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Abstract. We present new a posteriori error estimates for the finite volume approximations of
elliptic problems. They are obtained by applying functional a posteriori error estimates to natural
extensions of the approximate solution and its flux computed by the finite volume method. The
estimates give guaranteed upper bounds for the errors in terms of the primal (energy) norm, dual
norm (for fluxes), and also in terms of the combined primal–dual norms. It is shown that the esti-
mates provide sharp upper and lower bounds of the error and their practical computation requires
solving only finite–dimensional problems.
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1. Introduction
The finite volume method is a well adapted method for the discretization of various partial dif-
ferential equations and is very popular in the engineering community [23]. The mathematical
community started recently to analyse it in detail. Presently existence and uniqueness results as
well as a priori error estimates are available for a quite large class of problems; we refer to [9]
and the references cited there. Contrary to the finite element methods [2, 4, 29], a posteriori error
estimates for finite volume methods are less developed and only few results are obtained in that
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direction. See [12, 21, 1, 10, 11, 18, 19, 30] for cell centered finite volume methods, [15, 16, 22]
for vertex-centered methods, and [5, 13, 14] for finite volume element methods.

The goal of our paper is to present the natural framework for functional a posteriori estimates of
some cell centered finite volume methods for linear elliptic equations. In a first attempt we restrict
ourselves to a diffusion equation in R2. The case of diffusion-convection-reaction equations is
postponed to a forthcoming paper and will be based on some ideas developed in [20]. The key
idea is to obtain error bounds in a functional framework as presented in [17] (see also [24, 25, 26,
27, 28]). This point of view yields error majorants in a general framework. As particular case we
reconstruct interpolants of the finite volume solution (based on piecewise polynomials), and of its
gradient (using Raviart-Thomas elements), this last one has as principal property that the mean of
its flux through any edge of the mesh is equal to the numerical flux through that edge.

The idea to interpolate the finite volume solution by a smoother function having the above men-
tioned property on the flux was presented in [10] in a L1 framework for time-dependent non-linear
convection-diffusion equations inRd×R+. In that paper the authors obtain a reliable estimator in a
L1-norm, instead of the energy norm. Furthermore their interpolant is a piecewise linear Lagrange
interpolant on a dual mesh. More recently, in [18], the author proposes a residual estimator based
on the use of a reconstructed approximation of the finite volume solution with the help of a Morley
interpolant and this is extended to the convection-diffusion-reaction problems in [19]. Finally in
[30] the author considers convection-diffusion-reaction equations, presenting a general inhomo-
geneous diffusion tensor, and builds an a posteriori error estimator by using a non conforming
reconstruction of the approximated solution.

Here, we propose to directly compute our fluxes by using the cell-centered finite volume
scheme and apply the functional approach to a posteriori error estimation to obtain our lower
and upper bounds.

The outline of the paper is as follows: in section 2. we recall our boundary value problem.
In section 3. we describe the so-called cell centered method for the diffusion equation on a mesh
made of triangles. Section 4. is devoted to the descriptions of the different error estimates. Finally
in section 5. we present various numerical experiments that confirm our theoretical considerations.

2. Basic problem
Let Ω ∈ R2 be a bounded domain with a Lipschitz boundary Γ. Consider the problem

−div(α(x)∇u) = f in Ω, (2.1)
u = u0 on ΓD, (2.2)

α∇u · ν = gN on ΓN . (2.3)

Here ΓD and ΓN are two measurable nonintersecting parts of Γ associated with the Dirichlet and
Neumann boundary conditions, respectively, and

u0 ∈ H1(Ω), f ∈ L2(Ω), gN ∈ L2(ΓN), (2.4)
α ∈ L∞(Ω), 0 < αª ≤ α(x) ≤ α⊕ < +∞, ∀x ∈ Ω, (2.5)
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are the given data. The respective integral relation
∫

Ω

α∇u · ∇w dx =

∫

Ω

fw dx +

∫

ΓN

gNw ds, ∀w ∈ V0, (2.6)

defines the generalized solution u ∈ V0 + u0, where

V0 :=
{
w ∈ H1(Ω) | w = 0 on ΓD

}

and · denotes the scalar product of vectors. In what follows ‖ . ‖ stands for the L2–norm.

