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A POSTERIORI ERROR ANALYSIS FOR HIGHER ORDER

DISSIPATIVE METHODS FOR EVOLUTION PROBLEMS

CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO

Abstract. We prove a posteriori error estimates for time discretizations by
the discontinuous Galerkin method and the corresponding implicit Runge-Kutta-
Radau method of arbitrary order for both linear and nonlinear evolution problems.

The key ingredient is a novel higher order reconstruction Û of the discrete solution

U , which restores continuity and leads to the differential equation Û ′+ΠF(U) = F

for a suitable interpolation operator Π. The error analysis hinges on careful energy
arguments and the monotonicity of the operator F, in particular its angle bounded
structure. We discuss applications to linear PDE such as the convection-diffusion
equation and the wave equation, and nonlinear PDE corresponding to subgradient
operators such as the p-Laplacian and minimal surfaces, as well as Lipschitz and
noncoercive operators.

1. Introduction

Many contributions in the last few years have been devoted to a posteriori error
analysis for time dependent problems. Most of the work has been done for linear
or nonlinear dissipative problems by considering time discretizations based on the
backward Euler method or on higher order discontinuous Galerkin methods, cf. e.g.,
[9, 7, 8, 17, 27, 28] and [15, 16, 18].

If u denotes the exact solution, U its approximation and ‖ · ‖ a norm, we would
like to obtain a posteriori error estimates of the form

‖u − U‖ ≤ η(U, f)

where the estimator η(U, f) exhibits the following properties:

• η(U, f) is a computable quantity which solely depends on the approximate solution
U and the data f of the problem;

• η(U, f) is of optimal order and entails minimal regularity;
• η(U, f) utilizes explicit and easily computable constants.
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2 CH. MAKRIDAKIS AND R. H. NOCHETTO

In this paper we propose an approach to this problem for the time discretization,
via the discontinuous Galerkin method dG(q) and the corresponding implicit Runge-
Kutta-Radau IIA method IRK-R(q) of any order q ≥ 1, of the initial value problem

(1.1) u′ + F(u) = f, u(0) = u0,

in a Hilbert space (H, 〈·, ·〉, | · |). The operator F : D(F) → H will be angle bounded

(1.2) 〈F(v) − F(w), w − z〉 ≤ γ2〈F(v) − F(z), v − z〉 ∀ v, w, z ∈ D(F)

with γ ≥ 1
2

[5, 26, 27]; this structural condition implies monotonicity but it is
indeed much stronger. We will develop most of the theory under the assumption
(1.2), which yields optimal order-regularity error estimates. We will also consider
monotone operators for which optimal order comes at the expense of extra regularity.
Our results are valid for q ≥ 1, are based on the dissipative structure of both dG(q)
and IRK-R(q), and extend the optimal error estimates of Nochetto, Savaré and Verdi
for the implicit Euler method (q = 1) [26, 27]; see also [23, 24]. In addition to (1.2)
we will assume that F satisfies certain coercivity conditions for a seminorm ‖ · ‖ on
D(F). In particular we will consider linear problems with smoothing effect (F is
sectorial) and several nonlinear problems with dissipative character; see Sections 3,
4 and 5 for details on our assumptions.

In contrast to the approach of [7, 8, 9, 10, 11, 15, 16, 17, 28], which is based on the
strong stability of suitable dual problems, the key novel ingredient of our approach

to a posteriori error analysis is a higher order reconstruction Û , of degree q + 1,
which yields the differential equation

(1.3) Û ′ + ΠF(U) = F,

where Û is a suitable continuous interpolant of the discontinuous discrete solution
U , Π is an operator into a space of discontinuous polynomials Vk(q) of degree ≤ q,
and F is an approximation of f within Vk(q). Expression (1.3) extends to q > 1 the

pointwise representations of [25, 26, 27] for q = 1. In these works Û is the natural
piecewise linear interpolant of the piecewise constant backward Euler approximation
U. Rewriting (1.3) in the form

(1.4) Û ′ + F(U) = F + F(U) − ΠF(U) =: R

reveals the fundamental principle behind our a posteriori error analysis: the residual

R measures the amount by which the pair (Û , U) misses to be a solution of (1.1).
Therefore, stability of the continuous problem (1.1) dictates error estimates in terms
of R. In particular, we will study in detail the relation between our results and those
derived by duality for (linear) sectorial operators [9] (see Section 3.1). Regarding

(Û , U) as a relaxed solution is a natural concept developed in [25] in Banach spaces
for q = 1. Higher order reconstruction is also crucial for conservative schemes such
as the Crank-Nicolson method [2]. Theories in both [2, 25] differ from that herein.
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We next recall the two time discretizations dG(q) and IRK-R(q) we are interested
in. Let 0 = t0 < t1 < · · · < tN = T be a partition P of [0, T ], In := (tn, tn+1], and
kn := tn+1−tn be the variable time-step. We denote by P(q) the space of polynomials
of degree ≤ q, and by Vk(q) the space of discontinuous piecewise polynomials of
degree ≤ q over P, both with values in D(F): g ∈ Vk(q) reads

g|In(t) =

q∑

j=0

tjwj (wj ∈ D(F) 0 ≤ j ≤ q).

The discontinuous Galerkin method dG(q) of order q ≥ 1 is defined as follows [7, 8,
9, 10, 11, 14, 15, 16, 17, 21, 14, 30]: given U0 := u0, seek U ∈ Vk(q) such that

(1.5)

∫

In

(
〈U ′, v〉 + 〈F(U), v〉

)
dt + 〈U+

n − Un, v
+
n 〉 =

∫

In

〈f, v〉dt , ∀v ∈ P(q)

for 0 ≤ n ≤ N − 1; hereafter vn := v(tn), v+
n := lims↓0 v(tn + s). We consider also

the corresponding Galerkin method with numerical quadrature at the Radau points:
given V0 := u0, find V ∈ Vk(q) such that

(1.6)

∫

In

(
〈V ′, v〉 + 〈IF(V ), v〉

)
dt + 〈V +

n − Vn, v
+
n 〉 =

∫

In

〈If, v〉dt , ∀v ∈ P(q)

for 0 ≤ n ≤ N − 1. Here I is the interpolation operator onto P(q) at the Radau
points of each In (see Section 2). Then V (tn+1) coincides with V n+1, the solution of
the Implicit Runge-Kutta Radau IIA method with q + 1 intermediate stages [6, 13];
we will thus refer to (1.6) as IRK-R(q) for short. As in [19], writing the solution U
of dG(q) in terms of Radau polynomials will prove extremely useful. This is what
establishes the connection between dG(q) and IRK-R(q), leads to (1.6) and thus to
(1.3) (see Section 2).

The paper is organized as follows. We first discuss in Section 2 the reconstruction
of either U or V above, along with the crucial pointwise representation (1.3). In
Section 3 we study linear operators F, for which ΠF = F. We examine sectorial
operators in Subsection 3.1 and apply our results to convection-diffusion problems
in Subsection 3.2; the estimators are of optimal order and regularity, are extremely
simple since they reduce to energy dissipation or jumps ‖U+

n − Un‖ in the energy
norm, and have absolute and explicit stability constants as in [26, 27]. Compared
with [9], our estimators provide additional control of the full energy norm at all times.
We analyze monotone operators in Subsection 3.3 and apply our results to the wave
equation in Subsection 3.4; the estimates are of optimal order but require higher
regularity, as expected for hyperbolic problems (see [16]). We deal with nonlinear
angle bounded operators (1.2) in Section 4. We consider subgradient operators in
Subsection 4.1, Lipschitz operators in Subsection 4.2 and noncoercive operators in
Subsection 4.3; the p-Laplacian is a relevant example. We finally derive a conditional
a posteriori error estimate in Section 5 for the minimal surface operator, for which
the condition is also a posteriori and thus verifiable.
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2. Reconstruction

In this section we derive the representation formula (1.3) for both dG(q) and
IRK-R(q), namely,

(2.1) Û ′ + F(U) = F + F(U) − ΠF(U),

where F := Πf , Π = P is the L2 projection onto Vk(q) for dG(q) and Π = I is
the Lagrange interpolation operator at the Radau points for IRK-R(q). These two
methods are indeed closely related [19, 21].

