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Abstract. In this paper, we present the a-posteriori error analysis for the

Reduced Basis Method (RBM) applied to nonlinear variational problems that

depend on a parameter in a non-affine manner. To this end, we generalize the
analysis by Veroy and Patera ([16]) to non-affine parametrized partial differen-

tial equations. We use the Empirical Interpolation Method (EIM) in order to
approximate the non-affine parameter dependencies by a linear combination

of affine functions. We also investigate a standard dual problem formulation

in particular for the computation of a general output functional, also in com-

bination with the EIM.
First, we study the well-posedness of all involved problems in terms of the

Brezzi-Rappaz-Raviart theory. Then, we develop a-posteriori error estimates

for all problems and investigate offline/online decompositions. The a-posteriori

error analysis allows us to introduce an adaptive sampling procedure for the

choice of the snapshots. Numerical experiments for a convection-diffusion
problem around a rotating propeller show the effectivity of the scheme.

1. Introduction

The Reduced Basis Method (RBM) is by now a well-established method to treat
large scale problems that depend on a set of parameters. The basic idea is an
offline/online-decomposition of the computation. In the offline stage, costly com-
putations are performed, the results are stored and evaluated. Based on these com-
putations, a small set of global problem adapted functions, called modes, snapshots
or reduced basis functions are formed. In the online stage (where high efficiency is
desired), this set of basis functions is used in order to form an algebraic system of
small size which is solvable in real-time. This approach has been successfully used
in several applications. A complete list of references goes far beyond the scope of
the present paper, so let us just mention [5, 6, 7, 8, 10, 12, 13] and in particular for
non-linear problems [3, 9, 11, 17, 15].

If the parameter enters into the variational problem in an affine way, the RBM
is particularly efficient since stiffness matrices and other involved quantities can be
computed offline. In the online stage, one just has to compute a cheap parameter-
dependent linear combination of pre-computed terms. However, often the problem
at hand does not allow for an affine dependency. One possible way-out is the
so-called Empirical Interpolation Method (EIM), introduced in [1]. The idea is
to approximate the involved non-affine functions by a linear combination of affine
functions in order to guarantee a certain approximation.
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Our work has been motivated by an application from hydromechanics, namely
the flow around a rotating ship propeller. In this case, a rigid body is rotating with
a prescribed movement. In this application, the orientation of the propeller during
the rotation is the parameter, in the sense that the angle of attack at every position
is variable. A typical way to treat such problems is to transform the flow domain
onto a reference domain. This implies, however, that the parameter-dependent
transformation enters into the variational form due to the change of variables in
the integrals. This in turns means that the non-affine parameter dependency occurs
within the variational form (and not e.g. on the right-hand side).

This is the reason why we cannot just use previous work in [16] or [3] for affine
and certain specific non-affine parameter dependencies. Instead, we generalize the
analysis in [16] to the case of nonlinear non-affine parameter dependencies within
the variational form.

This paper is organized as follows. In Section 2, we collect all necessary facts on
nonlinear parametrized variational problems, the Empirical Interpolation Method
(EIM), the Reduced Basis Method (RBM) and the dual problem formulation. Sec-
tion 3 is devoted to the investigation of the well-posedness of all involved nonlinear
problems in terms of the Brezzi-Rappaz-Raviart (RBB) theory. We show in par-
ticular that the nonlinear problems are well-posed under the condition that certain
indicators are below a tolerance. In Section 4, we present our a-posteriori error
analysis and describe offline/online-decompositions of all relevant problems. We
also present computable bounds for the involved continuity and inf-sup constants
and introduce an adaptive sampling procedure for the choice of the parameters
for the snapshots. In Section 5 we describe a more specific application, namely
a convection-diffusion problem around a rotating propeller. We present several
numerical results in Section 6.

2. Preliminaries

2.1. The Nonlinear Parametrized Variational Problem. In [16], a paramet-
rized nonlinear problem has been studied that is induced by the form

(2.1) g(u, v;µ) := a0(u, v) +
1

2
a1(u, u, v) − µF (v),

where a0 : Xe ×Xe → R is a symmetric bilinear form, a1 : Xe ×Xe ×Xe → R is
a trilinear form which is symmetric w.r.t. the first two arguments, F : Xe → R is
linear and bounded and µ ∈ D is a parameter. Here, Xe is an appropriate function
space, e.g., a Sobolev space. This means, that g(·, ·;µ) is an affine function of the
parameter and the analysis in [16] crucially relies on this assumption.

Here, we are interested in a non-affine parameter dependence. Such a situation
occurs e.g. when considering a problem with moving domains when one uses a
transformation to a reference situation (reference domain). The transformation of
variables in the integral results in additional terms in the multilinear forms that
can be non-affine. We will describe one application later in Section 5.

If we assume that the parameter µ ∈ D describes the movement of the domain of
interest (e.g. a propeller), then the transformation to a reference situation results
in functions

h0, h1 : Ω ×D → R,

where Ω ⊂ R
d is the spatial domain (e.g. the flow domain). Typically, h0 and h1 are

not affine w.r.t. the parameter µ ∈ D, but the resulting bi- and trilinear forms a0

and a1 are linear w.r.t. the transformation. Hence, we collect both transformations

h := (h0, h1) ∈
(
L∞(Ω) × C1

loc(D)
)2
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and consider the form

(2.2) g(u, v;h(·;µ)) := a0(u, v;h0(·;µ)) + a1(u, u, v;h1(·;µ)) − F (v),

where a0 : Xe × Xe × L∞(Ω) → R is bilinear w.r.t. the first two arguments and
linear w.r.t. h0, a1 : Xe ×Xe ×Xe × L∞(Ω) → R is trilinear w.r.t. the first three
arguments and linear w.r.t. h1. Note that we do not assume any kind of symmetry,
which is also a slight generalization of [16]. Furthermore, note that the restriction to
one bilinear form and one trilinear form, respectively, is for notational convenience,
only. In fact, the application to be presented in Section 5 below consists of a linear
combination of several forms. Finally, the function F : Xe → R is as before.

Given this, we consider the following nonlinear variational problem (Primal Prob-
lem)

(2.3)

{
For µ ∈ D find u(µ) ∈ X such that

g(u(µ), v;h(·;µ)) = 0, v ∈ X,

where h : Ω×D → R
2 is as above, in particular possibly non-affine in µ ∈ D. From

now on, we will denote h(·;µ) by h(µ) wherever unambiguous, i.e., dropping the
explicit labeling of the dependency on the space variable. Furthermore, in (2.3)
we have replaced the ‘exact’ function space Xe on which the original variational
problem is posed (usually a Sobolev space) by the ‘truth-approximation’ function
space X, a sufficiently rich finite-dimensional subspace of Xe, as it is common
practice in the Reduced Basis context. In the sequel we will set N = dimX,
keeping in mind that N is assumed to be very large.

In order to formulate conditions for existence and uniqueness of a solution to
(2.3), we determine the Frèchet derivatives da1 of a1 and dg of g, respectively, at a
point z ∈ X, which are readily seen to read

(2.4) da1(u, v;h1)[z] = a1(u, z, v;h1) + a1(z, u, v;h1)

and

(2.5) dg(u, v;h)[z] = a0(u, v;h0) + da1(u, v;h1)[z].

If the trilinear form is symmetric w.r.t the first two arguments, we have

da1(u, v;h1)[z] = 2a1(u, z, v;h1)

which fits into the formulation in [16]. We define the inf-sup-constant

(2.6)

β(z;h) := inf
u∈X

sup
v∈X

dg(u, v;h)[z]

‖u‖X ‖v‖X

,

= inf
v∈X

sup
u∈X

dg(u, v;h)[z]

‖u‖X ‖v‖X

, z ∈ X, h ∈(L∞(Ω))
2
,

(note that this always exists since X is finite-dimensional) and the continuity con-
stant

(2.7) γ(z;h) := sup
u∈X

sup
v∈X

dg(u, v;h)[z]

‖u‖X ‖v‖X

, z ∈ X, h ∈(L∞(Ω))
2
.

Note that the equality in (2.6) holds thanks to the finite dimension of X (for a
proof c.p. [10]). For convenience, we collect all requirements on the form g(·, ·;h)
as follows.

Assumption 2.1. We assume the following properties.

(i) Boundedness: The multilinear forms a0 and a1 are bounded, i.e. there exist
constants 0 < ρi <∞, i = 0, 1, such that (recall that hi ∈ L∞(Ω))

(2.8) |a0(u, v;h0)| ≤ ρ0 ‖u‖X ‖v‖X ‖h0‖L∞(Ω) , u, v ∈ X,
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as well as

(2.9) |a1(u,w, v;h1)| ≤ ρ1 ‖u‖X ‖w‖X ‖v‖X ‖h1‖L∞(Ω) , u, v, w ∈ X.

(ii) Uniform inf-sup-constant: There exists a constant β0 > 0, such that

(2.10) β(u(µ);h(µ)) ≥ β0, µ ∈ D.
The assumptions (2.8) and (2.9) immediately imply the boundedness of g and

dg. In fact, it is readily seen, that

γ(z;h) ≤ ρ0 ‖h0‖L∞(Ω) + 2ρ1 ‖z‖X ‖h1‖L∞(Ω) .(2.11)

Note that in the sequel for µ ∈ D we will denote

ρi(µ) := ρi ‖hi(µ)‖L∞(Ω) , i = 0, 1.(2.12)

Remark 2.1. Assumption (2.10) seems somehow curious at a first glance, since
it involves the solution u(µ), where existence is not yet known. One might expect a
condition, such as

β(v;h(µ)) ≥ β0, µ ∈ D, v ∈ X.

This, however might not be realistic, since the parameter-dependence enters into
the variational form. Thus, we have to expect that there might be parameter values
µ ∈ D, such that no solution exists.

Hence, we follow a slightly different philosophy. When simulating a given configu-
ration (a given parameter µ ∈ D), we develop and compute a-posteriori indicators.
For these indicators, we develop and prove bounds that guarantee the well-posedness
of the original problem. This allows to verify (2.10) a-posteriori.

However, if the discretization (choice of X and the basis for the RBM) does not
allow to realize the bound for the indicator, this does not imply the original problem
(2.3) is ill-posed. We only derive sufficient conditions.

2.2. Empirical Interpolation Method (EIM).
Non-affine parameter dependencies usually prohibit offline computations to a

large extent. This results in a strong negative influence on the efficiency of the
online stage. One possible way-out is the so-called Empirical Interpolation Method
(EIM) introduced in [1]. In order to apply it, we need that h(·;µ) ∈ L∞(Ω) is
sufficiently smooth which is guaranteed by our general assumptions. The main idea
is to approximate the non-affine components of h(µ) by a linear combination of
separable functions, i.e.,

ĥi(x;µ) :=

Mi∑

m=1

ϑi
m(µ)ϕi

m(x), i = 0, 1,(2.13)

where WMi

i := span
{
ϕi

1, . . . , ϕ
i
Mi

}
is a finite dimensional approximation space and

ϑi
m(µ) ∈ R are coefficients to be determined. Given a tolerance εemp > 0, one seeks

a possibly small Mi, such that for all µ ∈ D
∥∥∥hi(µ) − ĥi(µ)

∥∥∥
L∞(Ω)

≤ εemp.(2.14)

We do not go into details of the EIM but refer the reader to the literature. We just
mention two facts that will be needed in the sequel:

(a) The basis-functions ϕi
m, 1 ≤ m ≤Mi, are normalized in L∞, i.e.

(2.15)
∥∥ϕi

m

∥∥
L∞(Ω)

= 1.
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(b) If hi(µ) ∈WMi+1
i , then

(2.16) hi(µ) − ĥi(µ) = εMi

i (µ)ϕMi+1
i ,

where the determination of εMi

i (µ) is cheap by a single evaluation of hi(µ)

and ĥi(µ).

Using the approximation ĥ(µ) instead of h(µ) yields the Primal EIM-Problem

(2.17)

{
For µ ∈ D find û(µ) ∈ X such that

g(û(µ), v; ĥ(µ)) = 0, v ∈ X.

Since ĥ(µ) is component-wise affine separable w.r.t. the parameter µ and g(·, ·; ·) is
affine w.r.t. the third argument, the form g in (2.17) is affine separable w.r.t. µ.

Remark 2.2. Note that similar arguments hold as in Remark 2.1 for the original
variational problem. We have to take the situation into account, that there might
be parameter values µ ∈ D that do not allow unique solutions u(µ) or û(µ). But
we can verify the well-posedness a-posteriori.

There is another point that is worth mentioning. Let us assume that the original
problem admits a unique solution u(µ) ∈ X. Then, the Primal EIM-Problem should
also be well-posed. This is in fact the case, if we choose εemp in (2.14) small enough,
which can be proven with techniques similar to the one presented in Section 3.

2.3. Reduced Basis Approximation. Now we introduce the RBM (Reduced
Basis Method) both for the original and for the EIM-problem (2.17). For 1 ≤ N ≤
Nmax we use a standard Lagrange basis

(2.18) WN := span
{

ΞN
}
, ΞN :={ξi := u(µi), 1 ≤ i ≤ N}

for a given set of samples

(2.19) SN :={µi, 1 ≤ i ≤ N} ⊂ D.
At this point, we assume that SN is given to us. We investigate later in Section
4.6 how to determine these samples. The basis functions u(µi) are also called
snapshots. This should not be mixed up with spatial snapshots known from the
Proper Orthogonal Decomposition.

The Primal RBM-Problem then reads

(2.20)

{
For µ ∈ D find uN (µ) ∈WN such that

g(uN (µ), v;h(µ)) = 0, v ∈WN ,

and the Primal RBM-EIM-Problem:

(2.21)

{
For µ ∈ D find ûN (µ) ∈WN such that

g(ûN (µ), v; ĥ(µ)) = 0, v ∈WN .

As already mentioned above, problem (2.20) does not allow for an efficient online
computation. Thus, we mainly consider (2.20) for completeness and theoretical
investigations. The second problem (2.21) can be efficiently solved by a Newton
iteration as follows.
Given an initial guess û(0)(µ) ∈WN , compute for ν = 0, 1, 2, . . .