3. Finite volume approximations
Let Ω be divided into a collection of simplicial cells Ki, i = 1, 2, ...N that we suppose to be
triangles. We denote by Γi the boundary of an element Ki and by νi its outward normal vector.
The finite volume method is based on the conservation law principle

−
∫

Ki

divp dx = −
∫

Γi

p · νi ds =

∫

Ki

f dx, (3.1)

which holds for the true flux p = α∇u on each cell that has no common boundary with ΓN and on
a modified relation

−
∫

Γi

p · νi ds =

∫

Ki

f dx +

∫

ΓNi

gN ds (3.2)

for a cell that has common boundary ΓNi with ΓN .
For any element Ki, αi denotes the mean value of the function α on Ki, namely

αi =
1

|Ki|
∫

Ki

α(x) dx.

In the finite volume method, the system of linear equations is constructed on the basis of (3.1)
and (3.2) and a special presentation of the normal fluxes throughout the values of the approxima-
tion uh on the cells. In the simplest case, we assume that uh ∈ P 0(Ki). For the control volume
Ki, we select a certain point xi called ”cell center” (see Fig. 1) where ui denotes uh(xi).

The flux along an edge of the triangulation is approximated using the following scheme (see
[9]) of the finite volume method:
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Figure 1:

Let Eij be a fixed interior edge of the triangulation, shared by two elements Ki and Kj of
respective centers xi and xj . If we suppose that this edge Eij is orthogonal to the straightline
joining xi and xj , then

−
∫

Eij

α∇u · νi ds ∼= −τEij
(uj − ui) = FKi,Eij

, (3.3)

where
τEij

:= |Eij| αiαj

αidKj ,Eij
+ αjdKi,Eij

and dKi,Eij
denotes the minimal distance between the center xi and the edge Eij . If we suppose that

an edge Eik is not orthogonal to the straightline joining the centers xi and xk of the two elements Ki

and Kk sharing that edge, then we consider the straightline orthogonal to the edge Eik that comes
from the intersection between (xi, xk) and Eik. If we look at the element Ki, this straigthline has
an intersection with one of the two segments joining xi with the centers of the others neighbours
of Ki. This intersection is a point denoted by xEik,Ki

(see Fig. 2) and it is constructed by linear
combination from xi and the involved center. The value of the solution is approximated in that
point by uEik,Ki

. Then

−
∫

Eik

α∇u · νi ds ∼= −τEik
(uEik,Kk

− uEik,Ki
) = FKi,Eik

, (3.4)
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where
τEik

= |Eik| αiαk

αidKk,Eik
+ αkdKi,Eik

,

and dKi,Eik
stands for the minimal distance between the point xEik,Ki

and the edge Eik, and

uEik,Ki
:=

dKi,Eik
ui + dKk,Eik

uk

dKi,Eik
+ dKk,Eik

.

If an edge EDi of an element Ki belongs to the Dirichlet boundary of the domain, then we
denote by dKi,EDi

the distance between the center xi and x̄i where x̄i is defined by the relation

|xi − x̄i| ≤ |xi − x| ∀x ∈ EDi.

Along this edge, the flux is approximated by

−
∫

EDi

α∇u · νi ds ∼= −τEDi
(u0 − ui) = FKi,EDi

, (3.5)

where τEDi
= |EDi| αi

dKi,EDi

.

If we are along an edge ENi that belongs to the Neumann boundary, since

−
∫

ENi

α∇u · νi ds = −
∫

ENi

gN ds, (3.6)

the flux is given by:

FKi,ENi
= −

∫

ENi

gN ds. (3.7)
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Figure 2: Finite Volume scheme
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Equations (3.1) and (3.2) on a given element Ki of the triangulation then lead to the following
finite volume scheme:

−
∑

Eij⊂Γi

FKi,Eij
=

∫

Ki

f dx, (3.8)

−
∑

Eij⊂Γi

FKi,Eij
=

∫

Ki

f dx +

∫

ENi

gN ds. (3.9)

Then, the numerical flux associated with an internal edge Eij common to Ki and Kj is given
by

qEij
:= −FKi,Eij

.

