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A Posteriori Error Estimates Based on 
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Zhimin Zhang* and Ahmed N aga 
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Abstract Superconvergence of order O(hl+P), for some p > 0, is established for gradients recovered 
using Polynomial Preserving Recovery technique when the mesh is mildly structured. Consequently this 
technique can be used in building a posteriori error estimator that is asymptotically exact. 
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1 Introduction 

Adaptive control based on a posteriori error estimates have become standard in finite element 

methods. Generally speaking, error estimators can be classified under two categories. The first 

one is the residual type estimators, as in [4], and the second one is the recovery type estimators, 

as in [12]. In recovery type estimators, a recovery operation uses the finite element solution 

or its gradient to build another solution, as in [7] and [9], or another gradient, as in [13]. The 

recovered quantities are then used in building a posteriori error estimators (see [1] and [3] for 

some general discussion and literature). 

As it is known, if the recovered gradient is superconvergent to the exact gradient, then the 

a posteriori error estimator based on this recovered gradient is exact in asymptotic sense. A 

good example of such estimators is Zienkiewicz-Zhu error estimator based on Superconvergence 

Patch Recovery (SPR), as in [14]. The Polynomial Preserving Recovery (PPR) is a new recovery 

technique, introduced in [11], which has good properties that enable it to be used in constructing 

a posteriori error estimator. 

To fix the ideas, let n c JR2 be a bounded domain with Lipschitz boundary 80. Consider 

*This research was partially supported by the National Science Foundation grants DMS-0074301, DMS-
0079743, and INT-0196139. 
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the model elliptic boundary value problem of finding the solution u of 

- "\l(1Y\lu + bu) + cu = f in 0 (1.1) 

subject to the boundary conditions 

n · (1J"\lu + bu) = g on fN (1.2) 

and 

u = 0 on fD. (1.3) 

Here 1) is a 2 x 2 symmetric positive definite matrix with smooth entries. The rest of the data 

are assumed to be smooth, cis a non-negative function, n is the unit outward normal vector 

to 80, and the boundary segments are assumed to be disjoint with rD u rD =an. As usual, 

w;n(n) and sm(n) are the classical Sobolev spaces equipped with the norms II llm,p,n. and 

II llm,n, respectively. 

The variational form of this problem is to find u E V such that 

where 

and 

B(u, v) = L(v) for all v E V, 

V = {v E H 1(0): v = 0 on fD}, 

B(u,v) = k [('D\lu + bu)"\lv + cuv]dxdy, 

L(v) = { fvdx + { gvds. 
ln lrN 

(1.4) 

Let Th be a triangular partition of 0, and let nh = U T. Consider the C0 linear finite element 
TETh 

space Sh c V associated with Th and defined by 

Sh = {v E V: v E P1(T) for every triangle T E Th}, 

where Pr(A) denotes the set of all polynomials defined on A ~ ~2 of total degree ::; r. The 

finite element solution of this problem is to find uh such that 

B(uh,v) = L(v) for a~l v E S~, (1.5) 

where 

S~ = {v E Sh: vlrv = 0}. 
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Unfortunately, '\luh is piecewise continuous, and so a smoothing operation is needed to get a 

continuous gradient of the solution. Recovery techniques like SPR and PPR can be used for 

this purpose. Both of them recover the gradient at mesh nodes. This is enough to uniquely 

define Rhuh E sh X sh, where Rh denotes the gradient recovery operator associated with SPR 

or PPR. 

To recover the gradient using SPR or PPR at a mesh node z = (xz,Yz), a patch Wz of 

triangles is selected as shown in Fig. l(a). To recover the x-derivative at z using SPR, we find 

a polynomial Px E P1 (wz) that best fits axvh, in least-squares sense, at the triangles centers 

in Wz. The recovered x-derivative at z is defined to be Px(xz, Yz). Similarly, we can define 

the recovered y-derivative at z. To get the required polynomials, Wz must have at least three 

triangles whose centers are not lying on one straight line. This requirement is guaranteed for 

z E 0, but not for z E an. For z E an, the gradient is computed in every patch corresponding 

to an adjacent node in n by evaluating the obtained polynomials at z, and then taking the 

average. If there are no adjacent nodes inn, then the gradient is defined to be 'Vvh(z) (see [13] 

for more details). 

To recover the gradient at z using PPR, we find a polynomial p E P2(wz) that best fits 

vh, in least-squares sense, at the mesh nodes in Wz. The recovered gradient is defined to be 

\1 p( x z, Yz). To get p, Wz must contain at least 6 mesh nodes that are not on a conic section, 

as we shall see later. This might not be achieved if Wz contains only the triangles attached to 

z. As it was proposed in [11], Wz is extended by adding the triangles sharing an edge with Wz, 

as shown in Fig. l(b). Nodes on an are handled in the same way, although they need extra 

care in constructing their patches. Unlike SPR, PPR recovers the exact gradient if vh E P2(wz) 

without any restrictions on '4. 
After the previous description of PPR and SPR recovery techniques, we have the following 

important remarks. 

Remark 1.1 It is easy to see that PPR preserves the first derivatives of polynomials in P2 ( Wz). 