2.1. Reconstruction Operator. Let {τj}q+1
j=1 be the Radau points in [0, 1]. Then

0 < τ1 < · · · < τq+1 = 1 and for appropriate weights {wj}q+1
j=1 the Radau integration

rule on [0, 1]

(2.2)

∫ 1

0

g(τ)dτ ∼=
q+1∑

j=1

wjg(τj)

is exact for all polynomials of degree ≤ 2q. Let {ℓi}q+1
i=1 ⊂ Pq and {ℓ̂i}q+1

i=0 ⊂ Pq+1 be

the Lagrange polynomials associated with either {τj}q+1
j=1 or {τj}q+1

j=0 with τ0 = 0. The

corresponding Radau points in Īn are denoted by tn,j, the Lagrange polynomials by

ℓn,i, ℓ̂n,i, and they satisfy

tn,j = tn + τjkn j = 0, . . . , q + 1 (tn,0 = tn, tn,q+1 = tn+1)

ℓn,i(t) = ℓi(τ), ℓ̂n,i(t) = ℓ̂i(τ), t = tn + τkn.
(2.3)

The quadrature (2.2) induces a similar formula in In with nodes {tn,j}q+1
j=1 and weights

wn,i = knwi. In addition, let the interpolation operator I : C[0, T ] → Vk(q) be

(2.4) I w|In(t) :=

q+1∑

j=1

ℓn,j(t)w(tn,j).

Consequently, if V is a polynomial in Pq(In) in t, then V (t) = IV (t).

The reconstruction operator Î : Vk(q) → Vk(q + 1) is now defined as follows:

Û |In = ÎU |In ∈ P(q + 1) satisfies

Û+
n = Un .

∫

In

〈Û ′, v〉dt +

∫

In

〈U ′, v〉dt + 〈U+
n − Un, v

+
n 〉 = 0 , ∀v ∈ P(q) .

(2.5)

In the sequel, we show that Û is well defined and exhibits some useful properties.

Lemma 2.1 (Reconstruction). Û is uniquely defined by (2.5), is globaly continuous,
and satisfies

Û(tn,j) = U(tn,j), j = 0, . . . , q + 1 (U(tn,0) = Un).
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Proof. Integrating (2.5) by parts we get

−
∫

In

〈Û , v′〉dt + 〈Û−
n+1, v

−
n+1〉 − 〈Û+

n , v+
n 〉

= −
∫

In

〈U, v′〉dt + 〈U−
n+1, v

−
n+1〉 − 〈Un, v

+
n 〉.

(2.6)

Since Û+
n = Un, selecting v constant in time we get that Û−

n+1 = U−
n+1 = Un+1. Since

tn,q+1 = tn+1, using the exactness of the Radau integration rule (2.2) in In, (2.6) can
be written as

q∑

i=1

wn,i〈Ûn,i, v
′
n,i〉 =

q∑

i=1

wn,i〈Un,i, v
′
n,i〉 (wn,i = knwi) .

Since v is arbitrary in P(q), we obtain Ûn,j = Un,j for 1 ≤ j ≤ q. This completes the
proof. �

A consequence of the fact that Û interpolates U at the Radau points is the fol-
lowing crucial properties for the estimates to follow.

Lemma 2.2 (Properties of Û). The following error representation is valid

(2.7) (Û − U)|In(t) = ℓ̂n,0(t)(Un − U+
n ), ∀ t ∈ In.

If

(2.8) αp :=
( ∫ 1

0

∣∣ℓ̂0(τ)
∣∣pdτ

)1/p

, ∀ 1 ≤ p ≤ ∞,

then for any semi-norm ‖ · ‖ in H

(2.9)
( ∫

In

‖Û − U‖pdt
)1/p

= αp k1/p
n ‖U+

n − Un‖, ∀ 1 ≤ p ≤ ∞.

Proof. Note that Û − U in In is a polynomial of degree q + 1 which, in view of

Lemma 2.1, vanishes at the Radau points {tn,j}q+1
j=1. Since (Û −U)(tn,0) = Un −U+

n ,
we readily deduce (2.7). Since

∫

In

∣∣ℓ̂n,0(t)
∣∣pdt = kn

∫ 1

0

∣∣ℓ̂0(τ)
∣∣pdτ = knα

p
p,

then (2.9) follows immediately. The proof is thus complete. �

2.2. Discontinuous Galerkin Methods. In view of (2.5), we can rewrite (1.5) as

(2.10)

∫

In

(
〈Û ′, v〉 + 〈F(U), v〉

)
dt =

∫

In

〈f, v〉dt , ∀v ∈ P(q) .

If P is the piecewise L2 projection onto Vk(q), then (2.10) readily implies

(2.11) Û ′ + PF(U) = F ,



6 CH. MAKRIDAKIS AND R. H. NOCHETTO

with F := Pf . For piecewise constant solutions U , that is q = 0, we have PF(U) =
F(U). An expression similar to (2.11) was first used in [27] for subgradient and
angle-bounded operators, and later extended in [25] to accretive operators in Banach
spaces for q = 1 and in [2] to the Crank-Nicolson method in Hilbert spaces.

2.3. Runge-Kutta-Radau Methods. We now consider the Implicit Runge-Kutta
Radau IIA method IRK-R(q) with q + 1 intermediate stages {Vn,j}q+1

j=1 [6, 13]. It is
known that the coefficients of IRK-R(q) are

(2.12) aij =

∫ τi

0

ℓj(τ)dτ, bi =

∫ 1

0

ℓi(τ)dτ (= aq+1,i), ∀ 1 ≤ i, j ≤ q + 1,

and that the following implicit relation for {Vn,j}q+1
j=1 holds

(2.13) Vn,i − Vn + kn

q+1∑

j=1

ai,j

(
F(Vn,j) − fn,j

)
= 0,

where fn,j := f(tn,j). It is instructive to see the connection between (2.13) and (1.6),

which hinges on the interpolant V̂ = ÎV .

Lemma 2.3 (Equivalence between (1.6) and (2.13)). Formulations (1.6) and (2.13)

of IRK-R(q) are equivalent and, in fact, they are a collocation method for V̂ in each

interval In with starting value V̂n,0 = Vn, namely

(2.14) V̂ ′
n,i + F(V̂n,i) = fn,i, ∀ 1 ≤ i ≤ q + 1.

Proof. We first resort to the exactness of the Radau quadrature for polynomials
of degree ≤ 2q to realize that

(2.15) 〈IF(V ) − If, v〉 =

q+1∑

j=1

wn,j〈F(Vn,j) − fn,j, v(tn,j)〉, ∀v ∈ P(q).