On ΓNi the respective normal flux is given by the formula

qENi
=

∫

ENi

gN ds.

On ΓD the flux is defined as

qEDi
:= −FKi,EDi

Thus, the approximations produced by the finite volume method are presented by a set of
piecewise constant function

uh(x) = ui for x ∈ Ki

and the set
Qh := {qij | qij ∈ P 0(Eij)}

of normal fluxes on the edges.
By these data we can construct a pair of functions

(ũh, q̃h) ∈ H1(Ω)×H(Ω, div)

viewed as approximations of u and p, respectively.
Let Pk be the patch related to a common node k. We define the value of ũh at the interior node

k as follows:

ũh(xk) :=

∑
s=i1,...imk

|Ks|us

∑
s=i1,...imk

|Ks| ,

where mk is the number of elements in the patch Pk. Inside Ki the function ũh is defined as the
affine function having the above defined values at all the nodes. For a boundary node k, we take

ũh(xk) := u0(xk),

assuming that u0|Γ ∈ C(Γ).
The function q̃h is defined by the extension of edge fluxes inside Ki with the help of Raviart–

Thomas elements of the lowest order, denoted by RT0.

111



S. Cochez-Dhondt et al. A posteriori error estimates for FV approximations

4. A posteriori error estimates
To measure the quality of the obtained approximate solutions we apply the so–called functional a
posteriori estimates (see [24, 25, 26, 27, 28]; a consequent exposition of the theory is presented
in [17]). These estimates were derived by purely functional arguments without attracting Galerkin
orthogonality or some other special properties of an approximate solution. Therefore, they are valid
for any conforming approximations of a boundary–value problem under consideration. We will
exploit the latter property of functional a posteriori estimates and apply them to the approximations
obtained as extensions of the FV solutions.

4.1. A posteriori error estimate for the primal variable
For the problem (2.1)–(2.3) with mixed Dirichlet–Neumann boundary conditions the respective
error majorant is presented by the following theorem the proof of which can be found in the above-
cited publications (see for instance section 6.4.3 of [17]):

Theorem 1. Let v be an arbitrary element in V0 + u0. Then,

‖∇(u−v)‖2
α :=

∫

Ω

α|∇(u− v)|2dx ≤ M2
u(v, y), (4.1)

where
Mu(v, y) := ‖α∇v − y‖1/α + CΩ

√
‖f + divy‖2

1/α + ‖gN − y · ν‖2
1/α,ΓN

is the majorant of the error (evaluated in terms of the primal energy norm), in which y is an
arbitrary function in the space H(Ω, div), and CΩ is any constant greater than λ−1

1 (Ω, ΓN), where

λ2
1(Ω, ΓN) = inf

w∈V0

‖∇w‖2
α

‖w‖2
α + ‖w‖2

α,ΓN

, (4.2)

where clearly

‖w‖2
α,ΓN

:=

∫

ΓN

α|w(x)|2ds.

If Γ = ΓD then CΩ coincides with the constant CF (Ω) in the Friedrichs type inequality

‖w‖ ≤ CF (Ω)‖∇w‖α (4.3)

and (4.1) comes in a simplified form

‖∇(u−v)‖α ≤ Mu(v, y) := ‖α∇v − y‖1/α + CF (Ω)‖f+divy‖1/α. (4.4)

Note further that if y ∈ H(Ω, div) is chosen such that y · ν = gN on ΓN , then the constant CΩ can
be chosen greater than λ̄−1

1 (Ω, ΓN), where

λ̄2
1(Ω, ΓN) = inf

w∈V0

‖∇w‖2
α

‖w‖2
α

. (4.5)