This is not true for SPR, except for some special cases. Basically, PPR can be viewed as a 

dynamic way to generate difference schemes for first derivatives that can recover the exact 

derivatives of polynomials in P2(wz). In [3], a technique was proposed to generate such kind 

of difference schemes a priori, as in example 4.8* .4, where the derivative at a mesh node z is 

expressed as a weighted sum of the function values at the mesh nodes directly attached to z. 

The weights are determined such that 

1. the first derivative derivatives of the basis of P2(w) are preserved, and 
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2. the sum of the squares of the weights is minimum. 

It can be shown that PPR generates weights satisfying the above conditions without worrying 

about the mesh structure, or doing that a priori as it is used in real time mode. 

Remark 1.2 The idea of best fitting the function values by a quadratic polynomial was used 

before, as in [7] and [9], but it is used in a way that differs with the way it is used in PPR in 

many aspects. 

1. It is mainly used for recovering the functions values, and not the derivatives. 

2. The patches used in PPR are constructed for nodes, while in function recovery technique 

patches are constructed for triangles. 

3. In PPR, the best fit quadratic polynomial is used to compute the gradient at the node for 

which the patch is constructed, while in function recovery technique the best fit polynomial 

is used to approximate the function on the triangle for which the patch was constructed. 

As it was shown in [3], a posteriori error estimators based on function recovery techniques are 

inferior to many estimators, especially the one based on SPR. 

Let hu E Sh be the Lagrange interpolation of u, and let wr = U{ Wz : z is a vertex of T} 

be a patch corresponding toTE Th. If 

(1.6) 

for some p > 0, and 

(1.7) 

for all T E Th, and for all v E Sh, then it is possible to show that 

(1.8) 

which means that the recovered gradient is superconvergent to the exact gradient. From that 

it is straight forward to prove that the a posteriori error estimator T/h defined by 

(1.9) 

is asymptotically exact. As it is usual in finite element analysis, C is a generic constant that 

may depend on u, n, or mesh parameters other than h. 

The assumption in (1.6) is satisfied if Th is mildly structured in the following sense. Let 

Th = Th,1 u Th,2 and nh = nh,l U nh,2, where nh,i = U T fori= 1, 2. 
TET,.,i 
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Definition 1.3 The triangulation Th is said to satisfy the condition (a, a), if there exist positive 

constants a and a such that: Every two adjacent triangles in ~.1 form an O(h l+C<) parallelo

gram, and \Oh,2\ = O(h17
). 

An O(ha:+l) parallelogram is a quadrilateral in which the difference between the lengths of any 

two opposite sides is O(ha:+l). When a= oo, then every pair of adjacent triangles in 1h,1 form 

a parallelogram. The case in which a = a = oo corresponds to 1h that is uniformly generated 

by lines parallel to three fixed directions. This case was handled in [6], where the error was 

expanded at mesh nodes, and the case in which a= 1 was handled in [5]. The general case was 

treated in [10], where the following theorem was established. 

Theorem 1.4 Let u be the solution of (1.4), let uh E Sh be the finite element solution of -(1.5), 

and let hu E Sh be the linear interpolation of u. If the triangulation Th satisfies the condition 

(a, a) and u E H 3 (0) n W!(O), then 

where p = min(a, ~' ~). 

Remark 1.5 The condition( a, a) is sufficient to guarantee the superconvergence result in (1.6), 

but it is not necessary, as we shall see later. But, this condition is satisfied for meshes generated 

by many automatic mesh generators, as described in [10],i.e. it covers a wide range of meshes. 

The assumption in (1. 7) requires the operator associated with the recovery technique to be 

bounded. This is somewhat easy to establish when the recovery technique works directly on 

\lv, which is the case in many recovery techniques like weighted average and SPR. In PPR the 

situation is much harder as it works on v. It is even not clear how to relate Rhv to \lv. 

From now on, Gh: sh --7 sh X sh denotes the operator associated with PPR. The main 

target in this paper is to show that Gh satisfies the assumption in (1.7). Having this in hand 

paves the way to prove the superconvergence property in (1.8) when Rhuh = Ghuh. Finally, 

some numerical results are provided as a support for the theoretical results, where attention is 

paid to the regions near 80. Also, the behavior of PPR is compared with that of SPR, as the 

later is widely used in practice. 

Before going through the details, we should mention that PPR can be generalized to higher 

order elements, although it needs more care in selecting the sampling points. This will be 

handled in a future work. 
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2 Definition and existence of Gh 

Let v E Sh. To define Ghv E sh X sh, it is enough to define it at each mesh node. Consider a 

mesh node z = (xo,yo) E IT, and its corresponding patch Wz with triangles T1, T2, ... , Tm, and 

the nodes zo = z, Zl = (x1, Yl), ... , Zn = (xn, Yn)· Without loss of generality, z is considered as 

the origin of a local coordinate system for Wz, i.e. z = (0, 0); otherwise, we replace node Zi E Wz 

by Zi- z, for i = 0, ... , n. Set hz = m?-X 1\zi- zii· We may assume hz = 1, i.e. the whole 
l<•<n 

patch is inside the unite circle centered ai z; otherwise we replace node Zi E Wz by zd hz for 

i = 1, ... , n. Let Vz,i = v(zi) for i = 0, 1, ... , n. Let Pz E P2(wz) be the quadratic polynomial 

that best fits v, in least-squares sense, on Wz. We write Pz(x, y) = xT Cz, where (x, y) E Wz, 

