There will not be many proofs in this survey. Nonetheless, we begin this section with the
proof of the theorem that all exponential time complete sets are auto-reducible, because
it is a beautiful example of a non-relativizing proof and this proof idea underlies many
of the other results concerning auto-reducibility and robustness.

Picture an exponential time computation of a Turing machine as in Figure 1, comput-
ing membership of a string x in an exponential time complete set A by a Turing machine
M running in time 2p(|x|). Since this is a tableau of an exponential-time computation, the
contents of every cell in this tableau can be computed by an exponential-time machine,
and since there are only exponentially many cells in the tableau all cells can be computed
by an exponential-time machine. Since A is complete for exponential time, there exists a
polynomial time oracle machine, call it Mtableau that can perform either of the following
tasks on input x.

1. Use oracle B to compute the outcome of the computation M(x). (Without loss of
generality, assume that this outcome can be read from the cell in position (i, j) =
(2p(|x|), 2p(|x|)).)

2. Using oracle B∆{x}, find the coordinates of the first inconsistency (i, j) in the
computation done in the previous item, or report failure.

Now Mtableau simply has to perform these tasks for B = A − {x} and/or B = A ∪ {x}.
One of these is the correct oracle. Therefore, for one of these it must both compute
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Figure 1: an exponential time computation

the right outcome, and report failure in trying to find an inconsistency. Note here that,
though Mtableau finds the inconsistent cells, if they exist, using oracle B∆{x}, checking
that they are indeed inconsistent only involves oracle B.

On the other hand, not every complexity class has the property that all Turing com-
plete sets are auto-reducible. We can in fact eventually both code the universal set K
and simultaneously diagonalize against polynomial-time Turing reductions. This involves
a surprising property of polynomial-time Turing reductions. Namely they can either be
forced to reject an input string consistently or will accept a given input string no matter
how one plays with the oracle. We dubbed this the “type” of the reduction in [6], type 0
or type 1. Though this property seems mysterious, it is a rather easy consequence of basic
logic. Let us first look at the setup of the diagonalization. We take a Turing complete
set, which will be complete through a very simple reduction. It will consist of strings
〈0, x〉 and 〈1, x〉, for strings x ∈ Σ∗ and strings 0b(n) for some suitable fast increasing
function b(n). Without loss of generality, 〈i, x〉 is not in {0}∗. In certain regions, we
wish to code K, the complete set either on 〈0, x〉 or on 〈1, x〉 and say whether we did so
by putting 0b(n) either out of (if coding is on 〈0, x〉) or in (if coding is on 〈1, x〉) the set
we are constructing. This can be done thanks to the aforementioned property: Given n,
let A be the set of all strings of length n through 2n, and some polynomial time oracle
machine M . Either (∀B ⊂ A)(∃C ⊂ A) such that M 〈0,B〉∪〈1,C〉(0n) = 1, or ∃B ⊂ A such
that (∀C ⊂ A)[M 〈0,B〉∪〈1,C〉(0n) = 0]. This is evidently true, since the or part of this
claim is just the logical negation of the either part. However this means that any oracle
machine can either be forced to accept (either case) while we can encode K on the set
〈0, B〉 or it can be set up to reject (or case) while we can encode K on the set 〈1, C〉.
To complete the reduction, we put 0n in the set only in the second case and note that
this does not change the situation since the auto-reduction cannot query 0n. It is only
the vast amounts of strings that have to be considered finding the type of the reduction
that makes that the diagonalization must be done in double exponential space. Basically
we need to compute the behavior of the Turing reduction on all subsets of A that can
be queried on input 0n before we can decide whether it is of type 0 or type 1. Since
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a Turing reduction can be viewed as an exponentially bigger truth table, which can be
inspected line-by-line to determine the type in double exponential space, this behavior
can be computed in double exponential space.

Some remarks can be made.

• Looking closer at the type computation, its complexity can be brought down to a
nonconstant number of alternations of exponetnial time quantifiers, since actually
only a superpolynomial bound on the length of strings in the type computation is
needed.

• Limiting the reduction to truth table reductions, the space used in computing the
type can be brought down to single exponential. Therefore, there exist non-truth-
table auto-reducible sets in exponential space.

• The type of the reduction can be oracle information. Therefore there exists an
oracle A such that EXPA has non-auto-reducible Turing complete sets.