(1) determine the Newton correction δû(ν)(µ) ∈WN as the solution of

dg
(
δû(ν)(µ), v; ĥ(µ)

)
[û(ν)(µ)] = −g

(
û(ν)(µ), v; ĥ(µ)

)
, v ∈WN ,

(2) Newton update:

û(ν+1)(µ) = û(ν)(µ) + δû(ν)(µ).
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Offline/Online Decomposition. Now we investigate the required number of oper-
ations for an offline/online-decomposition. Due to the affine dependence, we can
compute the following quantities in the offline stage:

A0
m :=

(
a0(ξj , ξi;ϕ

0
m)
)

1≤i,j≤N
∈ R

N×N , 1 ≤ m ≤M0,(2.22)

A1
m,k :=

(
a1(ξj , ξk, ξi;ϕ

1
m)
)

1≤i,j≤N
∈ R

N×N , 1 ≤ m ≤M1,(2.23)

Cm,k :=
(
da1(ξj , ξi;ϕ

1
m)[ξk]

)
1≤i,j≤N

∈ R
N×N , 1 ≤ m ≤M1(2.24)

the latter two for 1 ≤ k ≤ N , as well as

(2.25) F :=(f(ξi))1≤i≤N ∈ R
N .

Thus, the offline complexity for computing these quantities is

O
(
M0N

2N
)

+ O
(
M1N

3N
)

+ O(NN ) .

We now express the first step of the Newton scheme in terms of the offline
quantities in (2.22)–(2.25). In order to do so, let us collect the coefficients

δû(ν)(µ) :=
(
δû

(ν)
i (µ)

)
1≤i≤N

∈ R
N , û(ν)(µ) :=

(
û

(ν)
i (µ)

)
1≤i≤N

∈ R
N

of the Newton update δû(ν)(µ) and the known previous iteration û(ν)(µ), respec-
tively, i. e.,

δû(ν)(µ) :=
N∑

i=1

δû
(ν)
i (µ)ξi ∈WN , û(ν)(µ) :=

N∑

i=1

û
(ν)
i (µ)ξi ∈WN .

Then we can write the first step as

(2.26) B(ν)(µ) δû(ν)(µ) = b(ν)(µ),

where

B(ν)(µ) :=

M0∑

m=1

ϑ0
m(µ)A0

m +

M1∑

m=1

ϑ1
m(µ)

N∑

k=1

Cm,k(µ)û
(ν)
k (µ),(2.27)

b(ν)(µ) := F −
(

M0∑

m=1

ϑ0
m(µ)A0

m +

M1∑

m=1

ϑ1
m(µ)

N∑

k=1

A1
m,kû

(ν)
k (µ)

)
û(ν)(µ).(2.28)

Thus, the assembly of B(ν)(µ) ∈ R
N×N requires O

(
M0N

2
)

+O
(
M1N

3
)
operations

and the right-hand side b(ν)(µ) ∈ R
N O(N) + O

(
M0N

2
)

+ O
(
M1N

3
)
. Combined

with the solution of the linear system of equations in (2.26), which is typically
densely populated, hence requires O

(
N3
)

operations, we obtain

O
(
M1N

3
)

operations in the online stage for one Newton step.

2.4. The Dual Problem. The consideration of a dual problem is a well-known
technique e. g. for adaptive methods, in particular for the so-called goal oriented
error estimates, where one is not (only) interested in an approximation to the state
u(µ) ∈ X, but on some functional of it, say s(µ) := ℓ(u(µ)), where

ℓ : Xe → R

is a linear and bounded functional.
Given the solution ûN (µ) ∈ WN ⊂ X of the Primal RBM-EIM-Problem (2.21),

the solution u(µ) of the Primal Problem (2.3) and denoting the error by

eN (µ) := u(µ) − ûN (µ),
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the Dual Problem for (2.3) reads:

(2.29)

{
For µ ∈ D find ψN (µ) ∈ X such that

dg(v, ψN (µ);h(µ))[ûN (µ) + 1
2e

N (µ)] = −ℓ(v), v ∈ X.

It should be noted that the Dual Problem (2.29) is a linear problem, whereas the
Primal Problem is nonlinear. Thus, the complexity to numerically solve (2.29)
corresponds to only one Newton-iteration for solving (2.3). Before we consider an
EIM-variant of this problem, let us investigate the error in the output of interest.

Lemma 2.1. Provided solutions u(µ) ∈ X, ûN (µ) ∈WN and ψN (µ) ∈ X of (2.3),
(2.21) and (2.29), respectively, exist, we have

(2.30) s(µ) − ŝN (µ) = g
(
ûN (µ), v;h(µ)

)
+ g
(
ûN (µ), ψN (µ) − v;h(µ)

)

for all v ∈ X, where we use the abbreviations

s(µ) := ℓ(u(µ)), ŝN (µ) := ℓ(ûN (µ)).

Proof. We use the particular choice v = eN (µ) in dg and obtain for the left-hand
side of (2.29)

dg
(
eN (µ), ψN (µ);h(µ)

)
[ûN (µ) +

1

2
eN (µ)]

= a0

(
eN (µ), ψN (µ);h0(µ)

)
+ a1

(
eN (µ), ûN (µ) +

1

2
eN (µ), ψN (µ);h1(µ)

)

+ a1

(
ûN (µ) +

1

2
eN (µ), eN (µ), ψN (µ);h1(µ)

)
.

Now, due to trilinearity of a1(·, ·, ·;h1(µ)) and the simple fact

ûN (µ) +
1

2
eN (µ) =

1

2

(
u(µ) + ûN (µ)

)

we get

dg
(
eN (µ), ψN (µ);h(µ)

)
[ûN (µ) +

1

2
eN (µ)]

= a0

(
eN (µ), ψN (µ);h0(µ)

)

+
1

2
a1

(
u(µ) − ûN (µ), u(µ) + ûN (µ), ψN (µ);h1(µ)

)

+
1

2
a1

(
u(µ) + ûN (µ), u(µ) − ûN (µ), ψN (µ);h1(µ)

)

= a0

(
eN (µ), ψN (µ);h0(µ)

)
+ a1

(
u(µ), u(µ), ψN (µ);h1(µ)

)

− a1

(
ûN (µ), ûN (µ), ψN (µ);h1(µ)

)
.

Next, we use (2.29) (again for v = eN (µ))

−(s(µ) − ŝN (µ)) = −ℓ(u(µ) − ûN (µ))

= −ℓ(eN (µ))

= dg
(
eN (µ), ψN (µ);h(µ)

)
[ûN (µ) +

1

2
eN (µ)]

= a0

(
u(µ), ψN (µ);h0(µ)

)
+ a1

(
u(µ), u(µ), ψN (µ);h1(µ)

)

− a0

(
ûN (µ), ψN (µ);h0(µ)

)
− a1

(
ûN (µ), ûN (µ), ψN (µ);h1(µ)

)

= F (ψN (µ)) − a0

(
ûN (µ), ψN (µ);h0(µ)

)

− a1

(
ûN (µ), ûN (µ), ψN (µ);h1(µ)

)

= −g
(
ûN (µ), ψN (µ);h(µ)

)
.
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Adding and subtracting v ∈ X and using linearity of g w.r.t the second argument
yields the assertion. �

This result will serve as a starting point for developing a-posteriori error es-
timates for s(µ). This involves also the numerical solution of the dual problem
(2.29). For computational efficiency we thus need a Dual RBM-Problem, which we
introduce now. We use the superscript ‘˜’ to indicate all quantities related to the

dual problem. For 1 ≤ Ñ ≤ Ñmax, let

(2.31) S̃
eN :=

{
µ̃i, 1 ≤ i ≤ Ñ

}
⊂ D.

be a given set of samples. We define

(2.32) W̃
eN := span

{
Ξ̃

eN
}
, Ξ̃

eN :=
{
ξ̃i := ψNmax

(µ̃i), 1 ≤ i ≤ Ñ
}
,

where ψNmax

(µ) is the solution of (2.29) (corresponding to ûNmax

(µ) ∈WNmax

, the
solution of (2.21)). With this notation at hand, we obtain the Dual RBM-Problem
as follows

(2.33)

{
For µ ∈ D find ψN, eN (µ) ∈ W̃

eN such that

dg(v, ψN, eN (µ);h(µ))[ûN (µ)] = −ℓ(v), v ∈ W̃
eN .

Note that, as opposed to (2.29), the term

1

2
eN (µ)

is missing in the argument of dg, since this would involve the unknown true solution

u(µ) of (2.3). Replacing h(µ) in (2.33) by its EIM-approximation ĥ(µ) leads to the
Dual RBM-EIM-Problem:

(2.34)

{
For µ ∈ D find ψ̂N, eN (µ) ∈ W̃

eN such that

dg(v, ψ̂N, eN (µ); ĥ(µ))[ûN (µ)] = −ℓ(v), v ∈ W̃
eN .

Offline/Online Decomposition. As for the primal problem, we obtain a correspond-
ing offline/online decomposition as follows. In the offline stage, we compute the
following the following quantities

Ã0
m :=

(
a0(ξ̃i, ξ̃j ;ϕ0

m)
)

1≤i,j≤ eN
∈ R

eN× eN , 1 ≤ m ≤M0,(2.35)

C̃m,k :=
(
da1(ξ̃i, ξ̃j ;ϕ1

m)[ξk]
)

1≤i,j≤ eN
∈ R

eN× eN , 1 ≤ m ≤M1, 1 ≤ k ≤ N,(2.36)

as well as

(2.37) F̃ :=
(
−ℓ(ξ̃i)

)
1≤i≤ eN

∈ R
eN .

Then, (2.34) becomes

(2.38) B̃(µ)ψ̂
N, eN

(µ) = F̃ ,

where ψ̂
N, eN

(µ) =
(
ψ̂N, eN

i (µ)
)

1≤i≤ eN
∈ R

eN is the vector of the unknown expansion

coefficients of the desired solution

ψ̂N, eN (µ) =

eN∑

i=1

ψ̂N, eN
i (µ)ξ̃i ∈ W̃

eN

and

B̃(µ) :=

M0∑

m=1

ϑ0
m(µ)Ã0

m +

M1∑

m=1

ϑ1
m(µ)

N∑

k=1

C̃m,kû
N
k (µ) ∈ R

eN× eN .
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Thus, the offline complexity for the assembly of (2.35)–(2.37) is

O
(
ÑN

)
+ O

(
M0Ñ

2N
)

+ O
(
M1NÑ

2N
)
.

The setup in the online phase requires O
(
M0Ñ

2
)

+ O
(
M1NÑ

2
)

operations plus

O
(
Ñ3
)

to solve the linear system (2.38). Recall that the dual problem is linear,

so that the complexity corresponds to one Newton iteration (for solving the Primal
RBM-EIM-Problem), only.

3. Well-Posedness

Before constructing any kind of numerical scheme for the primal problem (2.3),
its RBM-formulation (2.20) or the RBM-EIM-version (2.21), we should investigate
the question of existence and uniqueness of a solution. Recall that (2.3), (2.20),
(2.21) are nonlinear, thus there might be several branches of solutions. One frame-
work to tackle such question is the Brezzi-Rappaz-Raviart (BRR) theory (see, e.g.,
[2]) which has also been used in [16]. We have to modify the proofs in [16] here,
since we have a more complicated parameter dependency and we also have to take
the EIM into account.

We start by collecting all involved quantities. First,

(3.1) RN (v;µ) := g
(
ûN (µ), v; ĥ(µ)

)
, RN (µ) :=

∥∥RN (·;µ)
∥∥

X′

is the the primal RBM-EIM residual and its dual norm, respectively, where as usual

‖ℓ‖X′ = supx∈X
ℓ(x)
‖x‖

X

denotes the dual norm. In addition to [16] we have to keep

track of the additional error introduced by the approximation of h(µ) by ĥ(µ) via
the EIM. Thus, we consider

(3.2) EN (v;µ) := g
(
ûN (µ), v;h(µ) − ĥ(µ)

)
, EN (µ) :=

∥∥EN (·;µ)
∥∥

X′
.

Next, we need (as in [16]) inf-sup- and continuity constants according to the deriv-
ative dg at ûN (µ), namely

βN (µ) := β
(
ûN (µ);h(µ)

)
,(3.3)

γN (µ) := γ
(
ûN (µ);h(µ)

)
,(3.4)

where β and γ are defined by (2.6) and (2.7), respectively. Next, we introduce a

lower bound β
N

(µ) for βN (µ) (to be developed in Section 4.5), i. e.,

(3.5) 0 ≤ β
N

(µ) ≤ βN (µ), µ ∈ D.
Having this at hand, we introduce the key parameter of the BRR theory, namely a
proximity indicator

(3.6) τN (µ) := 4ρ1(µ)
(
β

N
(µ)
)−2(

RN (µ) + EN (µ)
)
,

where ρ1(µ) is defined in (2.12) and, furthermore, an error bound

(3.7) ∆N (µ) := β
N

(µ)(2ρ1(µ))
−1

(
1 −

√
1 − τN (µ)

)
.

Note that the error bound is defined exactly as in [16], whereas the definition of
τN (µ) involves the additional term EN (µ) due to the EIM-approximation. This
also implies that we have to modify the proof of the corresponding result [16,
Proposition 2.1], which in turns is a modification of [2, Theorem 2.1]. However, the
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main idea of the proof is the same, we only need some more technical work. We
use the standard notation

B(x0, r) :={x ∈ X : ‖x− x0‖X < r} , x0 ∈ X, r ∈ R
+,

for a ball (in X) of radius r around x0.

Proposition 3.1. If τN (µ) < 1, then there exists a unique solution

u(µ) ∈ B
(
ûN (µ), β

N
(µ)(2ρ1(µ))

−1
)

of the nonlinear problem (2.3) and the following error estimate holds

(3.8)
∥∥u(µ) − ûN (µ)

∥∥
X

≤ ∆N (µ).

