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A-posteriori error analysis of hp-version

discontinuous Galerkin finite element methods for

second-order quasilinear elliptic problems

Paul Houston1, Endre Süli2, and Thomas P. Wihler3

We develop the a-posteriori error analysis of hp-version interior-penalty
discontinuous Galerkin finite element methods for a class of second-order qua-
silinear elliptic partial differential equations. Computable upper and lower
bounds on the error are derived in terms of a natural (mesh-dependent) en-
ergy norm. The bounds are explicit in the local mesh size and the local degree
of the approximating polynomial. The performance of the proposed estima-
tors within an automatic hp-adaptive refinement procedure is studied through
numerical experiments.
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1 Introduction

In this article, we consider the a-posteriori error analysis, in a natural mesh-dependent
energy norm, for a class of interior-penalty hp-version discontinuous Galerkin fi-
nite element methods for the numerical solution of the following quasilinear elliptic
boundary value problem:

−∇ · (µ(x, |∇u|)∇u) = f in Ω, (1.1)

u = 0 on Γ. (1.2)

Here, Ω is a bounded polygonal domain in R
2 with boundary Γ, and f ∈ L2(Ω).

Additionally, we assume that the nonlinearity µ satisfies the following assumptions:

(A1) µ ∈ C(Ω × [0,∞));

(A2) there exist positive constants mµ and Mµ such that

mµ(t − s) ≤ µ(x, t)t − µ(x, s)s ≤ Mµ(t − s), t ≥ s ≥ 0, x ∈ Ω. (1.3)

We remark that, if µ satisfies (1.3), there exist constants C1 and C2, C1 ≥ C2 > 0,
such that for all vectors v,w ∈ R

2, and all x ∈ Ω,

|µ(x, |v|)v − µ(x, |w|)w| ≤ C1|v −w|, (1.4)

C2|v − w|2 ≤ (µ(x, |v|)v − µ(x, |w|)w) · (v − w); (1.5)

see [34, Lemma 2.1].
Nonlinearities of this kind appear in numerous problems in continuum mechanics.

In particular, they arise in mathematical models for non-Newtonian fluids, such as
the following generalised power-law model: given f ∈ L2(Ω)2, find (u, p) ∈ H1(Ω)2 ×
L2(Ω)/R such that

−∇ · {µ(x, |e(u)|)e(u)} + ∇p = f in Ω,

divu = 0 in Ω,

u = 0 on Γ,

where u = (u1, u2)
T is the velocity vector, p is the pressure, f = (f1, f2)

T is the
applied force, e(u) is the symmetric 2 × 2 strain tensor defined by

eij(u) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, i, j = 1, 2,

and |e(u)| is the Frobenius norm of e(u).
For the sake of notational simplicity we shall suppress the dependence of µ on x

and write µ(t) instead of µ(x, t). Indeed, in many physical applications µ is in fact
independent of x; for example, in the Carreau law for a non-Newtonian fluid, we
have µ(t) = µ∞ + (µ0 − µ∞)(1 + λt2)

r−2

2 , where λ > 0, 1 < r ≤ 2 and 0 < µ∞ < µ0.
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In recent years there has been considerable interest in discontinuous Galerkin
finite element methods for the numerical solution of a wide range of partial differ-
ential equations. We shall not attempt to give an extensive survey of this area of
research: the reader is referred to [11] for a detailed review. Discontinuous Galerkin
Finite Element Methods (DGFEMs) were introduced in the early 1970s for the
numerical solution of first-order hyperbolic problems (see [12, 13, 15, 29, 33, 41]). Si-
multaneously, but quite independently, they were proposed as nonstandard schemes
for the approximation of second-order elliptic equations [1, 38, 42]. The recent up-
surge of interest in this class of methods has been stimulated by the computational
convenience of DGFEMs due to a high degree of locality, the need to approximate
advection-dominated diffusion problems without excessive numerical stabilisation,
the necessity to accommodate high-order hp- and spectral element discretisations for
first-order hyperbolic equations and advection-diffusion problems [17, 31], and the
desire to handle nonlinear hyperbolic problems in a locally conservative manner and
without auxiliary numerical stabilisation [9, 14]; see also [8, 10] for the error analysis
of the local version of the DGFEM in the elliptic case, as well as [2] and [39].

In the recent article [20] a family of interior-penalty hp-DGFEMs was formulated
for the numerical approximation of the scalar quasilinear boundary value problem
(1.1)–(1.2), and a-priori bounds were derived on the error, measured in terms of
a mesh-dependent energy norm. These error bounds are optimal with respect to
the mesh size h and mildly suboptimal (by p1/2) in the polynomial degree p; more
precisely, for u ∈ C1(Ω) ∩ Hk(Ω), k ≥ 2, it was shown that, for any member of the
family of methods considered, the error tends to zero at the rate O(hs−1/pk−3/2),
where 1 ≤ s ≤ min{p + 1, k}, as h tends to zero and p tends to infinity. For
related work on h-version local DGFEMs for quasilinear PDEs, we refer to the
articles [7, 18], for example. Here, we extend this work by considering the a-posteriori
error analysis of the interior-penalty hp-DGFEMs from [20]. In particular, we shall
derive computable upper and lower bounds on the error, measured in terms of the
underlying DG-energy norm, which are explicit in terms of their dependence on
h and p. The upper bound is based on the general techniques developed in the
articles [21, 22, 23, 24]. Indeed, here the proof crucially relies on the approximation of
discontinuous finite element functions by conforming ones. Results of this type have
been developed independently by a number of authors in the context of the h-version
of the DGFEM; see, for example, [19, 30, 32]. The extension of this type of result to
the hp-version of the DGFEM was recently undertaken in the article [23]. In contrast
to [23], for example, here we avoid the need to introduce an auxiliary formulation of
the underlying DGFEM through the use of lifting operators, while still only requiring
minimal regularity assumptions on the unknown analytical solution. The proof of
the lower (efficiency) bounds is based on the techniques presented in [36]. As in
the case of the conforming hp-version finite element methods considered in [36],
reliability and efficiency of our error bounds cannot be established uniformly with
respect to the polynomial degree, since the proof of efficiency relies on employing
inverse estimates which are suboptimal in the spectral order. Finally, numerical
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experiments highlighting the performance of the proposed estimator within an hp-
adaptive mesh refinement algorithm will also be presented.

The outline of this article is as follows. In Section 2, we revisit the hp-DGFEM
introduced in [20], for the numerical approximation of the boundary-value prob-
lem (1.1)–(1.2). In Section 3, our a-posteriori error bounds are presented and dis-
cussed; both upper and lower energy norm bounds will be derived. In Section 4,
we present a series of numerical experiments to illustrate the performance of the
proposed error estimator within an automatic hp-mesh refinement algorithm. Fi-
nally, in Section 5 we summarise the main results of this article and draw some
conclusions.

Throughout the paper, we use the following standard function spaces. For a
bounded Lipschitz domain D ⊂ R

d, d ≥ 1, we write Ht(D) to denote the usual
(real) Sobolev space of order t ≥ 0 with norm ‖ · ‖t,D. In the case t = 0, we set
L2(D) = H0(D). We define H1

0(D) to be the subspace of functions in H1(D) with
zero trace on ∂D. For a function space X(D), we write X(D)d to denote the space of
d-component vector fields whose components belong to X(D); this space is equipped
with the usual product-norm which, for simplicity, is denoted in the same way as
the norm in X(D).