Cz = [ Cz,l Cz,2 Cz,3 Cz,4 Cz,5 Cz,6 ] T , and XT = [ 1 X y x2 xy y2 . ] . By definition, 

Cz is determined by the linear system AT Azcz =AT Vz, where Vz = [ Vz,O Vz,l . . . Vz,n ] T, 

and 
1 xo Yo Y5 
1 Xl Yl Yi 

Az = 1 X2 Y2 y~ (2.1) 

1 Xn Yn y~ 

Let Bz = AI Az, then, assuming the existence of B;-1, Cz = B;-1 A;' Vz. By definition, 

(2.2) 

where e2 and e3 are the second and the third columns of the identity matrix hx6· 

It is clear that computing Pz requires at least 6 nodes, i.e., n 2 5. Basically, the patch Wz 

contains the triangles attached to z. If n < 5, then Wz is extended by attaching the triangles 

sharing an edge with it. For z E n, this extension is enough to get n 2 5, but for z E 80 we 

may need to iterate this process more than once. Unfortunately having n 2 5 is not enough to 

recover the gradient and other conditions have to imposed especially for nodes on the boundary. 

Before we continue, note that all quantities defined for z, or Wz, will be subscripted with z. 

From the above discussion, it is important to answer the following questions, especially the 

second one: 

1. Assuming existence of Pz, does it depend on the orientation of the local coordinate system 

at z? Also, does this orientation affect the accuracy of the numerical computations of 

Pz ,i.e. the condition number of Az? 

2. Are there any sufficient conditions that guarantee the existence of B;-1? 
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The following lemma addresses the answer of the first question. 

Lemma 2.1 If Pz exits, then it is invariant under the rotation of the local coordinate system 

at z. 

Proof. Rotate the local coordinate system at z by an angle e in counterclockwise direction. The 

superscript- will be used for quantities expressed in the rotated coordinate system. If (x, y) 

refers to a point in the original coordinate system and ( x, y) refers to the same point in the 

rotated coordinate system, then 

[ : ] = [ :~~; ~~~n/ ] [ ~ ] 
With this in mind, it is easy to verify that xT = RexT and Az = AzRe, where 

1 0 0 0 0 0 
0 cose -sine 0 0 0 

Re= 
0 sine cose 0 0 0 
0 0 0 cos2 e -cos esine sin2 e 
0 0 0 2 cos e sine cos2 e - sin2 e -2 cos e sine 
0 0 0 sin2 e cos e sine cos2 e 

Also, it is easy to verify the following properties for Re: 

1. Det(Re) = 1, i.e., Re is invertible. Moreover, R0
1 = R_8. 

2. The singular values of Re are s01
, 1, 1, 1, 1, and se, where se = [9-cos 4e+((1-cos4e)(17-

cos4e))112jl/2 /8, and 1 ~ se ~ v2. Note that s_e = se, and so the singular values of R_e 

are the same as those of Re. Hence, IIRell = IIR-ell = se. 

Let Pz(x, Y) = xTCz E P2(wz) be the least-squares best fit of v on the same patch Wz, but 

with respect to rotated coordinate system at z. As before, Cz is determined by solving the 
. - T - - - T . - - T - T -l . . 

lmear system Az AzCz = Az Vz. Smce Bz = Az Az = R8 BzRe, and Bz IS assumed to exist, 

th B- -1 R-lB-lR-T H - B--1A-r R-1 · - -TR-1 en z = (} z (} . ence, Cz = z z Vz = (} Cz, I.e., Pz = X (} Cz = XCz = Pz, 

and the proof is complete. 0 

For any Matrix H of order k1 x k2, let a1(H), and O'min(k1,k2)(H) denote the largest and 

the smallest singular values of H, respectively. As we know, a[ (H) = a1 ( HT H), for l = 

1, 2, ... , min(k1, k2). 

Remark 2.2 From the proof of Lemma 2.1, we know that Bz = Rr BzRe. Using this relation, 

the properties of singular values, and the properties of Re, it is easy to verify that 

O't (Az) 1 - rn 
y2 ~ s; az(Az) ~ az(Az) ~ seaz(Az) ~ v 2az(Az) for l = 1, 6. 

This shows that the patch orientation has almost no effect on the condition number of Az. 
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We turn our attention now to the answer of the second question. We start with the following 

theorem from [8], after adopting our notation. 

Theorem 2.3 Pointwise interpolation in P2(A), A~ IR2 , at six distinct points (xi, Yi) E A, i = 

1, 2, ... , 6, has the finite interpolation property if and only if there is no conic section passing 

through all of six points. 

The above theorem simply says that the interpolation by a quadratic polynomial at six 

nodes exists and is unique as long as the six points are not on a conic section. 

Definition 2.4 The patch Wz is said to satisfy the angle condition if the sum of any two adja

cent angles inside Wz is at most 1r, and is said to satisfy the line condition if its nodes are not 

lying on two lines. 