Therefore, (1.6) yields the expression
(2.16)
∫

In

〈V ′, v〉dt + 〈V +
n − Vn, v

+
n 〉 +

q+1∑

j=1

wn,j〈F(Vn,j) − fn,j, v(tn,j)〉 = 0 , ∀v ∈ P(q),

or, with the help of (2.5), the simpler expression

(2.17)

∫

In

〈V̂ ′, v〉dt +

q+1∑

j=1

wn,j〈F(Vn,j) − fn,j, v(tn,j)〉 = 0, ∀v ∈ P(q).
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Since V̂ ′ is a polynomial of degree ≤ q, taking v = ℓn,i and making use again of the
Radau quadrature and Lemma 2.2, we end up with (2.14). Consequently

V̂ ′(t) =

q+1∑

j=1

(
fn,j − F(Vn,j)

)
ℓn,j(t), ∀ t ∈ In,

whence

Vn,i − Vn =

∫ tn,i

tn

V̂ ′(t)dt

=

q+1∑

j=1

(
fn,j − F(Vn,j)

) ∫ tn,i

tn

ℓn,j(t)dt = kn

q+1∑

j=1

ai,j

(
fn,j − F(Vn,j)

)
,

which is (2.13). This completes the proof. �

Expression (2.17) also reads
∫

In

(
〈V̂ ′, v〉 + 〈IF(V ), v〉

)
dt =

∫

In

〈If, v〉dt, ∀ v ∈ P(q),

or equivalently

(2.18) V̂ ′ + IF(V ) = F ,

with F := If . A comparison of (2.18) with (2.11) leads to the interesting conclusion
that the pointwise representations of dG(q) and IRK-R(q) differ only in the form of
the operator acting on F and f . This will be instrumental below.

3. A Posteriori Error Estimates for Linear Operators

In this section we assume that F : D(F) → H is linear, whence ΠF(U) = F(U),
and F = Πf for either dG(q) or IRK-R(q) and (2.1) becomes

(3.1) Û ′ + F(U) = F,

as in [25, 26, 27]. In view of (3.1), we will now examine both methods at once but
distinguish between sectorial and monotone operators.

3.1. Sectorial Operators. For F : D(F) → H monotone, we define the energy
semi-norm associated with F by

(3.2) ‖v‖ := 〈F(v), v〉
1

2 , ∀ v ∈ D(F),

and V := {v ∈ H : ‖v‖ < ∞}. In addition, we assume that F satisfies the strong
sector condition

(3.3) |〈F(v), w〉|2 ≤ 4γ2‖v‖2 ‖w‖2, ∀ v, w ∈ D(F),
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which implies γ ≥ 1/2; note that γ = 1/2 in case F is selfadjoint. Condition (3.3) is
equivalent to the following inequality for the skew-symmetric part of the operator
[5, Proposition 1]

(3.4)
∣∣〈F(v), w〉 − 〈F(w), v〉

∣∣ ≤ 2µ‖v‖‖w‖, ∀ v, w ∈ D(F),

with γ2 = (µ2 + 1)/4; note that µ = 0 if F is symmetric. We observe that (3.3)

implies that F is continuous and ‖F(v)‖⋆ = supw∈D(F)
〈F(v),w〉

‖w‖
satisfies

(3.5)
1

4γ2
‖F(v)‖2

⋆ ≤ ‖v‖2 ≤ ‖F(v)‖2
⋆, ∀ v ∈ D(F).

Lemma 3.1 (Linear Angle-Bounded Operators). The strong sector condition (3.3) is
equivalent to the γ2-angle-bounded condition

(3.6) 〈F(v − w), w − z〉 ≤ γ2〈F(v − z), v − z〉 ∀ v, w, z ∈ D(F).

Proof. We simply set ṽ = v − z and w̃ = w − z in (3.6) to get the equivalent
formulation (we omit the tildes)

(3.7) 〈F(v), w〉 ≤ γ2〈F(v), v〉 + 〈F(w), w〉, ∀ v, w ∈ D(F).

Then replace v by λv with λ ∈ R, and argue with the resulting quadratic inequality
in λ to realize that (3.3) and (3.7) are equivalent. �

Lemma 3.2 (Coercivity). If F satisfies (3.3), then for all v, w, z ∈ D(F)

(3.8) 〈F(v − w), w − z〉 ≤ 2γ2〈F(v − z), v − z〉 − 1

2
max

(
‖v − w‖2, ‖z − w‖2

)
.

Proof. Elementary calculations based on (3.5) yield

〈F(v − w), w − z〉 = 〈F(v − w), w − v〉 + 〈F(v − w), v − z〉
≤ −‖v − w‖2 + 2γ‖v − w‖‖v − z‖

≤ −1

2
‖v − w‖2 + 2γ2‖v − z‖2

≤ −1

2
‖v − w‖2 + 2γ2〈F(v − z), v − z〉.

On the other hand, a symmetric argument implies

〈F(v − w), w − z〉 = 〈F(z − w), w − z〉 + 〈F(v − z), w − z〉
≤ −‖w − z‖2 + 2γ‖v − z‖‖w − z‖

≤ −1

2
‖w − z‖2 + 2γ2‖v − z‖2.

Combining these two inequalities, we easily obtain (3.8). �
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We are now ready to prove both upper and lower a posteriori error bounds. To
this end, we first need to introduce the error concept E:

(3.9) E2 := max
(

max
0≤t≤T

|(u − Û)(t)|2, 1

2

∫ T

0

‖u − Û‖2dt,
1

2

∫ T

0

‖u − U‖2dt
)
.

Theorem 3.1 (Upper Bound). If u0 ∈ V, then the following estimate is valid for
sectorial operators F and for both dG(q) and IRK-R(q) for any q ≥ 1:

(3.10) E2 ≤ 4γ2α2
2

N−1∑

n=0

kn‖U+
n − Un‖2 + 2

∫ T

0

‖f − F‖2
⋆dt.

Proof. Subtract (3.1) from (1.1) to obtain the error equation

d

dt
(u − Û) + F(u − U) = f − F.

We next multiply this equation by u − Û to see that

1

2

d

dt
|u − Û |2 − 〈F(U − u), u − Û〉 = 〈f − F, u − Û〉,

whence, in view of (3.8), we deduce

1

2

d

dt
|u − Û |2 +

1

2
max

(
‖u − U‖2, ‖u − Û‖2

)
≤ 2γ2‖U − Û‖2 + ‖u − Û‖‖f − F‖⋆.

The asserted estimate (3.10) follows from (2.9) after integration in time. �

Remark 3.3 (Energy Dissipation). A striking property of (3.10) is that, except for
data oscillation, the energy dissipation, or jump discontinuity, ‖U+

n − Un‖ is what
controls the error. This estimate for dG(q) as well as for IRK-R(q) extends the
estimates of Nochetto, Savaré and Verdi for the implicit Euler scheme (q = 1) to
higher order (q > 1) without changing their structure [26, 27]. Similar estimates
were obtained by Eriksson, Johnson and Larsson via duality [9].

Remark 3.4 (Stiff ODE). This theory applies to stiff ODE systems and yields a
posteriori estimates which are dimension independent. The nature of these estimates
is different though from those in [11, 15] in that our results incorporate energy terms
and the estimators accumulate in time in the L2 norm instead of the L∞ norm.