2 hp-Version discontinuous Galerkin FEM

Let Th be a subdivision of Ω into disjoint open element domains κ such that Ω =⋃
κ∈Th

κ. We assume that the family of subdivisions {Th}h>0 is shape-regular (see,
for example, [6, pp. 61, 113, and Remark 2.2, p. 114]) and each κ ∈ Th is an
affine image of a fixed master element κ̂; i.e., for each κ ∈ Th there exists an affine
mapping Fκ : κ̂ → κ such that κ = Fκ(κ̂), where κ̂ is either the open unit triangle
{(x, y) : −1 < x < 1,−1 < y < −x}) or the open unit square (−1, 1)2 in R

2. By
hκ we denote the element diameter of κ ∈ Th, h = maxκ∈Th

hκ, and nκ signifies the
unit outward normal vector to κ. We allow the meshes Th to be 1-irregular, i.e.,
each edge of any one element κ ∈ Th contains at most one hanging node (which,
for simplicity, we assume to be the midpoint of the corresponding edge). Here, we
suppose that Th is regularly reducible (cf. [40, Section 7.1]), i.e., there exists a shape-

regular conforming (regular) mesh T̃h (consisting of triangles and parallelograms)

such that the closure of each element in Th is a union of closures of elements of T̃h,
and that there exists a constant C > 0, independent of the element sizes, such that
for any two elements κ ∈ Th and κ̃ ∈ T̃h with κ̃ ⊆ κ we have hκ/heκ ≤ C. Note that
these assumptions imply that the family {Th}h>0 is of bounded local variation, i.e.,
there exists a constant ρ1 ≥ 1, independent of the element sizes, such that

ρ−1
1 ≤ hκ/hκ′ ≤ ρ1, (2.1)

for any pair of elements κ, κ′ ∈ Th which share a common edge e = ∂κ ∩ ∂κ′.
For a nonnegative integer k, we denote by Pk(κ̂) the set of polynomials of total

degree k on κ̂. When κ̂ is the unit square, we also consider Qk(κ̂), the set of all
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tensor-product polynomials on κ̂ of degree k in each co-ordinate direction. To each
κ ∈ Th we assign a polynomial degree pκ (local approximation order).

We store the hκ, pκ and Fκ in the vectors h = {hκ : κ ∈ Th}, p = {pκ : κ ∈ Th}
and F = {Fκ : κ ∈ Th}, respectively, and consider the finite element space

Sp(Ω, Th,F) = {v ∈ L2(Ω) : v|κ ◦ Fκ ∈ Rpκ
(κ̂) ∀κ ∈ Th} ,

where R is either P or Q. We shall suppose that the polynomial degree vector p,
with pκ ≥ 1 for each κ ∈ T , has bounded local variation, i.e., there exists a constant
ρ2 ≥ 1 independent of h and p, such that, for any pair of neighbouring elements
κ, κ′ ∈ Th,

ρ−1
2 ≤ pκ/pκ′ ≤ ρ2. (2.2)

Let us consider the set E of all one-dimensional open edges, or, simply, edges,
of all elements κ ∈ Th. Further, we denote by Eint the set of all edges e in
E that are contained in Ω (interior edges). Additionally, let Γint = {x ∈ Ω :
x ∈ e for some e ∈ Eint}, and introduce EB to be the set of boundary edges consist-
ing of all e ∈ E that are contained in ∂Ω. Moreover, let Γint,B = Γint ∪ Γ.

Suppose that e is an edge of an element κ ∈ Th. Then, by he, we denote the
length of e. Due to our assumptions on the subdivision Th we have that, if e ⊂ ∂κ,
then he is commensurate with hκ, the diameter of κ.

Given that e ∈ Eint, there exist indices i and j such that i > j and κi, κj ∈ Th

share the edge e; we define the (element-numbering-dependent) jump of an (element-
wise smooth) function v across e and the mean-value of v on e by

[[v]]e = v|∂κi∩e − v|∂κj∩e and 〈〈v〉〉e =
1

2

(
v|∂κi∩e + v|∂κj∩e

)
,

respectively. For a boundary edge e ⊂ Γ, and thereby e ⊂ ∂κ ∩ Γ for some κ ∈ T ,
we define

[[v]]e = 〈〈v〉〉e = v|∂κ∩e.

When there is no danger of confusion, the subscript ·e will be suppressed. Addi-
tionally, we associate with each edge e ⊂ Γint the unit normal vector ν which points
from κi to κj (i > j); if e ⊂ Γ, then ν is defined as the outward unit normal vector
on Γ.

With these notations and a parameter θ ∈ [−1, 1], we introduce the semilinear
form

B(w, v) =

∫

Ω

µ(|∇hw|)∇hw · ∇hv dx

−
∫

Γint,B

〈〈µ(|∇hw|)∇hw · ν〉〉[[v]] ds + θ

∫

Γint,B

〈〈µ(h−1|[[w]]|)∇hv · ν〉〉[[w]] ds

+

∫

Γint,B

σ [[w]] [[v]] ds,

(2.3)
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and the linear functional

ℓ(v) =

∫

Ω

fv dx. (2.4)

Here, ∇h denotes the element-wise gradient operator defined, for v ∈ H1(Ω, Th), by
(∇hv)|κ = ∇(v|κ). For an edge e ∈ E , the discontinuity penalisation parameter σ,
featuring in B(·, ·) above, is defined by

σ|e = σe = γ
〈〈p2〉〉e

he
, (2.5)

where γ ≥ 1 is a (sufficiently large) constant, cf. Theorem 2 below.
The hp-DGFEM approximation of problem (1.1)–(1.2) reads as follows: find

uDG∈Sp(Ω, T ,F) such that

B(uDG, v) = ℓ(v) ∀v ∈ Sp(Ω, T ,F). (2.6)

Remark 1 In the case of an inhomogeneous Dirichlet boundary condition, u = g
on Γ, the third term in the semilinear form BDG(·, ·) must be replaced by

θ

∫

Γint

〈〈µ(h−1|[[w]]|)∇hv · ν〉〉[[w]] ds + θ

∫

Γ

µ(h−1|w − g|)∇hv · n (w − g) ds,

while the linear functional ℓ(·) defined in (2.4) must be substituted by

ℓ(v) =

∫

Ω

fv dx +

∫

Γ

σgv ds;

we refer to [20] for further details.

The existence and uniqueness of the DG solution uDG satisfying (2.6) is guaran-
teed by the following result proved in [20, Theorem 2.5].

Theorem 2 Suppose that γ in (2.5) is chosen sufficiently large. Then, there exists
a unique element uDG in Sp(Ω, T ,F) such that (2.6) holds.

We conclude this section by equipping the DG space Sp(Ω, T ,F) with the DG
energy norm ‖ · ‖DG defined by

‖v‖DG =

(
∑

κ∈T

∫

κ

|∇v|2 dx +

∫

Γint,B

σ [[v]]2 ds

)1/2

induced by the energy inner product

(v, w)DG =
∑

κ∈T

∫

κ

∇v · ∇w dx +

∫

Γint,B

σ [[v]] [[w]] ds.

The a-priori error analysis of the discontinuous Galerkin finite element method
(2.6) has been developed in [20]; here, we shall be concerned with its a-posteriori
error analysis.
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3 hp-Version a-posteriori error analysis

Under the structural hypotheses (1.4)–(1.5) on the coefficient µ, the existence of a
unique solution u ∈ H1

0(Ω) to (1.1)–(1.2) follows from the following result from the
theory of monotone operators (see [37], Theorem 3.2.23), with H = H1

0(Ω), Λ = C1

and λ = C2. Henceforth, we shall therefore assume that u ∈ H1
0(Ω).

Proposition 3 Let H be a real Hilbert space with inner product (·, ·)H and norm
‖ · ‖H , and let T be an operator from H into itself. Suppose that T is Lipschitz-
continuous on H, i.e. there exists Λ > 0 such that

‖T (w1) − T (w2)‖H ≤ Λ‖w1 − w2‖H ∀w1, w2 ∈ H,

and strongly monotone on H, i.e. there exists λ > 0 such that

(T (w1) − T (w2), w1 − w2)H ≥ λ‖w1 − w2‖2
H ∀w1, w2 ∈ H.

Then, T is a bijection of H onto itself, and the inverse T−1 of T is Lipschitz-
continuous on H:

‖T−1f − T−1g‖H ≤ (Λ/λ)‖f − g‖H ∀f, g ∈ H.

3.1 Upper bound

In this section we will formulate the main result of this paper, Theorem 4. To this
end, we first define, for an element κ ∈ Th and an edge e ∈ Eint, the data-oscillation
terms

O(1)
κ = h2

κp
−2
κ ‖(I − ΠTh

)|κ(f + ∇ · (µ(|∇uDG|)∇uDG))‖2
0,κ, (3.1)

and

O(2)
e = hep

−1
e ‖(I − ΠE)|e([[µ(|∇uDG|∇uDG) · ν]])‖2

0,e, (3.2)

which depend on the right-hand side f in (1.1) and the numerical solution uDG

from (2.6). Here, I is a generic identity operator and ΠTh
denotes the element-wise

L2-projector onto the space Sp−1(Ω, Th,F), where p−1 = {pκ−1}κ∈Th
. Furthermore,

ΠE |e is defined as the L2-projector onto Ppe−1(e); here, pe = max{pκ, pκ′}, with
κ, κ′ ∈ Th, e = ∂κ ∩ ∂κ′ (we note that, due to our assumptions on the polynomial
degree vector p, the quantities pe, pκ and pκ′ are all commensurate with one another).