We write n = n1 + n2, where n1 denotes the number of nodes that are directly attached to z. If 

z E n, then n1 2: 3. Practically, a good mesh generator can detect any node z for which n 1 = 3 

and removes it. So, we may assume that n1 2: 4. It is obvious that for z E n with n 1 > 4, Wz 

satisfies the line condition, unless one of its triangles is degenerate. If n 1 = 4, Wz may violate 

this condition as shown in Fig. 3(a). The following elementary lemma is needed in the proof of 

Theorem 2.6. 

Lemma 2.5 Any tangent to a branch of a hyperbola can not intersect with the other branch. 

Theorem 2.6 Let zEn be a mesh node. If the patch Wz corresponding to z satisfies the angle 

and the line conditions, then Bz is invertible. 

Proof. As we know, if RankAz = 6, then RankBz = 6, and Bz is invertible. By Theorem 2.3, 

it is enough to show that Wz has six distinct nodes that are not on a conic section. Having 

z E n implies that sum of the angles at zo is 211". Hence, the nodes in Wz can not lie on a circle, 

a parabola, an ellipse, or on one branch of a hyperbola. Since Wz satisfies the line condition, 

the nodes can not be on two lines. The remaining possibility is to have the nodes distributed 

on two branches of a hyperbola. Depending on n1, we can have one of the following two cases. 

Case 1: n1 > 4. Proceed by contradiction, and assume that the nodes in Wz are distributed 

on two branches of a hyperbola. Without loss of generality, one may assume that the real axis 

of the hyperbola is horizontal, and zo lies on the right branch. The left branch must have at 

least one node of Wz. If it has three nodes, as in Fig. 2(a), then the angle condition is violated 

as the measure of the angle Z1Z2Z3 > 1!". Using the same argument, the left branch can not have 
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more than two nodes. If it has two nodes, as shown in Fig. 2(b), then Wz must have nodes Z3 

and z4 connected to z1 and z2, respectively. To satisfy the angle condition, Wz can not have any 

nodes, like zs, along the hyperbola to the right of z3. This is because the line Z1Z3 can not be 

tangent to the hyperbola at Z3 by Lemma 2.5. Using the same argument, we can not have any 

nodes, like Z6, along the hyperbola to the right of Z4. Thus, to comply with the angle condition, 

Wz must have n1 = 4, and this is a contradiction as n1 > 4. Finally, if the left branch has just 

one node of Wz, as in Fig. 2(c), then Wz must have nodes z2 and Z3 connected to z1. Again, to 

satisfy the angle condition, n1 = 3, and this is a contradiction. 

Case 2: n1 = 4. In this case the triangles attached to zo forms a quadrilateral. Let 

z1, z2, z3, and z4 be the vertices of this quadrilateral taken in a counterclockwise direction, as 

shown in Fig. 3(a). Since Wz satisfies the angle condition, zo must be the intersection point of the 

quadrilateral diagonals. The nodes in Wz can not be distributed on a hyperbola; otherwise each 

diagonal intersects with the hyperbola at three points, which is impossible, and this completes 

thepro~ 0 

The situation for nodes on 80 is more delicate. Angle and line conditions are not sufficient 

any more, as shown in Fig. 3(b). So, in constructing Wz for z E 80 we must impose another 

condition that ensures the invertibility of Bz. From what has been established, this condition 

is obvious and is a direct corollary of Theorem 2.6. 

Corollary 2. 7 Consider a mesh node z E 80., and let Wz be its corresponding patch. Suppose 

that Wz contains another patch Wz corresponding to a node z E 0 nwz and Wz satisfies the angle 

and line conditions. Then, Bz is invertible. 

Hence in constructing Wz for z E 80., Wz is extended, as described before, till it contains 

a patch corresponding to a node in 0.. The time-cost for this extension might be expensive. 

A cheaper procedure is to construct Wz such that it contains all the nodes up to the nearest 

nodes in 0. and their corresponding patches. In this case the number of nodes is larger, and the 

computational cost might get higher. 

3 Boundedness of Gh 

Before we start investigating the boundedness of Gh, we go over some basic facts. Consider 

a mesh triangle T c D with vertices (x1, yl), (x2, Y2), and (x3, Y3) taken in counterclockwise 

direction. If the nodal value of v E Sh at (xJ,YJ) is VJ, and the basis function associated with 

this node is Bj, then, for (x, y) E T, v(x, y) = L:;=l VJBJ(x, y). Consider the reference triangle 

T with the vertices (6, 171) = (0, 0), (6, 172) = (1, 0), and (6, 173) = (1, 0). The basis functions 
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on Tare >.1(~,'1]) = 1- ~- ry,>.2(~,ry) = ~, and >.3(~,7]) = 7}, where Aj is associated with the 

vertex (~j, 7}j), j = 1, 2, 3. Let F: T ~ T be the transformation defined by 

where 

and 

() [ x(~,ry)] 
F ~,7J = y(~,rJ) , 

3 

x(~, rJ) = L XjAj = x1 + (x2- x1)~ + (x3- x1)7J, 
j=l 

3 

y(~, rJ) = LYJAj = Yl + (Y2 - Yl)~ + (Y3 - yl)7). 
j=l 

The jacobian of this transformation is 

J = [ X2 - Xl X3 - Xl ] . 
Y2- Yl Y3- Yl 

As we know, Aj = ()i oF for j = 1, 2, 3. If v = v oF, then 

3 

v(~,ry) = v(x(~,ry),y(~,ry)) = LVjAj(~,rJ). 
j=l 

Writing the gradient as a column vector, we get 

Since 

then 

Setting 

n 1 J-TnA 
vV = hz vV. 