Proof. As in [16], the fundamental theorem of calculus yields

g(w2, v;h(µ)) − g(w1, v;h(µ)) =

∫ 1

0

dg(w2 − w1, v;h(µ))[w1 + t(w2 − w1)] dt

for any w1, w2 ∈ X. For the Frèchet derivative dg we obtain

(3.9)

∣∣dg(w, v;h(µ))[z2] − dg(w, v;h(µ))[z1]
∣∣

=
∣∣da1(w, v;h1(µ))[z2 − z1]

∣∣

≤ 2ρ1(µ) ‖v‖X ‖w‖X

∥∥z2 − z1
∥∥

X

by (2.4) and Assumption 2.1(i), (2.9). Next, we consider the operator Hµ : X → X
defined by

dg(Hµ(w), v;h(µ)) [ûN (µ)] = dg(w, v;h(µ)) [ûN (µ)] − g(w, v;h(µ)) , v ∈ X,

for a given w ∈ X. Since X is finite-dimensional, it is readily seen that Hµ is well

posed due to the assumption τN (µ) < 1 which in turns implies β
N

(µ) > 0. If we
can show that Hµ has a fixed point w∗ then we get g(w∗, v;h(µ)) = 0, v ∈ X,
which would prove existence. As in [16], we use the Banach fixed point theorem.

In order to show that Hµ is contractive on B
(
ûN (µ), α

)
for suitable values of

α > 0 to be determined, let w1, w2 ∈ B
(
ûN (µ), α

)
. Then we get

dg
(
Hµ(w2) −Hµ(w1), v;h(µ)

)
[ûN (µ)]

= dg
(
w2 − w1, v;h(µ)

)
[ûN (µ)] − g

(
w2 − w1, v;h(µ)

)

= dg
(
w2 − w1, v;h(µ)

)
[ûN (µ)]

−
∫ 1

0

dg
(
w2 − w1, v;h(µ)

)
[w1 + t(w2 − w1)] dt

=

∫ 1

0

{
dg
(
w2 − w1, v;h(µ)

)
[ûN (µ)]

− dg
(
w2 − w1, v;h(µ)

)
[w1 + t(w2 − w1)]

}
dt

by definition of Hµ and the above arguments. Applying (3.9) to the integrand
above and using w1 + t(w2 − w1) ∈ B

(
ûN (µ), α

)
for t ∈ [0, 1] yields

(3.10)

∣∣dg
(
Hµ(w2) −Hµ(w1), v;h(µ)

)
[ûN (µ)]

∣∣

≤
∫ 1

0

2ρ1(µ)
∥∥w2 − w1

∥∥
X
‖v‖X

∥∥ûN (µ) −
(
w1 + t(w2 − w1)

)∥∥
X
dt

≤ 2αρ1(µ)
∥∥w2 − w1

∥∥
X
‖v‖X .
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Next, we use our assumption (3.5) for the inf-sup constant β
N

(µ), namely

‖w‖X ≤
(
β

N
(µ)
)−1

sup
v∈X

dg(w, v;h(µ)) [ûN (µ)]

‖v‖X

and apply this for w := Hµ(w2) −Hµ(w1) ∈ X, i.e.,

∥∥Hµ(w2) −Hµ(w1)
∥∥

X
≤
(
β

N
(µ)
)−1

sup
v∈X

dg
(
Hµ(w2) −Hµ(w1), v;h(µ)

)
[ûN (µ)]

‖v‖X

≤ 2αρ1(µ)
(
β

N
(µ)
)−1 ∥∥w2 − w1

∥∥
X
,

so that Hµ is a contraction for

α ∈ I1 :=
[
0, β

N
(µ)(2ρ1(µ))

−1
)
.

Next, we have to investigate for which values of α, Hµ maps B
(
ûN (µ), α

)
into itself.

This part of the proof differs from [16] due to the EIM. For any w ∈ B
(
ûN (µ), α

)
,

we have by definition of Hµ

dg
(
Hµ(w) − ûN (µ), v;h(µ)

)
[ûN (µ)]

= dg(w, v;h(µ)) [ûN (µ)] − g(w, v;h(µ)) − dg
(
ûN (µ), v;h(µ)

)
[ûN (µ)]

= dg
(
w − ûN (µ), v;h(µ)

)
[ûN (µ)] − g

(
w − ûN (µ), v;h(µ)

)

− g
(
ûN (µ), v;h(µ) − ĥ(µ)

)
− g
(
ûN (µ), v; ĥ(µ)

)
.

We can rewrite the first two terms as

dg
(
w − ûN (µ), v;h(µ)

)
[ûN (µ)] − g

(
w − ûN (µ), v;h(µ)

)

=

∫ 1

0

{
dg
(
w − ûN (µ), v;h(µ)

)
[ûN (µ)]

− dg
(
w − ûN (µ), v;h(µ)

)
[ûN (µ) + t(w − ûN (µ))]

}
dt

≤ 2ρ1(µ)
∥∥w − ûN (µ)

∥∥2

X
‖v‖X

∫ 1

0

t dt

using the above estimates for dg (c.p. 3.9), so that by (3.1) and (3.2)
∥∥dg

(
Hµ(w) − ûN (µ), h(µ)

)
[ûN (µ)]

∥∥
X′

≤ EN (µ) +RN (µ) + 2ρ1(µ)
∥∥w − ûN (µ)

∥∥2

X

∫ 1

0

t dt

≤ EN (µ) +RN (µ) + α2ρ1(µ)

under the assumption w ∈ B
(
ûN (µ), α

)
, i. e.

∥∥w − ûN (µ)
∥∥

X
≤ α. Using exactly

the same reasoning as above yields

∥∥Hµ(w) − ûN (µ))
∥∥

X
≤

(
β

N
(µ)
)−1(

EN (µ) +RN (µ) + α2ρ1(µ)
)
,

and this is bounded by α if

α ∈ I2 :=

[
∆N (µ), β

N
(µ)(2ρ1(µ))

−1

(
1 +

√
1 − τN (µ)

)]
.

This means that Hµ satisfies the assumption of the Banach fixed point theorem on
B
(
ûN (µ), α

)
for

α ∈ I1 ∩ I2 =
[
∆N (µ), β

N
(µ)(2ρ1(µ))

−1
)

which proofs the existence and uniqueness statement. Choosing α = ∆N (µ) yields
(3.8). �
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Exactly as in [16], one can show the following implication. We omit the proof.

Corollary 3.1. For τN (µ) ≤ 1
2 , we have

(3.11) β(u(µ);h(µ)) ≥ 1√
2
β

N
(µ)

for β defined by (2.6). �

This latter result shows that our Assumption 2.1(ii) (2.10) is in fact realistic, we
may choose the minimum over D of right-hand side as β0.

4. A-posteriori Error Estimates

The ultimate goal is to control the number N of samples or snapshots, possibly
also the numbers M0, M1 of EIM-terms and also to construct an adaptive scheme
for the selection of the samples. It is well-known that a-posteriori error estimators
are the key for these goals. It should be noted that Proposition 3.1 already gives
rise to an a-posteriori error estimate for the error

(4.1) eN (µ) := u(µ) − ûN (µ)

since the bound ∆N (µ) in (3.7) is in fact computable a-posteriori.

4.1. The Primal Problem. As in [16], we start by investigating the effectivity of
this estimator, i.e., we consider

(4.2) ηN (µ) :=
∆N (µ)

‖eN (µ)‖X

.

Again, due to the EIM, the analysis is more involved. Setting

(4.3) κN (µ) :=
γN (µ)

β
N

(µ)
,

where γN (µ) defined in (3.4), we have the following result.

Proposition 4.1. Assume that

(4.4) EN (µ) ≤ c(µ)RN (µ)

for some c(µ) ∈ [0, 1) and set

(4.5) C(µ) :=
1 − c(µ)

1 + c(µ)
.

If τN (µ) ≤ 1
2C(µ), we obtain

(4.6) ηN (µ) ≤ 4(C(µ))
−1
κN (µ).

Proof. It is immediate to show that (4.4) implies

(4.7)
RN (µ) + EN (µ) ≤ 1 + c(µ)

1 − c(µ)

(
RN (µ) − EN (µ)

)

= (C(µ))
−1(

RN (µ) − EN (µ)
)
.

Next, we use the fact that

g(z + w, v;h(µ)) = a0 (z + w, v;h0(µ)) + a1 (z + w, z + w, v;h1(µ)) − F (v)

= g(z, v;h(µ)) + a0 (w, v;h0(µ))

+ a1 (z, w, v;h1(µ)) + a1 (w, z, v;h1(µ))

+ a1 (w,w, v;h1(µ))
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(which follows directly from the definitions (2.2) and (2.4)) for z = ûN (µ) and
w = eN (µ) to obtain by (2.3)

0 = g(u(µ), v;h(µ))

= g
(
ûN (µ), v;h(µ)

)
+ dg

(
eN (µ), v;h(µ)

)
[ûN (µ)]

+ a1

(
eN (µ), eN (µ), v;h1(µ)

)
.

Then, by continuity of dg and a1

(4.8) g
(
ûN (µ), v;h(µ)

)
≤ γN (µ)

∥∥eN (µ)
∥∥

X
‖v‖X + ρ1(µ)

∥∥eN (µ)
∥∥2

X
‖v‖X .

On the other hand, for any v ∈ X

(4.9)
g
(
ûN (µ), v;h(µ)

)
= g

(
ûN (µ), v; ĥ(µ)

)
+ g
(
ûN (µ), v;h(µ) − ĥ(µ)

)

=
(
RN (µ), v

)
X

+
(
EN (µ), v

)
X
,

where by duality RN (µ) ∈ X and EN (µ) ∈ X exist such that
∥∥RN (µ)

∥∥
X

= RN (µ),∥∥EN (µ)
∥∥

X
= EN (µ) and

RN (v;µ) =
(
RN (µ), v

)
X
, EN (v;µ) =

(
EN (µ), v

)
X

for all v ∈ X. First, we use (4.9) and (4.8) for v = RN (µ) and obtain
∥∥RN (µ)

∥∥2

X
+
(
EN (µ),RN (µ)

)
X

≤ γN (µ)
∥∥eN (µ)

∥∥
X

∥∥RN (µ)
∥∥

X
+ ρ1(µ)

∥∥eN (µ)
∥∥2

X

∥∥RN (µ)
∥∥

X

and again for v = −EN (µ)

−
(
RN (µ), EN (µ)

)
X
−
∥∥EN (µ)

∥∥2

X

≤ γN (µ)
∥∥eN (µ)

∥∥
X

∥∥EN (µ)
∥∥

X
+ ρ1(µ)

∥∥eN (µ)
∥∥2

X

∥∥EN (µ)
∥∥

X
.

Next, we sum up latter two inequalities
∥∥RN (µ)

∥∥2

X
−
∥∥EN (µ)

∥∥2

X

≤
(
γN (µ)

∥∥eN (µ)
∥∥

X
+ ρ1(µ)

∥∥eN (µ)
∥∥2

X

)(∥∥RN (µ)
∥∥

X
+
∥∥EN (µ)

∥∥
X

)
,

thus
∥∥RN (µ)

∥∥
X
−
∥∥EN (µ)

∥∥
X

≤
∥∥eN (µ)

∥∥
X

(
γN (µ) + ρ1(µ)

∥∥eN (µ)
∥∥

X

)
,

and by (4.7)

(4.10) C(µ)
(∥∥RN (µ)

∥∥
X

+
∥∥EN (µ)

∥∥
X

)
≤
∥∥eN (µ)

∥∥
X

(
γN (µ) + ρ1(µ)

∥∥eN (µ)
∥∥

X

)
.

Now, we estimate ∆N (µ). First, note that 1 −
√

1 − τN (µ) ≤ τN (µ) which follows
from

τN (µ) ≤ 1

2
C(µ) =

1

2

1 − c(µ)

1 + c(µ)
≤ 1

since c(µ) ∈ [0, 1). Hence,

(4.11)

∆N (µ) = β
N

(µ)(2ρ1(µ))
−1

(
1 −

√
1 − τN (µ)

)

≤ β
N

(µ)(2ρ1(µ))
−1
τN (µ)

= 2
(
β

N
(µ)
)−1(

RN (µ) + EN (µ)
)
,

where for the last equality we used the definition of τN (µ) (c.p. (3.6)).
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The next step is to use (4.10), (4.11) and Proposition 3.1 to estimate

1

2
C(µ)β

N
(µ)∆N (µ) ≤ γN (µ)

∥∥eN (µ)
∥∥

X
+ ρ1(µ)

∥∥eN (µ)
∥∥2

X

≤ γN (µ)
∥∥eN (µ)

∥∥
X

+ ρ1(µ)
(
∆N (µ)

)2

= γN (µ)
∥∥eN (µ)

∥∥
X

+
1

2
∆N (µ)

(
2ρ1(µ)∆N (µ)

)
.

Finally, we employ (4.11) again (i.e., the second line) to obtain

1

2
C(µ)β

N
(µ)∆N (µ) ≤ γN (µ)

∥∥eN (µ)
∥∥

X
+

1

2
τN (µ)β

N
(µ)∆N (µ),

which is equivalent to

ηN (µ) =
∆N (µ)

‖eN (µ)‖X

≤ 2
γN (µ)

β
N

(µ)

(
C(µ) − τN (µ)

)−1

≤ 4(C(µ))
−1
κN (µ),

since τN (µ) ≤ 1
2C(µ), which proofs the claim (4.6). �

Offline/Online Decomposition. As we are not only interested in the rapid evalua-

tion of ûN (µ) and ûN (µ), respectively, but also of its a-posteriori error estimator
∆N (µ), we have to perform the offline/online decomposition for ∆N (µ), too. We
will separately treat RN (µ) and EN (µ), starting with the first one.