Theorem 4 Let the analytical solution u of (1.1)–(1.2) belong to H1
0(Ω). Further-

more, let uDG ∈ Sp(Ω, Th,F) be its discontinuous Galerkin approximation, i.e. the
solution of (2.6). Then, the following hp-version a-posteriori error bound holds:

‖u − uDG‖DG ≤ C

(
∑

κ∈Th

η2
κ + O(f, uDG)

) 1

2

, (3.3)
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where the local error indicators ηκ, κ ∈ Th, are defined by

η2
κ = h2

κp
−2
κ ‖ΠTh

(f + ∇ · (µ(|∇uDG|)∇uDG))‖2
0,κ

+ hκp
−1
κ ‖ΠE([[µ(|∇uDG|)∇uDG · ν]])‖2

0,∂κ\Γ + γ2h−1
κ p3

κ‖[[uDG]]‖2
0,∂κ,

(3.4)

and

O(f, uDG) =
∑

κ∈Th

O(1)
κ +

∑

e∈Eint

O(2)
e .

Here, C > 0 is a constant that is independent of h, the polynomial degree vector p,
and the parameters γ and θ, and only depends on the shape-regularity of the mesh
and on the constants ρ1 and ρ2 from (2.1) and (2.2), respectively.

Remark 5 We observe a slight suboptimality with respect to the polynomial de-
gree in the last term of the local error estimator ηκ in (3.4). This results from the
fact that, due to the possible presence of hanging nodes in Th, a nonconforming
interpolant is used in the proof of the above Theorem 4; cf. Section 3.1.3. Indeed,
for conforming (regular) meshes, i.e. meshes without any hanging nodes, a con-
forming (hp-version) Clément interpolant, as constructed in [35], can be employed;
this then results in an a posteriori error bound of the form (3.3), with the term
γ2h−1

κ p3
κ‖[[uDG]]‖2

0,∂κ in (3.4) replaced by the improved expression γh−1
κ p2

κ‖[[uDG]]‖2
0,∂κ;

cf. [23].

Remark 6 In order to incorporate the inhomogeneous boundary condition u = g
on Γ, the error indicators ηκ are simply adjusted by modifying the jump indicators
‖σ 1

2 [[uDG]]‖2
0,∂κ on ∂κ ∩ Γ, with the inclusion of an additional data-oscillation term;

see [23] for details.

3.1.1 DG decompositions

The hp-version a-posteriori error analysis for the DGFEM (2.6) will be based on
an approach similar to the one discussed in [23] (see also [21, 22, 24, 44], for related
work). In contrast with the analysis presented in [23] though, here we shall also
admit 1-irregular meshes containing hanging nodes. To this end, consider a given
subdivision Th of Ω that is regularly reducible, i.e., Th can be refined to a shape-
regular conforming mesh T̃h as described in Section 2. Furthermore, denote by
Sep(Ω, T̃h, F̃) the corresponding DG space, with a suitable affine element mapping

vector F̃ and a polynomial degree vector p̃ that is defined by peκ = pκ, for any
κ̃ ∈ T̃h with κ̃ ⊆ κ, for some κ ∈ Th. We note that Sp(Ω, Th,F) ⊆ Sep(Ω, T̃h, F̃),
and that, due to our assumptions in Section 2 (specifically, the commensurability

of the local element sizes and of the local polynomial degrees in Th and T̃h, due
to our bounded local variation assumptions), the DG energy norms ‖ · ‖DG and

‖ · ‖gDG corresponding to the DG spaces Sp(Ω, Th,F) and Sep(Ω, T̃h, F̃), respectively,
are equivalent on Sp(Ω, Th,F); in particular, there exist positive constants N1, N2,
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independent of h and p, such that

N1

∫

Γint,B

σ [[v]]2 ds ≤
∫eΓint,B

σ̃ [[v]]2 ds ≤ N2

∫

Γint,B

σ [[v]]2 ds ∀v ∈ Sp(Ω, Th,F).

(3.5)

Here, Γ̃int,B denotes the union of all element edges of T̃h, and σ̃ is the discontinuity pe-

nalisation parameter on Sep(Ω, T̃h, F̃) which is defined analogously as for Sp(Ω, Th,F)

in (2.5); note that, for v ∈ Sp(Ω, Th,F), the jump [[v]] vanishes on Γ̃int,B \ Γint,B.

An important step in our analysis is the decomposition of the space Sep(Ω, T̃h, F̃)

into two orthogonal subspaces: a conforming part [Sep(Ω, T̃h, F̃)]‖ = Sep(Ω, T̃h, F̃) ∩
H1

0(Ω), and a nonconforming part [Sep(Ω, T̃h, F̃)]⊥ defined as the orthogonal comple-

ment of [Sep(Ω, T̃h, F̃)]‖ in Sep(Ω, T̃h, F̃) with respect to the DG energy inner product
(·, ·)gDG (inducing the DG energy norm ‖ · ‖gDG), i.e.,

Sep(Ω, T̃h, F̃) = [Sep(Ω, T̃h, F̃)]‖ ⊕‖·‖gDG
[Sep(Ω, T̃h, F̃)]⊥.

Based on this setting, the DG-solution uDG obtained by (2.6) may be split accord-
ingly,

uDG = u
‖
DG + u⊥

DG, (3.6)

where u
‖
DG ∈ [Sep(Ω, T̃h, F̃)]‖ and u⊥

DG ∈ [Sep(Ω, T̃h, F̃)]⊥. Furthermore, we define the
error of the hp-DGFEM by

eDG = u − uDG, (3.7)

and let
e
‖
DG = u − u

‖
DG ∈ H1

0(Ω). (3.8)

3.1.2 Auxiliary results

For the proof of the above Theorem 4, we shall require the following auxiliary results.

Proposition 7 Under the assumptions in Section 2 on the (regularly reduced) sub-

division T̃h, the following norm-equivalence holds over the space [Sep(Ω, T̃h, F̃)]⊥:

C̃1‖v‖2gDG
≤
∫eΓint,B

σ̃ [[v]]2 ds ≤ C̃2‖v‖2gDG
∀v ∈ [Sep(Ω, T̃h, F̃)]⊥, (3.9)

where the constants C̃1, C̃2 > 0 depend only on the shape-regularity of Th and on the
constants ρ1 and ρ2 in (2.1) and (2.2), respectively.

Proof See [23, Proposition 4.5]. �

Corollary 7A With u⊥
DG and e

‖
DG defined by (3.6) and (3.8), respectively, the fol-

lowing bounds hold:

‖u⊥
DG‖gDG ≤ D1

(∫

Γint,B

σ [[uDG]]2 ds

) 1

2

, ‖e‖DG‖DG ≤ D2‖eDG‖DG,



10

where the constants D1, D2 > 0 are independent of γ, h and p, and only depend on
the shape-regularity of Th and the constants ρ1 and ρ2 in (2.1) and (2.2), respectively.

Proof In order to prove the first of the above bounds, we recall that u
‖
DG ∈ H1

0(Ω). This

implies that [[u
‖
DG]] = 0 on Γ̃int,B, and hence,

[[u⊥
DG]] = [[u

‖
DG]] + [[u⊥

DG]] = [[u
‖
DG + u⊥

DG]] = [[uDG]].

Then, due to Proposition 7, we obtain,

‖u⊥
DG‖2gDG

≤ C

∫eΓint,B

σ̃ [[u⊥
DG]]2 ds = C

∫eΓint,B

σ̃ [[uDG]]2 ds. (3.10)

Furthermore, since uDG ∈ Sp(Ω,Th,F), and because of (3.5), we conclude that

‖u⊥
DG‖2gDG

≤ C

∫

Γint,B

σ [[uDG]]2 ds.