\7V ~ [ =: ~ n [ ~ l , 
\lv = _1_ [ Y2 - Y3 

2ITI X3- X2 ;:=~: l [ ~J 
1 1 

ai = 2ITI (Yi+l- Yi+2), and bj = 2ITI (xi+2- Xj+l), 

where the addition in indices is mod 3, we have, for (x, y) E T, 

3 3 

Oxv(x, y) = L ajVj and Oyv(x, y) = L bjVj. 
j=l j=l 

10 
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Let Wz be the patch corresponding to z E IT, and consider a triangle Tk C Wz for some 

1 ~ k ~ m. If the vertices of Tk, taken in counterclockwise direction, are (xk,l, Yk,I), (xk.2, Yk.2), 

and (xk,3, Yk,3), then for (x, y) E Tk, and using (3.1) and (3.2), 

where 
1 1 

ak,j = 2ITkl (Yk,j+l- Yk,J+2), and bk,j = 2ITkl (xk,J+2- Xk,j+I), 

and vk,j = v(xk,j,Yk,j)· Hence, 

where ak = [ ak,l ak,2 ak,3 J T, bk = [ bk,l bk,2 bk,3 J T, and Vk = [ Vk,l Vk,2 vk,3 J T. 

Let Ek be an (n + 1) x 3 Boolean matrix defined for Tk, where 

{ 
1 if the node i in Wz is the vertex j in Tk 

Ek(i,j) = 0 h ot erwise 

(3.3) 

Let G\ v and Gh2 v stand for the recovered x- andy-derivatives, respectively. Establishing 

the boundedness of Gh in the sense of ( 1. 7) would be easy if G~ v ( z) can be expressed as a liner 

combination of the first derivatives of v on the triangles of Wz, for l = 1, 2. So, we will try to 

find a set of bounded values az,l,l, ... , az,l,m, and f3z,l,l, ... , f3z,l,m such that 

m 

G~ v(z) = l:lf3z,l,k(8xv)k + CYz,l,k(ayv)k], l = 1, 2, (3.4) 
k=l 

where (8xv)k and (ayv)k are the derivatives of von triangle Tk. Using equations (2.2) and (3.3) 

we have 

l = 1,2. 

Setting 

(3.5) 

and 

I z,l = [ CYz,l,l · · · CYz,l,m f3z,l,l · · · f3z,l,m ] T , 
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we get 
1 TM 1 T -1 

hz Vz Zlz,l = hz Vz AzBz el+1, l = 1, 2. 

This is true for all v E Sh, and so 

l = 1,2. (3.6) 

Note that the order of Mz is (n + 1) x (2m). 

Lemma 3.1 Consider a mesh node z E n. If the patch Wz corresponding to z has no degenerate 

triangles and Bz is invertible, then Rank Mz = n, and the system in (3.6) has infinitely many 

solutions. 

Proof. Since Wz is simply connected, and using Euler's theorem, (n + 1) - e + m = 1, where 

e is the number of edges in Wz. Hence, (n + 1) -2m = e- 3m+ 1. By a simple induction 

argument on m, we can show that e- 3m+ 1 < 0 form ~ 3. Hence, the system in (3.6) is 

underdetermined. 

To prove that RankMz = n, we consider the homogeneous linear system 

(3.7) 

with w = [ wo w1 · · · Wn ]T. We can view wo,w1, ... ,wn as the nodal values of some 

function w E Sh at the nodes of Wz. With this in mind, equations j and j+m of the homogeneous 

system in (3.7) leads to 'Vw = 0 on Tk, for k = 1, 2, ... , m, and sow must be constant on Wz. 

Since w is piecewise linear, the only solution to this homogeneous system is wo = w1 = ... = Wn· 

Therefore, the dimension of the null space of M'[ is 1, and Rank M'[ = Rank Mz = n. Also, 

this implies that the only row operation on Mz that leads to a row of zeros is adding all the rows 

together. Since Ghrecovers the exact gradient for any polynomial p E P2(wz), it is easy to verify 

that the sum of the rows of the column AzB;1el+1 = 0 for l = 1, 2, and so the homogeneous 

system in (3.6) is consistent for l = 1, 2. 0 

Among all the solutions of (3.6), we consider the one with the minimum length given by 

* - MtA B-1 
lz,l- z z z,l+1' l = 1,2, (3.8) 

where MJ is the pseudo inverse of Mz. As before, let wr = U{ Wz : z is a vertex of T} be a patch 

corresponding to triangle T E n. 
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Theorem 3.2 Let 0 < C1 :S 0"6(Az) :S O"l(Az) :S C2 and 0 < C3 ::; O"n(Mz) for every mesh 

node zEIT and for some constants cl, c2 and c3 that are independent of h. Then there e:rist 

a constant C, independent of h, such that 

(3.9) 

for all T c IT, and for all v E sh 

Proof. Consider a mesh triangle T C IT, and let z be one of its vertices. Let wr be the patch 

corresponding toT, and let v be any function in Sh. Using equations (3.4) and (3.8) we get 

I Gh! v(z)l :S ll1ill1lvll,oo,w. :S cllltill2lvii,oo,wT 

:S c2IIMtii2IIAII2IIB-1II2Ivll,oo,wT 
c2C2 

:S C3Cf lvii,oo,wT 

for l = 1, 2. By linearity of Ghv on T, we have 

Hence, 

II Ghvii£2(T) :S JiTTII GhviiL""(T) :S C diam(T)Ivll,oo,wT 

diam(T) 
:S C diam(wr) lvll,wT :S Clvb,wT· 

The first inequality in (3.iO) is obtained using an inverse estimate. 