Remark 3.5 (Smooth Data A Priori Error Estimates). We assert that the error esti-
mates in Theorem 3.1 are of optimal order-regularity provided the initial data and
forcing term are smooth. To see this, we consider f = 0 and recall the a priori
estimate of [30, Theorem 12.1] extended for sectorial operators,

(3.11)
( ∫ T

0

‖u − U‖2 dt
)1/2

≤ Ckq+1
( ∫ T

0

‖∂q+1
t u‖2 dt

)1/2

,



10 CH. MAKRIDAKIS AND R. H. NOCHETTO

where k = maxn kn is the largest step-size. Since

kn‖U+
n − Un‖2 ≤ 2kn‖U+

n − u(tn)‖2 + 2kn‖Un − u(tn)‖2

≤ C

∫ tn+1

tn

‖U − Iu‖2dt + C
kn

kn−1

∫ tn

tn−1

‖U − Iu‖2dt,

we deduce from (3.11) that

N−1∑

n=0

kn‖U+
n − Un‖2 ≤ Ck2(q+1)

∫ T

0

‖∂q+1
t u‖2 dt,

provided kn ≤ Ckn−1; the latter is a reasonable constraint between consecutive time-
steps. Compared with the estimates of Eriksson, Johnson, and Larsson [7, 8, 9],
which require the regularity max0≤t≤T |∂q+1

t u|, we observe that both

max
0≤t≤T

|∂q+1
t u| and

( ∫ T

0

‖∂q+1
t u‖2 dt

)1/2

are bounded by the same constant depending on data. Therefore, in the linear
case considered here, their control require the same regularity on the data (u0, f) of
problem (1.1).

Remark 3.6 (Comparison with Duality). We now show the striking agreement be-
tween the stability constant γ2 in Theorem 3.1 and the corresponding one of Eriks-
son, Johnson and Larsson [9] for analytic semigroups based on duality arguments
for dG(q). The a posteriori error estimate shown in [9] has the form

(3.12) max
1≤n≤N

|u(tn) − U(tn)| ≤ CICSLN max
0≤n≤N−1

(
|U+

n − Un| + max
t∈In

kn|f − Pf |
)
,

where CI is an interpolation constant, LN grows logarithmicaly with respect to kN

and CS is the stability constant of an homogeneous backward dual problem. A sharp
bound for CS can be found by a simple energy argument [30]. For simplicity we
consider the corresponding homogeneous forward problem

(3.13) wt + F⋆(w) = 0, w(0) = w0,

where F⋆ is the adjoint of F. Then CS is the constant of the strong stability estimate

(3.14) |F⋆(w(t))| ≤ CS

t
|w0| .

We assert that CS ≈ γ for sectorial operators. To see this, we deal with v = tw and
the equation that it satisfies. Since vt = w + twt, then

vtt + F⋆(vt) = wt,

whence

〈vtt, vt〉 + 〈F⋆(vt), vt〉 = 〈wt, vt〉 = −〈F⋆(w), vt〉 ≤ 2γ‖w‖‖vt‖ ≤ γ2‖w‖2 + ‖vt‖2 .
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Therefore, since 〈F⋆(vt), vt〉 = ‖vt‖2 and
∫ t

0
‖w‖2 ds ≤ 1

2
|w0|2 , we obtain

|vt|2 ≤ 2γ2

∫ t

0

‖w‖2 dt + |w0|2 ≤ (γ2 + 1)|w0|2 .

Moreover, the fact that |w(t)| ≤ |w0| finally yields

t|F⋆(w)| = t|wt| ≤ |w| + |vt| ≤
(
γ2 + 1)1/2 + 1

)
|w0|,

which implies

CS = (γ2 + 1)1/2 + 1 .

This shows that although the approach of this paper is based on simple but careful
energy arguments, it gives a posteriori error bounds that for linear sectorial operators
compare remarkably well with the estimates based on duality techniques [9].

Theorem 3.2 (Lower Bound). If u0 ∈ V, then the following estimate is valid for
sectorial operators F and for both dG(q) and IRK-R(q) for any q ≥ 1:

(3.15) α2
2

N−1∑

n=0

kn‖U+
n − Un‖2 ≤ 4E2.

Proof. This is a trivial consequence of (2.9) because

α2
2

N−1∑

n=0

kn‖U+
n − Un‖2 =

∫ T

0

‖Û − U‖2dt

≤ 2

∫ T

0

(
‖u − Û‖2 + ‖u − U‖2

)
dt ≤ 4E2. �

Remark 3.7 (Dominant Term). A simple by-product of (3.10) and the above proof
is the following upper bound

max
0≤t≤T

|(u − Û)(t)|2 ≤ 16γ2 max
( ∫ T

0

‖u − Û‖2,

∫ T

0

‖u − U‖2
)

+ 2

∫ T

0

‖f − F‖2
⋆.

This shows that, up to data oscillation, the energy error L2(V) controls the L∞(H)
error.

3.2. Application: Convection-Diffusion Equation. Let Ω be a bounded Lips-
chitz domain in R

d with any d ≥ 1. Consider the initial boundary value problem

(3.16)

ut − ǫ2∆u + b · ∇u + cu = f, in Ω × [0, T ],

u(·, 0) = u0, in Ω,

u = 0, on ∂Ω × [0, T ],

with H := L2(Ω) and norm | · |. The coefficients b ∈ W 1,∞(Ω), c ∈ L∞(Ω) satisfy

(3.17) |b(x)| ≤ b0, d(x) := −1
2
div b(x) + c(x) ≥ d2

0 ≥ 0, a.e. x ∈ Ω,
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and ǫ2 > 0. The underlying elliptic operator F(v) := −ǫ2∆v+b·∇v+cv has a domain
D(F) := {v ∈ H1

0 (Ω) : ∆v ∈ H}, and induces the energy norm in V := H1
0 (Ω)

(3.18) ‖v‖2 = 〈F(v), v〉 =

∫

Ω

(ǫ2|∇v|2 + d|v|2)dx ∀ v ∈ V .

Let pD > 0 be the constant of Poincaré inequality

pD|w| ≤ |∇w| ∀ w ∈ V .

The following result is well known [27, Lemma 5.1], but we prove it for completeness.

Lemma 3.8 (F is Sectorial). F satisfies (3.3) with constant γ given by

(3.19) γ2 =
1

4

(
1 +

b2
0

ǫ2(d2
0 + ǫ2p2

D)

)
.

Proof. This proof hinges on (3.4). Since

‖v‖2 ≥ ǫ2|∇v|2, ‖v‖2 ≥
(
ǫ2p2

D + d2
0

)
|v|2 ∀ v ∈ V ,

the skew-symmetric part of F satisfies for all v, w ∈ V
∣∣〈F(v), w〉 − 〈F(w), v〉

∣∣ ≤ b0|∇v||w| + b0|∇w||v| ≤ 2b0

ǫ
(
ǫ2p2

D + d2
0

) 1

2

‖v‖‖w‖.

Consequently µ = b0ǫ
−1

(
ǫ2p2

D + d2
0

)− 1

2 and the expression for γ follows from γ2 =
(1 + µ2)/4 [5, Proposition 1]. �

The following a posteriori error estimates is a simple consequence of Theorems
3.1 and 3.2.

Corollary 3.1 (Error Estimates for Convection-Diffusion Equations). If u0 ∈ V, then
the following estimates are valid for the convection-diffusion problem (3.16) with γ
given by (3.19) and for both dG(q) and IRK-R(q) for any q ≥ 1:

1

4
α2

2

N−1∑

n=0

kn‖U+
n − Un‖2 ≤ E2 ≤ 4γ2α2

2

N−1∑

n=0

kn‖U+
n − Un‖2 + 2

∫ T

0

‖f − F‖2
⋆dt.