For the second bound, we use the triangle inequality, the bound (3.10), and the fact

that, since the analytical solution u of (1.1)–(1.2) and e
‖
DG belong to H1

0(Ω), we have

[[u]] = [[e
‖
DG]] = 0 and [[eDG]] = [[u]] − [[uDG]] = −[[uDG]] (3.11)

on Γ̃int,B (and thereby also on Γint,B). Thus,

‖e‖DG‖DG = ‖e‖DG‖gDG
≤ ‖eDG‖gDG

+ ‖u⊥
DG‖gDG

≤ ‖eDG‖gDG
+ C

(∫eΓint,B

σ̃ [[uDG]]2 ds

)1

2

≤ ‖eDG‖gDG
+ C

(∫eΓint,B

σ̃ [[eDG]]2 ds

)1

2

≤ C‖eDG‖gDG
.

(3.12)

In a similar way, we obtain

‖eDG‖2gDG
=
∑eκ∈eTh

‖∇eDG‖2
0,eκ +

∫eΓint,B

σ̃ [[eDG]]2 ds =
∑

κ∈Th

‖∇eDG‖2
0,κ +

∫eΓint,B

σ̃ [[uDG]]2 ds.

Moreover, observing that uDG ∈ Sp(Ω,Th,F), and applying (3.5), leads to

‖eDG‖2gDG
≤
∑

κ∈Th

‖∇eDG‖2
0,κ + C

∫

Γint,B

σ [[uDG]]2 ds

=
∑

κ∈Th

‖∇eDG‖2
0,κ + C

∫

Γint,B

σ [[eDG]]2 ds ≤ C‖eDG‖2
DG,

which, referring to (3.12), yields the second bound. �

Next, we state the following approximation property.
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Lemma 8 For any ϕ ∈ H1
0(Ω), there exists a function ϕhp ∈ Sp(Ω, Th,F) such that

h−2
κ p2

κ‖ϕ − ϕhp‖2
0,κ + ‖∇(ϕ − ϕhp)‖2

0,κ + h−1
κ pκ‖ϕ − ϕhp‖2

0,∂κ ≤ CI‖∇ϕ‖2
0,κ, (3.13)

for any κ ∈ Th, with an interpolation constant CI > 0, which is independent of h

and p, and only depends on the shape-regularity of the mesh and the constants ρ1

and ρ2 in (2.1) and (2.2), respectively.

Proof We first consider the proof of the upper bounds on the L2(κ)-norms of ϕ−ϕhp and
∇(ϕ − ϕhp). In this case, on quadrilateral elements, the above approximation property
follows from the tensorisation of the corresponding one-dimensional approximation results
for an H1-projector; see [25], for details. For triangular elements, we employ a reflec-
tion technique. More precisely, writing κ̂ to denote the canonical triangle with vertices
(−1,−1), (1,−1), and (−1, 1), we define κ̂′ to be triangle with vertices (1,−1), (1, 1), and
(−1, 1) obtained by reflecting κ̂ about its longest edge. Analogously, given v̂ ∈ H1(κ̂), we
write v̂′ ∈ H1(κ̂′) to denote the reflection of v in the line ξ2 = −ξ1, where (ξ1, ξ2) denotes
the local coordinate system for the reference element κ̂. With this notation we define the
function w ∈ H1(Ŝ) by w|bκ = v̂ and w|bκ′ = v̂′, where Ŝ is the unit square (−1, 1)2. Due
to symmetry, we deduce that there exists a positive constant C, such that

√
2 ‖v̂‖0,bκ ≤ ‖ŵ‖

0,bS ≤ C‖v̂‖0,bκ and
√

2 ‖∇v̂‖0,bκ ≤ ‖∇ŵ‖
0,bS ≤ C‖∇v̂‖0,bκ.

Thereby, the approximation properties on the reference element κ̂ now follow from the
corresponding results on the unit square Ŝ; the proof is then completed by employing a
standard scaling argument.

The upper bound on the approximation error measured in terms of the L2(∂κ)-norm
now follows from the above results, together with the trace inequality

‖v‖2
0,∂κ ≤ C

(
‖∇v‖0,κ‖v‖0,κ + h−1

κ ‖v‖2
0,κ

)
,

where v ∈ H1(κ) and C is a positive constant which depends only on the shape-regularity

of the element κ. �

3.1.3 Proof of Theorem 4

We commence the proof of our main theorem by applying (1.5). This yields

C2‖eDG‖2
DG = C2

(
∑

κ∈Th

∫

κ

|∇u −∇uDG|2 dx +

∫

Γint,B

σ [[eDG]]2 ds

)

= C2




∑eκ∈eTh

∫eκ |∇u −∇uDG|2 dx +

∫

Γint,B

σ [[eDG]]2 ds





≤
∑eκ∈eTh

∫eκ (µ(|∇u|)∇u− µ(|∇uDG|)∇uDG) · ∇eDG dx + C2

∫

Γint,B

σ [[eDG]]2 ds

≡ T1 + T2 + T3,

(3.14)
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where

T1 =
∑eκ∈eTh

∫eκ (µ(|∇u|)∇u− µ(|∇uDG|)∇uDG) · ∇e
‖
DG dx,

T2 = −
∑eκ∈eTh

∫eκ (µ(|∇u|)∇u− µ(|∇uDG|)∇uDG) · ∇u⊥
DG dx,

T3 = C2

∫

Γint,B

σ [[eDG]]2 ds,

and e
‖
DG ∈ H1

0(Ω) and u⊥
DG ∈ [Sep(Ω, T̃h, F̃)]⊥ are defined as in (3.6) and (3.8),

respectively.

We will now analyse the three terms T1, T2 and T3 separately.

Term T1. We first note that

T1 =
∑

κ∈Th

∫

κ

(µ(|∇u|)∇u− µ(|∇uDG|)∇uDG) · ∇e
‖
DG dx.

Then, using integration by parts, we obtain

T1 = −
∑

κ∈Th

∫

κ

∇ · (µ(|∇u|)∇u)e
‖
DG dx −

∑

κ∈Th

∫

κ

µ(|∇uDG|)∇uDG · ∇e
‖
DG dx

=
∑

κ∈Th

∫

κ

fe
‖
DG dx −

∑

κ∈Th

∫

κ

µ(|∇uDG|)∇uDG · ∇e
‖
DG dx.

We now let ϕhp ∈ Sp(Ω, Th,F) be the element-wise projection of e
‖
DG satisfying

Lemma 8. Then, by the definition of the hp-DGFEM (2.6), it follows that

T1 =
∑

κ∈Th

∫

κ

f(e
‖
DG − ϕhp) dx −

∑

κ∈Th

∫

κ

µ(|∇uDG|)∇uDG · ∇(e
‖
DG − ϕhp) dx

−
∫

Γint,B

〈〈µ(|∇huDG|)∇huDG · ν〉〉[[ϕhp]] ds + θ

∫

Γint,B

〈〈µ(h−1|[[uDG]]|)∇hϕhp · ν〉〉[[uDG]] ds

+

∫

Γint,B

σ [[uDG]] [[ϕhp]] ds.
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Hence, integrating the second term on the right-hand side of the above equality by
parts, leads to

T1 =
∑

κ∈Th

∫

κ

(f + ∇ · (µ(|∇uDG|)∇uDG)) (e
‖
DG − ϕhp) dx

−
∑

κ∈Th

∫

∂κ

(µ(|∇uDG|)∇uDG · nκ)(e
‖
DG − ϕhp) ds

−
∫

Γint,B

〈〈µ(|∇huDG|)∇huDG · ν〉〉[[ϕhp]] ds + θ

∫

Γint,B

〈〈µ(h−1|[[uDG]]|)∇hϕhp · ν〉〉[[uDG]] ds

+

∫

Γint,B

σ [[uDG]] [[ϕhp]] ds.

Using the fact that [[e
‖
DG]] = 0 on Γint,B, since e

‖
DG ∈ H1

0(Ω), and a few elementary
calculations, we have that

−
∑

κ∈Th

∫

∂κ

(µ(|∇uDG|)∇uDG · nκ)(e
‖
DG − ϕhp) ds

= −
∫

Γint

[[µ(|∇huDG|)∇huDG · ν]]〈〈e‖DG − ϕhp〉〉 ds +

∫

Γint,B

〈〈µ(|∇huDG|)∇huDG · ν〉〉[[ϕhp]] ds.