These theorems lead to the following set of consequences of answers to various auto-
reducibility questions.

question yes no
Are all ≤T -complete sets in EXPSPACE NL 6= NP PH6= PSPACE
≤T auto-reducible?
Are all ≤T -complete sets in EEXP NL 6= NP PH 6= EXP
≤T auto-reducible? P6= PSPACE
Are all ≤tt-complete sets in PSPACE NL6= NP PH 6= PSPACE
≤tt-auto-reducible?
Are all ≤tt-complete sets in EXP NL6= NP PH 6= EXP
≤tt-auto-reducible? P6=PSPACE

3 Robustness

3.1 Non-adaptive reductions

Robustness of a (complete) set is the extension of the auto-reducibility question to a set
of forbidden queries. It is clear that, if a sufficiently dense set is taken as a forbidden
set of queries, then completeness is lost. The question that we ask in the robustness
setting is: how dense can the set of forbidden queries be and what can it’s computational
complexity be. Let us begin with an easy example. If EXP has polynomial-size circuits,
i.e., a sparse complete set, then EXP also has a tally complete set T . A proof for this
can be found, e.g., in [4], but the theorem is much older. Since P 6= EXP, the empty set
cannot be complete in EXP. Therefore, if we declare the set {0}∗ as forbidden queries,
the set T will no longer be complete. In other words T − {0}∗ is not complete for EXP,
even if T is. If EXP does not have polynomial size circuits then the situation is different.
In fact one can easily see that for any A that is many-one complete in EXP (hence not
sparse) and any sparse polynomial time computable set S, the set A−S is still many-one
complete.
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This changes when we let the density of S grow. For any fixed ε > 0, the set
{〈x, 0|x|

d 1
ε e〉 | x ∈ K} is clearly complete for EXP. On the other hand, the set S =

{〈x, 0|x|
d 1

ε e〉 | x ∈ Σ∗} is polynomial-time computable, and K−S = ∅ and hence not com-
plete in EXP. However, for every many-one complete set A in EXP and subexponentially
dense and subexponential-time computable set S it is shown in [5] that.

1. A− S remains complete under randomized many-one reductions, and

2. A− S remains Turing complete.

The theorem is proved by observing that since sets in EXP are complete under 1-1
reductions and dense, there must be many strings x such that a many-one reduction of
K ×Σ∗ to A produces a string in Σ∗−S, i.e., a string that can be queried. Such a string
is produced with high probability by a randomized reduction, because there are many.
On the other hand, an iterative proces querying A − S can produce such a string. Let
f ′

K be a 1-1 reduction from K × Σ∗ to A. Since S is of subexponential density we only
have to compute fK′(x, y) for a subexponential number of strings y to come up with a
string that is outside S. Moreover, taking the first |x|/2 bits of x as input, say this is z, a
computation of complexity roughly 2|x|/2 can come up with a string y such that fK′(zv, y)
is not in S for all v with |zv| = |x| (hence fK′(x, y) is also not in S). But then, since
A is complete, the outcome of this process can be translated to a query to A which has
about half the size of |x|. Thus, to be able to answer this query, a new string has to be
found that is also outside S, but at a smaller length. At the bottom of this process, see
Figure 3.1, simply all strings can be examined. One of these will give a string outside
S for the next level higher up, which will give a string for the next level higher up etc.,
until we find a string that fits x.

The proof can be generalized to 2-tt reductions by, but by the non-autoreducibility
result of the previous section, it can not be generalized to 3-tt reductions. Moreover, by
the same non-autoreducibility result, the proof does not relativize.
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3.2 Adaptive Reductions

Since Turing complete sets for EXP may be sparse, the robustness question for sets of
polynomial or higher density is difficult to answer without tackling long-standing open
problems. We can however address this question for sets of logarithmic density. The basic
idea is the same as the proof of the auto-reducibility of exponential-time complete sets.
We observe that the tableau that is used there can also be recomputed by a reduction that
is not allowed to query a fixed set of small, logarithmic density. Instead of just assuming
the answer to the input, such a reduction could assume the answers to a set of queries
whose cardinality is limited by the logarithm of the length of the input as well. The
number of possible settings of the answers to these queries is bounded by a polynomial
in the length of the input. Thus a polynomial number of “competing” algorithms can be
set up, that use the oracle A− S to try to answer the question “x ∈ A?”

Some of these algorithms claim x ∈ A, whereas others claim x /∈ A. As all possible
settings to queries that fall into S are considered at least one of the algorithms must
compute the right answer. Moreover, the algorithms that claim the wrong answer, must
compute inconsistent contents in at least one place in the tableau. Finnaly, such incon-
sistent contents can be recovered by an algorithm that has the right1 oracle setting. The
number of different settings and runtimes are bounded by a polynomial. Hence all of
these computations can be performed by a single machine using oracle A− S.