From duality we know, that RN (µ) ∈ X exist, such that
∥∥RN (µ)

∥∥
X

= RN (µ).
Furthermore, by linear superposition, we find

RN (µ) = F +
N∑

n1=1

ûN
n1

(µ)

M0∑

m=1

[
ϑ0

m(µ)Am
n1

+
N∑

n2=1

ûN
n2

(µ)

M1∑

m=1

ϑ1
m(µ)Am

n1,n2

]
,

where we have defined F , Am
n1

and Am
n1,n2

, such that for all v ∈ X

(F , v)X = −f(v),(
Am

n1
, v
)
X

= a0(ξn1
, v;ϕ0

m), 1 ≤ m ≤M0 < Mmax
0 ,(

Am
n1,n2

, v
)
X

= a1(ξn1
, ξn2

, v;ϕ1
m), 1 ≤ m ≤M1 < Mmax

1 ,

each with 1 ≤ n1, n2 ≤ N . Consequently, we can compute
∥∥RN (µ)

∥∥
X

by the
following nested quadruple sum:

∥∥RN (µ)
∥∥2

X
= (F ,F)X +

N∑

n1=1

ûN
n1

(µ)

{
2

M0∑

m=1

ϑ0
m(µ)

(
F ,Am

n1

)
X

+

N∑

n2=1

ûN
n2

(µ)

{
2

M1∑

m=1

ϑ1
m(µ)

(
F ,Am

n1,n2

)
X

+

M0∑

m=1

M0∑

m′=1

ϑ0
m(µ)ϑ0

m′(µ)
(
Am

n1
,Am′

n2

)
X

+
N∑

n3=1

ûN
n3

(µ)

{
2

M0∑

m=1

M1∑

m′=1

ϑ0
m(µ)ϑ1

m′(µ)
(
Am

n1
,Am′

n2,n3

)
X

+
N∑

n4=1

ûN
n4

(µ)

M1∑

m=1

M1∑

m′=1

ϑ1
m(µ)ϑ1

m′(µ)
(
Am

n1,n2
,Am′

n3,n4

)
X

}}}
.

Hence, the online complexity for evaluating RN (µ) is

O
(
M2

1N
4
)

+ O
(
M0M1N

3
)

+ O
((
M2

0 +M1

)
N2
)

+ O(M0N) .
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Next, we derive an offline/online decomposition for the evaluation of EN (µ).
First, note that in the case of non-affine coefficient functions h(µ) the error within

the empirical interpolation, h(µ) − ĥ(µ), is non-affine, too. As pointed out earlier,
non-affine dependencies prohibit an efficient offline/online decomposition, i.e., a
decomposition such that the online complexity is independent of N . The usual
way to overcome this (c.p. [1, 9]), is to pose the assumption hi(µ) ∈ WMi+1

i ,
i = 0, 1, such that we can take advantage of (2.16). However, the price to pay
is to loose complete rigorousity of ∆N (µ). This loss is usually compensated by
posing an additional ‘Safety-Condition’ (c.p. [9]), i.e., Mi, i = 0, 1 should be chosen
sufficiently large, such that

(4.12)
EN (µ)

RN (µ)
≤ 1

2
,

which fits in the context of Proposition 4.1, too.
With (2.16) at hand, we can proceed similar to the investigation of RN (µ). Due

to duality there exists EN (µ) ∈ X, such that
∥∥EN (µ)

∥∥
X

= EN (µ), where by linear
superposition

EN (µ) =
N∑

n1=1

ûN
n1

(µ)

[
εM0

0 (µ)AM0+1
n1

+
N∑

n2=1

ûN
n2

(µ)εM1

1 (µ)AM1+1
n1,n2

]
.

Therefore,
∥∥EN (µ)

∥∥
X

can be computed by the following nested quadruple sum:

∥∥EN (µ)
∥∥2

X
=

N∑

n1=1

ûN
n1

(µ)
N∑

n2=1

ûN
n2

(µ)

{(
εM0

0 (µ)
)2(

AM0+1
n1

,AM0+1
n2

)
X

+
N∑

n3=1

ûN
n3

(µ)

{
2εM0

0 (µ)εM1

1 (µ)
(
AM0+1

n1
,AM1+1

n2,n3

)
X

+
N∑

n4=1

ûN
n4

(µ)
(
εM1

1 (µ)
)2(

AM1+1
n1,n2

,AM1+1
n3,n4

)
X

}}
,

with complexity O
(
N4
)
.

4.2. The Dual Problem. Also for the dual problem, the a-posteriori error analysis
differs from [16]. We start by defining analogous quantities for RN (µ) in (3.1) and
EN (µ) in (3.2) namely

(4.13) R̃N, eN (µ) :=
∥∥∥dg

(
·, ψ̂N, eN (µ); ĥ(µ)

)
[ûN (µ)] + ℓ(·)

∥∥∥
X′

,

the dual norm of the dual RBM-EIM residual and

(4.14) ẼN, eN (µ) :=
∥∥∥dg

(
·, ψ̂N, eN (µ);h(µ) − ĥ(µ)

)
[ûN (µ)]

∥∥∥
X′

,

the EIM-approximation error. We also introduce the quantities

(4.15) ẽN, eN (µ) := ψN (µ) − ψ̂N, eN (µ),

where ψN (µ) denotes the solution of the Dual Problem (2.29), whereas ψ̂N, eN (µ) is
the solution of the Dual RBM-EIM-Problem (2.34). The error bound is
(4.16)

∆̃N, eN (µ) :=
2
(
R̃N, eN (µ) + ẼN, eN (µ)

)

β
N

(µ)
(

1 +
√

1 − τN (µ)
) +

1 −
√

1 − τN (µ)

1 +
√

1 − τN (µ)

∥∥∥ψ̂N, eN (µ)
∥∥∥

X
,

and we obtain the following error estimate.
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Proposition 4.2. If τN (µ) < 1, then

(4.17)
∥∥∥ẽN, eN (µ)

∥∥∥
X

≤ ∆̃N, eN (µ).

Proof. Recall that ψN (µ) ∈ X is the solution of (2.29), i.e.,

dg

(
v, ψN (µ);h(µ))[ûN (µ) +

1

2
eN (µ)]

)
= −ℓ(v), v ∈ X,

for eN (µ) = u(µ) − ûN (µ) and the solutions u(µ) ∈ X and ûN (µ) ∈ WN of (2.3)
and (2.21), respectively.

Then, straightforward calculations show that

dg
(
v, ẽN, eN (µ);h(µ)

)
[ûN (µ)] =

= dg
(
v, ψN (µ);h(µ)

)
[ûN (µ) +

1

2
eN (µ)] − dg

(
v, ψN (µ);h(µ)

)
[
1

2
eN (µ)]

− dg
(
v, ψ̂N, eN (µ);h(µ) − ĥ(µ)

)
[ûN (µ)]

− dg
(
v, ψ̂N, eN (µ); ĥ(µ)

)
[ûN (µ)]

= −ℓ(v) − dg
(
v, ψ̂N, eN (µ); ĥ(µ)

)
[ûN (µ)]

− dg
(
v, ψ̂N, eN (µ);h(µ) − ĥ(µ)

)
[ûN (µ)]

− dg
(
v, ψN (µ);h(µ)

)
[
1

2
eN (µ)].

Using the inf-sup condition (2.6) for dg yields

(4.18)

β
N

(µ)
∥∥∥ẽN, eN (µ)

∥∥∥
X

≤ sup
v∈X

1

‖v‖X

∥∥∥dg
(
v, ẽN, eN (µ);h(µ)

)
[ûN (µ)]

∥∥∥
X

≤ R̃N, eN (µ) + ẼN, eN (µ)

+

∥∥∥∥dg
(
·, ψN (µ);h(µ)

)
[
1

2
eN (µ)]

∥∥∥∥
X′

.

Hence, we need to estimate the last term. In order to do so, note that

dg
(
v, ψN (µ);h(µ)

)
[
1

2
eN (µ)]

=
1

2
dg
(
v, ψN (µ) − ψ̂N, eN (µ);h(µ)

)
[eN (µ)]

+
1

2
dg
(
v, ψ̂N, eN (µ);h(µ)

)
[eN (µ)]

≤ ρ1(µ)
∥∥eN (µ)

∥∥
X

(∥∥∥ẽN, eN (µ)
∥∥∥

X
+
∥∥∥ψ̂N, eN (µ)

∥∥∥
X

)
‖v‖X

≤ ρ1(µ)∆N (µ)
(∥∥∥ẽN, eN (µ)

∥∥∥
X

+
∥∥∥ψ̂N, eN (µ)

∥∥∥
X

)
‖v‖X ,

in view of Proposition 3.1 and (3.8), respectively. This leads us with (4.18) to

β
N

(µ)
∥∥∥ẽN, eN (µ)

∥∥∥
X

≤ R̃N, eN (µ) + ẼN, eN (µ)

+ ρ1(µ)∆N (µ)
(∥∥∥ẽN, eN (µ)

∥∥∥
X

+
∥∥∥ψ̂N, eN (µ)

∥∥∥
X

)
,
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which is equivalent to

(4.19)

∥∥∥ẽN, eN (µ)
∥∥∥

X
≤ 1

β
N

(µ) − ρ1(µ)∆N (µ)

(
R̃N, eN (µ) + ẼN, eN (µ)

)

+
ρ1(µ)∆N (µ)

β
N

(µ) − ρ1(µ)∆N (µ)

∥∥∥ψ̂N, eN (µ)
∥∥∥

X
.

Finally, by (3.7) we have

ρ1(µ)∆N (µ) =
1

2
β

N
(µ)

(
1 −

√
1 − τN (µ)

)
,

and, furthermore,

β
N

(µ) − ρ1(µ)∆N (µ) =
1

2
β

N
(µ)

(
1 +

√
1 − τN (µ)

)
.

Together with (4.19) this proofs the claim (4.17) for ∆̃N, eN (µ) in (4.16). �

Offline/Online Decomposition. For the offline/online decomposition of ∆̃N, eN (µ)
we can proceed along the lines of Section 4.1. First, from duality we know the

existence of R̃N, eN (µ) ∈ X, such that
∥∥∥R̃N, eN (µ)

∥∥∥
X

= R̃N, eN (µ). Furthermore, by

linear superposition, we find

R̃N, eN (µ) = L +

eN∑

n1=1

ψ̂N, eN
n1

(µ)

M0∑

m=1

[
ϑ0

m(µ)Bm
n1

+
N∑

n2=1

ûN
n2

(µ)

M1∑

m=1

ϑ1
m(µ)Bm

n1,n2

]
,

where we have defined L, Bm
n1

and Bm
n1,n2

, such that for all v ∈ X

(L, v)X = ℓ(v),(
Bm

n1
, v
)
X

= a0(v, ξ̃n1
;ϕ0

m), 1 ≤ m ≤M0 < Mmax
0 ,(

Bm
n1,n2

, v
)
X

= da1(v, ξ̃n1
;ϕ1

m)[ξn2
], 1 ≤ m ≤M1 < Mmax

1 ,

each for 1 ≤ n1 ≤ Ñ , 1 ≤ n2 ≤ N . Consequently, we can compute
∥∥∥R̃N, eN (µ)

∥∥∥
X

by the following quadruple sum:

∥∥∥R̃N, eN (µ)
∥∥∥

2

X
= (L,L)X +

eN∑

n1=1

ψ̂N, eN
n1

(µ)

{
2

M0∑

m=1

ϑ0
m(µ)

(
L,Bm

n1

)
X

+ 2
N∑

n2=1

ûN
n2

(µ)

M1∑

m=1

ϑ1
m(µ)

(
L,Bm

n1,n2

)
X

+

eN∑

n2=1

ψ̂N, eN
n2

(µ)

{ M0∑

m=1

M0∑

m′=1

ϑ0
m(µ)ϑ0

m′(µ)
(
Bm

n1
,Bm′

n2

)
X

+
N∑

n3=1

ûN
n3

(µ)

{
2

M0∑

m=1

M1∑

m′=1

ϑ0
m(µ)ϑ1

m′(µ)
(
Bm

n1
,Bm′

n2,n3

)
X

+
N∑

n4=1

ûN
n4

(µ)

M1∑

m=1

M1∑

m′=1

ϑ1
m(µ)ϑ1

m′(µ)
(
Bm

n1,n3
,Bm′

n2,n4

)
X

}}}
.

Thus, the online complexity for evaluating R̃N, eN (µ) is

O
(
M2

1N
2Ñ2

)
+ O

(
M0M1NÑ

2
)

+ O
(
M2

0 Ñ
2
)

+ O
(
M1NÑ

)
+ O

(
M0Ñ

)
.
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Next, to derive an offline/online decomposition for ẼN, eN (µ) we again have to as-

sume that hi(µ) ∈ WMi+1
i , i = 0, 1, hence (2.16) holds. Furthermore, in analogy

to (4.12) we assume the following ‘Safety-Condition’ to hold:

ẼN, eN (µ)

R̃N, eN (µ)
≤ 1

2
.

Again, due to duality there exists ẼN, eN (µ) ∈ X, such that
∥∥∥ẼN, eN (µ)

∥∥∥
X

=

ẼN, eN (µ), where by linear superposition (thanks to (2.16))

ẼN, eN (µ) =

eN∑

n1=1

ψ̂N, eN
n1

(µ)

[
εM0

0 (µ)BM0+1
n1

+
N∑

n2=1

ûN
n2

(µ)εM1

1 (µ)BM1+1
n1,n2

]
,

and, furthermore, due to

∥∥∥ẼN, eN (µ)
∥∥∥

2

X
=

eN∑

n1=1

ψ̂N, eN
n1

(µ)

eN∑

n2=1

ψ̂N, eN
n2

(µ)

{(
εM0

0 (µ)
)2(

BM0+1
n1

,BM0+1
n2

)
X

+

N∑

n3=1

ûN
n3

(µ)

{
2εM0

0 (µ)εM1

1 (µ)
(
BM0+1

n1
,BM1+1

n2,n3

)
X

+
N∑

n4=1

ûN
n4

(µ)
(
εM1

1 (µ)
)2(

BM1+1
n1,n3

,BM1+1
n2,n4

)
X

}}
,

the complexity for evaluating ẼN, eN (µ) is O
(
N2Ñ2

)
.

4.3. Output of Interest. As already mentioned in Section 2.4, the development
of a-posteriori error estimators for s(µ) is mainly based on Lemma 2.1. Again,
the analysis slightly differs from [16]. Furthermore, we define an additional output
approximation and a corresponding a-posteriori error estimator.

Note that, if we do not (want to) take advantage of the dual problem formulation,
i.e., using the primal problem for the output approximation only, we define

(4.20) ŝN
1 (µ) := ℓ

(
ûN (µ)

)
,

and the error bound

(4.21) ∆N
s1

(µ) := ‖ℓ‖X′ ∆N (µ).