(3.10) 

D 

It is obvious that the bounds assumed about the singular values of Az and Mz in Theorem 3.2 

are mesh dependent. To simplify the situation, consider the unit disc 

Let T be a triangulation of B(O, 1) that is similar to one of the patterns shown in Fig. 4. Let 

zo = (0, 0), z1, ... , Zn be the nodes of T with at least one of them on the unit circle. Let 

T1, T2, ... , Tn be the triangles ofT with ()m and ()M being the smallest and the largest angles in 

any one of these triangles. As before, write n = n1 + n2 with n1 denoting the number of nodes 

directly linked to zo. If n1 = 4, let D be the set of the diagonals of the quadrilateral z1z2Z3Z4, 

and set d = min dist(zi, D). Let A and M be the matrices defined for was in equations (2.1) 
5<i<n 

and (3.5), respe~tively, and set B =AT A. 
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Lemma 3.3 LetT be any triangulation of B(O, 1) that is similar to one of the patterns shown 

in Fig. 4. Assume that T satisfies the following conditions for some positive constants N, 8, ¢m, 

and ¢M: 

1. w satisfies the angle condition, 

2. n1 < N < oo, 

3. 0 < 8 ~ d, and 

Then, there exist constants C1, C2, and C3, that depend only on N, 8, ¢m, and ¢M, such that 

Proof. Note that the condition about d is to ensure that w satisfies the line condition when 

n1 = 4. We now show that a1 (A) ~ C2. Using the definition of A, it is easy to verify that 

\B(i,j)\ ~ (n + 1) for 1 ~ i,j ~ 6. Hence, a1(A) = Ja1(B) ~ Jal(\B\) ~ yf6(n + 1) ~ 

-j6(N + 5) = C2 . To show that 0 < C1 ~ aB(A) proceed by contradiction. Note that B(O, 1) 

and [¢m, ¢M] are compact, and w has at least one of its nodes on aB(O, 1). Based on that, a 

standard argument can be used to establish the existence of a patch w that satisfies the given 

conditions and for which B is singular, i.e. a5(A) = 0. Since w satisfies the angle and the line 

conditions, B is nonsingular by Theorem 2.6, and this is a contradiction. Similarly, we can 

show that 0 < C3 ~ an(M). Note that, under the given conditions, none of the given triangles 

in w is degenerate and so RankM = n by Lemma 3.1, i.e. an(M) can not be zero. 0 

Theorem 3.4 Let 7h be a triangulation of n that satisfy the following conditions foT any h. 

1. If n1 is the number of nodes directly attached to a mesh node z, then 4 ~ n1 ~ N for 

zEn, and 1 ~ n1 ~ N for z E an, where N is some finite positive integer. 

2. If n 1 = 4 for a mesh node z E n, then the sum of any two adjacent angles at z is 1r. 

3. If n1 > 4 for a mesh node z E n, then the sum of any two adjacent angles at z is at most 

1r - ¢ for some ¢ > 0. 

4. If z E an, then the sum of any two adjacent angles at z is at most 1r. 
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5. If Bm,h and BM,h are the smallest and largest angles in any mesh T E Th, then 

for some constants 0 < <Pm ~ <PM < 7r. 

Then, there exist constants C1,C2, and C3, that depend only on N,¢,</Jm, and ¢M, such that 

for all zED 

w -z 
Proof. Let zEn, and let Wz be its corresponding patch. Let w = --1:;;-· The given conditions 

implies that w satisfies the conditions in Lemma 3.3, and the theorem conclusion is true for all 

zEn. 

Remark 3.5 Examining the assumptions in Theorem 3.4, we can see that the important ones 

are the those about the angles. The second assumption is easy to achieve during mesh genera

tion. As was shown in [2], it is desirable to avoid having large angles, and so the assumptions 

from 3 to 5 seems to be practical. 

Lemma 3.6 Let Th be a triangulation of n that satisfies the assumptions in Theorem 3.4 for 

any h. Also assume that for any mesh node z E an the following conditions are satisfied: 

1. z is connected to at least one mesh node z E 0 directly or through a node z E aO, and 

2. Wz is constructed such that it contains a patch w.z corresponding to a mesh node z E nnw.z. 

Then, there exist constants C1, C2, and C3, independent of h, such that 

for all z E an. 