Therefore,

T1 =
∑

κ∈Th

∫

κ

(f + ∇ · (µ(|∇uDG|)∇uDG)) (e
‖
DG − ϕhp) dx

−
∫

Γint

[[µ(|∇huDG|)∇huDG · ν]]〈〈e‖DG − ϕhp〉〉 ds

+ θ

∫

Γint,B

〈〈µ(h−1|[[uDG]]|)∇hϕhp · ν〉〉[[uDG]] ds +

∫

Γint,B

σ [[uDG]] [[ϕhp]] ds,

and thus,

T1 ≤
∑

κ∈Th

∫

κ

|f + ∇ · (µ(|∇uDG|)∇uDG)||e‖DG − ϕhp| dx

+
∑

κ∈Th

∫

∂κ\Γ

|[[µ(|∇uDG|)∇uDG · ν]]||〈〈e‖DG − ϕhp〉〉| ds

+ |θ|
∫

Γint,B

h µ(h−1|[[uDG]]|)(h−1|[[uDG]]|)|〈〈∇hϕhp · ν〉〉| ds +

∫

Γint,B

σ|[[uDG]]||[[ϕhp]]| ds

≤
∑

κ∈Th

‖f + ∇ · (µ(|∇uDG|)∇uDG)‖0,κ‖e‖DG − ϕhp‖0,κ

+ C
∑

κ∈Th

‖[[µ(|∇uDG|)∇uDG · ν]]‖0,∂κ\Γ‖e‖DG − ϕhp‖0,∂κ

+ Mµ|θ|
∫

Γint,B

|[[uDG]]|〈〈|∇hϕhp|〉〉 ds +

∫

Γint,B

σ|[[uDG]]||[[ϕhp]]| ds,
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where we have applied (1.3) (with s = 0 and t = h−1|[[uDG]]|) to bound the second-
last of the above terms. Moreover, proceeding as in the proof of [20, Lemma 2.2]
(cf., also [43, Lemma 3.5]) and recalling that γ ≥ 1, we obtain

∫

Γint,B

|[[uDG]]|〈〈|∇hϕhp|〉〉 ds ≤
(∫

Γint,B

σ [[uDG]]2 ds

) 1

2

(
∑

e∈E

∫

e

h

〈〈p2〉〉〈〈|∇ϕhp|〉〉2 ds

) 1

2

≤ C

(∫

Γint,B

σ [[uDG]]2 ds

) 1

2

(
∑

κ∈Th

‖∇ϕhp‖2
0,κ

) 1

2

.

Furthermore, by (3.13), we have
∑

κ∈Th

‖∇ϕhp‖2
0,κ ≤ C

∑

κ∈Th

‖∇(e
‖
DG − ϕhp)‖2

0,κ + C
∑

κ∈Th

‖∇e
‖
DG‖2

0,κ ≤ C
∑

κ∈Th

‖∇e
‖
DG‖2

0,κ,

and hence,

∫

Γint,B

|[[uDG]]|〈〈|∇hϕhp|〉〉 ds ≤ C

(∫

Γint,B

σ [[uDG]]2 ds

) 1

2

(
∑

κ∈Th

‖∇e
‖
DG‖2

0,κ

) 1

2

.

Moreover, using again the fact that [[e
‖
DG]] = 0 on Γint,B, and recalling (2.1)–(2.2),

implies
∫

Γint,B

σ |[[uDG]]||[[ϕhp]]| ds =

∫

Γint,B

σ |[[uDG]]||[[e‖DG − ϕhp]]| ds

≤ C

(∫

Γint,B

σ〈〈p〉〉 [[uDG]]2 ds

) 1

2

(
∑

κ∈Th

∫

∂κ

σ〈〈p〉〉−1|e‖DG − ϕhp|2 ds

) 1

2

≤ Cγ
1

2

(∫

Γint,B

σ〈〈p〉〉 [[uDG]]2 ds

) 1

2

(
∑

κ∈Th

h−1
κ pκ‖e‖DG − ϕhp‖2

0,∂κ

) 1

2

.

Thus, collecting the terms leads to

T1 ≤
∑

κ∈Th

hκp
−1
κ ‖f + ∇ · (µ(|∇uDG|)∇uDG)‖0,κh

−1
κ pκ‖e‖DG − ϕhp‖0,κ

+ C
∑

κ∈Th

h
1

2
κ p

− 1

2
κ ‖[[µ(|∇uDG|)∇uDG · ν]]‖0,∂κ\Γh

− 1

2
κ p

1

2
κ‖e‖DG − ϕhp‖0,∂κ

+ C|θ|
(∫

Γint,B

σ [[uDG]]2 ds

) 1

2

(
∑

κ∈Th

‖∇e
‖
DG‖2

0,κ

)1

2

+ Cγ
1

2

(∫

Γint,B

σ〈〈p〉〉 [[uDG]]2 ds

) 1

2

(
∑

κ∈Th

h−1
κ pκ‖e‖DG − ϕhp‖2

0,∂κ

) 1

2

.
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Furthermore, applying again the approximation property (3.13), using that γ ≥ 1 ≥
|θ| ≥ 0, and incorporating (2.2), results in

T1 ≤
(
∑

κ∈Th

h2
κp

−2
κ ‖f + ∇ · (µ(|∇uDG|)∇uDG)‖2

0,κ

) 1

2

(
∑

κ∈Th

h−2
κ p2

κ‖e
‖
DG − ϕhp‖2

0,κ

)1

2

+ C

(
∑

κ∈Th

hκp
−1
κ ‖[[µ(|∇uDG|)∇uDG · ν]]‖2

0,∂κ\Γ

) 1

2

(
∑

κ∈Th

h−1
κ pκ‖e‖DG − ϕhp‖2

0,∂κ

)1

2

+ C|θ|
(
∑

κ∈Th

∫

∂κ

σ [[uDG]]2 ds

) 1

2

(
∑

κ∈Th

‖∇e
‖
DG‖2

0,κ

) 1

2

+ Cγ
1

2

(
∑

κ∈Th

∫

∂κ

σ〈〈p〉〉 [[uDG]]2 ds

) 1

2

(
∑

κ∈Th

h−1
κ pκ‖e‖DG − ϕhp‖2

0,∂κ

) 1

2

≤ C

(
∑

κ∈Th

h2
κp

−2
κ ‖f + ∇ · (µ(|∇uDG|)∇uDG)‖2

0,κ

)1

2

(
∑

κ∈Th

‖∇e
‖
DG‖2

0,κ

) 1

2

+ C

(
∑

κ∈Th

hκp
−1
κ ‖[[µ(|∇uDG|)∇uDG · ν]]‖2

0,∂κ\Γ

) 1

2

(
∑

κ∈Th

‖∇e
‖
DG‖2

0,κ

) 1

2

+ C

(
γ2
∑

κ∈Th

h−1
κ p3

κ‖[[uDG]]‖2
0,∂κ

) 1

2

(
∑

κ∈Th

‖∇e
‖
DG‖2

0,κ

)1

2

.

Therefore,

T1 ≤ C

(
∑

κ∈Th

η̃2
κ

)1

2

‖e‖DG‖DG,

which, by Corollary 7A, yields

T1 ≤ C

(
∑

κ∈Th

η̃2
κ

)1

2

‖eDG‖DG.

Here, for κ ∈ Th, the term η̃κ is defined by

η̃2
κ = h2

κp
−2
κ ‖f + ∇ · (µ(|∇uDG|)∇uDG)‖2

0,κ

+ hκp
−1
κ ‖[[µ(|∇uDG|)∇uDG · ν]]‖2

0,∂κ\Γ + γ2h−1
κ p3

κ‖[[uDG]]‖2
0,∂κ.

Noticing that

η̃2
κ ≤ C


η2

κ + O(1)
κ +

∑

e∈Eint

e⊂∂κ

O(2)
e


 ,
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we obtain

T1 ≤ C



∑

κ∈Th


η2

κ + O(1)
κ +

∑

e∈Eint

e⊂∂κ

O(2)
e







1

2

‖eDG‖DG. (3.15)

Term T2. In order to bound T2 we recall (1.4). This yields

T2 ≤
∑eκ∈eTh

∫eκ |µ(|∇u|)∇u− µ(|∇uDG|)∇uDG||∇u⊥
DG| dx

≤ C1

∑eκ∈eTh

∫eκ |∇eDG||∇u⊥
DG| dx ≤ C1

∑eκ∈eTh

‖∇eDG‖0,eκ‖∇u⊥
DG‖0,eκ

≤ C1




∑eκ∈eTh

‖∇eDG‖2
0,eκ 1

2




∑eκ∈eTh

‖∇u⊥
DG‖2

0,eκ 1

2

.