As with the auto-reducibility results this result does not relativize and can be general-
ized to include the delta classes in the exponential-time hierarchy. This has the following
consequences.

question yes no
Are ≤m-complete sets in EXP robust
against subexp-dense P sets? open EXP ⊆ 2o(n)-circuits
Are ≤T -complete sets in EXP robust
against sparse P sets? EXP 6⊆ P/poly open
Are ≤ T -complete sets in EEXP robust
against log-dense P sets? P 6= PSPACE PH 6= EXP

4 Mitoticity

The third and strongest form of redundant storage of information in a complete set is that
of mitoticity. In the robustness problem we ask what happens to the complete set when
we take out a set S. In the mitoticity problem we are not only interested in the density
of the set taken out, but also in its structure. What if we take out of a complete set A
another complete set B. Can A still remain complete? In other words, can we split a
complete set A into two complete sets A1 and A2. As we mentioned in the introduction,
there are two different types of this mitoticity property. The most general is the one
in which we just ask: ist there a separation? We call this notion weak-mitoticity. A
stronger notion, introduced under the name mitoticity by Ambos-Spies [2] is the notion
where there exists a set B in P where A1 = A∩B and A2 = A∩B. Of course, mitoticity

1An algorithm trying to find inconsistencies in the tableaux computed by competing algorithms may
ask a different set of queries, yet as the total number of queries is bounded by log|x| the total number of
settings is still bounded by a polynomial.
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implies weak-mitoticity. Mitoticity questions are dependent on the type r of the reduction
and are therefore often specified as r-mitoticity, respectively weak-r-mitoticity.

A proof that all many-one complete sets in EXP are weakly-p-m-mitotic can be found
in [4]. The following proof that many-one complete sets in EXP are also p-m-mitotici is
due to Kurtz [13].

Consider a many-one complete set A in EXP. It is known that A is complete under
length increasing reductions. Let f be a length increasing reduction from K × {0}∗ to
A, and let p be a polynomial such that (∀x)[|x| < |f(x)| < p(|x|). Now set g(1) = 1 and
g(n) = p(g(n − 1) + 1 and let B = {y|g(2n) ≤ |y| < g(2n + 1)}. Clearly, B ∈ P. Also,
A ∩ B and A ∩ B are many-one complete for EXP. To see this we provide a reduction
from K to A∩B (A reduction from K to A∩B can be constructed similarly. For x ∈ Σ∗

we compute f(〈x, ε〉), . . . , f(〈x, 0p(|x|+1)〉). At least one of these strings must be in B,
hence in A ∩B if and only if x ∈ K. We use the first such string in this sequence as the
query string for our reduction from K to A ∩B.

The above proof can be extended to show that the complete sets under 2-tt reductions
are also 2-tt mitotic. The idea of the proof is, given that thee are only 16 different 2-tt
reductions, a 2-tt complete set can, by case analysis, be shown to be complete under 2-tt
reductions that depend only on queries longer than the input. Then Kurtz’ proof can be
adapted to also show the theorem for 2-tt reductions.

From the relation between mitoticity and auto-reducibility, it follows again that this
does not go through for 3-tt reductions. The question whether all Turing complete sets
in EXP are also Turing mitotic still remains open. A nice picture of consequences to
mitoticity questions as in the previous section cannot (yet) be made.

Recently Glaßer et al. [?] proved some new results on mitoticity and autoreducibility.
They showed, e.g., that the PSPACE complete sets are weakly Turing mitotic, which
makes the remaining open question for the Turing mitoticity for EXP more urgent, but
it also implies that proving non-mitoticity for EXP could be quite hard. A yes/no sepa-
ration result like the results in the previous sections could be a non-mitoticity result for
EXPSPACE, which can be put next on this agenda.

5 Conclusions

Auto-reducibility, Robustness, and Mitoticity seem good candidates for structural prop-
erties that may show a separation of complexity classes that are dear to us. Of these
we think that Robustness is the most promising, since it has the most dimensions along
which a separation can be achieved. Namely, type of the reduction, complexity of the
complete set, density of the forbidden set, and complexity of the forbidden set. Mitoticity
on the other hand has the most still open problems of the three and therefore we cannot
say much about its potential. We will continue working on this.
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