Then, we obtain the following error estimate.

Proposition 4.3. If τN (µ) < 1, then

(4.22)
∣∣s(µ) − ŝN

1 (µ)
∣∣ ≤ ∆N

s1
(µ).

Proof. The result directly follows from the continuity of ℓ and Proposition 3.1, as
∣∣s(µ) − ŝN

1 (µ)
∣∣ =

∣∣ℓ
(
u(µ) − ûN (µ)

)∣∣

=

∣∣ℓ
(
u(µ) − ûN (µ)

)∣∣
‖u(µ) − ûN (µ)‖X

∥∥u(µ) − ûN (µ)
∥∥

X
≤ ‖ℓ‖X′ ∆N (µ),

which proves the claim. �

Next, if we aim at improving the error bound for ŝN
1 (µ) using the dual problem

(c.p. Section 2.4) we can proceed similar to [16] and define the error bound by

(4.23)
∆̃N, eN

s1
(µ) :=

∣∣∣RN (ψ̂N, eN (µ);µ)
∣∣∣+
∣∣∣EN (ψ̂N, eN (µ);µ)

∣∣∣
+
(
RN (µ) + EN (µ)

)
∆̃N, eN (µ).

Then, the improved error estimate reads as follows.
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Proposition 4.4. If τN (µ) < 1, then

(4.24)
∣∣s(µ) − ŝN

1 (µ)
∣∣ ≤ ∆̃N, eN

s1
(µ).

Proof. From Lemma 2.1 we find for v = ψ̂N, eN (µ)

(4.25)
s(µ) − ŝN

1 (µ) = g
(
ûN (µ), ψ̂N, eN (µ);h(µ)

)

+ g
(
ûN (µ), ψN (µ) − ψ̂N, eN (µ);h(µ)

)
.

We can estimate the right-hand side by
∣∣∣g
(
ûN (µ), ψ̂N, eN (µ);h(µ)

)∣∣∣ ≤
∣∣∣g
(
ûN (µ), ψ̂N, eN (µ); ĥ(µ)

)∣∣∣

+
∣∣∣g
(
ûN (µ), ψ̂N, eN (µ);h(µ) − ĥ(µ)

)∣∣∣

=
∣∣∣RN (ψ̂N, eN (µ);µ)

∣∣∣+
∣∣∣EN (ψ̂N, eN (µ);µ)

∣∣∣ ,

and
∣∣∣g
(
ûN (µ), ψN (µ) − ψ̂N, eN (µ);h(µ)

)∣∣∣

≤
∥∥g
(
ûN (µ), ·;h(µ)

)∥∥
X′

∥∥∥ψN (µ) − ψ̂N, eN (µ)
∥∥∥

X

≤
(
RN (µ) + EN (µ)

)
∆̃N, eN (µ),

by Proposition 4.2 and (4.17), respectively. Using the triangle inequality for (4.25)
and applying the above estimates completes the proof. �

However, if we are not only interested in improving the error bound ∆N
s1

(µ), but

ŝN
1 (µ) itself, we can proceed as follows. Let

(4.26) ŝN, eN
2 (µ) := ŝN

1 (µ) +RN (ψ̂N, eN (µ);µ)

and the corresponding error bound

(4.27) ∆̃N, eN
s2

(µ) :=
∣∣∣EN (ψ̂N, eN (µ);µ)

∣∣∣+
(
RN (µ) + EN (µ)

)
∆̃N, eN (µ).

Then, we obtain the following result.

Proposition 4.5. If τN (µ) < 1, then

(4.28)
∣∣∣s(µ) − ŝN, eN

2 (µ)
∣∣∣ ≤ ∆̃N, eN

s2
(µ).

Proof. Note, that from (4.25) and (4.26) we have

s(µ) − ŝN, eN
2 (µ) = g

(
ûN (µ), ψ̂N, eN (µ);h(µ) − ĥ(µ)

)

+ g
(
ûN (µ), ψN (µ) − ψ̂N, eN (µ);h(µ)

)
.

The result can be obtained straightforward by proceeding along the lines of the
proof of Proposition 4.4. �

Note that ŝN, eN
2 (µ) and ∆̃N, eN

s2
(µ), respectively, will give a better result than

ŝN
1 (µ) in conjunction with ∆̃N, eN

s1
(µ). On the other hand, the effectivity of ∆̃N, eN

s1
(µ)

will in general be better (i.e., closer to one), than the one of ∆̃N, eN
s2

(µ). We will
point this out later in our numerical results.
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Offline/Online Decomposition. The offline/online decomposition of the additional

terms needed for ∆̃N, eN
s1

(µ) and ∆̃N, eN
s2

(µ), respectively, namely RN (ψ̂N, eN (µ);µ) and

EN (ψ̂N, eN (µ);µ) is readily admitted. The online complexities are O
(
M1ÑN

2
)

+

O
(
M0ÑN

)
and O

(
ÑN2

)
+ O

(
ÑN

)
, respectively, where for the latter one we

have to take advantage of the assumption hi(µ) ∈ WMi+1
i , i = 0, 1, again (c.p.

Section 4.1).

4.4. The Continuity Constants. To finish the derivation of rapidly evaluable
a-posteriori error estimators, we will now address the computation/estimation of

ρi(µ), i = 0, 1, and β
N

(µ). We start by ρi(µ).
The determination of the continuity constants from Assumption 2.1, i.e., ρi,

i = 0, 1, themselves, is of course highly dependent on the particular problem to
solve. At this point we just want to mention, that the determination of ρ1 will
involve a Sobolev embedding constant (due to the quadratic non-linearity), which
can be determined by a homotopy procedure, that is detailed in [16].

Compared to [16], due to the more sophisticated dependence on the parameter,
for the determination of ρi(µ), i = 0, 1, we have to estimate the L∞(Ω)-norm of
the the involved coefficient functions hi(µ). To preserve the independence of N ,
we can use the following estimate

(4.29)
‖hi(µ)‖L∞(Ω) ≤

∥∥∥ĥi(µ)
∥∥∥

L∞(Ω)
+
∥∥∥hi(µ) − ĥi(µ)

∥∥∥
L∞(Ω)

≤
∥∥ϑi(µ)

∥∥
1

+ εemp,

where ϑi(µ) is the vector of the expansion coefficients ϑi
m(µ), 1 ≤ m ≤Mi, due to

(2.13)–(2.15) and the triangle-inequality.

4.5. The Inf-Sup Constant. Now, we consider the computation of β
N

(µ), i.e.,
a rapidly evaluable (w.r.t. the online stage) lower bound for the inf-sup constant
βN (µ). Due to the presence of a non-affine parameter dependence, we will split
the derivation into two parts (this idea has been pursued in e.g. [9], too). First, we

will construct a lower bound for β(ûN (µ); ĥ(µ)). Afterwards, we will introduce a
correction term to derive a lower bound for βN (µ) itself.

Furthermore, note that we will restrict ourselves to the case of an one-dimensional
parameter space, i.e., D ∈ R, only. Even though expanding to higher dimensional
parameter spaces is readily admitted, more recent approaches (c.p. [4]) are advan-
tageous in that case.

4.5.1. Affine Parameter Dependence. We will follow the main idea of [16], namely
expanding βN (µ) in the parameter µ ∈ D, although we have to generalize it sig-
nificantly, due to the more sophisticated parameter dependence (c.p. (2.1)). As
already said before, we will first treat affine-parameter dependence.

First, for µ ∈ D and w ∈ X we introduce a linear operator TN
µ : X → X by

(4.30)
(
TN

µ w, v
)
X

= dg
(
w, v; ĥ(µ)

)
[ûN (µ)], v ∈ X.
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Using this, for µ̄ ∈ D and t ∈ R we further introduce

(4.31)

T (w, v; t; µ̄) :=
(
TNmax

µ̄ w, TNmax

µ̄ v
)
X

+ t

{
dg
(
w, TNmax

µ̄ v; ∂µĥ(µ̄)
)

[ûNmax

(µ̄)]

+ dg
(
v, TNmax

µ̄ w; ∂µĥ(µ̄)
)

[ûNmax

(µ̄)]

+ da1

(
w, TNmax

µ̄ v; ĥ(µ̄)
)

[∂µû
Nmax

(µ̄)]

+ da1

(
v, TNmax

µ̄ w; ĥ(µ̄)
)

[∂µû
Nmax

(µ̄)]

}
,

where ∂µĥ(µ̄) denotes ∂ĥ(µ̄)/∂µ and ∂µû
Nmax

(µ̄) ∈ X satisfies for all v ∈ X:

(4.32) dg
(
∂µû

Nmax

(µ̄), v; ĥ(µ̄)
)

[ûNmax

(µ̄)] = −g
(
ûNmax

(µ̄), v; ∂µĥ(µ̄)
)
− f(v).

Finally, we use (4.31) to define the desired expansion of βN (µ) around µ (or more

precisely of
(
βN (µ)

)2
), namely

(4.33) F(t; µ̄) := inf
v∈X

T (v, v; t; µ̄)

‖v‖2
X

.

Additionally, we will take advantage of a second order correction to the expansion
defined above, namely for µ̄ ∈ D and t ∈ R:

(4.34)

δN (t; µ̄) := ρ0

∥∥∥ĥ0(µ̄+ t) − ĥ0(µ̄) − t∂µĥ0(µ̄)
∥∥∥

L∞(Ω)

+ 2ρ1

∑M1

m=1

∥∥∥ϑ1
m(µ̄+ t)ûN (µ̄+ t) − ϑ1

m(µ̄)ûNmax

(µ̄)

− t
(
ϑ1

m(µ̄)∂µû
Nmax

(µ̄) + ∂µϑ
1
m(µ̄)ûNmax

(µ̄)
) ∥∥∥

X
.

Now, with (4.30)–(4.34) at hand, we can show the following crucial properties.

Lemma 4.1. The function F(t; µ̄) is concave in t, i.e., for all t ∈ [t1, t2] we have

(4.35) F(t; µ̄) ≥ min{F(t1; µ̄),F(t2; µ̄)} .
Proof. The result is an immediate consequence of (4.33) and the affine-linearity of
T (w, v; t; µ̄) in t (c.p. (4.31)). �

Furthermore, we have the following bound for the inf-sup constant.

Lemma 4.2. For given µ̄, µ ∈ D and t = µ− µ̄, it holds

(4.36) βN (µ) ≥
(√

F(t; µ̄) − δN (t; µ̄)
)+

.

Proof. We start by observing that for

(4.37) σ(w) :=

∥∥TN
µ w

∥∥
X

‖w‖X

we have (c.p. (2.6))

(4.38) βN (µ) = inf
w∈X

σ(w).

Using

(4.39) TN
µ w = TNmax

µ̄ w +
(
TN

µ w − TNmax

µ̄ w
)
,

we find for (4.37)

(4.40)
σ2(w) ‖w‖2

X =
∥∥∥TNmax

µ̄ w
∥∥∥

2

X
+
∥∥∥TN

µ w − TNmax

µ̄ w
∥∥∥

2

X

+ 2
(
TN

µ w − TNmax

µ̄ w, TNmax

µ̄ w
)

X
,
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or, equivalently,

(4.41)
σ2(w) ‖w‖2

X −
∥∥∥TN

µ w − TNmax

µ̄ w
∥∥∥

2

X
− T (w,w; t; µ̄)

=
∥∥∥TNmax

µ̄ w
∥∥∥

2

X
− T (w,w; t; µ̄) + 2

(
TN

µ w − TNmax

µ̄ w, TNmax

µ̄ w
)

X
.

First, we look at the scalar product in (4.40) to find by the definition of TN
µ (c.p.

(4.30)) and the definition of dg itself (c.p. (2.4)):
(
TN

µ w − TNmax

µ̄ w, TNmax

µ̄ w
)

X

= dg
(
w, TNmax

µ̄ w; ĥ(µ)
)

[ûN (µ)] − dg
(
w, TNmax

µ̄ w; ĥ(µ̄)
)

[ûNmax

(µ̄)]

= a0

(
w, TNmax

µ̄ w; ĥ(µ) − ĥ(µ̄)
)

+

M1∑

m=1

da1

(
w, TNmax

µ̄ w;ϕ1
m

)
[ϑ1

m(µ)ûN (µ) − ϑ1
m(µ̄)ûNmax

(µ̄)].

On the other hand, we have by the definition of T (w, v; t; µ̄) (c.p. (4.31)):
∥∥∥TNmax

µ̄ w
∥∥∥

2

X
− T (w,w; t; µ̄)

= −2dg
(
w, TNmax

µ̄ w; t∂µĥ(µ̄)
)

[ûNmax

(µ̄)]

−2da1

(
w, TNmax

µ̄ w; ĥ(µ̄)
)

[t∂µû
Nmax

(µ̄)].

Hence, for the right-hand side of (4.41) we find
∥∥∥TNmax

µ̄ w
∥∥∥

2

X
− T (w,w; t; µ̄) + 2

(
TN

µ w − TNmax

µ̄ w, TNmax

µ̄ w
)

X

= 2a0

(
w, TNmax

µ̄ w; ĥ(µ) − ĥ(µ̄) − t∂µĥ(µ̄)
)

+ 2

M1∑

m=1

da1

(
w, TNmax

µ̄ w;ϕ1
m

) [
ϑ1

m(µ)ûN (µ) − ϑ1
m(µ̄)ûNmax

(µ̄)

− t
(
ϑ1

m(µ̄)∂µû
Nmax

(µ̄) + ∂µϑ
1
m(µ̄)ûNmax

(µ̄)
) ]
.

Next, we estimate the absolute value of both summands above, where by Assump-
tion 2.1 the first one is bounded by

2ρ0 ‖w‖X

∥∥∥TNmax

µ̄ w
∥∥∥

X

∥∥∥ĥ(µ) − ĥ(µ̄) − t∂µĥ(µ̄)
∥∥∥

L∞(Ω)
,

and the second one (again by Assumption 2.1 and (2.15)) by

4ρ1 ‖w‖X

∥∥∥TNmax

µ̄ w
∥∥∥

X

M1∑

m=1

∥∥∥∥ϑ
1
m(µ)ûN (µ) − ϑ1

m(µ̄)ûNmax

(µ̄)

− t
(
ϑ1

m(µ̄)∂µû
Nmax

(µ̄) + ∂µϑ
1
m(µ̄)ûNmax

(µ̄)
)∥∥∥∥

X

.