Proof. Let z E an, and let Wz be its corresponding patch that satisfies the second assumption. 
w - z w·- z 

Let w = --1:;;-, and let w1 = --1:;;-. By the first assumption, the number of nodes in w is 

bounded by 1+N2 when z is directly attached to z. So, if z is connected to z E n through z E an 
then, the number of nodes in w is at most 1 + N(1 + N 2 ). Using an argument similar to that 

used in Lemma 3.3, it is easy to find the constant C2. To prove the existence of C1, proceed by 

contradiction. Again, based on the compactness of B(O, 1) and [¢m, ¢M], a standard argument 
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can be used to establish the existence of a patch w for which B is singular, and w ::::> w1 with w1 

satisfying the angle and the line conditions, by the assumptions in Theorem 3.4. we can write 

A= [Af Af]T, where A1 corresponds to w1. Then, B =AT A= Af A1 +Af A2 = B1 +B2, where 

B1 = Af A1 and B2 =A§ A2. Note that B is positive semidefinite, as B is singular, and B2 is at 

least positive semidefinite. So, we can find a vector c E JR6 such that cT Be= cT B 1c+cT B2c = 0, 

and, as a result, cT B1c = 0. This means that B1 is singular, and this is a contradiction as w 1 

satisfies the angle and the line conditions. Similarly, we can establish the existence of C3. D 

Remark 3. 7 The first assumption in Lemma 3.6 can be relaxed, and in this case C2 might 

get lager as the number of nodes in patches corresponding to nodes on an will increase, and 

C1 might get smaller as the hz/hz will decrease. 

From Theorem 3.4 and Lemma 3.6, we have the following corollary. 

Corollary 3.8 Let Th be a triangulation of n that satisfies the conditions in Theorem 3.4 for 

any h, then there exist constants cl, c2, and c3, independent of h, such that 

for all z E TI. 

4 Superconvergence Property of PPR-Recovered Gradient 

We begin with the following main theorem. 

Theorem 4.1 Let Th be a triangulation of D that satisfies the condition (a, a), and the as

sumptions in both of Theorem 3.4 and Lemma 3.6. lfu E W!(D), then 

where p =min( a,~. I)· 

Proof. Under the given assumptions, we have 

(4.1) 

for some cl that is independent of h, and 

(4.2) 
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where p = min(a, ~, ~). We write 

\lu....,. Ghuh = (\lu- G~hu)) + (G~hu- uh)) 

As it was shown in [11], 

Hence, 

ll\lu- G~hu)ll£2(!1):::; Ch2 vrnfllull3,oo,!1· 

For the second part ·in equation (4.3), and by virtue of (4.1), we have 

II Gh(hu- uh)III2(!1) = L II G~hu- uh)III2(T) 
TETh 

:::; L Cill\l(hu- uh)III2(wr) 
TETh . 

:::; Cll\l(hu- uh)III2(!1)' 

Consequently, and by using (4.2), 

II G~hu- Uh)ll£2(!1) :::; Chl+PIIull3,oo,!1· 

Using ( 4.5) and ( 4.6) in ( 4.3), we have the required result. 

(4.3) 

( 4.4) 

(4.5) 

(4.6) 

D 

Remark 4.2 We should mention that the conclusion of Theorem 4.1 is true under any con

ditions that guarantee the results in ( 4.1) and ( 4.2). In other words, Gh, provided that it is 

bounded, can sense any superconvergence in \l(hu- uh), and produces a superconvergent 

recovered gradient. 

Consider the global a posteriori error estimator rJh defined by 

Under the assumptions in Theorem 4.1, it is easy to prove that 'f/h is asymptotically exact, as 

shown in the following corollary. 

Corollary 4.3 Ij, in addition to the assumptions in Theorem 4.1, 

ll\l(u- uh)ll£2(!1) 2: c(u)h, (4.7) 

then 

rJh -1 < ChP. 
ll\l(u- uh)ll£2(!1) -

Proof. By Theorem 4.1, and the assumption in (4.7), we have 

r1h _ 
1 

II Ghuh- \lu~tll£2(!1) Chl+PIIull3 oo n 
'I < < , , = c hP. D 

ll\l(u- uh)ll£2(!1) - ll\l(u- uh)ll£2(!1) - c(u)h 
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5 Numerical Results 

In this section we will go over some numerical results that demonstrate the superconvergence 

property of Gh and the asymptotic exactness of the a posteriori error estimator based on it. 

Also, a comparison is held between SPR and PPR with special attention paid to regions near 

the boundary. The results are presented through two examples in which we consider the model 

problem 

-6u =finn, and u = g on an. 

Let '4 be a triangular partition of n, and let Nh be the set ofthe mesh nodes inn. It is 

known that the recovery operators loose their good properties in regions near an. For that, we 

write Nh = Nh,l U Nh,2, where 

Nh,l = {z E Nh: dist(z,an) ~ H}, 

and His some fixed positive constant. Based on that, we write n = n 1 u n 2 , where 

nl = U{T E '4 : T has all of its vertices in Nh,l}. 

Let A E 0 be the union of a set of mesh triangles in '4. The a posterior error estimator in A 

is rJh,A = IIRhuh- 'Vuhii£2(A)• where Rh denotes the recovery operator associated with SPR or 

PPR. To measure the accuracy of rJh,A, we use the effectivity index fh,A defined by 

One way to locally study the accuracy of the a posteriori error estimator in A, is to use the 

mean, f.Lh,A, and the standard deviation, ah,A, of the effectivity indices defined for the mesh 

triangles in A and see how they change with h. If the estimator is locally exact in asymptotic 

sense, then f.Lh,A --7 1 and ah,A __, 0 as h --7 0. Of course 

and 

1 
f.Lh,A = w- 2::: eh,T, 

h,A TeA 

2 1 "" 2 crh,A = w- L..t (Bh,T- f.Lh,A) , 
h,A TeA 

where Nh,A is the number of mesh triangles in A. 