112



S. Cochez-Dhondt et al. A posteriori error estimates for FV approximations

Let us apply this estimate to the finite volume approximations. For the sake of simplicity, we
assume that the trace of u0 on ΓD is piecewise affine and continuous function (then ũh ∈ V0 + u0).
In this case, we use (4.1) and obtain

‖∇(u − ũh)‖α ≤ ‖α∇ũh − q̃h‖1/α + CΩ

√
‖f+divq̃h‖2

1/α + ‖gN−q̃h · ν‖2
1/α,ΓN

, (4.6)

where q̃h ∈ H(Ω, div) and has a square summable trace on ΓN . We note that the right–hand side
of (4.6) is directly computable and provides a guaranteed upper bound of the error computed in
terms of the primal variable (i.e., ∇(u− ũh)). If gN is piecewise constant on the edges that belong
to ΓN then (in view of the definition of QENi

) we have q̃h · ν = gN on ΓN and therefore the very
last term in (4.6) vanishes. Thus, in this case, the upper bound is given by the estimate

‖∇(u− ũh)‖α ≤ ‖α∇v − y‖1/α + CΩ‖f+divy‖1/α, (4.7)

which is similar to (4.4) but with a different factor at the second term. In the finite volume method,
the second term in the right-hand side of (4.6) has a simple and easily computable form. Indeed,

‖gN−q̃h · ν‖2
1/α,ΓN

=
∑

ENi∈ΓN

∫

ENi

1

α
|gN − {|gN |}ENi

|2ds,

where {|g|}S stands for the mean value of g on a set S. Analogously, on any element Ki that
have no common boundaries with ΓN the fluxes defined by (3.2) are such that the respective RT0

extension has its divergence equal to {|f |}Ki
. Therefore,

‖f + divq̃h‖2
Ki

=

∫

Ki

|f − {|f |}Ki
|2dx

and we observe that if the approximations ũh and q̃h are computed sharply (i.e., do not contain
computational errors) then the second part of the majorant is defined by the respective oscillation
terms.

4.2. A posteriori error estimate for the dual variable
Approximation errors related to the dual variable (i.e., to the flux) can be measured in the dual
energy norm ‖q‖1/α or in H(Ω, div)-type norms

‖q‖div := ‖q‖1/α +
√
‖divq‖2

1/α + ‖q · ν‖2
1/α,ΓN

,

or

‖[q]‖div := ‖q‖1/α + CΩ

√
‖divq‖2

1/α + ‖q · ν‖2
1/α,ΓN

.
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It is easy to see that

‖p− q̃h‖1/α ≤ ‖p− α∇ũh‖1/α + ‖q̃h − α∇ũh‖1/α

≤ ‖∇(u− ũh)‖α + ‖q̃h − α∇ũh‖1/α

≤ Mu(ũh, q̃h) + ‖α∇ũh − q̃h‖1/α := Mp(ũh, q̃h), (4.8)

where Mp(ũh, q̃h) is the computable error majorant for the dual variable. We note that

Mp(ũh, q̃h) ≤ 2Mu(ũh, q̃h).

Since

‖div(p− q̃h)‖1/α = ‖f+divq̃h‖1/α

we find that

‖p− q̃h‖div ≤ Mp(ũh, q̃h) + ‖f + divq̃h‖1/α := Mp,div(ũh, q̃h) (4.9)

Note that

Mp,div(ũh, q̃h) ≤ 2‖α∇ũh − q̃h‖1/α+

+ (CΩ + 1)
√
‖f + divq̃h‖2

1/α + ‖gN − q̃h · ν‖2
1/α,ΓN

≤ C1⊕Mu(ũh, q̃h) (4.10)

where C1⊕ = max
{

2, CΩ+1
CΩ

}
. For another norm we have

‖[p− q̃h]‖div ≤ 2‖α∇ũh − q̃h‖1/α+

+ 2CΩ

√
‖f + divq̃h‖2

1/α + ‖gN − q̃h · ν‖2
1/α,ΓN

= 2Mu(ũh, q̃h). (4.11)

In the numerical tests it was observed that Mu(ũh, q̃h) quite adequately represents the error
regardless of whether or not the term divq̃h + f is big.