3.3. Monotone Operators. We consider a linear operator F such that 〈F(v), v〉 ≥
0 for all v ∈ H. This assumption is insufficient to guarantee optimal a priori error
estimates [29]. The same happens with the a posteriori error analysis.

Theorem 3.3 (Error Estimates for Monotone Operators). If u0 ∈ D(F), then

max
0≤t≤T

|u − Û | ≤ α1

N−1∑

n=0

kn|F(U+
n − Un)| +

∫ T

0

|f − F | dt.



HIGHER ORDER DISSIPATIVE METHODS FOR EVOLUTION PROBLEMS 13

Proof. We repeat the argument of Theorem 3.1 except that we can no longer
exploit coercivity. Since

1

2

d

dt
|u − Û |2 + 〈F(u − Û), u − Û〉 = 〈F(U − Û), u − Û〉 + 〈f − F, u − Û〉

we deduce
d

dt
|u − Û |2 ≤ 2|u − Û |

(
|F(U − Û)| + |f − F |

)
.

We now invoke the sharp Gronwall inequality

d

dt
a(t)2 ≤ 2a(t)b(t) ⇒ max

0≤t≤T
a(t) ≤ a(0) +

∫ T

0

b(t)dt,

which results by comparison with the ODE satisfied by A2(t), where A(t) = a(0) +∫ t

0
b(s)ds. The assertion finally follows from Lemma 2.2. �

3.4. Application: Wave Equation. Let Ω be a bounded Lipschitz domain in R
d

for any d ≥ 1. We consider the initial boundary value problem:

(3.20)

vtt − ∆v = g, in Ω × (0, T ),

v(0) = v0, vt(0) = v1, in Ω,

v|∂Ω = 0 , on ∂Ω × (0, T ),

with D(−∆) = H2(Ω) ∩ H1
0 (Ω). To write (3.20) in the form ut + F(u) = f , we set

u = (u1, u2) and reduce the order as follows:

u =

[
v
vt

]
, F(u) = −

[
u2

∆u1

]
, f =

[
0
g

]
.

Let U = (U1, U2) be either the dG(q) or IRK-R(q) approximation of u, and let
G = Πg. The next issue is to state the functional setting. We start with H :=
H1

0 (Ω)×L2(Ω) with scalar product 〈v, w〉 = 〈∇v1,∇w1〉+〈v2, w2〉 and corresponding
norm | · |; hence 〈F(v), v〉 = 0 for all v ∈ D(F) = D(−∆)×L2(Ω). The error is then

E = max
0≤t≤T

(
‖∇(u1 − Û1)‖2

L2(Ω) + ‖u2 − Û2‖2
L2(Ω)

) 1

2

.

Corollary 3.2 (Energy Norm Estimate). If v0 ∈ D(−∆) and v1 ∈ H1
0 (Ω), then

E ≤ α1

N−1∑

n=0

kn

(
‖∆(U+

1,n − U1,n)‖2
L2(Ω) + ‖∇(U+

2,n − U2,n)‖2
L2(Ω)

) 1

2

+

∫ T

0

‖g − G‖L2(Ω).

This estimate provides an optimal order error bound at the expense of additional
regularity. In order to reduce the regularity demands, we seek an alternative choice
of H which leads to an estimate in a weaker norm but also with lower data regularity
requirements.
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Let T := (−∆)−1 be the restriction to L2(Ω) of the inverse Laplacian with zero
Dirichlet condition. Let H := L2(Ω) × H−1(Ω) with scalar product, [3]

〈v, w〉 := 〈v1, w1〉 + 〈Tv2, w2〉, ∀ v, w ∈ H;

hence 〈F(w), w〉 = −〈w2, w1〉 + 〈T (−∆)w1, w2〉 = 0 for all w ∈ D(F). The error is

E = max
0≤t≤T

(
‖u1 − Û1‖2

L2(Ω) + ‖u2 − Û2‖2
H−1(Ω)

) 1

2

.

Corollary 3.3 (Weak Estimate). If v0 ∈ H1
0 (Ω) and v1 ∈ L2(Ω), then

E ≤ α1

N−1∑

n=0

kn

(
‖∇(U+

1,n − U1,n)‖2
L2(Ω) + ‖U+

2,n − U2,n‖2
L2(Ω)

) 1

2

+

∫ T

0

‖g − G‖H−1(Ω)dt.

Remark 3.9 (Hyperbolic vs. Parabolic Character). Using duality arguments, a pos-
teriori error estimates for the fully discrete discontinuous Galerkin method were
proved in [16] for q = 2. In contrast to the parabolic case, the estimators were
expressed in terms of discrete-time L1 norms. This is due to the fact that strong
stability estimates of the form (3.14) are not valid for the wave equation. Our esti-
mators in this case are also expressed in terms of discrete-time L1 norms. Compared
to the parabolic case, the increased regularity required in the estimators appears also
in [16]. This what is expected for problems of non-parabolic character as the a priori
results for the Schrödinger equation show [19]; see also [3].

4. A Posteriori Error Estimates for Nonlinear Operators

In this section we will consider the nonlinear case. The notion of linear angle-
bounded operators (3.6) extends naturally to nonlinear F [5, 26, 27].

Definition 4.1 (Nonlinear Angle-Bounded Operators). The (possibly) nonlinear op-
erator F is called γ2-angle-bounded if it satisfies for some γ > 0

(4.1) 〈F(v) − F(w), w − z〉 ≤ γ2〈F(v) − F(z), v − z〉 ∀ v, w, z ∈ D(F).

Angle bounded operators are monotone because taking z = w we conclude that

〈F(v) − F(w), v − w〉 ≥ 0 ∀ v, w ∈ D(F) .

We will derive our results under the assumption that an amount of coercivity is
inherited by (4.1). To this end we introduce the nonnegative quantity for η ≥ γ:

(4.2) ση(v, w, z) := η2〈F(v)−F(z), v−z〉−〈F(v)−F(w), w−z〉 ∀ v, w, z ∈ D(F),

and assume the following coercivity condition.

Definition 4.2 (p−Coercivity). Let D(F) be equiped with a lower semicontinuous
(l.s.c) seminorm ‖ · ‖. The operator F is called p-coercive if for some p ≥ 2 and
η ≥ γ there exists δ > 0, depending on η, such that

(4.3) ση(v, w, z) ≥ δ

p
max

(
‖v − w‖p , ‖w − z‖p

)
, ∀ v, w, z ∈ D(F).
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This notion of coercivity is a natural extension of the linear case (3.8) in Lemma
3.2, where p = 2, η =

√
2 γ, and δ = 1; likewise, we set V := {v ∈ H : ‖v‖ < ∞}.

Note that even in the linear case we need η > γ to gain the above coercivity.
Examples of (4.3) are given in Subsections 4.1 and 4.2.

We are now ready to prove a posteriori error bounds in the nonlinear case similar
to Theorem 3.1. In analogy with (3.9), we introduce the following error concept E:

E2 := max
(

max
0≤t≤T

|(u − Û)(t)|2, δ

p

∫ T

0

‖u − Û‖pdt,
δ

p

∫ T

0

‖u − U‖pdt
)
.

Theorem 4.1 (Error Bound for Nonlinear Operators). Let F be γ2-angle bounded and
p-coercive with respect to the seminorm ‖ · ‖ for η ≥ γ. If p⋆ = p/(p − 1), then the
following estimate is valid for both dG(q) and IRK-R(q) for any q ≥ 1:

(4.4)

E2 ≤ 2η2

∫ T

0

〈F(Û) − F(U), Û − U〉dt

+
2

p⋆

(4

δ

)p⋆/p
∫ T

0

(
‖F(U) − ΠF(U)‖p⋆

⋆ + ‖f − F‖p⋆

⋆

)
dt.