Using these estimates and the definition of δN (t; µ̄) (c.p. (4.34)), (4.41) yields

(4.42)
σ2(w) ‖w‖2

X −
∥∥∥TN

µ w − TNmax

µ̄ w
∥∥∥

2

X
− T (w,w; t; µ̄)

≥ −2δN (t; µ̄) ‖w‖X

∥∥∥TNmax

µ̄ w
∥∥∥

X
.

The last step is to estimate the right-hand side of (4.42). To do so, we find by
(4.39), the triangle-inequality, the definition of σ(w) (c.p. (4.37)) and the simple
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fact 2ab ≤ a2 + b2 that

2δN (t; µ̄) ‖w‖X

∥∥∥TNmax

µ̄ w
∥∥∥

X

≤ 2δN (t; µ̄) ‖w‖X

(∥∥TN
µ w

∥∥
X

+
∥∥∥TNmax

µ̄ w − TN
µ w

∥∥∥
X

)

≤ 2δN (t; µ̄)σ(w) ‖w‖2
X +

(
δN (t; µ̄)

)2 ‖w‖2
X +

∥∥∥TNmax

µ̄ w − TN
µ w

∥∥∥
2

X
.

Hence, (4.42) yields a quadratic inequality for σ(w), namely

σ2(w) ≥ T (w,w; t; µ̄)

‖w‖2
X

− 2δN (t; µ̄)σ(w) −
(
δN (t; µ̄)

)2
,

which holds, if (note that σ(w) ≥ 0)

σ(w) ≥
(√

T (w,w; t; µ̄)

‖w‖2
X

− δN (t; µ̄)

)+

.

Recalling (4.38) and the definition of F(t; µ̄) (c.p. (4.33)) completes the proof. �

The remaining construction of the (fast evaluable) lower bound for βN (µ) is
done along the lines of [16]. We will recapitulate it at this point for the sake of
completeness without going into details.

Let PJ := {Rj := (µ̄j
−, µ̄

j
+), 1 ≤ j ≤ J} be a partition of D, i.e.

(i) Ri ∩Rj = ∅ for i 6= j and

(ii) ∪j∈JRj = D.

Furthermore, for each Rj , we define a center µ̄j , e.g. by the geometric mean
of its lower and upper bound, i.e., log(µ̄j) = 1

2 (log(µ̄j
−) + log(µ̄j

+)). With these
quantities at hand, for µ ∈ D we define

(4.43) β̂N (µ) =

(√
min{F(0, µ̄Sµ),F(t∗; µ̄Sµ)} − δN (µ− µ̄Sµ; µ̄Sµ)

)+

,

where S : D → {1, . . . , J} is a mapping, such that µ ∈ RSµ and

t∗ :=

{
µ̄Sµ

+ − µ̄Sµ, if µ ≥ µ̄Sµ,

µ̄Sµ
− − µ̄Sµ, otherwise.

We summarize our findings as follows.

Proposition 4.6. For all µ ∈ D we have

(4.44) βN (µ) ≥ β̂N (µ) ≥ 0.

Proof. The result is an immediate consequence of Lemma 4.1, Lemma 4.2 and the

definition of β̂N (µ), i.e. (4.43). �

Note, that Proposition 4.6 only ensures that β̂N (µ) is a lower bound for βN (µ).
To ensure a ‘good’ lower bound, the partition PJ should be sufficiently fine. There-
fore, PJ is called εβ-conforming (c.p. [16]), εβ ∈ (0, 1), if for all µ ∈ D
(4.45) β̂Nmax

(µ) ≥ εβ β
Nmax(

µ̄Sµ
)
> 0.

The online complexity for the evaluation of β̂N (µ) is O(log J) to determine j, s.t.

µ ∈ Rj and O
(
M2

0

)
+O

(
M2

1

)
+O

(
M1(Nmax)

2
)

to evaluate δN (t; µ̄). Additionally,

for the computation of the first summand of δN (t; µ̄) (c.p. (4.34)), i.e.,
∥∥∥ĥ0(µ̄+ t) − ĥ0(µ̄) − t∂µĥ0(µ̄)

∥∥∥
L∞(Ω)
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we use (in analogy to (4.29)):
∥∥∥ĥ0(µ̄+ t) − ĥ0(µ̄) − t∂µĥ0(µ̄)

∥∥∥
L∞(Ω)

=

∥∥∥∥∥

M0∑

m=1

(
ϑ0

m(µ̄+ t) − ϑ0
m(µ̄) − ∂µϑ

0
m(µ̄)

)
ϕ0

m

∥∥∥∥∥
L∞(Ω)

≤
M0∑

m=1

∣∣ϑ0
m(µ̄+ t) − ϑ0

m(µ̄) − ∂µϑ
0
m(µ̄)

∣∣ .

For further details on the construction itself refer to [16].

4.5.2. Non-Affine Parameter Dependence. Now, we turn back to the presence of

non-affine coefficient functions, i.e., h(µ) 6= ĥ(µ). As denoted earlier, we will follow
the idea presented (amongst others) in [9], i.e., using the proceeding presented in
Section 4.5.1 for the case of affine parameter dependence and add a correction term
to derive the desired lower bound for βN (µ).

To do so, we first recall β̂N (µ) to be the lower bound for β(ûN (µ); ĥ(µ)) de-
veloped in Section 4.5.1. Furthermore, we define (recall (2.7)) the correction term

βN
c (µ) := γ

(
ûN (µ);h(µ) − ĥ(µ)

)
and therewith:

(4.46) β
N

(µ) := β̂N (µ) − βN
c (µ),

such that we get the following estimate.

Corollary 4.1. For all µ ∈ D we have

(4.47) βN (µ) ≥ β
N

(µ).

Proof. Recalling the definition of the supremizer TN
µ w (c.p. (4.30) and note that it

is defined w.r.t. ĥ(µ)) we find

βN (µ) = inf
w∈X

sup
v∈X

dg(w, v;h(µ)) [ûN (µ)]

‖w‖X ‖v‖X

≥ inf
w∈X

dg
(
w, TN

µ w; ĥ(µ) +
(
h(µ) − ĥ(µ)

))
[ûN (µ)]

‖w‖X

∥∥TN
µ w

∥∥
X

≥ β(ûN (µ); ĥ(µ)) + inf
w∈X

dg
(
w, TN

µ w;h(µ) − ĥ(µ)
)

[ûN (µ)]

‖w‖X

∥∥TN
µ w

∥∥
X

≥ β(ûN (µ); ĥ(µ)) − sup
w∈X

dg
(
w, TN

µ w;h(µ) − ĥ(µ)
)

[ûN (µ)]

‖w‖X

∥∥TN
µ w

∥∥
X

.

Next, by the definition of the continuity constant (2.7), we have

sup
w∈X

dg
(
w, TN

µ w;h(µ) − ĥ(µ)
)

[ûN (µ)]

‖w‖X

∥∥TN
µ w

∥∥
X

≤ sup
w∈X

sup
v∈X

dg
(
w, v;h(µ) − ĥ(µ)

)
[ûN (µ)]

‖w‖X ‖v‖X

= γ
(
ûN (µ);h(µ) − ĥ(µ)

)
.

In view of Proposition 4.6 this completes the proof. �
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Note that concerning the estimation of βN
c (µ) we find by (2.11) and (2.14):

βN
c (µ) ≤ ρ0

∥∥∥h0(µ) − ĥ0(µ)
∥∥∥

L∞(Ω)

+ 2ρ1

∥∥∥h1(µ) − ĥ1(µ)
∥∥∥

L∞(Ω)

∥∥ûN (µ)
∥∥

X

≤ εemp

(
ρ0 + 2ρ1

∥∥ûN (µ)
∥∥

X

)
,

so that we have computable versions for all involved constants at hand.

4.6. Sampling Procedure. Now we develop a procedure to determine appropriate
samples and snapshots. First note, that compared to [16] we have now finished to
incorporate possible non-affine coefficient functions. Hence, the sampling procedure
to be presented here does not differ from the one presented in [16]. Nevertheless,
for the sake of completeness we will briefly describe it.

We first construct the primal samples SN and primal spaces WN , respectively,

for 1 ≤ N ≤ Nmax. Afterwards, we select the dual samples S̃
eN and dual spaces

W̃
eN , respectively, for 1 ≤ Ñ ≤ Ñmax. As the applied greedy procedure is very

similar for both, we will detail only the first one.
Before we start, we select a large (random) test sample Ξ ⊂ D, a ‘smallest (en-

ergy) tolerance’ εsp > 0 and an initial sample S1. Furthermore, since ûNmax

(µ)

(and therewith β
N

(µ), τN (µ) and ∆N (µ)) is not available yet, we have to replace

β
N

(µ) by a crude surrogate, say β
N

s (µ), and define all involved quantities, namely
τN (µ) and ∆N (µ), w.r.t. this surrogate. The procedure reads as follows.

For N = 1, 2, . . ., do

(1) compute µ∗ := arg max
µ∈Ξ

τN (µ);

(2) if τN (µ∗) >= 1, update SN+1 := SN ∪ {µ∗} and continue;
(3) compute µ∗∗ := arg max

µ∈Ξ
∆N (µ);

(4) if ∆N (µ∗∗) > εsp, update SN+1 := SN ∪ {µ∗∗} and continue;
(5) stop.

It is important to note, that ∆N (µ) (with β
N

(µ) replaced by its surrogate β
N

s (µ))
is an accurate surrogate for the true error, that can be calculated very efficiently in
the limit of many queries. Only the selected snapshots must actually be computed,
thus we may choose #Ξ very large. In summary, we can expect that the sequence
of spaces WN will provide rapidly certifiable (thanks to µ∗) and rapidly convergent
(thanks to µ∗∗) approximations uniformly in D. We will come back to this point
later in the presentation of our numerical results, later.

5. An Application: A Rotating Propeller

As already pointed out earlier, one of our final aims is to treat flow problems
around moving bodies. Thus, in an earlier work [14] we dealt with Reduced Ba-
sis Methods for solving parameter-dependent convection-diffusion problems around
rigid bodies. Although, we successfully applied the Reduced Basis Method for solv-
ing the problem at hand, we were lacking any kind of a-posteriori error estimators
both for quantifying the quality of the computed approximations (i.e., without com-
puting the true solutions) and for an optimal basis assembling procedure. Now, we
want to pick up the problem considered in [14] and apply the a-posteriori error
estimators developed above. In the sequel we will briefly recapitulate the problem
of interest.
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For simplicity, we consider just a stationary convection–diffusion problem (even
though the approach also applies for more realistic flow models) in a rectangle
� := [−1.5, 1.5]2 ⊂ R

2 in which one or more rigid bodies are located in dependence
of a parameter µ. We assume that the shape of the bodies are identical and fixed.
The bodies can be interpreted as blades of a rotor or propeller and, in the case of
only one body, B(µ) is the blade obtained by rotating a reference blade B = B(0)
around its center of symmetry by an angle µ ∈ D = [0, π

2 ], see Figure 5.1. Here,
we restrict ourselves to the case of one blade only and refer to [14] for the more
realistic case of several blades. The geometry is shown in Figure 5.1.

ΓD

ΓD

ΓD ΓN

Ω1

Ω3

B(µ)

Ω2(µ)

Figure 5.1. Geometry for one Blade, µ = π
4

We subdivide � \B(µ) =: Ω(µ) into three subdomains according to Figure 5.1,
so that we obtain

Ω(µ) := Ω1 ∪ Ω2(µ) ∪ Ω3.

Given coefficients ̺ and φ (that may also be non-constant, φ being a vector field),
we consider the following convection-diffusion problem:

(5.1)





−̺∆u+
(
φ · ∇u

)
u = 0 , in Ω(µ),

u = 0 , on ∂B(µ),

u = g , on ΓD,
∂u
∂n = 0 , on ΓN ,

where ΓN := ∂� ∩ {x = 1.5} is the Neumann part of the outer boundary ∂� and
ΓD := ∂� \ ΓN the Dirichlet part of ∂�.

To apply a Reduced Basis Method to (5.1) and its variational formulation, respec-

tively, we first have to transform the problem to a reference domain, say Ω̂ := Ω(µ̂),
where µ̂ = 0. Since in our particular problem the parameter µ represents a rotation,
the transformation is obvious. In Ω1, no mapping is applied (hence Ω1 is indepen-
dent of µ), Ω2(µ) is rotated by the angle −µ, thus we have an affine transformation
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in this subdomain. In Ω3 (which is also independent of µ as Ω1), each point is
rotated by an angle depending on its position, i.e., points close to the outer circle
are almost not rotated, while points near the inner circle are rotated almost by the
angle −µ. Again, for more details, we refer to [14].

For g ∈ H1/2(ΓD) let

V̂ (g) :=
{
v ∈ H1(Ω̂) : v = g on ΓD, v = 0 on ∂B̂

}
,

where B̂ denotes B(µ̂). Then, the variational formulation for (5.1) on the reference

domain takes the form: Find û(µ) ∈ V̂ (g), such that

(5.2) b(û(µ), v̂;µ) + c(û(µ), û(µ), v̂;µ) = 0, v̂ ∈ V̂ (0),

for the bilinear form b and trilinear form c, respectively, that take the form

(5.3)

b(û, v̂;µ) =
3∑

n=1

∫

Ω̂n

∇û(x̂) · (T (n)(x̂;µ)∇v̂(x̂)) dx̂,

c(û, ŵ, v̂;µ) =
3∑

n=1

∫

Ω̂n

(t(n)(x̂;µ) · ∇û(x̂)) ŵ(x̂) v̂(x̂) dx̂,

where the matrix function T (n) and the vector field t(n) are obtained in a straight-

forward way by the change of variable Ωn ∋ x 7→ x̂ ∈ Ω̂n and the chain rule.
The last step is to reduce the problem to homogeneous boundary conditions. For

this purpose, we choose ûH ∈ H1(Ω̂1), such that ûH = g on ΓD and ûH = 0 on

∂Ω̂1 ∩ ∂Ω̂3. Then, we can reformulate (5.2) in the form of (2.2) as follows:

Find û(µ) ∈ V̂ (0), such that

(5.4) a0(û(µ), v̂;µ) + a1(û(µ), û(µ), v̂;µ) = f(v̂), v̂ ∈ V̂ (0),

where

(5.5)

a0(û, v̂;µ) := b(û, v̂;µ) + c(û, ûH , v̂;µ) + c(ûH , û, v̂;µ),

a1(û, ŵ, v̂;µ) := c(û, ŵ, v̂;µ),

f(v̂;µ) := −b(ûH , v̂;µ) − c(ûH , ûH , v̂;µ).