4.3. A posteriori estimates in combined primal–dual norms
From (4.4) and (4.9) we obtain the estimate in a combined primal–dual norm

||| (u− ũh, p− q̃h) |||:= ‖∇(u− ũh)‖α + ‖p− q̃h‖div ≤ Mu(ũh, q̃h) + Mp,div(ũh, q̃h). (4.12)

Denote the right-hand side of (4.12) by M
(1)
u,p(ũh, q̃h). This functional is also subject to the majorant

Mu(ũh, q̃h). Indeed,

M(1)
u,p(ũh, q̃h) ≤ 3‖α∇ũh − q̃h‖1/α+

+ (2CΩ + 1)
√
‖f + divq̃h‖2

1/α + ‖gN − q̃h · ν‖2
1/α,ΓN

≤ C2⊕Mu(ũh, q̃h), (4.13)
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where C2⊕ = max
{

3, 2CΩ+1
CΩ

}
.

Another combined norm (generated by the norm ‖[p− q̃h]‖div) is estimated quite similarly. We
have

|||[ (u− ũh, p− q̃h) ]|||:= ‖∇(u− ũh)‖α + ‖[p− q̃h]‖div

≤ 3(‖α∇ũh − q̃h‖1/α + CΩ

√
‖f + divq̃h‖2

1/α + ‖gN − q̃h · ν‖2
1/α,ΓN

) = 3Mu(ũh, q̃h). (4.14)

It is worth emphasizing that the majorant Mu(ũh, q̃h) also provides a lower bound for the error in
the combined primal–dual norm. Indeed,

Mu(ũh, q̃h) ≤ ‖α∇(ũh − u)‖1/α + ‖p− q̃h‖1/α

+ CΩ

√
‖f + divq̃h‖2

1/α + ‖gN − q̃h · ν‖2
1/α,ΓN

= ‖∇(ũh − u)‖α + ‖p− q̃h‖1/α + CΩ

√
‖f + divq̃h‖2

1/α + ‖gN − q̃h · ν‖2
1/α,ΓN

.

Therefore,

Mu(ũh, q̃h) ≤|||[ (u− ũh, p− q̃h) ]||| . (4.15)

Thus, we observe that the majorant Mu is equivalent to the error evaluated in the combined
primal–dual norm. Similar result for mixed approximations of elliptic type boundary–value prob-
lems was established in [28]. Moreover, the relations (4.14) and (4.15) show that if the error is
controlled in the norm |||[ (u − ũh, p − q̃h) ]||| then the efficiency index is always between 1 and 3.
These bounds are observed in the experiments, see below.

The majorant Mu(ũh, q̃h) is also equivalent to the norm

|||[ (u− ũh, p− q̃h) ]||| .

Indeed,

CªMu(ũh, q̃h) ≤||| (u− ũh, p− q̃h) |||, (4.16)

where Cª = 1/ max{1, CΩ}. Recalling (4.13), we conclude that for the norm ||| (u− ũh, p− q̃h) |||
the upper bound of the efficiency index is given by the quantity C2⊕/Cª.

5. Numerical results
In this section, we present numerical tests showing the efficiency and the reliability of our majo-
rants Mu, Mp and combinations of them. In all the following examples, the different errors and the
error indicator are drawn with respect to the degrees of freedom using log-log scales. We plot here
the convergence of the approximation errors in the above-introduced norms, namely, the error in
the primal variable ‖∇(u− ũh)‖α, in the dual variable ‖p− q̃h‖1/α and in the primal-dual variables
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|||(u− ũh, p− q̃h) |||, that we compare with the error indicator ‖α∇ũh− q̃h‖1/α, which is in fact the
first term of Mu(ũh, q̃h).