Proof. Subtract the continuous equation (1.1) from the semidiscrete counterpart
(2.1), to obtain the error equation

d

dt
(Û − u) + F(U) − F(u) = (F(U) − ΠF(U)) + (F − f) ∀ 0 ≤ t ≤ T.

Testing with Û − u and using (4.3), we see that

1

2

d

dt
|u − Û |2 +

δ

p
max

(
‖u − U‖p , ‖u − Û‖p

)

≤ η2〈F(U) − F(Û), U − Û〉 + 〈(F(U) − ΠF(U)) + (F − f), Û − u〉 .

Next, we use Young’s inequality, ab ≤ ε
p
ap + ε−p⋆/p

p⋆ bp⋆
, with ε = δ

4
to arrive at

|〈(F(U) − ΠF(U)) + (F − f), Û − u〉| ≤ δ

2p
‖Û − u‖p

+
1

p⋆

(δ

4

)−p⋆/p(
‖F(U) − ΠF(U)‖p⋆

⋆ + ‖f − F‖p⋆

⋆

)
,

whence (4.4) follows immediately upon integration. �

Remark 4.3 (Nonlinearity). In contrast with Theorem 3.1, we notice two nonlinear

effects. First, we can no longer express 〈F(Û) − F(U), Û − U〉 in terms of the jump
residual ‖U+

n − Un‖2. Secondly, the new estimator ‖F(U) − ΠF(U)‖⋆ accounts for
the approximation of F(U) /∈ Vk(q) by piecewise polynomials of degree ≤ q.
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4.1. Application: Subgradient Operators. A subclass of angle-bounded oper-
ators are the subgradient operators, which are characterized by the existence of a
proper lower semicontinuous convex function

φ : H → (−∞, +∞], D(φ) = {v ∈ H : φ(v) < ∞},
such that F = ∇φ is the subgradient of φ. This means that F and φ satisfy

(4.5) φ(w) − φ(v) − 〈F(v), w − v〉 ≥ 0, ∀ v ∈ D(F), w ∈ D(φ).

Moreover, the following well-known characterization has been used in [26, 27] to
derive a posteriori error estimates for the implicit Euler method.

Lemma 4.4 (Subgradient Operators are 1-Angle Bounded). All subgradient operators
F are 1-angle bounded. If, in addition, φ is Frechet differentiable and F satisfies

(4.6) ‖v − w‖p ≤ 〈F(v) − F(w), v − w〉, ∀ v, w ∈ D(F)

then F is p-coercive with δ = 1; moreover, it holds

(4.7) σ1(v, w, z) ≥ 1

p

(
‖v − w‖p + ‖w − z‖p

)
, ∀ v, w, z ∈ D(F).

Proof. Since

〈F(v)−F(w), w−z〉 = 〈F(v)−F(z), v−z〉+〈F(v), w−v〉+〈F(w), z−w〉+〈F(z), v−z〉,
in view of (4.5), we first see that F is 1-angle bounded, i.e.

〈F(v) − F(w), w − z〉 ≤ 〈F(v) − F(z), v − z〉.
On the other hand, using the mean value theorem in (4.5) and (4.6), we deduce

φ(w) − φ(v) − 〈F(v), w − v〉 =

∫ 1

0

〈F(ws) − F(v), ws − v〉ds

s

≥
∫ 1

0

‖ws − v‖p ds

s
= ‖w − v‖p

∫ 1

0

sp−1ds =
1

p
‖w − v‖p,

where ws = sw + (1 − s)v. This implies (4.7) and concludes the proof. �

In view of (4.7), we now define the error concept to be

E2 = max
(

max
0≤t≤T

|(u − Û)(t)|2, 1

p

∫ T

0

‖u − Û‖pdt +
2

p

∫ T

0

‖u − U‖pdt
)
.

Corollary 4.1 (Error Estimates for Subgradient Operators). Let F = ∇φ be a subgra-
dient operator with φ Frechet differentiable and satisfying (4.6). Then the following
error estimate is valid for both dG(q) and IRK-R(q) for all q ≥ 1:

E2 ≤ 2

∫ T

0

(
‖F(Û) − F(U)‖p⋆

⋆ +
4p⋆/p

p⋆

(
‖F(U) − ΠF(U)‖p⋆

⋆ + ‖f − F‖p⋆

⋆

))
dt.
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Proof. Since η = δ = 1 from Lemma 4.4, it suffices to show

〈F(Û) − F(U), Û − U〉 ≤ ‖F(Û) − F(U)‖p⋆

⋆ .

This follows from ‖Û −U‖p ≤ ‖F(Û)−F(U)‖p⋆

⋆ which, in light of (4.6), results from

‖Û − U‖p ≤ 〈F(Û) − F(U), Û − U〉
≤ ‖F(Û) − F(U)‖⋆ ‖Û − U‖

≤ 1

p⋆
‖F(Û) − F(U)‖p⋆

⋆ +
1

p
‖Û − U‖p .

Consequently, inserting this bound into (4.4) we obtain the asserted estimate. �

Remark 4.5 (p−Laplacian Operator). Given p > 2, let F(v) := − div(|∇v|p−2∇v)
be the p-Laplacian operator [4, 22, 27]. This operator is the subgradient of φ(v) :=
1
p
|∇v‖p

Lp(Ω) in H = L2(Ω), and has the following coercivity property [27]

(4.8) 〈F(u) − F(v), u − v〉 ≥ Λp‖∇(u − v)‖p,

for a suitable constant Λp > 0. Hence F is p-coercive with respect to the norm ‖v‖ =

Λ
1/p
p ‖∇v‖Lp(Ω), and Corollary 4.1 applies with dual norm ‖v‖⋆ := Λ

−1/p
p ‖v‖W−1

p⋆ (Ω).

Remark 4.6 (Porous Medium Operator). Given p > 0, let F(v) := −∆(|v|p−2v) be
the porous medium operator. This prototype of degenerate operator is the subgra-
dient of φ(v) := 1

p
‖v‖Lp(Ω) in H = H−1(Ω), and is p-coercive in Lp(Ω) [27], i.e.

〈F(v) − F(w), v − w〉 ≥ λp‖v − w‖p
Lp(Ω),

for a suitable constant λp > 0. Corollary 4.1 applies again.

4.2. Application: Lipschitz Operators. We will consider now a subclass of non-
linear operators which extend the class of linear sectorial operators of §3.1. We
assume that F satisfies (4.6) with p = 2, namely,

(4.9) ‖v − w‖2 ≤ 〈F(v) − F(w), v − w〉 ∀ v, w ∈ D(F),

as well as the following Lipschitz condition for some γ > 0

(4.10) ‖F(v) − F(w)‖⋆ ≤ 2γ‖v − w‖ ∀ v, w ∈ D(F);

compare with (3.3). The following lemma extends Lemma 3.2, and is proved in [27,
Lemma 4.3]. We present its proof here for completeness.