Example 1. In this example n = (0, 1 )2 , the solution is u = sin( 1rx) sin( 1ry), and H is 

taken to be 1/8. For mesh generation we consider two cases. 
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In the first case, the successive meshes are obtained by decomposing the unit square into 

N x N equal squares and then divide every square into two triangles such that the triangles 

are arranged in Chevron pattern. This is done for N = 16, 32, and 64. Before we go over 

the results for this case, we should mention that Theorem 1.4 is not applicable and that Gh is 

bounded. As shown in Fig. 5, we can see that V'(hu- uh) has superconvergence that enables 

Gh to produce superconvergent recovered gradient, as mentioned in Remark 4.2. This is not 

the case with SPR, as it does not preserve polynomials of order 2; a property that is crucial in 

proving a result similar to the one in (4.4) for the operator associated with SPR. Consequently, 

the behavior of the a posteriori error estimator based on SPR is inferior to that based on PPR, 

as shown in Fig. 6. We can see that the error estimator based on SPR is over estimating the 

actual error. Also, the statistics depicted in this figure shows how fast f.Lh,A __... 1 and OA,A __... 0 

when PPR is used. 

In the second case, we start with an initial mesh generated by Delauny triangulation at 

h = 0.1, and in successive iterations, the new mesh is obtained from the old one by regular 

refinement. The results are shown in Fig. 7 and Fig. 8, where we can note two things. First, 

although PPR and SPR have almost the same global behavior in fh, the statistics shows that 

PPR is slightly better when we consider the local behavior. Secondly, the global and local 

properties of PPR is much better when it comes to 02. 

Example 2. In this example 0 = ( -1, 1)2 \ [1/2, 1)2 . Using a polar coordinate system 

at (1/2,1/2), the solution is taken to be u = r~ sin (
28

; 7r). As before, H is 1/8, and we 

start with an initial mesh generated with Delauny triangulation at h = 0.2, and in successive 

iterations, the mesh is regularly refined. The numerical results for this example are shown in 

Fig. 9 and Fig. 10. As we know \lu is singular at the reentrant corner (1/2,1/2). To reduce 

the pollution effect due to this singularity, the region within 0.1 from (1/2,1/2) is refined more 

than the rest of the domain in the initial mesh. Also, we expect both of PPR and SPR to 

behave badly near this point. Of course, this will affect the convergence rates for the recovered 

gradients, especially in 01, but still PPR yields some what better results. Considering the local 

properties, we can see that PPR is still doing better than SPR. 

In conclusion, under mild conditions, we have shown that Gh is bounded in the sense of 

(1.7). As a result, Gh can detect any superconvergence in V'(hu- uh), and reflects it in the 

recovered gradient. Consequently, the a posteriori error estimator based on it is asymptotically 

exact, at least globally. The examples indicate that PPR is, at least, as good as SPR inside the 

domain, while, near the boundary, PPR seems to be superior. 
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(a) (b) 

Figure 1: Patch required for gradient recovery. Sampling points for SPR are marked with •· 
while those needed for PPR are marked with • 

(a) (b) 

Zs 

(c) 

Figure 2: Nodes in Wz can not be distributed on two branches of a hyperbola when Wz satisfies 
the angle condition. 
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(a) (b) 

Figure 3: Patches that lead to singular Bz 

(a) n1 >4 

(b) n1 =4 and n =8 (c) n1 =4andll=7 

(d) 111 =4 and11=6 (e) 111 =4 andn=5 

Figure 4: 'friangulations for of B(O, 1) for n1 ;::=: 4. 

21 



·1 
10 

-2 
10 

.., 
10 

III.Vu- R.u.IIL_<n,l 

·-. -... G ·-. 

~ 

10 .... '-':1..,-.1---c-1.3:---1:-: .• :---' 

10 10 10 

h_, 

Ill• Vu- RhuhiiL_<n,> 
100 =----------, 

·1 
10 

·2 
10. 

-.- r:FSPRl - ...... _~ 

10 ... '-':1-.1--~1.,...3 ---1-.• ---' 

10 10 10 

h_, 

-2 
10 

-3 
10 

-5 
10 

1.1 
10 

·2 
10 

-3 
10 

-· 10 

-5 
10 

1.1 
10 

IIV(I•u- u,)IIL,<n,> 

'0, 

1.3 1.5 
10 10 

h_, 

IIV(I•u- u,)IIL,<n,> 

'0, 

alopeis1.92 

1.3 1.5 
10 10 

h_, 

·1 
10 .-----------, 

-2 
10 

n;:sPiil 
~ 

10 .... L...1..,-.1---c-.. 3:---1c:.,:---' 

10 10 10 

h_, 

0 
IIVu- RhuhiiL,<n,> 

10 .-----------, 

·1 
10 ·-. 

·2 
10 

·- .... 
n;:sPiil 
~ 

Figure 5: Convergence rates for Rhuh- Example 1 (Chevron mesh). 
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