Hence, we have

T2 ≤ C1‖eDG‖DG‖u⊥
DG‖gDG,

which, upon applying Corollary 7A, gives

T2 ≤ C‖eDG‖DG

(∫

Γint,B

σ [[uDG]]2 ds

) 1

2

≤ C‖eDG‖DG

(
γ
∑

κ∈Th

h−1
κ p2

κ‖[[uDG]]‖2
0,∂κ

) 1

2

,

and thus, since γ ≥ 1,

T2 ≤ C‖eDG‖DG

(
∑

κ∈Th

η2
κ

) 1

2

. (3.16)

Term T3. A bound for T3 is found by recalling (3.11). This gives

T3 ≤ C2

∫

Γint,B

σ |[[eDG]]||[[uDG]]| ds ≤ C2

(∫

Γint,B

σ [[eDG]]2 ds

) 1

2

(∫

Γint,B

σ [[uDG]]2 ds

) 1

2

≤ C‖eDG‖DG

(
γ
∑

κ∈Th

h−1
κ p2

κ‖[[uDG]]‖2
0,∂κ

)1

2

.

Thereby, we obtain

T3 ≤ C‖eDG‖DG

(
∑

κ∈Th

η2
κ

) 1

2

. (3.17)
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Finally, combining the bounds (3.14) and (3.15)–(3.17) leads to

‖eDG‖2
DG ≤ C

(
∑

κ∈Th

η2
κ + O(f, uDG)

) 1

2

‖eDG‖DG.

Dividing both sides of the above inequality by ‖eDG‖DG completes the proof of
Theorem 4.

3.2 Local lower bounds

In this section we derive local lower bounds on the error measured in terms of the DG
energy norm ‖·‖DG. As in the case of conforming hp-version finite element methods,
estimators which are both optimally reliable and efficient in the polynomial degree
are not currently available in the literature, cf. [36], for example. The key techni-
cal reason for this is that the proofs of the lower bounds exploit the use of inverse
estimates which are suboptimal in the polynomial degree. To minimise the dete-
rioration of the efficiency bounds with respect to the polynomial degree, weighted
versions of the local a-posteriori error indicators ηκ may be employed. This idea was
first used in the context of conforming finite element methods in [36]; subsequent
extensions to DGFEMs have been undertaken in the article [23], for example. For
simplicity of exposition, we only present lower bounds for our (unweighted) a pos-
teriori error indicators ηκ; extensions to weighted versions of ηκ follow analogously,
cf. [23]. We begin by quoting the following theorem under the assumption that the
computational mesh Th is conforming (regular). The extension of these bounds to
nonconforming (irregular) meshes which are regularly reducible follows analogously;
cf. Remark 10 below.

Theorem 9 Let κ, κ′ ∈ Th be any two neighbouring elements, e = ∂κ ∩ ∂κ′ ∈ Eint,
and ωe = (κ ∪ κ′)◦. Then, for all δ > 0, the following local hp-version a-posteriori
lower bounds on the error eDG from (3.7) hold:

a)

‖ΠTh
(f + ∇ · (µ(|∇uDG|)∇uDG))‖0,κ ≤ Ch−1

κ p2
κ

(
‖∇eDG‖0,κ + p

δ− 1

2
κ

√
O(1)

κ

)
;

b)

‖ΠE |e(([[µ(|∇uDG|)∇uDG]] · ν)|e)‖0,e

≤ Ch
− 1

2
κ p

δ+ 3

2
κ


‖∇eDG‖0,ωe

+ p
δ− 1

2
κ

∑

τ∈{κ,κ′}

√
O(1)

τ + p
− 1

2
κ

√
O(2)

e


 ;

c)

‖[[uDG]]‖0,e ≤ Cγ− 1

2 h
1

2
κ p−1

κ ‖σ 1

2 [[eDG]]‖0,e.
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Here, the generic constant C > 0 depends on δ, but is independent of h and p.

Proof We proceed similarly as in [36]; see also [23]. To this end, we first introduce
suitable cut-off functions as follows: on the reference element κ̂, we define a weight-
function Φbκ(x) = miny∈∂bκ |x − y|. Then, for κ ∈ Th, we let Φκ = cκΦbκ ◦ F−1

κ , where
the factor cκ is chosen so that

∫
κ(Φκ − 1) dx = 0. Furthermore, on the reference interval

ι̂ = (−1, 1), we define the weight-function Φbι(x) = 1 − x2. Then, for an interior edge
e ∈ Eint, we let Φe = ceΦbι ◦ F−1

e , where Fe is the affine mapping from ι̂ to e, and ce is
chosen so that

∫
e(Φe − 1) ds = 0.

Proof of a): Let κ ∈ Th and define vκ = Φα
κΠTh

(f + ∇ · (µ(|∇uDG|)∇uDG)), where
α ∈ (1

2 , 1]. Then, using (1.1), and integrating by parts, yields

‖Φ−α
2

κ vκ‖2
0,κ =

∫

κ
vκΠTh

(f + ∇ · (µ(|∇uDG|)∇uDG)) dx

=

∫

κ
vκ ∇ · (µ(|∇uDG|)∇uDG − µ(|∇u|)∇u) dx

+

∫

κ
vκ(ΠTh

− I)(f + ∇ · (µ(|∇uDG|)∇uDG)) dx

= −
∫

κ
∇vκ · (µ(|∇uDG|)∇uDG − µ(|∇u|)∇u) dx

+

∫

κ
vκ(ΠTh

− I)(f + ∇ · (µ(|∇uDG|)∇uDG)) dx

≤
∫

κ
|∇vκ||µ(|∇uDG|)∇uDG − µ(|∇u|)∇u|dx

+

∫

κ
|vκ||(ΠTh

− I)(f + ∇ · (µ(|∇uDG|)∇uDG))|dx.

Recalling (1.4), this can be transformed into

‖Φ−α
2

κ vκ‖2
0,κ ≤ C

∫

κ
|∇vκ||∇eDG|dx +

∫

κ
|vκ||(ΠTh

− I)(f + ∇ · (µ(|∇uDG|)∇uDG))|dx

≤ C‖∇vκ‖0,κ‖∇eDG‖0,κ + ‖Φ−α
2

κ vκ‖0,κ‖Φ
α
2
κ (I − ΠTh

)(f + ∇ · (µ(|∇uDG|)∇uDG))‖0,κ

≤ C‖∇vκ‖0,κ‖∇eDG‖0,κ + h−1
κ pκ‖Φ

−α
2

κ vκ‖0,κ

√
O(1)

κ .

From the proof of [36, Lemma 3.4], we have

‖∇vκ‖0,κ ≤ Ch−1
κ p2−α

κ ‖Φ−α
2

κ vκ‖0,κ;

thereby,

‖Φ−α
2

κ vκ‖2
0,κ ≤ Ch−1

κ pκ‖Φ
−α

2
κ vκ‖0,κ

(
p1−α

κ ‖∇eDG‖0,κ +

√
O(1)

κ

)
.

Dividing both sides of the above inequality by ‖Φ−α
2

κ vκ‖0,κ and observing that (by applying
the inverse inequality from [36, Theorem 2.5])

‖ΠTh
(f + ∇ · (µ(|∇uDG|)∇uDG))‖0,κ ≤ Cpα

κ‖Φ
α
2
κ ΠTh

(f + ∇ · (µ(|∇uDG|)∇uDG))‖0,κ

= Cpα
κ‖Φ

−α
2

κ vκ‖0,κ,
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leads to

‖ΠTh
(f + ∇ · (µ(|∇uDG|)∇uDG))‖0,κ ≤ Ch−1

κ p1+α
κ

(
p1−α

κ ‖∇eDG‖0,κ +

√
O(1)

κ

)
. (3.18)

Choosing δ = α − 1
2 , completes the proof of a).

Proof of b): Let qe = Φα
e ΠE |e (([[µ(|∇uDG|)∇uDG]] · ν)|e), where again α ∈ (1

2 , 1]. Then,
referring to [36, Lemma 2.6 with ε = p−2

κ ], there exists χe ∈ H1
0(ωe) such that χe|e = qe

and

‖χe‖0,ωe ≤ Ch
1

2
κ p−1

κ

∥∥Φ−α
2

e qe‖0,e,

‖∇χe‖0,ωe ≤ Ch
− 1

2
κ pκ

∥∥Φ−α
2

e qe‖0,e.