For all our tests, we further present the following efficiency indices, namely the ratios numbered
as follows and corresponding to the respective estimates (4.6), (4.8), (4.9), (4.11), (4.12) and (4.14):

ratio1 =
Mu(ũh, q̃h)

‖∇(u−ũh)‖α

ratio2 =
Mp(ũh, q̃h)

‖p− q̃h‖1/α

ratio3 =
Mp,div(ũh, q̃h)

‖p− q̃h‖div

ratio4 =
2Mu(ũh, q̃h)

‖[p− q̃h]‖div

ratio5 =
Mu(ũh, q̃h) + Mp,div(ũh, q̃h)

||| (u− ũh, p− q̃h) ||| ratio6 =
3Mu(ũh, q̃h)

|||[ (u− ũh, p− q̃h) ]|||
According to the above mentioned estimates, these ratios are always larger than 1, moreover ac-
cording to the estimate (4.15), ratio6 is also less than 3, i.e., 1 ≤ ratio6 ≤ 3. Note further that
the ratios are not related to optimal computable majorants, but to upper bounds of these majorants;
see comments above.

5.1. Dirichlet problem, square domain
First, we consider the simplest case of the Laplace equation in the unit square Ω = (0, 1)2 with
homogeneous Dirichlet boundary condition. This means that we consider problem (2.1) to (2.3) in
the unit square with α = 1 and ΓN = ∅. As exact solution we take u(x, y) = sin(πx) sin(πy), the
right-hand side being fixed accordingly. This solution is the eigenvector of the Laplace operator
associated with its smallest eigenvalue 2π2. Accordingly the constant CΩ appearing in (4.3) is
equal to 1√

2π
. In Fig. 3 left, we have presented the different errors and the error indicator in a

log-log scale. Their convergence rates are around 1 for the dual variable error and of order 1
2

for
the other ones. On Fig. 3 right, we have plotted the effectivity indices, there we can check that
they are always greater than 1 and the property 1 ≤ ratio6 ≤ 3.

5.2. Dirichlet problem, L–shaped domain
For the second example, we consider the Laplace equation in the L–shaped domain Ω =] −
1, 1[2\]0, 1[×]−1, 0[ with non homogeneous Dirichlet boundary condition. In other words, we con-
sider problem (2.1) to (2.3) in the L–shaped domain with α = 1 and ΓN = ∅. Here as solution, we
take the so-called singular function of this problem given in polar coordinates by u = r2/3 sin(2θ

3
),

which is solution of the problem (2.1) to (2.3) (with α = 1), f = 0 and non homogeneous Dirichlet
boundary conditions. In Fig. 4, we plot at left the errors and the error indicator with respect to
the number of degrees of freedom in a log-log scale and at right the corresponding ratios. In the
left we see that the error indicator and the primal and dual errors converge with a convergence rate
of 1

2
. On the contrary, we may remark that the primal-dual error does not converge (convergence

rate of −1
2
), this is due to the term ‖div(p − q̃h)‖ = ‖f + divq̃h‖. In theory, this term should be
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Figure 3: Example 1: on the left, the errors and the error indicator wrt the dofs; on the right, the
ratios.

zero (for this example), but it turns out that the bad convergence of uh into u leads to the fact that
this term is not zero (and even blows up). This phenomenon is related to the numerical method
rather than to error control. It is not surprising that such a phenomenon appears for this example,
because the exact solution u = r2/3 sin(2θ

3
) is very irregular near the corner (and the divergence

of q̃h is related to its second derivative). The numerical result indicates that the simplest (i.e., P 0

on cells) FV scheme is unable to provide convergence in Hdiv norm. This fact is quite predictable
and is not in contradiction with the theoretical results related to error control. On the other hand,
at Fig. 4 right, we may notice that all ratios are larger than 1, and again that 1 ≤ ratio6 ≤ 3, as
theoretically expected.
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Figure 4: Example 2: on the left, the errors and the error indicator wrt the dofs; on the right, the
ratios.