Lemma 4.7 (Angle-Boundedness and Coercivity). If F satisfies (4.9) and (4.10), then
for all v, w, z ∈ D(F)

(4.11) 〈F(v) − F(w), w − z〉 ≤ 2γ2‖v − z‖2 − 1

2
max

(
‖v − w‖2, ‖z − w‖2

)
.
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Proof. Proceeding as in Lemma 3.2, we obtain

〈F(v) − F(w), w − z〉 = 〈F(v) − F(w), w − v〉 + 〈F(v) − F(w), v − z〉

≤ −‖v − w‖2 + 2γ‖v − w‖‖v − z‖ ≤ −1

2
‖v − w‖2 + 2γ2‖v − z‖2,

as well as

〈F(v) − F(w), w − z〉 = 〈F(z) − F(w), w − z〉 + 〈F(v) − F(z), w − z〉

≤ −‖z − w‖2 + 2γ‖v − z‖‖w − z‖ ≤ −1

2
‖w − z‖2 + 2γ2‖v − z‖2.

Combining these inequalities, we deduce the estimate (4.11). �

Note that (4.11) implies (4.3) with p = 2, η =
√

2 γ, δ = 1. Therefore Theorem
4.1 is applicable with an error concept E of the form:

E2 := max
(

max
0≤t≤T

|(u − Û)(t)|2, 1

2

∫ T

0

‖u − Û‖2dt,
1

2

∫ T

0

‖u − U‖2dt
)
.

Corollary 4.2 (Error Estimates for Lipschitz Operators). If u0 ∈ V and (4.9) and
(4.10) hold, then the following lower and upper bounds are valid for both dG(q) and
IRK-R(q) for all q ≥ 1:

(4.12)

1

4
α2

2

N−1∑

n=0

kn‖U+
n − Un‖2 ≤ E2 ≤ 4γ2α2

2

N−1∑

n=0

kn‖U+
n − Un‖2

+ 4

∫ T

0

(
‖F(U) − ΠF(U)‖2

⋆ + ‖f − F‖2
⋆

)
dt.

Proof. We note that (4.11) with η =
√

2γ yields the upper bound. To derive
the lower bound, we proceed as in Theorem 3.2, whose proof does not rely on the
structure of F. �

4.3. Noncoercive Operators. A class of operators that satisfy (4.9) and (4.10)
can be defined as follows [1]: let F(v) := Av−B(t, v), where A is a positive definite,
selfadjoint, linear operator on a Hilbert space H with domain D(A) dense in H,
and B(t, ·) : D(A) → H is a (possibly) nonlinear operator for all t ∈ [0, T ]. We

let V := D(A1/2), with norm ‖v‖ := |A1/2v| = 〈Av, v〉1/2, and assume that ‖ · ‖
dominates | · | in V . If we identify H with its dual, then the Hilbert triplet satisfies
V ⊂ H ⊂ V⋆, with V⋆ the dual of V . A natural condition for u′ + F(u) = f to be of
parabolic type is the one-sided Lipschitz condition on B(t, ·),
(4.13) 〈B(t, v) − B(t, w), v − w〉 ≤ λ‖v − w‖2 + µ|v − w|2

with a constant 0 ≤ λ < 1; (4.13) is equivalent to the G̊arding–type inequality

(4.14) 〈F(v) − F(w), v − w〉 ≥ (1 − λ)‖v − w‖2 − µ|v − w|2 .
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If µ = 0, (4.14) reduces to (4.9). We also require the additional Lipschitz condition

(4.15) ‖B(t, v) − B(t, w)‖⋆ ≤ L‖v − w‖
with constant L > 0. Hence, (4.10) is satisfied with 2γ = L+1. Instead of extending
Corollary 4.2 to µ > 0, we take advantage of the structure of F in the following result
which is formulated in terms of the error concept

E2 := max

{
max
0≤t≤T

e−3µt|(u − Û)(t)|2, 1 − λ

4

∫ T

0

e−3µt
(
‖u − Û‖2 + 2‖u − U‖2

)
dt

}
.

Corollary 4.3 (Error Estimate for Noncoercive Operators). If F = A − B satisfies

(4.13) and (4.15), and Γ := 1 + L2

1−λ
, Λ := 4

1−λ
, then the following error estimates

are valid for both dG(q) and IRK-R(q) for all q ≥ 1

E2 ≤ α2
2

N−1∑

n=0

kne
−3µtn

(
Γ‖U+

n − Un‖2 + 2µ|U+
n − Un|2

)
+ Λ

∫ T

0

e−3µt‖F − f‖2
⋆dt.

Proof. We first write the error equation in the form

d

dt
|Û − u|2 + 2〈A(U − u), Û − u〉 = 2〈B(U) − B(u), Û − u〉 + 2〈F − f, Û − u〉,

and observe the elementary equality

2〈A(U − u), Û − u〉 = ‖U − u‖2 + ‖Û − u‖2 − ‖Û − U‖2.

We next see that (4.13) and (4.15) imply

2〈B(U) − B(u), Û − u〉 = 〈B(U) − B(u), U − u〉 + 〈B(Û) − B(u), Û − u〉
+ 〈B(U) − B(u), Û − U〉 + 〈B(Û) − B(U), Û − u〉
≤ λ‖U − u‖2 + λ‖Û − u‖2 + µ|U − u|2 + µ|Û − u|2

+ L‖U − u‖‖Û − U‖ + L‖Û − u‖‖Û − U‖.
Inserting this back into the error equation, we thus arrive at

d

dt
|Û − u|2 +

1 − λ

4

(
2‖U − u‖2 + ‖Û − u‖2

)
≤ 3µ|Û − u|2

+ Γ‖Û − U‖2 + 2µ|Û − U |2 + Λ‖F − f‖2
⋆.

The asserted estimate follows easily from the Gronwall’s lemma and Lemma 2.2. �

5. Conditional Estimates: Minimal Surface Equation

For quasilinear operators F the theory of §4 does not always apply. It may, in
particular, be difficult to find a suitable Sobolev setting. This is the case of the
minimal surface operator over a domain Ω of R

d

(5.1) F(u) := div
∇u

Q(u)
, Q(u) :=

√
1 + |∇u|2,
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which is better studied in terms of geometric quantities. One such quantity is

(5.2) N(u) =
(∇u , 1)

Q(u)
,

the unit normal to the graph Γu := {(x, u(x)) : x ∈ Ω}. The following geometric-
type coercivity was first observed by Fierro and Veeser [12]:

〈F(u)−F(v), u−v〉 = 〈 ∇u

Q(u)
− ∇v

Q(v)
, ∇(u−v)〉 =

∫

Ω

|N(u)−N(v)|2 Q(u) + Q(v)

2
.

This can be interpreted as an L2 estimate for the normals to the graphs Γu, Γv

measured on them. For this to make sense we need u, v ∈ W 1
∞(Ω).

Let U be either the dG(q) or IRK-R(q) approximation to the evolution prescribed
mean curvature equation:

(5.3) ∂tu − div
∇u

Q(u)
= f in Ω × (0, T ),

subject to an initial and lateral boundary condition u = u0. We assume that (5.3)
admits a smooth solution in W 1

∞(Ω × (0, T )). We denote by

(5.4) J(U) := U+
n − Un, N(U) :=

∇U

Q(U)
− Π

∇U

Q(U)
;

the piecewise constant jump J(U) is a measure of numerical dissipation and Q(U) is
a measure of the nonlinearity of F. The latter will be used next to quantify proximity
to the exact solution u. We first set H = L2(Ω), and define the concept of coercivity

ρ(v, w; z) :=

∫

Ω

|N(v) − N(w)|2 Q(z) dx ,

along with that of error for 0 ≤ λ ≤ 1:

E := max

{
max
0≤t≤T

|u − Û |2;
∫ T

0

(1

4
ρ(U, u; U) + (1 − λ)ρ(U, u; u)

)
dt

} 1

2

.