(3.19)

Noting that −∇ · (µ(|∇u|)∇u) = f ∈ L2(Ω), we conclude that [[µ(|∇u|)∇u]] · ν = 0 on
e. Hence, integrating by parts and assuming (without loss of generality) that the normal
vector ν points from κ to κ′, leads to

∥∥Φ−α
2

e qe‖2
0,e

=

∫

e
ΠE([[µ(|∇uDG|)∇uDG]] · ν)χe ds

=

∫

e
([[µ(|∇uDG|)∇uDG − µ(|∇u|)∇u]] · ν)χe ds +

∫

e
(ΠE − I)([[µ(|∇uDG|)∇uDG]] · ν)χe ds

=

∫

∂κ
((µ(|∇uDG|)∇uDG − µ(|∇u|)∇u) · nκ)χe ds

+

∫

∂κ′

((µ(|∇uDG|)∇uDG − µ(|∇u|)∇u) · nκ′) χe ds

+

∫

e
(ΠE − I)([[µ(|∇uDG|)∇uDG]] · ν)χe ds

=

∫

ωe

(µ(|∇uDG|)∇uDG − µ(|∇u|)∇u) · ∇χe dx +

∫

ωe

(f + ∇ · (µ(|∇uDG|)∇uDG))χe dx

+

∫

e
(ΠE − I)([[µ(|∇uDG|)∇uDG]] · ν)χe ds

≡ R1 + R2 + R3.

(3.20)

Employing (1.4) and (3.19), R1 can be bounded as follows:

R1 ≤ C

∫

ωe

|∇eDG||∇χe|dx ≤ C‖∇eDG‖0,ωe‖∇χe‖0,ωe ≤ Ch
− 1

2
κ pκ‖∇eDG‖0,ωe‖Φ

−α
2

e qe‖0,e.

(3.21)
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In order to obtain a bound for R2, we use (3.18) and the definition of O(1)
κ from (3.1);

thereby,

R2 =

∫

ωe

ΠTh
(f + ∇ · (µ(|∇uDG|)∇uDG))χe dx

−
∫

ωe

(ΠTh
− I)(f + ∇ · (µ(|∇uDG|)∇uDG))χe dx

≤ ‖ΠTh
(f + ∇ · (µ(|∇uDG|)∇uDG))‖0,ωe‖χe‖0,ωe

+ ‖(ΠTh
− I)(f + ∇ · (µ(|∇uDG|)∇uDG))‖0,ωe‖χe‖0,ωe

≤ Ch−1
κ p1+α

κ


p1−α

κ ‖∇eDG‖0,ωe +
∑

τ∈{κ,κ′}

√
O(1)

τ


 ‖χe‖0,ωe .

(3.22)

Recalling (3.19), this gives

R2 ≤ Ch
− 1

2
κ pα

κ


p1−α

κ ‖∇eDG‖0,ωe +
∑

τ∈{κ,κ′}

√
O(1)

τ


 ‖Φ−α

2
e qe‖0,e.

A bound on R3 is based on the definition of O(2)
e from (3.2) and on the fact that χe = qe

on e:

R3 ≤ ‖Φ
α
2
e (ΠE − I)([[µ(|∇uDG|)∇uDG]] · ν)‖0,e‖Φ

−α
2

e χe‖0,e ≤ Ch
− 1

2
κ p

1

2
κ

√
O(2)

e ‖Φ−α
2

e qe‖0,e.

(3.23)

Combining (3.20)–(3.23), gives

‖Φ−α
2

e qe‖2
0,e ≤ Ch

− 1

2
κ pκ


‖∇eDG‖0,ωe + pα−1

κ

∑

τ∈{κ,κ′}

√
O(1)

τ + p
− 1

2
κ

√
O(2)

e


 ‖Φ−α

2
e qe‖0,e.

As in the proof of a), we divide the above inequality by ‖Φ−α
2

e qe‖0,e, and use the fact

that Φ
−α

2
e qe = Φ

α
2
e ΠE |e (([[µ(|∇uDG|)∇uDG]] · ν)|e). Then, applying the inverse inequality

from [36, Lemma 2.4] (see also [4, 5]), we get

‖ΠE ([[µ(|∇uDG|)∇uDG]] · ν)‖0,e ≤ Cpα
κ‖Φ

α
2
e ΠE ([[µ(|∇uDG|)∇uDG]] · ν)‖0,e = Cpα

κ‖Φ
−α

2
e qe‖0,e.

Thereby,

‖ΠE ([[µ(|∇uDG|)∇uDG]] · ν)‖0,e

≤ Ch
− 1

2
κ p1+α

κ


‖∇eDG‖0,ωe + pα−1

κ

∑

τ∈{κ,κ′}

√
O(1)

τ + p
− 1

2
κ

√
O(2)

e


 .

Again, selecting δ = α − 1
2 leads to estimate b).

Proof of c): This follows from (2.1), (2.2) and (3.11):

‖[[uDG]]‖0,e = ‖[[eDG]]‖0,e ≤ Cγ− 1

2 h
1

2
κ p−1

κ ‖σ 1

2 [[eDG]]‖0,e.

That completes the proof of the lower bounds. �
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Remark 10 For the case when the mesh Th is 1-irregular (but assumed to be reg-

ularly reducible to a conforming mesh T̃h, cf. Section 2), analogous bounds to the
ones derived in Theorem 9 still hold. Indeed, bounds a) and c) follow directly; for
the proof of b), employing the argument outlined in the proof of Theorem 9, we
deduce that

‖ΠE |e(([[µ(|∇uDG|)∇uDG]] · ν)|e)‖0,e

≤ Ch
− 1

2eκ p
δ+ 3

2eκ 

‖∇eDG‖0,eωe
+ p

δ− 1

2eκ ∑

τ∈{eκ,eκ′}

√
O(1)

τ + p
− 1

2eκ √
O(2)

e



 , (3.24)

where ω̃e is defined so that the closure of ω̃e is the union of the closure of the two
elements κ̃, κ̃′ ∈ T̃h which share the common edge e. The right-hand side of (3.24)
may now be bounded from above by an similar expression involving quantities mea-
sured over the (nonmatching) elements κ and κ′ which share the edge e; by this we
mean that, in the estimate (3.24), the element size heκ and polynomial degree peκ
are commensurate with hκ and pκ, respectively, and the error term ‖∇eDG‖0,eωe

is

bounded from above by ‖∇eDG‖0,ωe
. We note that the data oscillation terms O(1)

τ

appearing in (3.24) are, however, still measured over the elements κ̃, κ̃′ ∈ T̃h since
they are in general not bounded by the corresponding oscillations on κ, κ′ ∈ Th.

4 Numerical experiments

In this section we present a series of numerical examples to demonstrate the practi-
cal performance of the proposed a-posteriori error estimator derived in Theorem 4
within an automatic hp-adaptive refinement procedure which is based on 1-irregular
quadrilateral elements. In each of the examples shown in this section the DG solution
uDG defined by (2.6) is computed with θ = 0, i.e., we employ an incomplete-interior-
penalty-type discontinuous Galerkin method. Analogous results to those presented
for θ = 0 are also observed with θ = −1 and θ = 1; for brevity these results have
been omitted. Additionally, we set the constant γ appearing in the definition of the
interior-penalty parameter σ defined in (2.5) equal to 10. The resulting system of
nonlinear equations is solved by employing a damped Newton method; within each
inner (linear) iteration, we exploit a (left-) preconditioned GMRES algorithm using
a block symmetric Gauss–Seidel preconditioner.

The hp-adaptive meshes are constructed by first marking the elements for refine-
ment or derefinement according to the size of the local error indicators ηκ; this is
achieved by employing the fixed fraction strategy, see [27], with refinement and dere-
finement fractions set to 25% and 10%, respectively. Once an element κ ∈ Th has
been flagged for refinement or derefinement, a decision must be made whether the
local mesh size hκ or the local degree pκ of the approximating polynomial should
be adjusted accordingly. The choice to perform either h-refinement/derefinement
or p-refinement/derefinement is based on estimating the local smoothness of the
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(unknown) analytical solution. To this end, we employ the hp-adaptive strategy
developed in [28], where the local regularity of the analytical solution is estimated
from truncated local Legendre expansions of the computed numerical solution; see,
also, [16, 26].