5.3. Mixed Dirichlet-Neumann problem, square domain
Thirdly, we demonstrate the performance of our error estimation method on the Laplace equation
in the unit square Ω = (0, 1)2 with mixed boundary condition. Hence we consider problem (2.1)
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to (2.3) in the unit square with α = 1, where homogeneous Dirichlet conditions are taken along
the axes x = 0 and x = 1, and homogeneous Neumann boundary conditions are imposed along
the axes y = 0 and y = 1. As exact solution we here take u(x, y) = sin(πx) cos(πy). Since the
smallest eigenvalue of problem (4.5) is equal to π2, the constant CΩ is equal to 1

π
. On Fig. 5, we

have plotted all the errors and the error indicator as well as the effectivity indices. From it, we can
make the same conclusions than for example 1.
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Figure 5: Example 3: on the left, the errors and the error indicator wrt the dofs; on the right, the
ratios.

5.4. The checkerboard
Here we want to consider the so-called checkerboard, namely we consider problem (2.1) to (2.3)
in the unit square partitioned in four Lipschitz subdomains Ωi, i = 1, . . . , 4 as presented in Fig.
6 but with piecewise coefficient α, namely α = αi on Ωi. In our test, we take α1 = α3 = 10−4

and α2 = α4 = 1. The considered solution is the polynomial function u(x, y) = x2(1 − x)2(1 +
x)2y2(1− y)2(1 + y)2 so that it is a smooth solution of (2.1) to (2.3) with homogeneous Dirichlet
boundary conditions on Γ. For such a problem the constant in (4.2) (smallest eigenvalue of the
operator −div(α∇) with Dirichlet boundary conditions) is not known explicitly but according to
Proposition 4.3 of [6], this constant is close to the eigenvalue of the smallest eigenvalue of the
Laplace equation in the subdomains Ω1 ∪ Ω3 with Dirichlet boundary conditions on part of the
boundary in common with the boundary of Ω (i.e., the part of the boundary included into x = 0,
or x = 1, or y = 0, or y = 1) and Neumann boundary conditions on the remaining part of its
boundary. Since this eigenvalue is equal to π2

2
, the constant CΩ is then chosen equal to

√
2

π
. All the

errors and the error indicator as well as the effectivity indices are presented in Fig 7. From it, we
can make the same conclusions than for example 1 with even convergence order of around 1 for
the four quantities.
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Figure 6: The checkerboard.
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Figure 7: Example 4: on the top, the errors and the error indicator wrt the dofs; on the bottom, the
ratios.

5.5. A domain with a crack
To end this series of tests, we consider a boundary value problem on the crack domain Ω =
(−1, 1)2 \ σ, where the crack σ = [0, 1). On this domain we consider problem (2.1) to (2.3)
with α = 1, non-homogeneous Dirichlet condition on the exterior boundary and homogeneous
Neumann boundary conditions on σ (note that σ is unfolded in the sense that boundary conditions
are imposed from above and from below of σ). As exact solution we take the so-called singular
function u(x, y) = r

1
2 cos( θ

2
) so that it is a non smooth solution of (2.1) to (2.3) with f = 0. For

such a problem the constant in (4.2) is equal to
√

2
π

. Indeed if u is an eigenvector of eigenvalue
λ2 then v(x, y) = u(x, y) + u(x,−y) is an eigenvector of the Laplace operator with the same
eigenvalue in the domain (−1, 1) × (0, 1) with Neumann boundary conditions on (−1, 1) × {0}
and Dirichlet boundary conditions on the remainder of the boundary, hence λ2 ≥ π2

2
. On the other

hand we easily see that the function u(x, y) = sin(π
2
(x + 1)) sin(π

2
(y + 1)) is an eigenvector of the

original problem of eigenvalue π2

2
, which implies that the smallest eigenvalue is exactly π2

2
.

All the errors and the error indicator as well as the effectivity indices are presented in Fig 8.
From it, we can make the same conclusions than for example 2, due to the singular behavior of the
solution.
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Figure 8: Example 5: on the top, the errors and the error indicator wrt the dofs; on the bottom, the
ratios.
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