Note that (unlike indicated) f(v̂;µ) does not depend on µ due to the particular

choice of ûH (supp ûH = Ω̂1 and the fact that the mapping on Ω̂1 is the identity).

Setting Xe := V̂ (0) and X ⊂ Xe a (suitable fine) finite-element space, we
have transformed (5.1) such that the theory developed in the previous sections can
be applied (c.p. (2.2) and (2.3), respectively), although now we have the sum of
several bilinear and trilinear forms, respectively, each endowed with its own (partly
non-affine) coefficient function. In the case of several blades, one obtains more
subdomains, a more complicated transformation and also more linear combinations
of bi- and trilinear forms. But still the problem can be transformed into a version
that allows the application of the theory presented above.

Finally, we define the output of interest s(µ) := ℓ(û(µ)), where

(5.6) ℓ(v̂) :=

∫

∂B̂

∂v̂(x̂)

∂n̂(x̂)
dx̂

and n̂(x̂) denotes the outward normal vector in x̂.
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6. Numerical Results

This section is devoted to the description of several numerical experiments. Let
us start with one critical observation. In the offline/online decomposition for the
computation of the error terms in Sections 4.1 and 4.2, we had always to take
square roots. For example, in order to compute RN (µ) =

∥∥RN (µ)
∥∥

X
, we used the

offline/online decomposition to compute the square
∥∥RN (µ)

∥∥2

X
. Taking the square

root results in a loss of accuracy of half of the digits. Hence, the maximum accuracy
we can expect is the square root of the machine accuracy. The same remark holds

for the other error quantities EN (µ), R̃N, eN (µ) and ẼN, eN (µ).
For this reason, we investigate the influence of this effect by first computing

directly the error quantities (without the offline/online decomposition). This means
that e.g. for RN (µ) we solve the following linear problem

RN (v;µ) =
(
RN (µ), v

)
X
, v ∈ X.

Furthermore, for reasons we point out later, we use the true inf-sup constant βN (µ)

rather than its lower bound β
N

(µ).
In the second part we give the quantitative result (including computational sav-

ings), i.e., we compute all terms independent of N (= dimX) by the offline/online-

decomposition. Moreover we use the fast computable lower bound β
N

(µ) to βN (µ)
developed in Section 4.5.

We consider the convection-diffusion problem around one rotating blade de-
scribed in Section 5 above. For the fine FE-solution X we use P

1-finite-elements,
where the triangulation is shown in Figure 6.2. The empirical interpolation is car-
ried out with a tolerance of εemp = 1e−10, see (2.14).

Figure 6.2. Mesh on Reference Domain Ω̂ (N = 10211).

6.1. Direct Computation of Residuals. As already mentioned, we first describe
the results for computing the error terms directly without the offline/online decom-
position.

Primal Problem. We start by investigating the error for the Primal Problem. In
Table 6.1 and Figure 6.3, we show the average values of eN (µ) (c.p. (4.1)), ∆N (µ)
(c.p. (3.7)), ηN (µ) (c.p. (4.2)) and τN (µ) (c.p. (3.6)) for five representative values
of the parameter (in fact we use the same values as in [14] for comparability) in
dependence of the number N of snapshots. Here and in the sequel we use ‘NaN’ to
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indicate that a quantity is not computable since the condition for the corresponding
proximity indicator is not fulfilled (e.g. for the computation of ∆N (µ) we need
τN (µ) ≤ 1, which turns out to be not the case for N ≤ 3).

N
∥∥eN (µ)

∥∥
X

∆N (µ) ηN (µ) τN (µ)

1 3.21e-01 NaN NaN 2.06e+02

3 1.60e-02 NaN NaN 2.64e+00

5 9.72e-04 1.97e-03 2.44e+00 1.14e-01

7 5.72e-06 1.34e-05 2.17e+00 1.71e-03

9 5.95e-07 1.58e-06 2.03e+00 2.57e-04

11 5.03e-08 8.44e-08 2.01e+00 6.02e-06

13 2.35e-09 4.34e-09 2.01e+00 3.98e-07

15 3.09e-10 5.64e-10 2.18e+00 4.81e-08

17 1.44e-11 4.80e-11 4.38e+00 6.72e-09

Table 6.1. Error quantities for the primal problem with direct computation.

Figure 6.3. Semi-logarithmic plot of eN (µ), ∆N (µ) and τN (µ)
over N .

We observe exponential decay of the error eN (µ) w.r.t. N , as expected. This
error is (thanks to the greedy sampling procedure in Section 4.6) rapidly certifiable,
i.e., τN (µ) ≤ 1 for N ≥ 4. Thus, for N ≥ 4 we can compute the error bound ∆N (µ),
which turns out to be very close to the true error, i.e., we obtain effectivities ηN (µ)
of approximately 2. Only for N close to Nmax = 17, the effectivity ηN (µ) is slightly
increasing. This can be explained in view of Proposition 4.1 by considering RN (µ)
(c.p. (3.1)) and EN (µ) (c.p. (3.2)) in Table 6.2. When RN (µ) gets very close to
EN (µ) the efficiency is rising, obviously. Moreover, since for N = 18 our ‘Safety-
Condition’ (4.12) is no longer valid, we chose Nmax = 17. If we would use more
snapshots, the values τN (µ) and ∆N (µ) would be dominated by the error EN (µ)
introduced by the EIM, i.e., the corresponding curves in Figure 6.3 would pass into
a plateau. This is the typical behavior using the EIM (c.p. amongst others [9]).
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N ηN (µ) RN (µ) EN (µ) EN (µ)/RN (µ)

13 2.01e+00 2.19e-10 4.34e-13 1.98e-03

14 2.06e+00 6.72e-11 4.34e-13 6.46e-03

15 2.18e+00 2.89e-11 4.34e-13 1.50e-02

16 2.49e+00 4.96e-12 4.34e-13 8.75e-02

17 4.38e+00 1.38e-12 4.34e-13 3.15e-01

(18) 8.76e+00 5.31e-13 4.34e-13 8.18e-01

Table 6.2. Error terms and effectivities for increasing values of N .

Before we consider the Dual Problem, we investigate the (simple) output ap-
proximation ŝN

1 (µ) defined in (4.20) using only the approximation of the solution
of the primal problem and the error estimator ∆N

s1
(µ) (c.p. (4.21)). For the linear

functional ℓ, we use again the above described application (5.6). The results are
shown in Table 6.3 where we give the values for the error eN

s1
(µ) := |s(µ)− ŝN

1 (µ)|,
the estimator ∆N

s1
(µ) and the effectivity ηN

s1
(µ) := ∆N

s1
(µ)/eN

s1
(µ).

N eN
s1

(µ) ∆N
s1

(µ) ηN
s1

(µ)

1 4.96e-03 NaN NaN

3 1.68e-04 NaN NaN

5 5.73e-06 1.23e-02 5.04e+03

7 2.34e-08 8.33e-05 4.03e+03

9 2.51e-09 9.88e-06 1.22e+04

11 7.79e-11 5.26e-07 1.58e+04

13 4.77e-12 2.71e-08 8.31e+03

15 6.22e-13 3.52e-09 6.64e+03

17 1.05e-13 3.00e-10 2.42e+03

Table 6.3. Error, estimator and effectivity for the output com-
putation using only the primal problem.

As expected, we observe again exponential decay of the error with a rough er-
ror bound (i.e., large effectivities), since the error is the dual norm of the output
functional multiplied by ∆N (µ) (c.p. (4.21) and Proposition 4.3, respectively). We
have depicted eN

s1
(µ) in Figure 6.5 below together with the output approximations

and corresponding error bounds using the Dual Problem.

Dual Problem. Next, we use the Dual Problem for the computation of the output

of interest. Table 6.4 and Figure 6.4 show the values for ẽN, eN (µ) (c.p. (4.15)),

∆̃N, eN (µ) (c.p. (4.16)) and η̃N, eN (µ) := ∆̃N, eN (µ)/
∥∥∥ẽN, eN (µ)

∥∥∥
X

in dependence of Ñ

for fixed N = Nmax = 17.
Again, we observe exponential decay of the errors and the quality of the error

estimator ∆̃N, eN (µ). However, the greedy sampling procedure stops here already
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Ñ
∥∥∥ẽN, eN (µ)

∥∥∥
X

∆̃N, eN (µ) η̃N, eN (µ) R̃N, eN (µ) ẼN, eN (µ)

1 9.99e-01 3.69e+00 3.00e+00 1.34e-01 4.68e-12

3 4.90e-02 1.05e-01 2.48e+00 5.45e-03 4.76e-12

5 9.91e-04 2.00e-03 2.39e+00 1.07e-04 4.76e-12

7 1.73e-05 3.62e-05 2.26e+00 1.73e-06 4.76e-12

9 8.92e-07 1.56e-06 2.97e+00 8.15e-08 4.76e-12

11 5.34e-08 2.00e-07 6.01e+00 4.88e-09 4.76e-12

Table 6.4. Error, estimator, indicator and error parts using the
dual problem for the computation of an output of interest.

Figure 6.4. Semi-logarithmic plot of ẽN, eN (µ) and ∆̃N, eN (µ) over N .

at Ñmax = 11 snapshots for the Dual Problem. In order to understand this phe-

nomenon, we have also included the values for R̃N, eN (µ) (c.p. (4.13)) and ẼN, eN (µ)

(c.p. (4.14)) in Table 6.4. We see that ẼN, eN (µ) is almost constant and R̃N, eN (µ)

approaches ẼN, eN (µ) rapidly, so that both terms become small. Hence, the first

term in the error bound ∆̃N, eN (µ) in (4.16) is almost negligible, whereas the second
term

1 −
√

1 − τN (µ)

1 +
√

1 − τN (µ)

∥∥∥ψ̂N, eN (µ)
∥∥∥

X

is dominating. Now, since τN (µ) is bounded from below due to the error introduced

by the empirical interpolation, also ∆̃N, eN (µ) is bounded from below. In order to
quantify this effect, Table 6.5 shows the same quantities as Table 6.4, but now in

dependence of the number N of primal snapshots for fixed Ñ = Ñmax = 11. For

N ≥ 11 both the error ẽN, eN (µ) and the (dual norm of the) residuals R̃N, eN (µ) and

ẼN, eN (µ), are (almost) constant (where R̃N, eN (µ) ≫ ẼN, eN (µ)), while ∆̃N, eN (µ) is

still decreasing. This shows that one has to carefully balance N and Ñ .
Now, we finally investigate the error for the approximations of the output of

interest s(µ) and their error bounds taking advantage of the Dual Problem. To this

end, we compare the directly computed eN
s1

(µ) along with the estimator ∆̃N, eN
s1

(µ)
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N
∥∥∥ẽN, eN (µ)

∥∥∥
X

∆̃N, eN (µ) η̃N, eN (µ) R̃N, eN (µ) ẼN, eN (µ)

1 3.12e-01 NaN NaN 5.01e-02 4.59e-12

3 7.66e-03 NaN NaN 1.55e-03 4.76e-12

5 4.56e-04 1.95e+00 1.27e+04 8.82e-05 4.76e-12

7 1.60e-06 2.65e-02 1.41e+04 3.14e-07 4.76e-12

9 1.64e-07 3.97e-03 1.49e+04 3.00e-08 4.76e-12

11 5.48e-08 9.30e-05 2.22e+03 5.41e-09 4.76e-12

13 5.34e-08 6.24e-06 2.11e+02 4.88e-09 4.76e-12

15 5.34e-08 8.37e-07 2.29e+01 4.88e-09 4.76e-12

17 5.34e-08 2.00e-07 6.01e+00 4.88e-09 4.76e-12

Table 6.5. Error, estimator, indicator and error parts using the
dual problem for the computation of an output of interest in de-

pendence of N for fixed Ñ = Ñmax = 11.

(c.p. (4.23)) (which involves the dual problem) with the quantities

eN, eN
s2

(µ) := |s(µ) − ŝN, eN
2 (µ)|,

∆̃N, eN
s2

(µ) defined in (4.27) using the Dual Problem (for ŝN, eN
2 (µ) itself c.p. (4.26)).

We also indicate the corresponding effectivities in dependence of N . In Table 6.6

and the left part of Figure 6.5 we fixed Ñ = 5, while in Table 6.7 and right part of

Figure 6.5 we fixed Ñ = 10.

N eN
s1

(µ) ∆̃N, eN
s1

(µ) η̃N, eN
s1

(µ) eN, eN
s2

(µ) ∆̃N, eN
s2

(µ) η̃N, eN
s2

(µ)

1 4.96e-03 NaN NaN 3.57e-04 NaN NaN

3 1.68e-04 NaN NaN 8.75e-06 NaN NaN

5 5.73e-06 3.85e-04 4.53e+01 1.40e-08 3.79e-04 2.54e+04

7 2.34e-08 4.25e-08 1.98e+00 2.64e-11 1.91e-08 8.95e+02

9 2.51e-09 3.18e-09 1.40e+00 5.42e-13 6.78e-10 1.37e+04

11 7.79e-11 9.07e-11 1.44e+00 7.61e-13 1.31e-11 1.64e+01

13 4.77e-12 5.48e-12 1.26e+00 2.34e-13 8.71e-13 7.75e+01

15 6.22e-13 1.20e-12 2.35e+00 2.57e-13 3.89e-13 2.84e+00

17 1.05e-13 6.28e-13 5.84e+00 2.54e-13 3.23e-13 2.03e+00

Table 6.6. Comparison of errors and indicators for the output
of interest with the direct method and using the dual problem for

fixed Ñ = 5.