Here, the emphasis will be on investigating the asymptotic sharpness of the pro-
posed a-posteriori error bound on a sequence of nonuniform hp-adaptively refined
1-irregular meshes. To this end, we shall compare the estimator derived in Theo-
rem 4, which is slightly suboptimal (by a factor of p1/2) in the spectral order p, with
the corresponding optimal one (cf. Remark 5); we note that the derivation of the lat-
ter precludes the use of hanging nodes. Indeed, here we shall show that despite the
loss of optimality in p, the former indicator performs extremely well on hp-refined
meshes, in the sense that the effectivity index, which is defined as the ratio of the
a-posteriori error bound and the energy norm of the actual error, is roughly constant
on all of the meshes employed. Moreover, our numerical experiments indicate that
both a-posteriori error indicators give rise to very similar quantitative results. For
simplicity, as in [3], we set the constant C arising in Theorem 4 equal to one; in
general, to ensure the reliability of the error estimator, this constant must be deter-
mined numerically for the underlying problem at hand. In all of our experiments,
the data-approximation terms in the a-posteriori bound stated in Theorem 4 will be
neglected.

4.1 Example 1

In this example, we let Ω be the unit square (0, 1)2 in R
2. The nonlinear diffusion

coefficient is defined as follows:

µ(x, |∇u|) = 2 +
1

1 + |∇u| ;

further, we select f so that the analytical solution to (1.1)–(1.2) is given by

u(x, y) = x(1 − x)y(1 − y)(1 − 2y) e−s(2x−1)2,

where s is a positive constant, cf. [23, 36]; throughout this section we set s = 20.
In Figure 1(a) we present a comparison of the actual and estimated energy norm

of the error versus the third root of the number of degrees of freedom in the fi-
nite element space Sp(Ω, Th,F) on a linear-log scale, for the sequence of meshes
generated by our hp-adaptive algorithm using the suboptimal indicator stated in
Theorem 4 (denoted by p3 in the figure) and the corresponding optimal one out-
lined in Remark 5 (denoted by p2 in the figure). We note that for both indicators
meshes employing hanging nodes are employed, despite the fact that the derivation
of the latter, hp-optimal, error indicator necessitates the use of conforming (regular)
meshes. The third root of the number of degrees of freedom is chosen on the basis
of the a-priori error analysis performed in [43], for example. Here, we observe that
the two error indicators perform in a very similar manner: in each case the error
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Figure 1: Example 1. (a) Comparison of the actual and estimated energy norm of
the error with respect to the (third root of the) number of degrees of freedom with
hp-adaptive mesh refinement; (b) Effectivity indices; (c) & (d) Comparison of the
actual error with h- and hp-adaptive mesh refinement.

bound over-estimates the true error by a (reasonably) consistent factor; indeed, from
Figure 1(b), we see that the computed effectivity indices oscillate around a value
of approximately 13. Additionally, from Figure 1(a) we observe that the conver-
gence lines using hp-refinement are (roughly) straight on a linear-log scale, which
indicates that exponential convergence is attained for this smooth problem, as we
would expect. In Figures 1(c) & (d), we present a comparison between the actual
energy norm of the error employing both h- and hp-mesh refinement; here, the hp-
refinement is based on employing the error indicator stated in Theorem 4. In the
former case, the DG solution uDG is computed using bilinear elements, i.e., p = 1;
here, the adaptive algorithm is again based on employing the fixed fraction strategy,
with refinement and derefinement fractions set to 25% and 10%, respectively. From
Figures 1(c) & (d), we clearly observe the superiority of employing a grid adaptation
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Figure 2: Example 1. Finite element mesh after 11 adaptive refinements, with 1198
elements and 18443 degrees of freedom: (a) h-mesh alone; (b) hp-mesh.
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strategy based on exploiting hp-adaptive refinement: on the final mesh, the energy
norm of the error using hp-refinement is over two orders of magnitude smaller than
the corresponding quantity computed when h-refinement is employed alone.

In Figure 2 we show the mesh generated using the proposed hp-version a-posteriori
error indicator stated in Theorem 4 after 11 hp-adaptive refinement steps. For clar-
ity, we show the h-mesh alone, as well as the corresponding polynomial degree
distribution on this mesh. Here, we observe that some h-refinement of the mesh
has been performed in the vicinity of the base of the exponential ‘hills’ situated in
the left- and the right-hand sides of the domain, where the gradient/curvature of
the analytical solution is relativity large. Once the h-mesh has adequately captured
the structure of the solution, the hp-adaptive algorithm increased the degree of the
approximating polynomial within the interior part of the domain containing these
hills.

4.2 Example 2

In this section we let Ω be the L-shaped domain (−1, 1)2 \ [0, 1)× (−1, 0], and select

µ(x, |∇u|) = 1 + e−|∇u|2.

Then, writing (r, ϕ) to denote the system of polar co-ordinates, we choose f and an
appropriate inhomogeneous boundary condition for u so that

u = r2/3 sin(2ϕ/3);

cf. [43], for example. We note that u is analytic in Ω \ {0}, but ∇u is singular at
the origin; indeed, here u 6∈ H2(Ω).

Figure 3(a) shows the history of the actual and estimated energy norm of the
error on each of the meshes generated by our hp-adaptive algorithm using both the
indicator stated in Theorem 4 (denoted by p3 in the figure) and the corresponding
one outlined in Remark 5 (denoted by p2 in the figure). As in the previous example,
we observe that the two error indicators perform in a very similar manner, though
for this nonsmooth example the loss in optimality in the jump indicator in the
estimator stated in Theorem 4 does lead to a slight increase in the effectivity indices
in comparison with the latter indicator. However, from Figure 3(b) we observe that
asymptotically both a-posteriori bounds over-estimate the true error by a consistent
factor. Additionally, from Figure 3(a) we observe exponential convergence of the
energy norm of the error using both estimators with hp-refinement; indeed, on a
linear-log scale, the convergence lines are, on average, straight. Figures 3(c) &
(d) highlight the superiority of employing hp-adaptive refinement in comparison
with h-refinement: on the final mesh, the energy norm of the error using the hp-
refinement indicator stated in Theorem 4 is over two orders of magnitude smaller
than the corresponding quantity when h-refinement is employed alone, based on
using bilinear elements.
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Figure 3: Example 2. (a) Comparison of the actual and estimated energy norm of
the error with respect to the (third root of the) number of degrees of freedom with
hp-adaptive mesh refinement; (b) Effectivity indices; (c) & (d) Comparison of the
actual error with h- and hp-adaptive mesh refinement.

In Figure 4 we show the mesh generated using the local error indicators ηκ stated
in Theorem 4 after 13 hp-adaptive refinement steps. Here, we see that the h-mesh
has been refined in the vicinity of the re-entrant corner located at the origin; from
the zoom, we see that h-refinement is more pronounced in the direction y = x. In
the normal direction, y = −x, p-refinement is employed instead, as the solution
is deemed to be smooth here. Additionally, we see that the polynomial degrees
have been increased away from the re-entrant corner located at the origin, since the
underlying analytical solution is smooth in this region.
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Figure 4: Example 2. hp-mesh after 13 adaptive refinements, with 162 elements and
4302 degrees of freedom.

5 Concluding remarks

In this paper, we derived global upper and local lower residual-based a-posteriori
error bounds in the energy norm for the class of interior-penalty hp-DGFEMs devel-
oped in [20] for the numerical approximation of second-order quasilinear elliptic par-
tial differential equations. The analysis is based on employing a suitable DG space
decomposition, together with an hp-version projection operator. Numerical exper-
iments presented in this article clearly demonstrate that the proposed a-posteriori
estimator converges to zero at the same asymptotic rate as the energy norm of
the actual error on sequences of hp-adaptively refined meshes. Future work will
be devoted to the extension of our analysis to hp-adaptive discontinuous Galerkin
approximations of quasi-Newtonian incompressible flow models.
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[25] P. Houston, C. Schwab, and E. Süli, Stabilized hp-finite element methods
for first–order hyperbolic problems, SIAM J. Numer. Anal., 37 (2000), pp. 1618–
1643.



30

[26] P. Houston, B. Senior, and E. Süli, Sobolev regularity estimation for
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