Proposition 5.1 (Conditional Estimate). If the solution U of dG(q) or IRK-R(q)
with q ≥ 1 satisfies the a priori condition

(5.5) λ = 2‖N(U)Q(U)2‖L∞(Ω) ≤ 1,

and α∞ is defined as in (2.8), then

E ≤
{

5α2
∞

∫ T

0

∫

Ω

|∇J(U)|2
Q(U)

dxdt + 9

∫ T

0

∫

Ω

|N(U)|2Q(U)3 dxdt
} 1

2

+

∫ T

0

|F − f |dt.

Proof. Subtracting (1.1) from (2.1). we obtain the error equation

〈(Û − u)′, v〉 + 〈F(U) − F(u), v〉 = 〈F(U) − ΠF(U), v〉 + 〈F − f, v〉 .
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We now choose v = Û − u which, in view of (2.7), reads v = U − u + ℓJ(U) where
ℓ(t) = ℓn,0(t) for t ∈ In. Since

〈F(U) − F(u), U − u〉 =
1

2

(
ρ(U, u; u) + ρ(U, u; U)

)
,

we have

d

dt
|u − Û |2 + ρ(U, u; u) + ρ(U, u; U) ≤ 2|ℓ| |〈F(U) − F(u), J(U)〉|

+ 2〈N(U),∇(Û − u)〉 + 2〈F − f, Û − u)〉 .

(5.6)

Then, since | ∇u
Q(u)

− ∇U
Q(U)

| ≤ |N(u) − N(U)|, it is easily seen that

2|ℓ| |〈F(U) − F(u), J(U)〉| ≤ 1

4
ρ(U, u; U) + 4α2

∞

∫

Ω

|∇J(U)|2
Q(U)

dx .

It remains to estimate the last two terms in the right hand side of (5.6). Both terms
require finding a bound for |∇(U − u)| in terms of geometric quantities we have
control of. To this end, we proceed as in [12]. If we set

p = (∇u, 1) and q = (∇U, 1) ,

then

|p − q| =
∣∣∣|p| p

|p| − |q| q

|q|
∣∣∣

≤
∣∣∣
p

|p| −
q

|q|
∣∣∣ |q| +

∣∣∣|p| p

|p| − |q| p

|p|
∣∣∣ =

∣∣∣
p

|p| −
q

|q|
∣∣∣ |q| +

∣∣∣|p| − |q|
∣∣∣,

whence

(5.7) |∇(U − u)| ≤ |N(u) − N(U)|Q(U) +
∣∣Q(u) − Q(U)

∣∣.

In addition, for a, b ∈ R, we have

|b − a|
b2

≤ |b − a|
ab

+
|b − a|

b

∣∣∣
1

a
− 1

b

∣∣∣ =
∣∣∣
1

a
− 1

b

∣∣∣ +
∣∣∣
1

a
− 1

b

∣∣∣
2

a.

Hence, taking a = Q(u), b = Q(U) and using | 1
a
− 1

b
| ≤ |N(u) − N(U)|, we get

(5.8) |Q(u) − Q(U)| ≤ Q(U)2|N(u) − N(U)| + Q(u)Q(U)2|N(u) − N(U)|2.
Combining (5.7) and (5.8), and making use of Q(U) ≥ 1, we arrive at

|∇(U − u)| ≤ 2|N(u) − N(U)|Q(U)2 + |N(u) − N(U)|2Q(u)Q(U)2.

Consequently, if λ = 2‖N(U)Q(U)2‖L∞(Ω), then we get

|〈N(U),∇(U − u)〉| ≤ 1

4
ρ(U, u; U) + 4

∫

Ω

N(U)2Q(U)3 dx +
λ

2
ρ(U, u; u),
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whence, using Q(U) ≥ 1,

2|〈N(U),∇Û −∇u〉| ≤ 1

2
ρ(U, u; U) + λ ρ(U, u; u)

+ 9

∫

Ω

|N(U)|2Q(U)3 + α2
∞

∫

Ω

|J(U)|2
Q(U)

.

Inserting the above estimates back into (5.6), we find

d

dt
|u − Û |2 + (1 − λ)ρ(U, u; u) +

1

4
ρ(U, u; U)

≤ 9

∫

Ω

|N(U)|2Q(U)3 + 5α2
∞

∫

Ω

|J(U)|2
Q(U)

+ 2|F − f | |Û − u|.

Since λ ≤ 1 in view of (5.5), we thus have an expression of the form

d

dt
a2(t) + b2(t) ≤ c2(t) + 2d(t)a(t).

The asserted estimate is finally a consequence of the following Gronwall-like inequal-
ity [27, Lemma 3.7]:

max
{

max
0≤t≤T

a(t),
( ∫ T

0

b2(t)dt
) 1

2
}
≤

( ∫ T

0

c2(t)dt
) 1

2

+

∫ T

0

d(t)dt. �

Remark 5.1 (Coercivity). It is worth noticing that the second term in the definition
of E is not a norm but a geometric quantity without homogeneity. Therefore, the
technique of Lemma 4.4 does not apply to yield coercivity. However, the minimal
surface operator is 1-angle bounded from Lemma 4.4, which leads to an optimal a
posteriori error estimate for polynomial degree q = 1 as in [27]. For q > 1 we need
control of the nonlinear term N(U), which vanishes otherwise, and this is achieved
via the coercivity term.

Remark 5.2 (Conditional Estimates). We point out that the condition (5.5) is a
posteriori, and thus verifiable. It is conceivable that, for a sufficiently fine partition of
[0, T ], (5.5) would be valid. Conditional estimates are somehow natural for nonlinear
equations but rather unusual in a posteriori error analysis. We refer to Fierro
and Veeser [12] for elliptic problems of prescribed mean curvature and Lakkis and
Nochetto [20] for the mean curvature flow of graphs, both for q = 1.
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Dunod, 1969.

[23] G. Lippold. Error estimates for the implicit Euler approximation of an evolution inequality.
Nonlinear Anal., 15(11):1077–1089, 1990.

[24] G. Lippold. Error estimates and step-size control for the approximate solution of a first order
evolution equation. RAIRO Modél. Math. Anal. Numér., 25(1):111–128, 1991.
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[27] R. H. Nochetto, G. Savaré, and C. Verdi. A posteriori error estimates for variable time-step
discretizations of nonlinear evolution equations. Comm. Pure Appl. Math., 53(5):525–589,
2000.

[28] R. H. Nochetto, A. Schmidt, and C. Verdi. A posteriori error estimation and adaptivity for
degenerate parabolic problems. Math. Comp., 69(229):1–24, 2000.

[29] J. Rulla. Error analysis for implicit approximations to solutions to cauchy problems. SIAM J.
Numer. Anal., 33(1):68–87, 1996.

[30] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin,
1997.

Department of Applied Mathematics, University of Crete, 71409 Heraklion-Crete,

Greece and Institute of Applied and Computational Mathematics, FORTH, 71110

Heraklion-Crete, Greece. Partially supported by the European Union RTN-network

HYKE, HPRN-CT-2002-00282, and the EU Marie Curie Development Host Site,

HPMD-CT-2001-00121.

URL: http://www.tem.uoc.gr/~makr
E-mail address: makr@ tem.uoc.gr

Department of Mathematics and Institute for Physical Science and Technology,

University of Maryland, College Park, MD 20742, USA. Partially supported by

NSF Grants DMS-9971450 and DMS-0204670 and the General Research Board of

the University of Maryland.

URL: http://www.math.umd.edu/~rhn
E-mail address: rhn@ math.umd.edu