Recall that the error estimators are certifiable forN ≥ 4 (τN (µ) ≤ 1), only. First,

we see that ∆̃N, eN
s1

(µ) is decreasing quite fast to the true error eN
s1

(µ), which results

in effectivities of approximately 2 for Ñ = 5 and almost 1 for Ñ = 10, respectively.
Then, it is increasing for N close to Nmax as soon as the error introduced by the
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N eN
s1

(µ) ∆̃N, eN
s1

(µ) η̃N, eN
s1

(µ) eN, eN
s2

(µ) ∆̃N, eN
s2

(µ) η̃N, eN
s2

(µ)

1 4.96e-03 NaN NaN 8.90e-04 NaN NaN

3 1.68e-04 NaN NaN 4.66e-06 NaN NaN

5 5.73e-06 3.84e-04 4.53e+01 1.33e-08 3.79e-04 7.46e+04

7 2.34e-08 4.15e-08 1.94e+00 5.44e-13 1.81e-08 2.59e+04

9 2.51e-09 3.11e-09 1.09e+00 2.57e-13 6.05e-10 7.77e+02

11 7.79e-11 7.86e-11 1.02e+00 2.54e-13 9.05e-13 1.07e+01

13 4.77e-12 4.90e-12 1.07e+00 2.55e-13 3.21e-13 1.99e+00

15 6.22e-13 1.13e-12 2.20e+00 2.54e-13 3.20e-13 1.99e+00

17 1.05e-13 6.25e-13 5.83e+00 2.55e-13 3.20e-13 1.98e+00

Table 6.7. Comparison of errors and indicators for the output
of interest with the direct method and using the dual problem for

fixed Ñ = 10.

Figure 6.5. eN
s1

(µ), ∆̃N, eN
s1

(µ), eN, eN
s2

(µ) and ∆̃N, eN
s2

(µ) for Ñ = 5

(left) and Ñ = 10 (right)

empirical interpolation (EN (ψ̂N, eN (µ);µ), c.p. (3.2)) is close to (or even larger than)

the remaining summands in ∆̃N, eN
s1

(µ).

The second observation is that for eN, eN
s2

(µ) and ∆̃N, eN
s2

(µ), we benefit from the

‘square-effect’ in ∆̃N, eN
s2

(µ) as long as EN (ψ̂N, eN (µ);µ) is smaller than the term(
RN (µ) + EN (µ)

)
∆̃N, eN (µ). Recall that in ∆̃N, eN

s2
(µ) the term RN (ψ̂N, eN (µ);µ)

(c.p. (3.1)) is shifted into the output approximation ŝN, eN
2 (µ). However, as soon

as EN (ψ̂N, eN (µ);µ) is dominating, both terms eN, eN
s2

(µ) and ∆̃N, eN
s2

(µ) pass into a

plateau. This implies that the corresponding effectivity η̃N, eN
s2

(µ) is not increasing

for N close to Nmax as opposed to η̃N, eN
s1

(µ). The reason is that both the error

eN, eN
s2

(µ) and the bound ∆̃N, eN
s2

(µ) are affected by the EIM, whereas eN
s1

(µ) not.

In summary, we may conclude that ∆̃N, eN
s2

(µ) is always smaller than ∆̃N, eN
s1

(µ),

but at the cost of higher effectivities. Furthermore, eN, eN
s2

(µ) is smaller than eN
s1

(µ)
as long as it does not reach a plateau introduced by the error w.r.t. the EIM. This
can be observed in Figure 6.5 for N = 17. Finally, Figure 6.6 visualizes both errors

and error estimators in dependence of both N and Ñ .



34 CLAUDIO CANUTO, TIMO TONN, AND KARSTEN URBAN

Figure 6.6. Error and estimators eN
s1

(µ), ∆̃N, eN
s1

(µ) (left) and

eN, eN
s2

(µ) and ∆̃N, eN
s2

(µ) (right) in dependence of N and Ñ .

We conclude that the method works well also for problems with non-affine coef-
ficient functions that are approximated by the EIM. Furthermore, we have detailed
the influence of the error introduced by the EIM into the developed a-posteriori
error estimators, both in theory and by the numerical experiments.

6.2. Computation of Residuals with offline/online Decomposition. Finally,
we investigate the performance of the fully developed scheme, namely using the of-
fline/online decomposition presented in Sections 4.1 and 4.2 as well as the lower
bound for the inf-sup constant derived in Section 4.5. As already pointed out ear-
lier this will allow for an N -independent method. We use the same data as in the
previous section.

We start again by analyzing the Primal Problem. Table 6.8 and Figure 6.7 show
the values of the error eN (µ), the estimator ∆N (µ), effectivity ηN (µ) and proximity
indicator τN (µ) in dependence of N . As before we obtain exponential decay of the

N
∥∥eN (µ)

∥∥
X

∆N (µ) ηN (µ) τN (µ) RN (µ) EN (µ)

2 7.02e-02 NaN NaN Inf 8.42e-03 4.09e-13

4 2.60e-03 NaN NaN 6.61e-01 2.95e-04 4.03e-13

6 3.91e-05 8.32e-05 2.34e+00 7.85e-03 4.12e-06 4.03e-13

8 1.60e-06 3.43e-06 2.04e+00 4.25e-04 1.48e-07 4.03e-13

10 1.08e-07 3.40e-07 5.03e+00 4.02e-05 1.49e-08 4.03e-13

Table 6.8. Error eN (µ), the estimator ∆N (µ), effectivity ηN (µ)
and proximity indicator τN (µ) in dependence of N using the of-
fline/online decomposition for the computation.

quantities. As already mentioned in Section 6 the value of RN (µ) is bounded from
below by the square root of the machine accuracy due to floating point arithmetic

while computing
∥∥RN (µ)

∥∥2

X
. This means, as opposed to the previous part, we

can choose at most Nmax = 10 snapshots. Moreover, for N = 4 the proximity
indicator τN (µ) is less than one, but the error estimator ∆N (µ) is indicated to be
not computable (‘NaN’). In order to explain this, recall that all presented values
are mean values for five choices of the parameter µ. Hence ‘NaN’ already occurs if
the proximity indicator τN (µ) is larger than one for just one choice of µ. In this
case, the a-posteriori error estimator ∆N (µ) is not computable.
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Figure 6.7. Semi-logarithmic plot of eN (µ), ∆N (µ) and τN (µ)
versus N .

Finally, for N ≤ 3 we obtain τN (µ) = ∞. This means, that at least for one
of the five representative values of µ the second order correction δN (µ− µ̄Sµ; µ̄Sµ)

(c.p. (4.34)) takes a larger value than
√

min{F(0, µ̄Sµ),F(t∗; µ̄Sµ)} for β̂N (µ) in

(4.43), s.t. β̂N (µ) = 0 and hence τN (µ) = ∞.
In order to investigate the reason for this phenomenon, Figure 6.8 visualizes the

numerical estimate for the inf-sup constant β̂N (µ), µ ∈ [0, π
2 ], for different values

of N . We have split the parameter space D into 40 intervals, indicated by the
dotted vertical lines. We obtain that the second order correction is small enough

for N ≥ 4, s.t. β̂N (µ) > 0 for all µ ∈ D. For N ≥ 6, the quality of the derived
lower bound turns out to be quite good. We can also clearly see which parameter
values µ are chosen by the sampling procedure.

Figure 6.8. Computable inf-sup-estimate β̂N (µ), µ ∈ [0, π
2 ], for

different values of N

Next, we investigate the Dual Problem. Table 6.9 and Figure 6.9 show the

values for the dual error ẽN, eN (µ), a-posteriori error estimate ∆̃N, eN (µ) and the

efficiency η̃N, eN (µ) in dependence on the number Ñ of dual snapshots for fixed
number N = Nmax = 10 of primal snapshots. As before the number of dual
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Ñ
∥∥∥ẽN, eN (µ)

∥∥∥
X

∆̃N, eN (µ) η̃N, eN (µ)

1 9.99e-01 3.73e+00 3.03e+00

2 2.84e-01 7.00e-01 2.59e+00

3 4.91e-02 1.07e-01 2.52e+00

4 5.69e-03 1.56e-02 2.58e+00

5 9.91e-04 2.64e-03 4.06e+00

Table 6.9. Dual error ẽN, eN (µ), a-posteriori error estimate

∆̃N, eN (µ) and efficiency η̃N, eN (µ) in dependence of Ñ for fixed
N = Nmax = 10.

Figure 6.9. Semi-logarithmic plot of ẽN, eN (µ) and ∆̃N, eN (µ) ver-

sus Ñ .

snapshots, that can be selected by the sampling procedure, is restricted by the

second summand in the dual a-posteriori error estimate ∆̃N, eN (µ), i.e. by the value
of the proximity indicator τN (µ) for N = Nmax, which in turns is bounded for the

reasons already explained above. Thus, we can only select Ñmax = 5 snapshots for
the Dual Problem.

Next, we investigate the error for the approximations of the output of interest
s(µ) and their error bounds, respectively using the Dual Problem. In Table 6.10
and Figure 6.10 we compare the already presented values eN

s1
(µ), (using the direct

method) and ∆̃N, eN
s1

(µ) with eN, eN
s2

(µ), ∆̃N, eN
s2

(µ) (using the Dual Problem) together

with the corresponding effectivities in dependence of N for fixed Ñ = Ñmax = 5.
Although we were only able to select Nmax = 10 snapshots (for the reasons

mentioned above), for the Primal Problem and Ñmax = 5 for the Dual Problem, the
approximations for the output are still quite good. Of course, the basic observations

from the first part are still valid here, i.e., ∆̃N, eN
s2

(µ) is always smaller than ∆̃N, eN
s1

(µ)
at the cost of higher effectivities. Furthermore, as Nmax is smaller as in the first

part, the error eN
s1

(µ) does not cross the ‘EIM-plateau’. As we see, eN, eN
s2

(µ) almost

enters this plateau here, s.t. the application of eN, eN
s2

(µ) in combination with the

estimator ∆̃N, eN
s2

(µ) is obviously advantageous.
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N eN
s1

(µ) ∆̃N, eN
s1

(µ) η̃N, eN
s1

(µ) eN, eN
s2

(µ) ∆̃N, eN
s2

(µ) η̃N, eN
s2

(µ)

2 2.40e-03 NaN NaN 2.08e-04 NaN NaN

4 1.69e-05 NaN NaN 3.60e-07 NaN NaN

6 6.17e-07 1.14e-06 1.92e+00 2.86e-10 5.19e-07 2.45e+03

8 3.71e-09 5.40e-09 1.65e+00 1.97e-12 1.69e-09 8.56e+02

10 7.50e-10 7.89e-10 1.06e+00 4.33e-13 3.96e-11 1.66e+02

Table 6.10. Comparison of output of interest for the direct
method (labeled s1) and using the Dual Problem (indicated by

s2) for fixed Ñ = Ñmax = 5.

Figure 6.10. Semi-logarithmic plot of eN
s1

(µ), ∆̃N, eN
s1

(µ) (direct

method) and eN, eN
s2

(µ), ∆̃N, eN
s2

(µ) (using the Dual Problem) for Ñ =

Ñmax = 5.

Finally, we present the computational savings. Table 6.11 shows the ratio be-
tween the cpu-time needed for computing the output of interest s(µ). We compare
the cpu-time for the FE-solution on the mesh visualized in Figure 6.3 and the time
needed for approximating the output of interest s(µ) using the RBM. The line

Ñ = 0 indicates that no dual problem is used, i.e., we use ŝN
1 (µ) in combination

with ∆N
s1

(µ) (direct method). The numbers are interpreted as follows: E.g. for

N = Nmax = 10 and Ñ = Ñmax = 5 the output approximation (including its error
bound) can be obtained 223 times faster than computing s(µ) directly (which of
course includes the computation of u(µ)).

All computations are done with Matlab 6.5 together with Femlab 2.3 on an AMD
Opteron Processor 252 at 2.6 GHz. Note that the possibility of computing RN (µ)

and R̃N, eN (µ) at double precision would render the whole second part unnecessary,
as in this case the results for using the proceeding presented in Sections 4.1 and 4.2
would be the same as in the first part.
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N = 2 N = 4 N = 6 N = 8 N = 10

Ñ = 0 385 364 346 328 311

Ñ = 1 351 287 261 244 228

Ñ = 2 349 285 258 240 224

Ñ = 3 349 284 257 240 224

Ñ = 4 349 284 257 240 223

Ñ = 5 348 284 257 239 223

Table 6.11. Computational savings for the RBM-approach.

References

[1] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An ‘empirical interpolation’ method:
application to efficient reduced-basis discretization of partial differential equations. C. R.

Math. Acad. Sci. Paris, 339(9):667–672, 2004.

[2] G. Caloz and J. Rappaz. Numerical analysis for nonlinear and bifurcation problems. In Hand-

book of numerical analysis, Vol. V, Handb. Numer. Anal., V, pages 487–637. North-Holland,

Amsterdam, 1997.

[3] M.A. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera. Efficient reduced-basis treatment of
nonaffine and nonlinear partial differential equations. M2AN Math. Model. Numer. Anal.,

41(3):575–605, 2007.

[4] D. B. P. Huynh, G. Rozza, S. Sen, and A. T. Patera. A successive constraint linear optimiza-
tion method for lower bounds of parametric coercivity and inf-sup stability constants. C. R.

Math. Acad. Sci. Paris, 345(8):473–478, 2007.
[5] A.E. Løvgren, Y. Maday, and E.M. Rønquist. A reduced basis element method for the steady

Stokes problem. M2AN Math. Model. Numer. Anal., 40(3):529–552, 2006.

[6] A.E. Løvgren, Y. Maday, and E.M. Rønquist. The reduced basis element method for fluid
flows. In Analysis and simulation of fluid dynamics, Adv. Math. Fluid Mech., pages 129–154.

Birkhäuser, Basel, 2007.

[7] Y. Maday. Reduced basis method for the rapid and reliable solution of partial differential
equations. In International Congress of Mathematicians. Vol. III, pages 1255–1270. Eur.

Math. Soc., Zürich, 2006.
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